
Detection of Gravitational Wave signals using Machine Learning methods and
Generative Pre-trained Transformers

Author: Abel Dana Ruiz
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisor: Tomás Andrade Weber and Co supervisor: Roberto Emparan Garćıa de Salazar

Abstract: We use Machine Learning methods based on Convolutional Neural Networks to search
for gravitational waves signals above the background noise distribution for a data set of simulated
gravitational waves and real noise signals from three detectors (LIGO Hanford, LIGO Livingston,
and Virgo). A training data set is used to train the ML method to classify data streams in two
groups: gravitational wave plus noise (label 1) or only noise (label 0). Later, the method predicts if
data streams from a testing data set belong to one or an other category. To generate the code that
implements the CNN algorithm we use Generative Pre-trained Transformers, specifically ChatGPT
based on GPT-3 and compare them to a human-made CNN. The ML methods are capable to detect
gravitational waves if we give ChatGPT freedom to create a CNN without specifying the parameters
or the architecture, but are not satisfactory if we try to direct ChatGPT to a specific type of code.

I. INTRODUCTION

The finding of gravitational waves in 2015 by both
LIGO detectors [1] was an inflection point in the General
Relativity field, confirming one of the conjectures Ein-
stein had based on his theory. The gravitational waves
that LIGO detected came from the merging of two black
holes belonging to a binary system. Nevertheless, the
amount of data that needed to be processed was really
big, and the problem of how to handle this sum of data
opened the door to a whole range of different data pro-
cessing techniques.

Two of the most popular data processing methods are
Matched Filtering and Machine Learning (ML) methods.
The first (see [2]) are based in the application of a linear
filter to the data, and turn out to be simple and optimal
methods, but they have problems if the noise distribu-
tion is non-Gaussian or time evolving, making them slow
methods and very data demanding to perform properly.
The second ones are not as limited, given that the type
of architecture chosen and the amount of data used can
make them really strong and reliable methods. Because
of that, there has been a growing interest in ML type
methods.

The objective of this Treball Fi de Grau (TFG) is to
use ML techniques to detect gravitational waves from the
background noise. The core of the ML method will be a
Convolutional Neural Network (CNN), that will be gener-
ated using Large-scale Language Model (LLM). Firstly,
we will do a short explanation of how CNN work; sec-
ondly, we will discuss all the technical aspects of the
method, such as the input data, the code and where the
LLM will be used; finally, we will compare different LLM-
generated CNN’s with a human-made one, to see if an
open source program can yield better results.

∗Electronic address: adanarui7@alumnes.ub.edu

II. CONVOLUTIONAL NEURAL NETWORKS

Essentially, the ML method we will use is a binary
classifier: for a data stream, it must return a number
that express if it has or not a gravitational wave. To make
the method learn we use a huge amount of labeled data
(where, in addition to the noise distribution and maybe
the gravitational wave above, there is a label determining
if there is or there is not injected gravitational wave)
and we must use a convenient CNN to make the best
prediction.

In our case, the CNN will work with images (see sec-
tion III b for the detail), that can be treated mathe-
matically as an order 3 tensor of size H ×W × 3, where
H are the numer of rows, W the number of columns and
3 represents the R, G, B color representation. It is im-
portant to say that for our case it was enough to work
with a grey scale representation, so this tensor (image)
has a matrix representation. So the input is, in general,
an order 3 tensor that will go into a sequential series of
processes. We can represent the input tensor as x1, the L
different layers of the CNN as w1,w2, ...,wL (where wi

are the parameters for the ith-layer) and the loss function
as z. This loss function gives an idea of the discrepancy
between the CNN prediction (that, in this notation, after
going through L layers will be labeled xL) and the real
result.

In order to have a good CNN is important to estimate
the parameters of each layer, and this is what the CNN
does when we say that we make it learn, specifically, it
is convenient to minimize the loss function z. The most
commond way to do this estimation is with the Stochas-
tic gradient descent, but this is beyond this TFG (see [3]
for mathematical details). From now on, we will do a
brief explanation of the mathematical bases of the most
important layers of CNN: the convolutional layers. How-
ever, there are other layers involved in the CNN, but they
are out of scope of this report

Taking a general order 3 tensor (H × W × D in



Detection of Gravitational Wave signals using Machine Learning methods and Generative
Pre-trained Transformers Abel Dana Ruiz

the input), for the l-th layer the tensor will have size
H l×W l×Dl. We define a convolutional kernel as an or-
der 3 tensor with size H×W×Dl. On every spatial loca-
tion, we overlap the convolutional kernel above the input
l-th tensor and calculate the products of corresponding
elements in the Dl channels and sum the HWDl prod-
ucts. If we move the kernel over the full image we perform
the complet convolution. In precise mathematics, and if
we consider than for the l-th layer we need a set of index
(il, jl, dl) and define y = xl+1, it is possible to see than
the convolution operation, in it’s simplest representation,
can be defined as:

yil+1,jl+1,d =

H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xl
il+1+i,jl+1+j,dl (1)

Where f are the set of convolutional kernels, and this
operation is the one that must be done for every spacial
location and for all d’s.
Convolutional layers are important because they are

the ones capable to recognise patterns if they are cor-
rectly applied. So, combined with other layers can recog-
nise some characteristics of the imput image during the
learning process and be able to use this patterns previ-
ously learned (this is, the parameters w1,w2, ...,wL of
the CNN are determined during the training process) to
determine the nature of new images.

Having seen all this, the procedure performed during
the whole TFG has been considering the CNN as a black
box plenty of parameters (now we are refering to the
parameters we use during the programming, not the wi

parameters of the CNN) that can be modified in order to
get a correct prediction. To determine this parameters
and layer organisation is where we will be using a LLM.

III. MACHINE LEARNING METHOD USING
CNN’S

A. Input data and evaluation

During the whole development we have used a data
set from the Kaggle competition “G2Net Gravitational
Wave Detection” (see [4]). This competition was created
to use ML methods for gravitational waves detection. All
data streams provided consist in an audio-type file, sep-
arated into three time series, each one corresponding to
one gravitational waves interferometer (LIGO Hanford,
LIGO Livingston, and Virgo). For each time series, there
is real noise corresponding to the respective interferome-
ter, and in some of them there is a simulated gravitational
wave injected above the noise. The lenght of each time
series is 2s and the sampling frequency is 2.048Hz. An
example of this time series can be seen in Figure 1, where
in the first graphic there is a gravitational wave and in
the second there is only noise.

FIG. 1: Gravitational waves signal detected (upper) and noise
signal (lower) signal detected by three interferometers.

The data is divided into two sets: the training set and
the testing set. The first one consists in data streams,
with a label 0 if there is not injected gravitational wave
or label 1 if there is injected gravitational wave. The
second set consists only in data streams, and are the ones
that the CNN must predict.
This ML method returns the name of all the data

streams from the testing set in the first column and a
real number between 0 and 1 for each data streams in
the second. If this number is lower than 0.5, the predic-
tion is no gravitational wave, and if it is greater than 0.5
there is supposed to be a (simulated) gravitational wave
injected in the correspondent file.

B. Code construction

The code used is dividided in three parts:

1. Data pre-processing

2. Convolutional Neural Network

3. Use of the CNN to do the predictions

In the first part of the code we use some techniques to
pre-process data. All train and test data sets are 77GB,
and we are running them directly on a laptop, so it is
necessary to optimize the process.
Firstly, instead of working with the raw audio-type

files, one can do a transformation of these ones, and work
with a 3D spectrogram [5], with image format. An exam-
ple of this image format can be seen in Figure 2 , where
we have represented the same data as in Figure 1, that
is, in the first case there is a gravitational wave and in
the second one there is only noise.
Once all data is in image format, one could introduce

it to the CNN, but firstly is advisable to do something
to optimize the process. In our case, instead of working

Treball de Fi de Grau 2 Barcelona, June 2023



Detection of Gravitational Wave signals using Machine Learning methods and Generative
Pre-trained Transformers Abel Dana Ruiz

FIG. 2: Spectrogram corresponding to the gravitational waves
signal (upper) and to noise signal (lower) detected by three
interferometers.

with the raw image-type data set, we divide it into non
dependent closed packages of data. We do this with all
the data set (train and test). This process makes the
compiling time, the training time and the testing time
much smaller.

The second part of the code is the core of the ML
method. In this part we use the Keras library of Python,
which allows us to construct a Neural Network using pre-
built layers (such as convolution layers, some neural lay-
ers and other layers with specific functions). It is impor-
tant to say that in this TFG we have only used sequential
type architectures (all layers are one after an other), no
parallel or more complicated organizations. After defin-
ing the CNN, we train it using the testing data set. We
also use a validation data set, that serves to evaluate the
losses and any statistics during the training process (it is
important to say that the validation data set is not used
to train).

Finally, the last part of the code is dedicated to see
the performance the CNN with the testing data set and
returning the results file with the predictions of the ML
method.

C. Use of LLM during the code

In the second part of the code (the part where the CNN
is implemented) we used a LLM to generate the sequen-
tially organised layers that should be the core of the ML
method. The software used for this is ChatGPT, a LLM
created by openAI based on the autoregressive language
model Generative Pre-trained Transformer 3 (GPT-3).

As we brievly said in section II, in this TFG we
considered CNN’s as a black box plenty of parameters
and with a performance very sensible to modifications in
them. Because of this, the usage of LLM in this part of
the code could give a new perspective to this work: seeing

if a LLM was capable to generate a code that implements
CNN better than the one that a person with knowledge
of the subject was able to create.

IV. RESULTS

A. Performance evaluation

To evaluate the results of each CNN we used a tool
given by the Kaggle competition [4], where is possible to
submit the final file of results, and it assigns a number
between 0.5 and 1 using the area under the Receiving
Operating Characteristic (ROC) curve between the pre-
dicted probability and the observed target.This type of
methods are important in binary classification models.
Defining the true positive rate (TPR) as the rate

between positive predictions (in our case predictions
greather than 0.5, there should be an injected gravita-
tional wave) and the true positive results, and defining
the false positive rate (FPR) as the rate between positive
predictions and the true negative results (lower than 0.5,
there is only noise), one can calculate the ROC curve in
a graphic between the FPR and the TPR. The area un-
der this curve will give a number that can give a mark
of the method (see [6]). If this number is from 0.5 to
0.75 the model will not be satisfactory, and if the model
is above 0.75 it can be considered a good method (obvi-
ously, higher the number, better the method).

B. Pseudo-code LLM generated CNN

Firstly, using a reference CNN from a Kaggle competi-
tor (this competitor or the organisation erased the web
page where his code was, so it is impossible to properly
quote him), we tried to obtain a similar architecture with
similar parameters. This procedure can be seen in Ap-
pendix 1, and it wasn’t successful: chatGPT [7] wasn’t
able to replicate a consistent CNN and the results weren’t
as expected. Basically, the number returned by the ML
method was always the same (for all data streams in the
testing data set), so the correct predictions where due
to a coincidence (for example, if the number was always
above 0.5 and casually a file didn’t have a Gravitational
Wave, the prediction was correct, but not by merit of the
ML method).

C. Free LLM generated CNN

Instead of trying to replicate an existing code (as we
did in the previous section), in this section we didn’t
specify all the layers and parameters that the code that
implements the CNN should have, we only told it how
the input data was, that we wanted a classifier and that
the architecture structure should be sequential [8].

Treball de Fi de Grau 3 Barcelona, June 2023



Detection of Gravitational Wave signals using Machine Learning methods and Generative
Pre-trained Transformers Abel Dana Ruiz

After testing the code output, we tried to improve the
code asking chatGPT to apply some modifications to the
previous code (this modifications were suggested by chat-
GPT itself).

Finally, chatGPT proposed to use other architecures,
such as “Inception” architecture. The CNN generated
had a training time of, approximately, 65 hours, so it
wasn’t viable to use. After asking chatGPT to do a
cropped version of the “Inception” code, it returned
model inception.
All this CNN’s and the interaction with chatGPT can

be seen in Appendix 2.

D. Final results

Using the names for the diferent CNN of Appendix 1
and Appendix 2 and also the evaluation form seen pre-
vious in this section, we can write a summary table with
the most notable CNN’s found.

TABLE I: Training time and accuracy of the most significant
CNN’s tested.

Model name Training time (hours) Mark

model base 4.60 0.85641

model pseudo 4.98 0.55892

model free 1.08 0.84642

model free+ 1 1.26 0.76585

model free+ 2 1.03 0.84433

model inception 1.04 0.84126

As it can be seen in Table I, the freely generated
CNN has almost as good results as the human made
one (model base), but the trainig time is considerably
lower. In fact, the first free model that chatGPT pro-
duced (model free) was the one with best performance,
and all the other CNN’s had worse results, even thougt

all of them where supposed to be a better version of
model free.
This results suggest that if chatGPT has less restric-

tions, it obtains better results. The more restrictions it
has, the worse the result is. For model pseudo, the most
restrictive one, it was unable to generate usable CNN’s.

V. CONCLUSIONS

In this TFG we have seen that Machine Learning meth-
ods based on Convolutional Neural Networks can be a
good way to detect gravitational waves, they can provide
strong and computationally undemanding models.
Also we have used a Large-scale Language Model

to generate Convolutional Neural Networks, with really
good results, and we have seen that this specific LLM
(ChatGPT based on GPT-3) provides better results, in
this particular area, if the demands that we ask are less
restrictive. In particular, trying to lead the AI to a par-
ticular type of code did not give satisfactory results, since
the code that the AI generated didn’t predict if there was
a gravitational wave signal above the noise. On the other
hand, for the (almost) freely generated code the results
were almost as good as the ones generated by a human
made CNN, but the compling time was up to four times
faster, making it even more computationally undemand-
ing.

Acknowledgments

I would like to thank my tutor Tomás Andrade for his
invaluable help, my co supervisor Roberto Emparan for
finding time to help us with his advice and to all the
participants of the Numerical Relativity group.
I would also like to thank my parents, my brother,

Marina and all my family for their support.

[1] B.P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Observation of Gravitational
Waves from a Binary Black Hole Merger Phys. Rev. Lett.
116, 061102 (2016)

[2] Jingkai Yan, Mariam Avagyan, Robert E. Colgan, Doğa
Veske, Imre Bartos, John Wright, Zsuzsa Márka, and Sz-
abolcs Márka, Generalized approach to matched filtering
using neural networks Phys. Rev. D 105, 043006 (2022)

[3] Jianxin Wu (National Key Lab for Novel Software Tech-
nology), Introduction to Convolutional Neural Networks,
Nanjing University, China, 2017.

[4] European Gravitational Observatory, 2021,
G2Net Gravitational Wave Detection, Kaggle,
<https://kaggle.com/competitions/g2net-gravitational-
wave-detection>.

[5] nnAudio, 2019, nnAudio.Spectrogram.CQT1992v2,
<https://kinwaicheuk.github.io/nnAudio/v0.1.5/

autosummary/nnAudio.Spectrogram.CQT1992v2.html>.
(Accessed May 7, 2023).

[6] MathWorks, n.d., ROC Curve,
<https://www.mathworks.com/discovery/roc-
curve.html>. (Accessed May 15, 2023).

[7] OpenAI, ChatGPT-3: Large-scale Language Model.
<https://openai.com >. (Accessed May 1, 2023).

[8] OpenAI, ChatGPT-3: Large-scale Language Model.
<https://openai.com >. (Accessed May 7, 2023).

Treball de Fi de Grau 4 Barcelona, June 2023



Detection of Gravitational Wave signals using Machine Learning methods and Generative
Pre-trained Transformers Abel Dana Ruiz

Appendix

In this appendix one can find all the CNN’s codes used.
I’ve avoided to write comments in the code because they
hindered the code presentation. Also, every code line
begins with a “ >” to differentiate them to new lines
that are continuation of the previous code line.

A. Appendix 1

model base. This model was made by a Kaggle user,
and it was the reference code we took. Actually the web
page is not available, so I can’t put it in the references,
but the help of that web site was huge. The code is:

>import keras.layers as L

>entrada = L.InputLayer(input_shape=(69, 193,
1))

>conv = L.Conv2D(3, 3, activation='relu',
padding='same')
>efn = efn.EfficientNetB0(include_top=False,
input_shape=(), weights='imagenet')
>pool = L.GlobalAveragePooling2D()

>densa1 = L.Dense(32, activation='relu')
>densa2 = L.Dense(1, activation='sigmoid')

>model = tf.keras.Sequential([entrada, conv,
efn, pool, densa1, densa2])

>model.summary()

>model.compile(optimizer=
keras.optimizers.Adam(learning_rate=0.001),loss=
'binary_crossentropy', metrics=
[keras.metrics.AUC()])

model pseudo. In this model we wanted to replicate
model base. To do this we asked ChatGPT to write a
code of a CNN with:

• input: images on grey scale of 69 x 193 pixels in
one channel

• convolutional layer with 3 filters of 3x3 with RELU
and padding

• intermediate layer with EfficientNetB0

• global average pooling

• 1 dense layer with 32 neurons, with activation layer
relu

• 1 output layer with sigmoid activation function

• sequential model construction

• compilation using Adam optimizer with learning
rate 0.001

The resulting code was:

>from tensorflow.keras.models import
Sequential
>from tensorflow.keras.layers import Input,
Conv2D, GlobalAveragePooling2D, Dense, Dropout
>from tensorflow.keras.applications import
EfficientNetB0
>from tensorflow.keras.preprocessing.image
import ImageDataGenerator

>input_shape = (69, 193, 1)

>model = Sequential()

>model.add(Input(shape=input_shape))
>model.add(Conv2D(filters=3,
kernel_size=(1,1), activation='relu'))

>efficientnet = EfficientNetB0(weights='imagenet',
include_top=False, input_shape=(69, 193, 3))
>model.add(efficientnet)
>model.add(GlobalAveragePooling2D())
>model.add(Dense(64, activation='relu'))
>model.add(Dropout(0.5))
>model.add(Dense(1, activation='sigmoid'))

>optimizer = tf.keras.optimizers.Adam(lr=0.0001)

>model.compile(optimizer=optimizer,
loss='binary_crossentropy',
metrics=['accuracy'])

B. Appendix 2

model free. This was the first free model that Chat-
GPT created after we asked it to create a model with:

• input: images on grey scale of 69 x 193 pixels in
one channel

• objective: classifier

• sequential model construction

With all the freedom it created:

>from tensorflow.keras.models import
Sequential
>from tensorflow.keras.layers import Conv2D,
MaxPooling2D, Flatten, Dense

>model = Sequential()

>model.add(Conv2D(32, (3, 3),
activation='relu', input_shape=(69, 193, 1)))

Treball de Fi de Grau 5 Barcelona, June 2023



Detection of Gravitational Wave signals using Machine Learning methods and Generative
Pre-trained Transformers Abel Dana Ruiz

>model.add(MaxPooling2D((2, 2)))
>model.add(Conv2D(64, (3, 3),
activation='relu'))
>model.add(MaxPooling2D((2, 2)))
>model.add(Conv2D(128, (3, 3),
activation='relu'))
>model.add(MaxPooling2D((2, 2)))

>model.add(Flatten())

>model.add(Dense(128, activation='relu'))
>model.add(Dense(1, activation='sigmoid'))

>model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])

>model.summary()

model free+ 1. In this code we wanted to improve
the previous code performance. From a long list of sug-
gestions ChatGPT did we asked it to implement (the
explanation was generated by ChatGPT):

• Regularization: Add regularization techniques such
as dropout or L2 regularization to reduce overfit-
ting. – Dropout randomly sets a fraction of input
units to 0 during training, while L2 regularization
adds a penalty term to the loss function to encour-
age smaller weights.

• Deeper Architecture: Experiment with adding
more convolutional layers or increasing the num-
ber of filters in each layer. This can help the model
learn more complex features from the images, but
be cautious of adding too many layers, as it may
lead to overfitting.

• Batch Normalization: Consider adding batch nor-
malization layers after convolutional layers. Batch
normalization can help stabilize and accelerate the
training process by normalizing the outputs of pre-
vious layers.

Trying to construct a code with this improvements the
result was:

>from tensorflow.keras.models import
Sequential
>from tensorflow.keras.layers import Conv2D,
MaxPooling2D, Flatten, Dense, Dropout,
BatchNormalization

>model = Sequential()

>model.add(Conv2D(32, (3, 3),
activation='relu', input_shape=(69, 193, 1)))
>model.add(BatchNormalization())
>model.add(MaxPooling2D((2, 2)))

>model.add(Conv2D(64, (3, 3),
activation='relu'))
>model.add(BatchNormalization())
>model.add(MaxPooling2D((2, 2)))

>model.add(Conv2D(128, (3, 3),
activation='relu'))
>model.add(BatchNormalization())
>model.add(MaxPooling2D((2, 2)))

>model.add(Flatten())

>model.add(Dense(128, activation='relu'))
>model.add(Dropout(0.5))
>model.add(Dense(1, activation='sigmoid'))

>model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])

>model.summary()

model free+ 2. Seeing that the results of the previ-
ous model wasn’t as good as we expected we only asked
to do the changes in architecture (deeper architecture),
and the result was:

>from tensorflow.keras.models import
Sequential
>from tensorflow.keras.layers import Conv2D,
MaxPooling2D, Flatten, Dense

>model = Sequential()

>model.add(Conv2D(32, (3, 3),
activation='relu', input_shape=(69, 193, 1)))
>model.add(MaxPooling2D((2, 2)))

>model.add(Conv2D(64, (3, 3),
activation='relu'))
>model.add(MaxPooling2D((2, 2)))

>model.add(Conv2D(128, (3, 3),
activation='relu'))
>model.add(MaxPooling2D((2, 2)))

>model.add(Conv2D(256, (3, 3),
activation='relu'))
>model.add(MaxPooling2D((2, 2)))

>model.add(Flatten())

>model.add(Dense(128, activation='relu'))
>model.add(Dense(1, activation='sigmoid'))

>model.compile(optimizer='adam',
loss='binary_crossentropy',

Treball de Fi de Grau 6 Barcelona, June 2023



Detection of Gravitational Wave signals using Machine Learning methods and Generative
Pre-trained Transformers Abel Dana Ruiz

metrics=['accuracy'])

>model.summary()

model inception. In the explanation of this last
code, ChatGPT suggested to use other architecture or-
ganisations, and the inception architecture was one of
these. Asking to write the code with this architecture
the result was too demanding, so I asked for a cropped
version:

• input: images on grey scale of 69 x 193 pixels in
one channel

• objective: classifier

• sequential model construction

• use Inception architecture

• not to computationally demanding

And the result was:

>from tensorflow.keras.models import
Sequential
>from tensorflow.keras.layers import Conv2D,
MaxPooling2D, Flatten, Dense, Dropout

>model = Sequential()

>model.add(Conv2D(32, (3, 3),
activation='relu', input_shape=(69, 193, 1)))
>model.add(MaxPooling2D(pool_size=(2, 2)))

>model.add(Conv2D(64, (3, 3),
activation='relu'))
>model.add(MaxPooling2D(pool_size=(2, 2)))

>model.add(Conv2D(128, (3, 3),
activation='relu'))
>model.add(MaxPooling2D(pool_size=(2, 2)))

>model.add(Flatten())

>model.add(Dense(128, activation='relu'))
>model.add(Dropout(0.5))
>model.add(Dense(1, activation='sigmoid'))

>model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])

>model.summary()

Treball de Fi de Grau 7 Barcelona, June 2023


