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Abstract: Gravitational waves open a new possibility in the detection of small dark matter
halos. In this study we examine the gravitational lensing properties of the Navarro-Frenk-White
(NFW) density profile, which is the most used model to describe cold dark matter halos. We also
analyze the influence of the NFW halos on gravitational waves and, lastly, we study the effects
of this interaction on the detection of the already mentioned waves. By exploring this effects, our
objective is to understand better the interaction of gravitational waves and dark matter, two subjects
shrouded in mistery.

I. INTRODUCTION

Gravitational waves (GWs) were first predicted in 1918
by Albert Einstein [1], without much hope to be detected.
Nonetheless, they were first detected in 2015 by the Laser
Interferometry Gravitational-waves Observatory (LIGO)
[2]. Since then, a new astronomical observation window
has been opened. So far, only (black holes and neutron
stars) binary mergers have been detected [3], but there is
hope to detect new phenomena, not only at the source,
but also during its trajectory. In particular, we want to
focus on gravitational lensing of gravitational waves.

We already know that light’s path is curved with space-
time itself. This is called gravitational lensing [4, 5].
Gravitational waves follow the same geodesics as elec-
tromagnetic waves, so gravitational lensing should also
work on them, and the detection of this phenomenon is
really expected shortly.

On the other hand, dark matter is also a hot topic.
While we do not know yet what it is, there are several
candidates, as seen in [6]. We also have some candi-
dates for its density distribution, but there is one that
has been universally adopted since it adjusts accurately
to the observations—the Navarro-Frenk-White (NFW)
model. It is derived from N-body simulations to deal
with cold dark matter [7]. It is expected for NFW profile
to adjust also to small halos, but it is not as established
as for big halos, since there is not as much evidence.

We may combine these concepts to study the lensing
properties of NFW halos on gravitational waves. De-
spite NFW’s wide mass range, we will focus on small to
medium sized halos (∼ 106M⊙), which could in fact be
potentially detected by currently existing or future detec-
tors. Furthermore, GW lensing makes for a really good
probe of this halos, since halos this size are not expected
to have a nucleus of barionic matter, which means a re-
ally pure NFW lensing [8].

First, in section II we will discuss the general properties
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of the NFW model, and in section III we will illustrate
the gravitational lensing theory. Then in section IV we
will combine both to develop the NFW lens model, and
in section V we will finally get to the main point, the
study of NFW-lensed gravitational waves.

II. NFW DARK MATTER MODEL

The density profile provided by Navarro-Frenk-White
is as follows [7]:

ρ(r) =
ρs

r
r0

(
1 + r

r0

)2 , (1)

where ρs and , the scale radius, r0 are adjustable pa-
rameters, distinct for every halo. They are, therefore,
obtained from observational data. The total mass of the
halo diverges, so it is usually considered to a certain ra-
dius, the virial radius, rvir = c r0, where c is the concen-
tration parameter. So the mass until this radius is called
the viral mass, and it is enough to determine ρs and r0.

III. GRAVITATIONAL LENSING THEORY

Let us suppose we have an extended lens, with a mass
distribution ρ(r⃗). We will first state the deflection angle
for a point mass lens, and then we will be integrating
it for every mass differential. With perfectly reasonable
approximations which always apply to the lensing frame-
work, General Relativity predicts the deflection angle [9]:

α̃ =
4GM

c2 ξ
(2)

with ξ the impact parameter andM the mass of the lens.
As we said, for an extended lens we want to integrate over
each mass differential to get the total deflection angle.
Now, since the deflection angle is small, it is reasonable

to assume that light does not curve until it reaches the
lens, so we can consider the thin lens approximation [4].
We want to have all the mass projected into a plane,
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whose name we will choose to be the lens plane, simply
enough. This defines the surface mass density, as follows
[4]:

Σ(ξ⃗) =

∫
R
ρ(ξ⃗, z)dz, (3)

where z points at the direction perpendicular to the lens

plane, and ξ⃗ will be the coordinates on the lens plane.
But first we want to introduce the necessary notation for

FIG. 1: Gravitational lensing diagram. I, S and L are the
image, source and lens respectively. The eye represents the
observer.

gravitational lensing. The angle from the center of the

lens plane to the image is denoted by θ⃗ (it is a vector,

since we are working with a lens plane), and β⃗ is the angle
to the source (the source will produce one or more images
[5]). In fact they are the positions on the lens plane
(source plane), divided by the distance, which makes for
an angle in the paraxial approximation.

With some trigonometry, we can see that if we define
Dl, Ds and Dls as the distances to the lens, to the source
and from the lens to the source respectively (can be seen
in figure 1), we get

β⃗ = θ⃗ − Dls

Ds

⃗̃α(θ⃗) = θ⃗ − α⃗(θ⃗) (4)

With the new scaled deflection angle α⃗ [9]. This is called
the lens equation, and reveals a comfortable relation for
the source position and the image position. Now we
need to compute our scaled deflection angle by combining
Eqs. (2) and (3):

α⃗(θ⃗) =
Dls

Ds

∫
R2

4G

c2
Σ(ξ⃗)

|Dlθ⃗ − ξ⃗|2
(Dlθ⃗ − ξ⃗)dξ⃗ (5)

which can be reduced if we consider the dimensionless
value κ(ξ⃗) named the convergence, and defined as follows:

κ(ξ⃗) =
Σ(ξ⃗)

Σcr
, Σcr =

c2

4πG

1

Deff
, Deff =

DlsDl

Ds
(6)

We defined the critical surface density Σcr and the ef-
fective lens distance Deff as well. This way, the scaled

deflection angle becomes:

α⃗(θ⃗) =
1

π

∫
R2

κ(ξ⃗)
Dlθ⃗ − ξ⃗

|Dlθ⃗ − ξ⃗|2
dξ⃗ (7)

Now, since ∇⃗ log|θ⃗| = θ⃗/|θ⃗|2 we know that α⃗(θ⃗) = ∇⃗ψ(θ⃗)
for some ψ named deflection potential, defined as:

ψ(θ⃗) =
1

π

∫
R2

κ(ξ⃗) log|Dlθ⃗ − ξ⃗|dξ⃗ (8)

This is much more useful than it first seems, because
it allows the definition of a new function such that the
points on which its gradient vanishes is exactly the lens
equation. This function is the Fermat potential or delay
time [9]:

τ(β⃗, θ⃗) =
1

2
(β⃗ − θ⃗)2 − ψ(θ⃗) (9)

Now this is called delay time because it is actually the
delay time of the wave, and can be split into a geometric
part (first addend) and a gravitational part, the deflec-
tion potential [5].
Lastly we want to compute what we will call the

transmission factor (also called amplification factor some-
times), which represents the ratio between lensed and un-
lensed amplitudes [10–12]. In simple terms, this is com-
puted by calculating the amplification of each point in
the lens plane (using the Fermat principle) and account-
ing for the delay time of each point in the lens plane to
deal with interference.
For our case we will study the frame of geometrical

optics, because it provides an easy solution for large fre-
quencies as opposed to wave optics, which accounts for
diffraction, but is much more complex and therefore re-
quires much larger computation times.
If we define the Jacobian of the lens equation as

det(∂β⃗/∂θ⃗), we can define the magnification of an im-

age as µ(θ⃗) = det(∂β⃗/∂θ⃗)−1. Now, for our framework
the transmission factor will be [12]:

FGO =
∑

Images

√
|µ(θ⃗)| ei(2πντ(β⃗,θ⃗)−n(θ⃗)π/2) (10)

where n(θ⃗) = 0, 1, 2 for a minimum, saddle point and
maximum of τ respectively, and is called the Morse index,
and ν is the dimensionless frequency [12]. As expected
from geometrical optics we are just dealing with images,
assuming that the rest of the transmission factor cancels
itself due to destructive interference, and we look only
after their magnification and their path difference, to ac-
count for interference. This approximation is valid when
the ratio between the Schwarzschild diameter of the lens
and the wavelength is large. We want to define the phase
function as [12]:

Φ(θ⃗) = arg
[
ei 2πντ(β⃗,θ⃗)

]
, −π < Φ(θ⃗) ≤ π (11)
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which will be an interesting visualization of what happens
on the lens plane. It is, simply enough, the phase of a
wave that arrives from the source on different parts of
the lens plane.

IV. NFW LENS MODEL

We can, at last, get to the main point. As we exposed,
our first objective is to find the lens equation of the NFW
lens. For this we will have to figure the deflection angle,
and for this we will first need to compute the conver-
gence. It involves a really hard integral, but when solved
becomes [13, 14]:

κ(x) = 2κs
1−F(x)

x2 − 1
(12)

where x = ξ/r0 (scaled radial position on the lens plane),
κs = ρsr0/Σcr and the function F which is the core of
the NFW lens model:

F(x) =


arctanh

√
1− x2√

1− x2
for x < 1 ,

1 for x = 1 ,

arctan
√
x2 − 1√

x2 − 1
for x > 1 .

(13)

This function, even though it seems complex enough, is
perfectly continuous and differentiable, and monotone.
With some more calculations, we can get the lens equa-
tion [13]:

y⃗ =

[
1− 4κs

x2

(
log

x

2
+ F(x)

)]
x⃗ (14)

We have x⃗ = ξ⃗/r0 = θ⃗Dl/r0, y⃗ = β⃗Dl/r0. The spher-
ical symmetry of the density profile is obviously trans-
ferred to the lens equation in the form of a radial sym-
metry. Now this has one or three images (only at exactly
the critical value ycr it has 2), as can be seen in figure 2.

FIG. 2: Graphs of the lens equation: actual lens equation for
ks = 1 (left) and ycr(κs) (right)

The next objective is to get the deflection potential,
and we may get it from the already shown Eq. (8). This
yields [14]:

ψNFW(x) = 2κs

[
log2

x

2
+ (x2 − 1)F2(x)

]
(15)

With this, and the definition on Eq. (9), we get the delay
time (normalised to x and y):

τ(y⃗, x⃗) =
1

2
(x⃗− y⃗)2 − ψNFW(x) (16)

And we can now compute the phase function, plotted
in figure 3 with a density graph.

FIG. 3: Density plots for the phase function on the lens plane
for frequency ν = 1 (left) and ν = 5 (right), both plots are
done with κs = 1. The source y⃗ = (0.25, 0) and the images
are also shown in both graphs.

Now to compute the transmission factor from Eq. (10),
since we have the argument already, we first need the
determinant [13]:

det J(x) =

∣∣∣∣∂ y∂ x
∣∣∣∣ = [

1− 4κs
x2

(
log

x

2
+ F(x)

]]
×
[
1 +

4κs
x2

(
log

x

2
+ F(x)

)
− 4κs

F(x)− 1

1− x2

] (17)

And now we can plot the transmission factor as seen
in figure 4. We realize that when there is only one image,
no interference can be appreciated, which makes sense for
the geometrical optics approximation. Another down-
side of this approach is the divergence near the origin.
Both artifacts would vanish if we used the wave optics
approach.

FIG. 4: These two density plots show the transmission factor
in terms of y/ycr and ν for κs = 1, 0.2, from left to right.
Notice that the scales differ.

Nevertheless, we do not need a more advanced ap-
proach, since for small κs (small masses), ycr is very
small, and the interference zone is pretty much negli-
gible, making for a transmission factor constant with ν.
Also, as seen in figure 4, the critical zone also does tend
to get more constant the smaller κs gets.
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Now, small subhalo masses (∼ 103M⊙ − 106M⊙) lead
through a power formula with exponent 0.18 max [8] or
0.11 min [18] to κs ∼ 10−3.

V. GW LENSING AND SNR

We will be using PyCBC [15] to generate the gravita-
tional waveforms. PyCBC is a package for python that
has data about gravitational wave detections, models and
tools to manipulate waveforms. We will be working with
κs = 0.001 from now on.
First we are generating the waveform, with the model

”IMRPhenomPv2”, with masses 36M⊙ and 29M⊙ (two
black holes) at a distance of 1Gpc.

Then we want to apply the lensing, which is done
through the transmission factor. We Fourier transform
the strain signal h(t), so we get it in the frequency do-

main h̃(f), and then we just scalarly multiply it by the
transmission factor F (f, y) (after setting down the source
position y), so the amplitude of each frequency gets mul-
tiplied by its corresponding factor. We have then the
lensed wave in the frequency domain, h̃L = h̃ · F , which
we can Fourier transform again so we get it in the time
domain, hL(t).
In our case, for small κs, the critical zone is negli-

gible, so we get transmission factor independent of the
frequency. And that means that we just get the wave-
form multiplied by a constant, which means we get just
amplification, and the wave is not distorted.

To detect the GWs we want to distinguish the noise,
coming from different non ideal conditions, from the ac-
tual signal. This is the main challenge faced in GW de-
tection.

We need to introduce now one last concept, the signal
to noise ratio. It is an integral over the signal and the
noise around the signal, which gives us (not formally)
how much signal there is hidden in the noise. The formal
definition is [16, 17]:

SNR =

∫ fh

fl

|h̃(f)|2

Sn(f)
df (18)

where Sn(f) is the noise power spectral density (noise
can vary with frequency), h(f) is the amplitude of the in-
coming signal in the frequency domain (its Fourier trans-
form), and the minimum and maximum frequencies are
determined by the frequency bandwidth of the detector.
A detected GW usually has a SNR of about 10, but it
can vary from 7 to over 20, for very extreme cases [3].

We will use for calculations the noise profiles of LIGO
during Observing Runs O3 and O4. With κs = 0.001,
ycr ∼ 10−4, so establishing y = 10−3 we are well outside
the interference zone. With these parameters, for the O3
noise, SNRs are 24.4 and 24.7 for the unlensed and lensed
waves respectively, and for O4, it goes higher (noise has
been decreased), SNRs are 25.4 and 25.8.

As expected, we get a greater SNR with the lensed
wave, but for small halos this is really small. It would

require great sensitivity to distinguish the case of a wave
coming from closer or with a bigger source from a lensed
one. The possibility of distinguishing both cases cannot
be discarded, however.
Lastly, it is also interesting to visualize the spectro-

grams of both the lensed and the unlensed waves. The
lensed wave has a more diffuse appearance which is sur-
prising.

FIG. 5: Spectrograms of the lensed (left) and unlensed (right)
gravitational waves. They both represent the energy of the
waves in terms of the frequency and the time.

VI. CONCLUSIONS

We were able to create with Python a complete model
of the NFW lens, so we could study much more than
there is reflected on this project about the model. We
changed parameters to study this lens, and we found out
that NFW lens is a really complex model, with some
vagueness in some aspects, so there is still a lot to learn.
We notice that strong lensing (having multiple images

separated by times longer than the signal itself) is not
too likely for NFW halos, and it gets more unlikely the
smaller the halo gets. When multiple images are dis-
carded, the main effect that persists is amplification.
This makes small halos (∼ 106M⊙) hard to detect,

since we have small amplifications which can be easily
confused with a closer source. If we get strange mass
combinations, or multimessenger signals, they can, how-
ever be detected through gravitational waves analysis.
Our plan is to continue with this research in the Master
thesis.
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