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Abstract: The excited states of atomic nuclei typically decay via electromagnetic transitions. In
this work, we study second-order electromagnetic double-magnetic dipole transitions for different
nuclei: 20Ne, 48Ti, 40Ca and 72Ge. We calculate nuclear matrix elements using the nuclear shell
model with different valence spaces and nuclear interactions, and we estimate the quality of the
results by comparing related calculations with data of first-order electromagnetic transitions and
energy spectra. The theoretical results can be used to predict second-order electromagnetic half-lives
which could be compared with future experiments.

I. INTRODUCTION

Double-gamma transitions are second-order electro-
magnetic (EM) processes in which two photons (γ) are
simultaneously emitted, leaving atomic nuclei in a lower
energy state. This decay occurs through virtual inter-
mediate states, such as excited nuclear states or interac-
tions with other particles, unlike first-order decays, which
occur directly between initial and final states. These
processes have been a subject of extensive study dur-
ing the past two decades, as they can provide new in-
formation about nuclear structure, such as generalized
nuclear electric polarizabilities and magnetic susceptibil-
ities [1]. However, the observation of these decays is
challenging, because these transitions are natural com-
petitors of first-order electromagnetic decays, which are
much more probable. Therefore, until relatively recently,
second-order EM decays could only be observed in nuclei
where their first excited state has the same spin-parity
as the ground state (0+2 −→ 0+GS). For these transitions,
single-gamma decays are forbidden. It was not until 2015
[2] that double-gamma decays competing against first-
order transitions could be observed. In particular, for
137Ba, the transition from the state Jπ = 11/2

−
to the

ground state Jπ = 3/2+ was successfully measured.

Furthermore, a good correlation has been found be-
tween double-beta neutrinoless transitions (0νββ) and
EM double-magnetic dipole decays (M1M1). The linear
correlation has been observed for shell model calculations
when the two photons share the energy of the decay [1].
This is very interesting because understanding 0νββ de-
cay could provide information about the unknown abso-
lute mass of neutrinos and could offer insights regarding
the dominance of matter in our universe.

The main objective of this work is the study of γγ tran-
sitions for different nuclei. We study 20Ne and 48Ti nuclei
because these calculations are easier to control. On the
other hand, there is experimental interest in measuring
M1M1 transitions for the other nuclei studied, 40Ca and
72Ge. This work is a first step to quantify the probability
of second-order M1M1 (0+ −→ 0+) decays. In order to do
so, we calculate M1M1 nuclear matrix elements (NMEs)
in the framework of nuclear shell model.

FIG. 1: Nuclear shell model single-particle orbitals
adapted from [3]. The blue box indicates the sd shell,
the red box the pf shell and the green box the r3g

valence space.

II. NUCLEAR SHELL MODEL

The nuclear shell model uses the Pauli exclusion prin-
ciple to describe atomic nuclei in terms of single-particle
levels. The origin of this framework came from the pre-
diction of magic numbers (2, 8, 20, 28, 50, 82, 126) for
which protons or neutrons tend to have stronger bind-
ing energies and are more resistant to nuclear decays. A
nuclear mean field can describe these magic numbers [4],

U(r) =
1

2
mNω2r2 +Dl⃗ · l⃗ − Cl⃗ · s⃗, (1)

with three contributions: the harmonic oscillator term,
which depends on the nucleon mass (mN ), the frequency
(ω) and the position (r⃗); the orbital angular momentum

(⃗l) interaction; and the third term, the spin-orbit (s⃗ rep-
resents the spin) interaction. D and C are constants. In
this mean-field approximation, wavefunctions are Slater



Second order electromagnetic transitions of nuclei Daniel Castillo Garcia

determinants,

|ϕα⟩ =
∏

i=nlmjτ

a†i |0⟩, (2)

where n, l, m, j and τ are the quantum numbers de-
scribing the single particle state i. n indicates the radial
quantum number, l is the orbital angular momentum, j
corresponds to the total angular momentum, m is the j

projection, and τ is the isospin. a†i is an operator that
creates a particle in the i state and |0⟩ is the vacuum
state [5]. However, to achieve a better description of
the nucleus, it is necessary to add an effective interac-
tion between nucleons. This leads to the interacting nu-
clear shell model, which is characterized by an effective
Hamiltonian (Heff ) that consists of one-body operators,
including kinetic energy and mean field potential, as well
as a two-body operators representing the interaction be-
tween neutrons and protons. Now, the wavefunctions are
linear combinations of Slater determinants,

|Φ⟩ =
∑
α

Cα|ϕα⟩. (3)

In order to reduce the complexity of the many-body
problem, the configuration space is divided in three parts:

• Inert core: Orbitals which are always full of nucle-
ons.

• Valence space: Orbitals available for the valence
nucleons, partially occupied. These orbitals are in-
volved in the effective interaction.

• External space: Empty orbitals.

The dimension of the valence space (Slater determinants
within this space) is the product of the combinatorial
numbers given by the degeneracy of the space and the
number of valence nucleons [4],

dimvs =

(
ns

nv

)
·
(
zs
zv

)
. (4)

Here, ns and zs represent the available single-particle
states in the valence space, while nv and zv denote the nu-
cleon number within this space, with n index for neutrons
and z for protons. In this study, we use ANTOINE, a nu-
clear shell model code capable of handling 109 Slater de-
terminants [6]. Table I indicates the number of Slater de-
terminants of all the calculations presented in this work.

III. M1M1 NUCLEAR MATRIX ELEMENT

Our main goal is to obtain M1M1 NMEs. This tran-
sition is governed by the M1 operator,

M1 = µn

√
3

4π

A∑
i=1

(gli l⃗i + gsi s⃗i), (5)

Nucleus Valence space Slater determinants
20Ne sd shell 4 · 102
48Ti pf shell 4 · 105

40Ca (tr.1) sdpf shell; without p1/2 4 · 108
40Ca (tr.2) sdpf shell; pf truncated 5 · 108
40Ca (tr.3) sdpf shell; 0f5/2, 1p3/2, 1p1/2 truncated 1 · 109

72Ge r3g 7 · 107

TABLE I: Valence spaces and number of Slater
determinants for the shell-model calculations of the

nuclei studied in this work.

where µn is the nuclear magneton and gln = 0, glp =
1, gsn = −3.826 and gsp = 5.586 are the orbital and spin
g-factors [7], for neutrons (n) and protons (p). The sum
is over all A nucleons in the nucleus.
For M1M1 transitions, the nuclear matrix element is,

Mγγ =
∑
n

⟨0+f ||M1||1+n ⟩⟨1+n ||M1||0+i ⟩
ϵn(1− ∆ϵ2

2ϵ2n
)

, (6)

with ∆ϵ = k0−k′0, k0 and k′0 the photon energies and ϵn =

En − Ei+Ef

2 . Ei, Ef and En correspond to the energy of
the initial, final and intermediate states, respectively. To
avoid the dependence on the photon energies, we demand
that they share the transition energy: k0 = k′0 = QEM/2,
where QEM = Ef − Ei, and in consequence ∆ϵ = 0
[1]. In the numerator, the double bars indicate reduced
matrix elements, following the Wigner-Eckart theorem
[5]. Considering all this, we calculate,

Mγγ(M1M1) =
∑
n

⟨0+f ||M1||1+n ⟩⟨1+n ||M1||0+i ⟩
ϵn

. (7)

In order to evaluate the previous expression we use the
following procedure:

1. We determine |0+GS⟩ (final state, |0
+
f ⟩) and |0+i ⟩ (ini-

tial state) by solving the Schrödinger equation,

Heff |0+GS⟩ = EGS |0+GS⟩, Heff |0+1 ⟩ = E1|0+1 ⟩, (8)

for the effective Hamiltonian, Heff .

2. We apply the M1 operator to |0+GS⟩ and |0+i ⟩, ob-
taining M1|0+⟩ for both states.

3. It is not viable to calculate directly the huge
amount of 1+ states. Hence we apply the Lanc-
zos’ strength function method [4] to expand,

M1|0+i ⟩ =
∑
n

an|1+n ⟩, (9)

where n is a finite number determined by the num-
ber of iterations we choose. The different 1+ ap-
proximate eigenstates have energies, En, and over-
laps, an, with the M1|0+i ⟩ state.

Bachelor’s thesis 2 Barcelona, June 2023



Second order electromagnetic transitions of nuclei Daniel Castillo Garcia

FIG. 2: Running sum of the M1M1 matrix elements for
48Ti (right) and 20Ne (left) as a function of the energy

of the intermediate states.

4. Finally, we calculate the overlap of the |1+n ⟩ states
with M1|0+GS⟩ (⟨0+GS ||M1||1+n ⟩). We now have all
the necessary elements to calculate the M1M1
NME in Eq.(7).

At this point, it is important to emphasize that since the
1+n states obtained are approximate and therefore not
exact eigenstates of the Hamiltonian, it is necessary to
verify the convergence of the result. Taking into account
Eq.(7), for the numerator, the completeness relation gives
the exact result,∑

n

⟨0+GS |M1|1+n ⟩⟨1+n |M1|0+i ⟩ = ⟨0+GS ||M1M1||0+i ⟩,

(10)
where index n runs for all eigenstates 1+n of Heff . We
have found that for 10 iterations with the Lanczos’
method the results converge for all the nuclei studied.

IV. RESULTS

A. 20Ne and 48Ti

We perform shell model calculations with a 16O core
for 20Ne and a 40Ca core for 48Ti. Therefore, we have
2 neutrons and 2 protons in the sd-shell for 20Ne, cal-
culated with the USDB [7] interaction to describe the
M1M1(0+5 −→ 0+GS) transition. For 48Ti we have 6 neu-
trons and 2 protons in the pf-shell, calculated with the
KB3G interaction [4] to describe the M1M1(0+2 −→ 0+GS)
transition. We obtain, Mγγ(M1M1) = −0.091 µ2

n

MeV−1 for 20Ne and Mγγ(M1M1) = −0.97 µ2
n MeV−1

for 48Ti.
Figure 2 shows that, in the case of 20Ne, the negative

contributions from the first excited levels are dominant.
This can be explained by two reasons: Firstly, the con-
tributions of the numerator for higher-lying 1+ levels are
small. Additionally, since we study the transition from
the fifth excited 0+5 state to the ground state, the signifi-
cant energy difference between the final and initial states
reduces the contribution of excited states that are not
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FIG. 3: M1M1 matrix element running sum for the
different truncated valence spaces used for 40Ca.

close to the ground state. On the other hand, Figure 2
also shows that, for 48Ti, the first peak dominates. Even
though the contributions to the numerator from the first
and second 1+ states are similar, since 1+2 is excited by 3
MeV with respect to 1+1 , the contribution to the M1M1
NME of 1+2 is reduced by a factor of four compared to
1+1 due to the energy denominator in Eq.(7).

B. 40Ca

For the calculation of 40Ca we use a 16O core. We have
used the sdpf.ca40.prc interaction [4] working on the sd-
and pf-shells with 12 neutrons and 12 protons, and the
0d5/2 orbital fully occupied. We study the decay from

the second excited level (0+2 ) to the ground state (0+GS).
However, in this case, the dimension of the full valence
space is too large, 1012 Slater determinants. Therefore,
we reduced it by either removing the 1p1/2 orbital (tr.1)
or truncating certain orbitals (tr.2 and tr.3), allowing for
a maximum of 6 nucleons in them. This limits the occu-
pancy for the specific orbitals listed in Table I. In other
words, we do not allow Slater determinants in Eq.(3) with
more than 6 nucleons combined in the truncated orbitals.

Figure 3 shows that the NME behaviour is very similar

Mγγ(M1M1)[µ2
nMeV−1] QEM [MeV]

40Ca (tr.1) 0.14 5.25
40Ca(tr.2) 0.083 3.49
40Ca (tr.3) 0.094 3.91

EXP. 3.35 [8]

TABLE II: M1M1 matrix elements and energy
difference between final and initial state for 40Ca.

Theoretical results compared to experiment.

Bachelor’s thesis 3 Barcelona, June 2023



Second order electromagnetic transitions of nuclei Daniel Castillo Garcia

EXP JUN45 RG.prolate JJ4B RG.5.45
0.0

0.5

1.0

1.5

2.0

2.5

E 
(M

eV
)

0 +
1

0 +
2

2 +
1

2 +
2

4 +
1

0 +
3

4 +
2

4 +
3

0 +
1

0 +
2

2 +
1

2 +
2

4 +
1

0 +
3

4 +
2

0 +
1

2 +
1

0 +
2

2 +
2

4 +
1

0 +
3

4 +
2

0 +
1

2 +
1

2 +
2

4 +
1

0 +
2

4 +
2

0 +
3

0 +
1

2 +
1

2 +
2

0 +
2

4 +
1

0 +
3

4 +
2

FIG. 4: Calculated 72Ge low-lying spectra for the four
shell-model interactions, compared to the experimental
data [8]. The states are labelled by the total angular

momentum and parity, JP .

for all three cases. The NME value is predominantly
determined by the first four excited 1+ levels. For tr.1,
the contributions in the numerator are larger, leading to
a bigger NME. The other truncations, tr.2 and tr.3, give
similar results, but the M1M1 NME is larger for tr.3.
Table II indicates that tr.2 is the one with QEM closest
to the experimental value. This favors the result obtained
with tr.2, which we consider the most reliable.

C. 72Ge

Finally, for 72Ge we perform shell model calculations
with a 56Ni core, in a valence space with 12 neutrons
and 4 protons distributed in the r3g valence space, see
Figure 1.We have considered four interactions, JUN45,
RG.prolate, JJ4B, and RG.5.45 [1].

In order to obtain an initial perspective on which in-
teractions could provide a better description for this nu-
cleus, we compute the seven lowest-energy states of 72Ge
with these four interactions. Figure 4 shows that, in gen-
eral, the second excited states for different angular mo-
mentum (J) values are not correctly described by any
of them. Moreover, JJ4B and RG.5.45 deviate the most
from the experimental data, as the 0+2 state does not
reproduce the measured excitation energy. The other
two interactions represent the energy of the initial and
final states involved in the studied transition (0+2 −→ 0+GS)
much better, see Table IV.

In addition, we calculate EM E2 andM1 reduced tran-
sition probabilities to verify if JUN45 and RG.prolate de-
scribe well this nucleus. The E2 operator is defined as,

E2 =

A∑
i=1

eir
2
i Y20(θi, ϕi) (11)

EXP. JUN45 RG.prolate JJ4B RG.5.45

δ(E2/M1) −10.30 -0.14 -0.27 -0.39 -0.23

Qquad [e·fm2] -13.00 12.85 10.98 16.79 17.79

µ [µn] 0.77 0.54 0.45 0.46 0.57

TABLE III: Mixing ratio for the 2+2 −→ 2+1 transition
and quadrupole, magnetic moment for the J = 2+1 state,

for the four interactions used for 72Ge. Theoretical
results are compared to experiment [8].

Mγγ(M1M1)[µ2
nMeV−1] QEM [MeV]

72Ge (JUN45) 0.011 0.77
72Ge (RG.prolate) -0.043 0.90

72Ge (JJ4B) 0.29 2.03
72Ge (RG.5.45) 0.18 1.73

EXP. 0.69 [8]

TABLE IV: M1M1 matrix elements and energy
difference between final and initial state for 72Ge.
Theoretical results are compared to experiment.

where e is the electric charge, Y20 is the spherical har-
monic and r, θ and ϕ correspond to spherical coordinates.
We compare the mixing ratio of the 2+2 −→ 2+1 transition
with experimental data. The mixing ratio compares E2
with M1 transitions as follows,

δ(E2/M1) = 83.5QEM∆(E2/M1)
µn

efm2MeV
, (12)

where ∆(E2/M1) =
(2+2 ||E2||2+1 )

(2+2 ||M1||2+1 )
[5]. Table III indicates

that, for all the interactions, the M1 transition exhibits
a greater strength compared to experiment and the E2
strength.
We also calculate the quadrupole moments and mag-

netic moments [5],

Qquad =

√
16π

5

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
(2+1 ||E2||2+1 ),

µ =

√
4π

3

√
J

(J + 1)(2J + 1)
(2+1 ||M1||2+1 ),

(13)

as they have a strong correlation with the reduced tran-
sition probabilities E2 [9] and M1. The results in Table
III show that, for JUN45 and RG.prolate, the absolute
values of Qquad are near to the experimental one, but
they have the opposite sign. The µ values are smaller
than µEXP for all the interactions. Hence, important
differences compared to experimental data appear.
As none of the four interactions provides a fully sat-

isfactory description of the nucleus, we calculate the
M1M1 matrix elements for all of them. Figure 5 shows
that, for JUN45, there are significant contributions from
the first excited levels, but they mostly cancel each other.
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FIG. 5: Running sum of the M1M1 matrix element for
the four interactions used for the 72Ge nucleus.

Specifically, the contribution of the 1+1 state cancels with
the ones of 1+2 and 1+3 . On the other hand, in the case of
RG.prolate, we find large contributions in the numerator
for relatively high-energy excited states, even extending
to a significant one from the 1+5 state. There is a sub-
stantial cancellation as the 1+1 state, favoured by the en-
ergy denominator, has the opposite sign compared to all
other notable contributions. Finally, for the JJ4B and
RG.5.45, the first contribution dominates. The energy
denominator causes the other 1+ states to have minimal
contribution, resulting in no cancellation in the running
sum of the M1M1 NME.

V. CONCLUSIONS

First we have studied second-order M1M1 transitions
for 20Ne, 48Ti, 40Ca and 72Ge with the nuclear shell
model. In the case of 40Ca, the full calculation in the
valence space is not possible, hence, we tried three differ-
ent truncations of the valence space. The NME obtained
from the second valence space (tr.2) is the most reliable

one, given the best description of the 0+2 excitation en-
ergy. For 72Ge, despite the lack of interactions capable
of fully describing second excited states, the NME could
be, Mγγ(M1M1) = (0.01 − 0.04) µ2

n MeV−1, based on
the low-energy spectra, nonetheless we can not disregard
larger values, Mγγ(M1M1) = (0.18− 0.29) µ2

n MeV−1.

When comparing the NME obtained for the different
nuclei, we find similar values, around Mγγ(M1M1) ≃
0.1 µ2

n MeV−1, for 20Ne and for all truncations of 40Ca.
For 72Ge the JJ4B and RG.5.45 interactions lead to larger
values, Mγγ(M1M1) ≃ 0.25 µ2

n MeV−1. However, the
largest value obtained correspond to the NME of 48Ti,
which is approximately three times larger than the value
obtained for 72Ge (JJ4B). In the JUN45 and RG.prolate
case, we find smaller results compared to all other nu-
clei, Mγγ(M1M1) ≃ 0.02 µ2

n MeV−1. In general, we
conclude that M1M1 NMEs are quite sensitive on the
nuclear interaction and the initial and final states of tran-
sitions.

Nevertheless, the NMEs discussed in this work have
been calculated under the approximation described in
Eq.(7), where we assume that the photons share the tran-
sition energy. This approximation is valid in the case
where En − Ei ≫ Ei, a condition not fulfilled for all
the studied nuclei, such as the case of 72Ge. For this
reason, it would be interesting for future studies to com-
pare our results with those obtained using Eq.(6) (non-
approximated expression). In addition, it would be in-
teresting to calculate energy widths and half-lives, in or-
der to compare the probability of observing these decays
with first-order EM transitions and also with future ex-
periments searching for M1M1 transitions.
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