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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Arnau Rios Huguet

Abstract: In this work, I have used Artificial Neural Networks to find the ground state of the
2D quantum harmonic oscillator. I have trained networks in two different ways: by using a mesh
of points and by using Monte Carlo methods. I have used the analytical solution of the problem to
benchmark the quality of the results of both methods, obtaining overlaps up to 0.99998 in the case
of the mesh training and 0.9989 in the case of Monte Carlo. The relative errors in the energy are
0.03% and 1.1% respectively. I have shown the effects of the number of neurons and the learning rate
on the overall performance of the network. Training with Monte Carlo shows faster convergence,
while training on the mesh gets closer to the exact energy.

I. INTRODUCTION

Artificial intelligence is a rapidly-evolving field that has
demonstrated a huge potential. In the last few years, un-
countable applications have emerged, not only in com-
puter science but also extending to many other fields
of science. Particularly in physics, many works have
shown the usefulness of machine learning techniques, and
the use of Artificial Neural Networks (ANNs) is growing
rapidly. For instance, in quantum mechanics, Ref. [1]
solved few-body bosons systems and Ref. [2] solved spin
many-body systems. Since then, many other works have
used ANNs to solve different quantum systems [3, 4]. Yet,
there have not been many applications in multidimen-
sional systems.

In this work, I have focused on the quantum harmonic
oscillator in 2D. I have chosen this system because it has
a simple analytical solution, and therefore, is adequate
to begin solving multidimensional problems. The exact
solution of the problem is useful to benchmark the quality
of the results given by the neural network.

I have found the ground state of the system using two
different training methodologies. The aim has been to
study the performance of both techniques, showing the
effect of variations of key parameters on the training. To
accomplish this, I provide an introductory explanation
about neural networks, and I take a look at the compu-
tational set-up. Finally, I present the numerical results,
comparing the performance of both methods.

II. ARTIFICIAL NEURAL NETWORKS

ANNs are computational systems that approximate
functions using some parameters, usually known as
weights. They are organized in layers: there is always
an input and an output layer, and there can be also
a number of hidden layers. Mathematically, there are
weights between each layer, that are applied to the pre-
vious layer as a linear application. In order to allow
non-linear behavior, an activation function is applied
between each layer. Typically, an activation function

σ is a non-decreasing function that usually goes from
σ(x = −∞) = 0 to σ(x = ∞) = 1. The ANN architec-
ture I have used in this work is shown in Fig. 1. It has
one hidden layer of Nhid neurons, and can mathemati-
cally be written as

φW(r⃗) =

Nhid∑
i=1

W
(2)
i σ

∑
j=1,2

W
(1)
ij rj + bi

 , (1)

where W = {W (1),W (2), b} are the weights and r⃗ =
(r1, r2) = (x, y), the spatial coordinates. The parameters
that control the training, such as the number of neurons
and the learning rate, are called hyperparameters and are
explained later in this work.

In order to approximate the desired function, appro-
priate values for all the weights must be found. The ANN
starts with random initial values, which are progressively
improved by little updates at each step. To achieve this,
an iterative process is followed, usually known as the
”training” of the neural network. The iterations of the
training are called epochs.

The way of testing the quality of some given weights is
by using a cost function. The cost function takes an ANN
state and returns a scalar, the loss value. The training
minimizes the loss, and therefore, the cost function works
as a way of measuring the distance to the target. For this
work, I have used the energy as the cost function.

At each epoch, the loss of the current ANN state is
computed and given to the optimizer, which updates the
weights. The amount by which parameters are changed
is determined by a hyperparameter called learning rate,
lr. Once the weights of the network are updated, the cost
function is computed once again using the ANN, and the
whole process is repeated. The training of the network
can be stopped when the loss converges, but in this work
I have trained the networks for a fixed number of epochs.

With this procedure and using a neural network with
enough neurons, the wave function can be obtained. In
fact, the Universal approximation theorem ensures that
it is possible to approximate any continuous function by
superposition of activation functions [5].
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FIG. 1: Architecture of the neural network: two inputs, the
spatial coordinates x and y (green); a number Nhid of hidden
neurons (blue) and a single output, the wave function (red).
The total number of weights is 4Nhid: 2Nhid between the
input and the hidden layer, Nhid in the bias and Nhid between
the hidden layer and the output. I do not show bias weights
for simplicity.

III. THE QUANTUM HARMONIC
OSCILLATOR

The Hamiltonian of the two-dimensional quantum har-
monic oscillator is

Ĥ = − ℏ2

2m
(∂2

x + ∂2
y) +

1

2
m(ω2

xx
2 + ω2

yy
2), (2)

where m is the mass of the particle, x and y are the
cartesian coordinates and ωx and ωy are the angular fre-
quencies. Introducing harmonic oscillator units of length
and energy, xho =

√
ℏ/mωx and Eho = ℏωx, the ex-

pressions are simplified. The solution of the Schrödinger
equation is

φnx,ny
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where nx and ny are the quantum numbers and Hnx
(x)

and Hny
(
√
ωy/ωxy) are the Hermite polynomials. Using

these units, the Hamiltonian becomes

Ĥ = −1
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)
, (4)

and the ground state of the wave function (nx = ny = 0)
is

φ0,0(x) =
1

2π

√
ωy

ωx
e−

1
2 (x

2+ωy/ωxy
2). (5)

In these units, the ground state has an energy E0 =
1
2 (1 + ωy/ωx), depending on the ratio between the an-
gular frequencies.

IV. COMPUTATIONAL SET-UP

A. Architecture and training cycle

The architecture of the ANN that I have used is shown
in Fig. 1. I have also tested networks with two hidden
layers, which perform much worse, as shown in Ref. [3].
I have used the network to find the ground state of

the oscillator, using the energy as the cost function. The
energy is computed as the normalized expectation value
of the Hamiltonian,

EW =
1

2

〈
φW

∣∣∣−(∂2
x + ∂2

y) + x2 +
ωy

ωy
y2
∣∣∣φW

〉
⟨φW |φW⟩

. (6)

In the kinetic energy term, I have avoided computing
the second derivative of the wave function integrating by
parts. The remaining term only contains first derivatives.
The python framework, PyTorch [6], used in this work
offers a way to compute this derivative automatically.
Once the energy is obtained, the gradients with respect

to the weights are computed by backpropagation. After
that, I use the Adam optimizer [7] to calculate the new
weights. In a few words, Adam takes the learning rate
α, the gradient of the weights ∇WL and other constants
(β1, β2, ϵ), and uses them to update the weights,

Wi+1 = Wi − αf(∇WEW , β1, β2, ϵ), (7)

where f(∇WE, β1, β2, ϵ) is a function of these parame-
ters. The training continues at the next epoch by com-
puting the wave function with the new values of the ANN.

B. Training with fixed points

I now present the first training method I have used in
this work. It consists in using points in a square mesh
that does not change during the whole training. For this
work, I have chosen the trapezoidal rule to compute the
energy of the wave functions on the mesh. The 2D trape-
zoidal integral can be expressed as a sum over all the
points multiplied by a weighting factor,∫

dr⃗φ∗(r⃗)Ĥφ(r⃗) = h2
∑
i,j

wijφ
∗(xi, yj)Ĥφ(xi, yj), (8)

where h is the lateral size of the squares in the mesh, and
wij = 1 everywhere except in the borders of the mesh.
Nevertheless, knowing that the wave function tends to
zero at infinity and selecting a big enough mesh, I have
taken wij = 1 everywhere, neglecting the effect of the
borders.
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Although this method is computationally efficient, it
presents two problems. First, as the network just learns
at the points of the mesh, the wave function may have the
wrong shape outside or between the points of the grid.
Over-fitting [8] refers to the phenomenon of a network
finding a solution to the problem that only works with the
training set. The second problem is that the number of
points in the input scales with the number of dimensions
d, as Ld, where L is the number of points on each edge
of the mesh. Going to higher dimensions, it is unfeasible
to continue using this method. I now discuss a second
training method that can overcome these limitations.

C. Training with Monte Carlo

The second way of training the ANN is using random
point distributions that stochastically evolve using the
Metropolis Hastings (MH) algorithm [9]. I have updated
the point distribution every 10 epochs, with a proposal
distribution width σMH = 1.

I have estimated the wave function integrals using
Monte Carlo techniques, a method known as QMC [10].
First, I compute the local energy of each point,

ϵ(x, y) = −1

2

(∂2
x + ∂2

y)φ(x, y)

φ(x, y)
+

1

2

(
x2 +

(
ωy

ωx

)2

y2

)
.

(9)
Then, I compute the effective number of samplers as the
expectation value of the ratio between the probability
distribution of the new wave function, |φW(r⃗)|2, and the
distribution of the previous MH step p(r⃗),

N = E
r⃗∼p

(
|φW(r⃗)|2

p(r⃗)

)
, (10)

where the r⃗ points are distributed following p(r⃗). p(r⃗)
is the Born probability associated to φW at the epoch
when the MH step is performed. Finally, I obtain the
total energy as the expectation value of the local energies
multiplied by the same factor,

EW =
1

N
E
r⃗∼p

(
ϵ(r⃗)

|φW(r⃗)|2

p(r⃗)

)
, (11)

This factor corrects for the difference between both dis-
tributions, as p(r⃗) is not updated at every epoch. Using
this approach is known as importance sampling.

The variance of the energy is computed as

σ2 = E
r⃗∼p

(
ϵ(r⃗)− EW)2

|φW(r⃗)|2

p(r⃗)

)
, (12)

and I have used it to estimate the uncertainty in the
integral as δEW ≈ σ/

√
ns.

The advantage of the MC method is that, as the train-
ing set is continuously evolving, the network is forced
to learn the shape of the whole wave function, not on a
mesh. This way, I expect over-fitting to be avoided.

Nevertheless, there is a limitation. Once in a while,
random points will be sampled far from the rest of the
distribution, and thus, away from the region where the
network is mainly trained. It is likely that the local en-
ergies of these points are estimated incorrectly. To avoid
this, I have applied two preventive measures. First, clip-
ping the energy. This means I have limited the local en-
ergy of the points to a certain deviation around the mean.
In particular, I have clipped the energy to eight times the
l1-norm of the local energy. Secondly, an envelope has
been applied to the wave function. The envelope ensures
the wave function gets to zero far from the origin, helping
with normalization and reducing the problem with dis-
tant points. Computationally, it means multiplying the
wave function with a function that goes to zero at in-
finity. For this work, I have chosen a Gaussian envelope
with an amplitude λ = 2,

φW
MC(x, y) = φW

ANN (x, y)e−
1

2λ2 (x2+y2). (13)

While introducing some bias, these two measures have
been really useful in order to ensure a consistent perfor-
mance of the network. Both measures are explained more
in depth in Ref. [11].

V. RESULTS

I now turn to discussing the results. I have looked for
optimum values for the number of neurons in the hid-
den layer, Nhid, and the learning rate, lr. Fig. 2 shows
the results for the training in the mesh, and Fig. 3 for
the training with MC. For the first I have used a mesh
with 50× 50 points in x, y ∈ [−5, 5], and for the second,
ns = 1000 sampling points. Using the training with MC,
more hyperparameter must be adjusted, for example, the
frequency of distribution updates. If the distribution is
not updated frequently, the network will adapt to those
points. This causes jumps in the energy when p(r⃗) is up-
dated, as it is likely that the network will not have the
correct shape in the new points. On the other hand, up-
dating the distribution often causes a noisier, but more
consistent evolution.
Looking at Fig. 2, I find similar initial energies for

all values of Nhid and lr. Since the initial values for the
weights are selected randomly, some variation through
different runs is expected. Nevertheless, as the initial
weights are distributed uniformly, the resulting wave
functions are mostly constant. Knowing this, the ob-
served energy E ≈ 9 is expected, as one can estimate the
energy of a constant wave function on a 50 × 50 mesh
around E ≈ 8.7.
There is also a clear distinction between the initial en-

ergies of both training methods. This is caused by the
envelope used in the MC training. It makes the initial
wave function more similar to a Gaussian, resulting in a
lower energy.
Looking at the evolution with different Nhid, I find

that with few neurons the wave function can only adopt
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1

3

5

7

9
En

er
gy

 (h
o 

un
its

)
lr = 0.001

Nhid = 5
Nhid = 10
Nhid = 20
Nhid = 50
Exact

0 500 1000 1500 2000
Epoch

1

3

5

7

9

En
er

gy
 (h

o 
un

its
)

Nhid = 20

lr = 0.0001
lr = 0.001
lr = 0.01
lr = 0.1
Exact

FIG. 2: Energy evolution during training in a fixed mesh of
50×50 points for the isotropic oscillator (ωx = ωy). In the top
panel, the evolution for different numbers of neurons is shown
for a learning rate of lr = 0.001. In the bottom panel, the
effect of changes in the learning rate for Nhid = 20 neurons.
In both panels, the energy of the exact solution is shown as a
horizontal solid line (black).

simple shapes. This means that, if the target function
is too complex, there are simply not enough neurons to
adopt its shape. For example, in the mesh training with
Nhid = 5, the energy flattens far from the exact energy.
Meanwhile, a big network is easier to adjust, as many
combinations of the parameter can result in the same
output. Training in the mesh, the largest Nhid has pre-
sented the fastest convergence. Nevertheless, the network
can be too complicated, resulting in over-fitting in the
case of fixed points. I will show later that the networks
I have used have not been over-fitted.

Comparing both panels, I find that Nhid has a bigger
effect in the training with the fixed mesh. Training with
MC, all the networks get to relatively small values in the
energy, under 5% relative error, in the first two thousand
epochs. On the other hand, small networks are not able
to get that close when training with the mesh points.

The learning rate hyperparameter also changes the
training of the network. Small values result in a slow
optimization, as can be seen for the lr = 0.0001 in both
trainings. On the contrary, training with high learning
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FIG. 3: The same as Fig. 2 but for networks trained with the
Monte Carlo method. All networks have been trained using
ns = 1000 sampling points and the point distribution has
been updated every 10 epochs. The uncertainty associated to
the Monte Carlo integral is not shown for clarity.

rates is more erratic and not so consistent. The network
with lr = 0.1 in the MC training is the fastest to get un-
der the 1% error, but presents an unstable convergence
with high spikes, and is therefore not a good value for
this training method.
In general, both training methods show similar re-

sponses to variations on the learning rate. However, there
is a noticeable difference when going to high values of lr.
When using lr = 0.1 in the MC training, the energy is
unstable, while the same value shows consistent results
when training on the mesh.
Finally, I have compared the wave functions at the end

of the training to the exact solution, both by plotting
the probability distributions (Fig. 4) and by comput-
ing the overlap between wave functions. For this test,
networks have been trained to solve an anisotropic os-
cillator with relative frequencies ωy/ωx = 1/2. I have
computed the overlaps using the trapezoidal rule, evalu-
ating the wave functions on a dense mesh of 1000× 1000
points. This way, the possible over-fitting when us-
ing the fixed mesh training could be noticed. For the
training on the mesh, the overlap between wave func-
tions is

〈
φW
mesh

∣∣φexact

〉
= 0.99998, and the relative error
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FIG. 4: Contours at 0.05, 0.1 and 0.15 of the probability
distribution of the wave function for an oscillator with relative
frequencies ωy/ωx = 1/2. The training with a mesh is shown
in dashed lines (green) and the training with MC in dotted
lines (blue), both obtained with lr = 0.001 and Nhid = 20.
The exact solution is also shown as a solid line (black).

between energies, δEW
mesh = ∆Emesh/Eexact = 0.03%.

Therefore, it can be stated that the network has not
been over-fitted. On the other hand, the results for the
Monte Carlo training are

〈
φW
MC

∣∣φexact

〉
= 0.9989 and

δEMC = 1.1%.

VI. CONCLUSIONS

In this work, I have found the ground state of the two-
dimensional harmonic oscillator using ANNs with two

different training methodologies. I have shown that both
training methods are capable of finding the correct shape
of the target wave function. The training with a fixed
mesh has shown to be able of getting closer to the analytic
result, with a relative error in energy of δEmesh = 0.03%,
compared to the δEMC = 1.1% using the Monte Carlo.

Training with random points has shown a faster con-
vergence of the energy, as they rapidly get close to the
analytical results. Nevertheless, the training with the
mesh points has gotten closer to the exact energy, and
it has been shown that there has not been over-fitting.
Therefore, it can be concluded that while slower, the fixed
mesh ensures a more consistent and stable solution of the
problem in two-dimensions.

This work can be continued in two different ways.
First, increasing the number of dimensions, where the
MC training should be more effective. Secondly, using
the network to find excited states of the oscillator by
looking for wave functions that are orthogonal to the
ground state.

The code of the whole work is available at:
https://github.com/leonbegiristain/ML-QHO.

Acknowledgments

I want to express gratitude to my advisor, Dr. Arnau
Rios, for all his help during these months. I also want
to thank Javier Rozalén, Amir Azzam and James Keeble
for their useful comments during our meetings and my
friends, family and partner for their support during the
whole work.

[1] H. Saito. Method to solve quantum few-body problems
with artificial neural networks. Journal of the Physical
Society of Japan, 87(7):074002, 2018.

[2] G. Carleo et al. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–
606, 2017.

[3] J. Rozalén et al. Machine learning the deuteron:
new architectures and uncertainty quantification.
arXiv:2205.12795, 2022.

[4] JWT Keeble et al. Machine learning one-dimensional
spinless trapped fermionic systems with neural-network
quantum states. arXiv:2304.04725, 2023.

[5] G. Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and sys-
tems, 2(4):303–314, 1989.

[6] A. Paszke et al. Pytorch: An imperative style, high-

performance deep learning library. Advances in neural
information processing systems, 32, 2019.

[7] DP. Kingma et al. Adam: A method for stochastic opti-
mization. arXiv:1412.6980, 2014.

[8] X. Ying. An overview of overfitting and its solutions. In
Journal of physics: Conference series, volume 1168, page
022022. IOP Publishing, 2019.

[9] S. Brooks et al. Handbook of markov chain monte carlo.
CRC press, 2011.

[10] F. Becca et al. Quantum Monte Carlo approaches for
correlated systems. Cambridge University Press, 2017.

[11] D. Pfau et al. Ab initio solution of the many-electron
Schrödinger equation with deep neural networks. Physi-
cal Review Research, 2(3):033429, 2020.

Treball de Fi de Grau 5 Barcelona, May 2023


