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Abstract: We present a simulation of a transmon qubit, one of the most used charge qubits in
quantum computing. The relevance of such a device comes from its low noise sensitivity compared
to other superconducting qubits. The aim of the simulation is to describe the energy spectrum and
explain the behaviour of the noise sensitivity. This work is framed in a bigger simulator and it
consists of the first step of the full transmon simulator: a backend simulator with the capability to
control a general superconducting chip architecture with external microwave pulses.

I. INTRODUCTION

Quantum computation and information have the po-
tential to revolutionize modern computing by enabling
exponential speedups for certain types of problems
[1]. Among the most promising avenues for realizing
such computation lies in superconducting quantum cir-
cuits, which find their foundation in Josephson junctions
(Ref.[2], section 4.6).
The initial challenge is to find a suitable system to de-
velop a chip. To be able to control the chip, energy levels
must be distinguishable, that is, the energy difference be-
tween two consecutive energy levels i and j, ∆Eij , cannot
be equal to any other: ∆Eij ̸= ∆Ekl such that kl ̸= ij, ji.
The main example of such a system is the atom: its
energy levels are not equally spaced through the entire
spectrum. Those devices that can reproduce the energy
levels and other atom characteristics, like selection rules,
are called artificial atoms, and they bring some advan-
tages over the natural atom, like for instance, parameter
tunability [3].
Even though there are many different technologies
(Ref.[2], section 1 and Table 6.1), superconducting cir-
cuits are a notable option when talking about speed and
control, but suffer from large external noise sensitivity.
The superconducting technology aims to create a solid-
state device that can behave as an artificial atom. This
can be achieved thanks to the Josephson effect, a quan-
tum effect that occurs when two superconductors are sep-
arated by a thin insulating barrier, leading to a probabil-
ity of tunnelling for the Cooper pairs of electrons. This
tunnelling creates a non-linear effect which leads to an in-
duced anharmonicity, i.e. energy levels without equally
spaced gaps. Some examples of superconducting circuits
can be found in Ref.[4].
The superconducting circuit that we will use here will be
a kind of charge qubit (Figure 1a of Ref. [4]): the trans-
mon qubit (Ref.[5]). The transmon qubit is a variation
of the CPB (section IID) that has a ratio between the
Josephson energy and the charging energy in the order
of ∼ 102. If we compare it to the CPB, it has a smaller
but enough anharmonicity, while achieving a substantial
reduction in charge noise. Transmon qubits have been
used to demonstrate a range of crucial quantum comput-

ing tasks, such as quantum error correction and quantum
simulation.

II. FUNDAMENTAL CONCEPTS

Before conducting a comprehensive analysis of the sim-
ulated circuit, it is imperative to clarify certain founda-
tional concepts about the realm of superconductivity and
the predecessors of the transmon.

A. The LC circuit and the quantum harmonic
oscillator

According to [6] the quantum harmonic oscillator (QHO)
is a system whose Hamiltonian is given by:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (1)

Where p̂ is the momentum operator, m represents the
mass, ω is the oscillation frequency and x̂ is the position
operator. Its energy levels are given by:

En = ℏω
(
n+

1

2

)
(2)

Which are equally spaced by ℏω. One system that can
be described by this Hamiltonian is the LC circuit: A
resonant circuit composed of an inductor and a capacitor
in series (section 4.4 of Ref.[2]). This system will be the
basis for the description of the transmon qubit.

B. Cooper pairs, superconductivity and the
Josephson effect

Superconductivity is a macroscopic phenomenon in
which certain materials exhibit zero electrical resistance
and the expulsion of magnetic fields. Currently, it is ex-
plained by the BCS theory [7], in which the fundamental
concept is the Cooper pair :
Cooper pairs are pairs of electrons that form a bound
state with zero total momentum due to the interaction
with the phonons of the lattice. This bound state is
a boson-like quasiparticle, so it can be described with
the Bose-einstein statistics, leading to the possibility of a
macroscopic occupation of the same quantum state and
moving together coherently. This implies that the elec-
trons can move without resistance, thus emerging super-
conductivity.
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This phenomenon needs cryogenic temperatures, because
the attractive force between electrons and phonons is
very weak, and thermal energy can break the bound
state.
Thanks to this phenomenon, an interesting effect occurs
in superconductors: The Josephson effect is a quantum
mechanical effect that takes place in superconductors,
where a current flows between two superconductors sep-
arated by a thin insulating barrier. This current involves
the tunnelling of Cooper pairs of electrons through the
insulating barrier.
The Josephson effect is desirable because it induces a
non-linear term in the Hamiltonian. The physical imple-
mentation is what is called a Josephson Junction. The
physical implementation of the Josephson junction con-
sists of a thin capacitor, with superconducting electrodes,
typically made of aluminium, and an insulating barrier
made of aluminium oxide. In Figure 1 b) one can see
a real image of a Josephson junction. The dimension of
this device is in the order of hundreds of nanometers (see
Figure 1 b)) [8], [9].

C. Number-phase representation

The number-phase representation is based on section 4.9
of Ref.[2].
Before acting on the systems, the Hilbert space in which
the elements work will be defined. Because the elements
that are being treated are electrical circuit components,
its Hilbert space is constituted by the charge q̂ and flux

ϕ̂ variables such that [ϕ̂b, q̂b′ ] = iℏδbb′ .
In this work, it has been used the number representation.
The number operator is defined as q̂ = −2en̂, where e is
the electron charge so that n̂ expresses the imbalance of
Cooper pairs in the junction. In this representation, one
can write the charge operator (or the number operator)
diagonally, such that n̂ =

∑
n n|n⟩⟨n|. Now it is needed

to explore the expression of the phase or flux operators
in the number basis by looking at the Lie algebra they
generate.

Defining the phase operator φ̂ = 2π ϕ̂
Φ0

, one can obtain
the following relation:

eiφ̂|n⟩ = |n− 1⟩ (3)

And the exponential can be written as:

eiφ̂ =
∑
n

|n− 1⟩⟨n| (4)

From here, one can see that:

cos φ̂ =
1

2

(∑
n

|n+ 1⟩⟨n|+ |n⟩⟨n+ 1|

)
(5)

This last result will be used in future sections.

D. The Cooper pair box

The Cooper pair box (CPB) [10] is a superconducting cir-
cuit that consists of a superconducting island connected

FIG. 1: Figure 6.2 from Ref.[2]. a) Superconducting island
coupled to the ground through two Josephson junctions. A
Cooper Pair Box b) One junction c) Equivalent circuit of the
image. The Josephson junction is represented by a capacity
connected in parallel to an ideal Josephson junction (one with
no capacity). d) Image of the implementation of a transmon
qubit

to a superconducting reservoir by a Josephson junction.
The implementation and equivalent circuit are in Figure
1, subfigures a and c. Its Hamiltonian is given by (section
4.6 Ref.[2]):

Ĥ =
1

2CΣ
(q̂ − q̂g)

2 − EJ cos(φ̂) (6)

Where CΣ is the total capacitance of the circuit, q̂ is
the charge operator, φ̂ the superconducting phase, and
q̂g ≡ −CgV is the offset charge.
We can use the number operator from section IIC and

the charging energy EC = e2

2C we obtain:

Ĥ = 4EC(n̂− ng)
2 − EJ cos(φ̂) (7)

Something interesting about the last term is that the
factor EJ , the Josephson energy, can be tuned exter-
nally. This is achieved by substituting the Josephson
junction with a dc-SQUID. In this context, SQUID (sec-
tion 4.7 of Ref.[2]) stands for superconducting quantum
interference device. These kinds of devices are used as
high-precise magnetometers in many industries. In the
field of superconducting artificial atoms, the dc-SQUID
is used as an effective Josephson junction that permits
tuning its Josephson energy with an external magnetic
flux EJ = EJ(Φ). This work will not account for ex-
ternal time-dependent magnetic fields, so the Josephson
energy is supposed to be constant.

III. TRANSMONS

The transmission-line shunted plasma oscillation[5] or
transmon qubit, is related to the CPB in its design, but
with the ratio EJ

EC
∼ 102. As Figure 1 d) shows, his dif-

ference is achieved by enlarging the gate capacity CG,
and it leads to an exponential decrease of the charge dis-
persion, while losing anharmonicity by a weak power law
[5].
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A. Hamiltonian and analytical solution

Similarly to the CPB, the transmon is built by cou-
pling two superconducting islands by a Josephson junc-
tion (Ref.[5], section IIA). Its effective Hamiltonian is the
same form as the CPB, in equation 7.
The eigenenergies of the transmon can be found analyt-
ically on the basis of the phases. The Hamiltonian is
written as:

Ĥ = 4EC

(
−i

∂

∂φ̂
− ng

)2

− EJ cos(φ̂) (8)

According to Ref.[11] equation 1.18, Schrödinger’s equa-
tion of the system with a Hamiltonian with the form of 7
takes the form of a Mathieu equation. The full derivation
can be found in Ref.[11], section 1.1.3; Ref.[2], section
6.3.3 and Ref.[5], Appendix B.
The fact that this system has an analytical solution has
been used in the comparison of the results obtained in
the comparison of Figure 4, as Ref.[5] uses this solution
to present its results.

B. QHO vs Transmon: Eigenenergies

An interesting exercise to do is to see how the transmon
is different from a QHO in terms of its eigenenergies.
To do that, an analytical approximation of the transmon
eigenenergies will be used to compare them with the an-
alytical expression of the QHO eigenenergies.
Setting ℏ = 1 from the section IIA, the energy levels of
the QHO are given by:

ωn = ω

(
n+

1

2

)
(9)

Taking the result of section 4. The Quantized Transmon
in [12] for the energy levels of a transmon:

ωj =

(
ω − δ

2

)
j +

δ

2
j2 (10)

Where δ ≡ −EC < 0.
In figure 2, one can see the ground state and the first two
excited levels for both circuits.
This approximation shows, in an instructive manner, the
significance of superconductivity in the fabrication of ar-
tificial atoms: It introduces the non linear term in the
energies, leading to an induced anharmonicity, i.e. a dif-
ferent energy gap between levels.

IV. NUMERICAL SIMULATIONS

The objective of the simulation was to achieve the ma-
trix form of the Hamiltonian and obtain its eigenvalues
by diagonalizing it. To diagonalize the Hamiltonian, the
eigh function of the numpy Python library was used [13].
Then, results will be compared with [5] to check for cor-
rectness. Lastly, it is expected to justify why the trans-
mon is a significant improvement over earlier supercon-
ducting qubits.

FIG. 2: Energy levels representation of a transmon and a
quantum harmonic oscillator, using the expression 10. As
one can see, up to the fourth order of magnitude without the
fast-rotating terms, the first energy level is the same for both
systems, but the second level of the transmon differs from its
first gap

A. Matrix representation

The usual way to tackle this problem to simulate this
circuit as a qubit, is to use the two-level approximation.
In this way, the Hamiltonian of the system is given by
[2]:

H =
ℏ∆
2

σ̂z +
ℏΩ
2

σ̂x (11)

Where σ̂z, σ̂x are the z and x Pauli matrices, ℏ the re-
duced Plank constant, ∆ the qubit gap ∆ ≡ ℏω01 =
E1 − E0 and Ω is associated with microwaves that cou-
ple the off-diagonal dipolar moment operator and induce
transitions between eigenstates.
But in our case, we will use the full lumped-element
Hamiltonian (eq. 7). That is because we want to be
able to work with not just the first two states, but to
check for leakage into other excited states, or even work-
ing with qudits, quantum systems with d states.
Making use of the relation 5, we can write the full
lumped-element Hamiltonian as follows:

Ĥ = 4EC(n̂− ng)
2

− 1

2
EJ

(∑
n

|n+ 1⟩⟨n|+ |n⟩⟨n+ 1|

)
(12)

Then we can write this expression in its matrix form. In
general, we can define:

MJU =
∑
n

|n+ 1⟩⟨n| MJL =
∑
n

|n⟩⟨n+ 1| (13)

MJ = MJU +MJL =
∑
n

|n+ 1⟩⟨n|+ |n⟩⟨n+ 1| (14)
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FIG. 3: Convergence of the eigenvalues with the dimension
cutoff. The qubit frequency is calculated like E(ncutoff ) −
E(ncutoff )

min so that every energy tends to zero. In this
way, one can observe the convergence much better for the 3
energy levels at the same time.

So that MJU represents the upper diagonal term, and
MJL represents the lower diagonal term. Then MJ is a
matrix such that only the upper and lower diagonals are
different from zero. Then we can write the Hamiltonian
on the charge basis as follows:

Ĥ = 4EC(n̂− ng)
2 − 1

2
EJMJ (15)

This operator is represented by an infinite large matrix,
so we truncated it to a cutoff |n| ≤ ncutoff = 10 reason-
able to the problem we want to solve (which in our case is
to simulate up to three levels of energy), then the matrix
will be of dimension (2 · ncuttof + 1)× (2 · ncuttof + 1) =
21 × 21. In figure 3 it can be seen the convergence of
the eigenvalues with the ncutoff parameter. Then the
operator n̂ is expressed as:

n̂ =

ncutoff∑
n=−ncutoff

n|n⟩⟨n| (16)

B. Transmon simulation

After obtaining the matrix form of the problem, the re-
sults will be presented in the following section.
One of the important things to reproduce was the eigen-
values of the Hamiltonian. Figure 4 shows the energy
bands along different values of the offset charge ng, for
four different ratios between the two involved energies.
There, one can see that as we approach the transmon
regime, the energy bands get flatter, but it can be seen
that the gaps between energy levels change too. This
could lead to approaching the QHO regime, which is
needed to be avoided. To study this phenomenon, one
has to define a new magnitude:

α ≡ E21 − E10 αr ≡ α

E01
(17)

a) b)

c) d)

FIG. 4: Plots for four different ratios EJ
EC

, showing the energy

bands along the effective offset charge ng. Figure 2 in Ref[5]
shows the analytical solution for the eigenenergies. By com-
paring the shape of the two figures, we conclude our results
are correct.

α is called the anharmonicity and αr is the relative anhar-
monicity. The dependency of those two new magnitudes
is studied in Figure 5
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FIG. 5: Relative anharmonicity αr (red) and charge disper-
sion for the first excited level ∆E1(blue) versus EJ/EC .

As one can infer from the definition of α and αr, if the
value is zero, the system behaves like a QHO. So to see
the advantage of this kind of qubit, we have to take a
look at its charge dispersion.

The charge dispersion tells how sensitive is the system to
external charges, and it is related to the parameter ng.
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It can be defined as:

∆Em ≡ Em(ng = 0)− Em(ng = 1/2) (18)

If Figure 4 is inspected, one can see that if ng changes, the
eigenvalues of the qubit do too. But as the ratio EJ/EC

is increased, the energy bands tend to be flat, mean-
ing that the charge offset, which is related to the charge
sensitivity, becomes irrelevant. This property makes the
transmon insensitive to charge noise. In Figure 5, one
can see that the correlation between that ratio and the
charge dispersion decays as an exponential function.
It can be observed that the charge dispersion tends to
zero much faster than the relative anharmonicity. In
Ref.[5] it is shown analytically that the charge disper-
sion is given by an exponential decrease (equation 2.5)
while the anharmonicity loss tends to zero with a weak
power-law (equation 2.12).

V. CONCLUSIONS

This work has focused on explaining one kind of charge
qubit, the transmon qubit: an improvement of its prede-
cessor, the Cooper Pair Box.
It has been shown that the transmon improves the charge
dispersion of the qubit, increasing its dephasing time T2

(Ref.[5], section V), while maintaining sufficient anhar-
monicity to operate as a qubit.
Although the Hamiltonian that represents the transmon
has an analytical solution ([5],[2] section 6.3.3), this work
is justified as a baseline of a more general simulator, con-
sisting of a time-dependent term and couplings, which
will be used as the way to control the qubit to perform
operations. In the scope of this project, the evolution of
the single transmon time-dependent Hamiltonian with an

external pulse and a coupling with a microwave resonat-
ing cavity was discussed, but the integrator used to solve
the von Neumann equation never converged. After some
investigation, it was found that we were not taking into
account the different effects that occur when coupling to
an electromagnetic field, such as the Stark effect or the
Lamb shift of the frequency.

Other milestones achieved in the project were the devel-
opment of an abstract class that outputs the full-time-
independent Hamiltonian of an arbitrary configuration of
transmons and resonating cavities, taking into account
interactions between transmons and resonating cavities.
This part of the project helped me understand how chip
architecture is thought of and why is that it is nearly im-
possible to have a fully connected chip. Because of space
restrictions, the theory and the results obtained are not
presented.

This work is just a small glimpse into the larger prob-
lem of what can be done with this kind of simulation.
The next steps for this project would be to implement
the time dependency with an external pulse by tuning
the frequency at which one has to send the pulse, for
one single transmon coupled to a resonator cavity and
the pulse driving for two transmons, making possible a
universal quantum computation.
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