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Abstract: There is an increasing interest to develop quantum circuits capable of performing
many-body quantum simulation motivated by their scaling advantages against classical devices. We
present an analysis of the performance of the unitary coupled cluster method for the 6Li nucleus
in the shell model framework. Our work consists of several tests aimed to establish proper criteria
to improve its performance. By isolating the main aspects of the UCC ansatz, we are able to
understand their effect on the simulation. Consequently, we identify different ways to optimise the
6Li simulation by reducing the operators used and choosing efficient Trotter number and reference
state.

I. INTRODUCTION

The study of the structure and dynamics of atomic
nuclei is characterized by the complexity of the nuclear
interactions between its components, protons and neu-
trons. This complexity sets a huge challenge for nuclear
physics, and there has always been an interest to pursue
efficient high precision simulations. One of the biggest
challenges for nuclear physics is the exponential scaling
of computing resources with the Hilbert space dimension
using classical computers [1]. However, quantum com-
puting seems to be a promising way to solve large many-
body quantum problems, thanks to the ability to describe
the Hilbert space scaling linearly with its dimension [2].

For the last years many quantum simulation methods
have been developed and studied and in this work we test
one of the most promising, the unitary coupled cluster
method (UCC). Our approach to the UCC method is
part of a greater framework aimed at comparing multiple
similar methods such as the ADAPT [3] and the RODEO
[4]. However, here we focus on the performance of the
UCC method used to simulate the 6Li nucleus described
by the nuclear shell model.

II. THE NUCLEAR SHELL MODEL

The nuclear shell model is a theory based on the idea
that nucleons occupy certain energy levels and form shells
similar to the atomic model [5, 6]. This model success-
fully describes how certain numbers of nucleons lead to
very stable shells. It postulates that closed shells do not
affect the dynamics of the particles that occupy the so-
called valence nucleons. In this context the formulation
of the nuclear shell model in second quantisation is often
given by a single-particle basis defined by the quantum
numbers of the valence nucleons njmtz: the principal
quantum number (n), the orbital angular momentum (l),
the total angular momentum (j), the magnetic quantum
number m and the third component of the isospin (tt).
Second quantisation is a formulation to describe many-

body states as a combination of the single particle states

in the so-called Fock space [7]. Creation â and annihi-
lation â† operators are the building blocks of the for-
malism, creating or destroying particles in certain states.
In second quantisation, the nuclear shell model Hamil-
tonian takes account of single-particle energies and the
two-body interaction:

Ĥeff =
∑
i

εiâ
†
i âi +

1

4

∑
ijkl

vijklâ
†
i â

†
j âlâk, (1)

where εi is the energy of the single-particle state and vijkl
is the antisymmetrised two-body matrix element of the
Hamiltonian.
The elements of matrix of the Hamiltonian that we use

are provided by the Cohen-Kurath interaction, a phe-
nomenological interaction based on empirical results of
several nucleus within the p shell [8].

A. The 6Li nucleus

This work focuses on the implementation of the UCC
method for the 6Li nucleus. This many-body system con-
sists only of two particles in the valence p shell: a neutron
and a proton [5]. This happens because the s shell of the
nucleus is full of particles, with two protons and two neu-
trons, analogous to the 4He nucleus.
The two valence neutrons can only occupy the 6 differ-

ent single-particle states shown in Fig. 1, based on their
quantum numbers nljmtz. In particular, both n = 0
and l = 1 are shared by all states, since we consider that
the nucleons can only be in the 0p shell. In addition,
the third component of the isoespin is shared for pro-
tons, with tz,p = 1

2 , and neutrons share tzn = − 1
2 . That

means a proton and a neutron can occupy states with the
same nljm numbers.
Meanwhile, the many-body states of the entire nu-

cleus are Slater determinants using the discussed single-
particle states. The different determinants must share
the same quantum magnetic number (M). Since the to-
tal angular momentum of 6Li is J = 1 we can choose
between M = −1, 0 or 1. We simulate the nucleus with
M = 0 because it is the most general choice, since all
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FIG. 1: Schematic representation of the single-particle states
available in the 0p shell. The labels in the left are written as:
nlj . Values of m are shown in the bottom.

nuclei with an even number of nucleons can have this
value. All the resulting Slater determinants that fulfill
this property are shown in Table I.

III. COUPLED CLUSTER THEORY

The coupled cluster (CC) method appeared in 1960 as
an approximation to calculate nuclear binding energies
[9] and was successful, being used, not only in nuclear
physics, but also to solve electronic structure problems.
Consequently, CC theory has been constantly developed
and implemented in several quantum mechanics areas.
The cornerstone of the CC formulation is the so-called
ansatz, the initial wave function guess that can be written
as follows:

|ΦCC⟩ = eT̂ |0⟩ , (2)

where |0⟩ is a known reference state of choice and T̂ is
the so-called cluster operator,

T̂ =
∑
i

T̂i. (3)

T̂i operators consists of a linear combination of many-
body fermionic excitations:

T̂i =
∑
pq...

∑
rs...

θrs...pq...τ̂
rs...
pq... , (4)

where τ̂ rs...pq... are excitation operators that brings particles
from p, q... occupied states to r, s... empty states, and
θrs...pq... their amplitudes (or weights).
Although the CC method was not originally designed

as a variational method, the CC ansatz can be used with
the variational principle. The minimisation of the energy
expectation value depending on the parameters θk leads
to the ground state energy:

ECC = min
θrs...
pq...

⟨ΦCC | Ĥ |ΦCC⟩ = min
θrs...
pq...

⟨0| e−T̂ ĤeT̂ |0⟩ (5)

In the NISQ era of quantum computing, the variational
principle is often used to approximate energies with the
so-called variational quantum eigensolvers (VQE). VQE

|vi⟩ |jp,mp, jn,mn⟩

|v1⟩ | 1
2
, 1
2
, 1
2
, 1
2
⟩

|v2⟩ | 1
2
,− 1

2
, 3
2
, 1
2
⟩

|v3⟩ | 1
2
, 1
2
, 1
2
,− 1

2
⟩

|v4⟩ | 1
2
, 1
2
, 3
2
,− 1

2
⟩

|v5⟩ | 3
2
,− 3

2
, 3
2
, 3
2
⟩

|v6⟩ | 3
2
,− 1

2
, 1
2
, 1
2
⟩

|v7⟩ | 3
2
,− 1

2
, 3
2
, 1
2
⟩

|v8⟩ | 3
2
, 1
2
, 1
2
,− 1

2
⟩

|v9⟩ | 3
2
, 1
2
, 3
2
,− 1

2
⟩

|v10⟩ | 3
2
, 3
2
, 3
2
,− 3

2
⟩

TABLE I: The 10 Slater determinants of the many-body basis
for the 6Li nucleus. States are labeled by the total angular
momentum of the proton (jp), the magnetic quantum number
of the proton (mp), the total angular momentum of the neu-
tron (jn) and the magnetic quantum number of the neutron
(mn).

algorithms consist of a quantum circuit that performs
some operations on a reference state depending on sev-
eral parameters and a classical computer that minimises
the measured energy of the final state according to these
parameters.
Among all variational CC methods, the unitary coupled

cluster (UCC) ansatz has emerged as a powerful method
for quantum computers. The UCC ansatz is build from
unitary exponential operators, which are efficiently im-
plemented in quantum algorithms [10]. In order to make
the cluster operator unitary, the excitation operators in
the exponential must be antihermitian. The UCC cluster
operator is the exponential of an antihermitian operator
σ̂. In particular, we use a sum of two-body excitation
operators which can be written in second quantisation
as:

σ̂ =
∑
pqrs

T̂ pq
rs =

∑
pqrst

θpqrs(â
†
pâ

†
qârâs − â†râ

†
sâpâq), (6)

where p, q, r and s are single-particle labels. Thus, from
Eq. (5), we can write the UCC energy using the defined
operators: EUCC = minθ ⟨0| e−σ̂Heσ̂ |0⟩.
We only use the T̂ pq

rs operators that maintain the mag-
netic quantum number of the nucleus M = 0 and the
ones that do not annihilate and create the same par-
ticles. Furthermore, T̂ pq

rs operators are anti-symmetric,

which means that T̂ pq
rs = −T̂ qp

rs = −T̂ pq
sr . Our operator

pool does not include the 4 possible operators with the
same labels in different orders, e.g. we have T̂ pq

rs but not

T̂ qp
rs , T̂

pq
sr or T̂ qp

sr . Consequently, our operator pool con-
sists of 45 operators that fulfill the previous criteria.
In order to implement the cluster operator using quan-

tum gates, we want the cluster operator to be a product

of eT̂
pq
rs exponentials. Since the exponential of a sum of
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non-commuting matrices cannot be separated in a prod-

uct of exponentials (eÂ+B̂ ̸= eÂeB̂) we need to introduce
an approximation called the Trotter decomposition. The
Trotter decomposition can be written as:

eσ̂ = e
∑

pqrs T̂pq
rs ≈

(∏
pqrs

e
T̂

pq
rs
t

)t

+O
(
1

t

)
, (7)

where t is the the Trotter number [11]. This is an impor-
tant feature when it comes to building the ansatz since
using a large t reduces the error of the approximation,
but requires to linearly increase the demanding quantum
computation resources. This is because adding one more
layer of operators in the ansatz translates to one more
layer of quantum gates in the circuit. Also, using this
approximation we need to take into account the order-

ing of the operators in the product, since eÂeB̂ ̸= eB̂eÂ.
This is also another key feature of the UCC ansatz and
we will discuss its impact later.

It is possible to build a quantum circuit that applies
the Trotter decomposition of the exponential of the UCC
operator to the reference state and measures the energy
expectation value according to several parameters. Along
with the quantum device we also need a classical mini-
mization algorithm, calling the energy function over and
over until it finds the values of the UCC parameters θpqrs ,
in addition to the ground state energy, this method pro-
vides the ground state itself.

IV. UCC PERFORMANCE FOR THE 6LI
NUCLEUS

In this section we put the UCC method to test using
classical computation to understand how can it be opti-
mised to perform in a quantum device.

To establish a benchmark of the precision and function-
ality of the method in this section we provide two observ-
ables comparing the ground state energy EUCC and the
ground state wave function ΦUCC from the UCC predic-
tions with the results computed by the diagonalisation
of the Hamiltonian matrix, E0 and ϕ0. These observ-
ables are the relative error of the ground energy level
ϵE = |EUCC−E0

E0
| and the infidelity I = 1−|⟨Φ0|ΦUCC⟩|2.

In addition, we quantify the efficiency of the method us-
ing the the number of function calls of the optimiser al-
gorithm Nfcall.
In particular, we use pyhon’s libraries to diago-

nalise the Hamiltonian matrix and scypy’s minimisation
function, with the Broyden–Fletcher–Goldfarb–Shanno
method (BFGS) to minimise the energy function.

A. Default procedure

The first test we performed consisted of using the 45
operators to build the ansatz, along with the first state

EUCC (MeV) ϵE I Nfcall

45 operators -5.5567831 2.2 × 10−8 2.4 × 10−8 1288

9 operators -5.5567831 2.2 × 10−8 2.5 × 10−8 280

TABLE II: Results of the UCC ansatz minimisation using the
default 45 operators and the reduced 9 operators.

of the many-body basis (|v1⟩) as the reference state. The
optimisation of the energy was successful, returning the
results presented in Table II.
At first sight, the results are promising. Both ϵE and I

have a near zero value, which indicates the high overlap
the final state has with the ground state. Although the
BFGS optimiser could continue with the minimisation,
we established an upper limit for the relative error at
ϵE ≥ 1 × 10−9 that cannot be surpassed. This precision
is much higher than the currently used in nuclear physics
[12]. This is maintained through the entire work.

B. Optimisation

There are three main aspects of the UCC ansatz that
can affect the simulation, in terms of precision, compu-
tational time and resources: the number and ordering
of the operators (T̂ ), the reference state (|0⟩) and the
Trotter number (t).
Before going any further, we realise that a large num-

ber of operators we use to perform the calculus are unnec-
essary. Since we use all 45 operators from the operator
pool, the optimiser algorithm has to work with 45 differ-
ent parameters, making the process hard computational-
wise. Several parameters have very small relative values,
due to the presence of operators with no effect on the
reference state. Furthermore, we also observe that the
final values of θ come in pairs with opposite sign.
Next, we select only operators that have some effect on

the reference state. This reduces significantly the number
of operators down to 9 of them for any state of the basis,
due to there is only 9 possible excitations that maintain
M = 0 for each state.
The results using this reduced operator pool are shown

in the second line of Table II. As we can see, there is
great improvement in Nfcall, that has reduced almost by
a fourth, while getting the same results. From now on,
we will use this selection of 9 operators to perform further
tests.
The main features of the ansatz can not be studied

independently, since they affect each other. For instance,
optimal operator order will change from one reference
state to another.
In this situation, we decided to start by testing the

minimization process under different Trotter numbers,
since we know from Eq. (7) that the error of the decom-
position is inversely proportional to t. Both reference
state and operator ordering will affect the performance
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FIG. 2: Optimisation evolution for the relative error of the
UCC energy function using the BFGS method. Each Panel
shows 20 tracks of randomised operators ordering for different
reference states using Trotter numbers from 1 to 4.

of the simulation. Thus, we simulate a large number of
ansätze with different reference states from the basis and
different operators orderings. In Fig. 2, we plot 20 of
these simulations for each t, from t = 1 to t = 4.

As we see in the Panel (a) of Fig. 2, for Trotter number
t = 1 some ansätze lead to sub-optimal minimisations,
often taking more than Nfcall = 300 function calls before
reaching ϵE = 1× 10−9. In contrary, in the other Panels
we see that higher Trotter numbers usually lead to fewer
function calls, between 200 and 250. However, there is
no substantial improvement from t = 2 to t = 4. We use
t = 2 from now on, since higher Trotter numbers lead to
more costly simulations.

To test the effect of the reference state on the UCC
method, we use a large number of random operator or-
derings for each determinant of the basis. Particularly,
perform the UCC method for 2000 different ansätze, shuf-
fling the order of the operators (without repeating) in the
exponential. The average Nfcall for each ansatz is shown
in Table III.

The difference between the states is not very signifi-
cant. However, we can notice that the degenerated states
perform very similar and states with lower energies are
not necessarily better than the more energetic ones.

A property that seems to be related with the efficiency
of the state is the infidelity. In general, states with lower
infidelity (or higher overlap) need less Nfcall than the

2000 samples

|vi⟩ Ei Ii Nfcall ± δ

|v1⟩ 2.58 1.00 218 ± 14

|v2⟩ 1.14 0.83 209 ± 11

|v3⟩ 2.58 1.00 217 ± 14

|v4⟩ 1.14 0.83 210 ± 12

|v5⟩ 0.67 0.86 201 ± 10

|v6⟩ 1.14 0.83 209 ± 11

|v7⟩ -0.75 0.98 212 ± 11

|v8⟩ 1.14 0.83 210 ± 11

|v9⟩ -0.75 0.98 212 ± 11

|v10⟩ 0.67 0.86 201 ± 10

TABLE III: Average number of function calls (Nfcall) of the
minimisation for each state of the basis using 2000 different
operator orders with the corresponding standard deviation
(δ). The first three columns show the state used in the simu-
lation along with its energy (Ei) and infidelity (I).

others. Notice that the infidelity (or overlap) of the ref-
erence state is not something we can know before starting
the simulation. Some works suggest using the Hartree-
Fock state [13, 14], which should have higher overlap than
the states of the basis. From now on we use |v10⟩, one of
the states that needed fewer Nfcall.
Next, we are going to take a look at the possible order-

ing of the operators in the exponential Trotter decompo-
sition. As we discussed before, the ordering of the excita-
tion operators in the exponential can change the ansatz
outcome, so it is interesting to check if some combinations
lead to faster simulations. Other studies suggest that the
ordering the operators according on their amplitudes in
the Hamiltonian leads to more efficient simulations [14].
Since the operators we are working with are basically

the two-body contributions of the Hamiltonian, we can
use the vijkl matrix element to quantify their ”ampli-
tudes”. Doing so, we can structure the Trotter decom-
position in an ascending or descending order depending
on the vijkl terms.
In the ascending order, the ”less important” operators

are applied first to the reference state, while in the de-
scending order the ”more important” are the first ones.
To check the performance using this criterion, we com-
pare this two ansätze with several randomized ones in
Fig. 3.
The results show little difference in performance com-

paring the minimisation process of different ansätze. As
we see in Fig. 3, there are several random orderings that
need less function calls. With this particular basis and
operator pool, ascending or descending ordering dos not
lead to significant efficiency improvements.

V. CONCLUSIONS AND OUTLOOK

In this work we study the different aspects of the UCC
ansatz and their effect on the efficiency of the method
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FIG. 3: Evolution of the relative error for the ground-state
energy (ϵE) and the infidelity (I) as a function of the number
of function calls (Nfcall). The manually chosen ascending and
descending orders for the operators are shown with dashed
and dotted lines, respectively. Random configurations are
shown with solid lines.

simulating the 6Li nucleus. The default ansatz uses 45
operators and the first state of the basis (|v1⟩) as the ref-
erence state. The simulation is successful and the min-
imiser need Nfcall = 1288.

First, we reduce significantly the number of operators
we use from the pool, by simply discarding the ones that
have no effect on the reference state. This translates to
fewer Ncall thanks to the reduction of parameters θ.

Second, we compare the performance of different Trot-
ter numbers using every single state of the basis with
a large number of randomised operator sequences. We
show how the Trotter number t = 1 can lead to ineffi-
cient simulations. Thus, we consider using t = 2, since
its more stable output.
Subsequently, we compute the average number of iter-

ations needed for the optimiser to end the simulation for
each state of the basis. 2000 different random operator
orders are used for each state to make this calculus, show-
ing how the energy of the states are not related with their
performance. Instead, the main property of the reference
state that leads to better performance is its overlap with
the ground state. This information is not available before
an actual estimation of the 6Li ground state energy.
Finally, we try to establish a criterion regarding the or-

dering of the operators in the exponential decomposition.
We use randomized and manually selected configurations,
taking into account the amplitudes of the operators in
the Hamiltonian, to compare their performance. This
choices do not performe significantly better compared to
the random ones.
There is more room for improvement when it comes

to the UCC method. An in-depth study of the order
of the operators in the ansatz should be done in order
to fully understand its effect on the simulation. Also,
some approximations can be used to obtain high-overlap
reference states, which seems promising for the efficiency
of the method. Overall, the UCC method has proven to
be a very powerful tool for nuclear physics that will have
its impact in the future of quantum computing.
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