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Abstract: Naked singularities are highly curved regions of spacetime where classical general rel-
ativity fails, and whose effects are observable from infinity. The cosmic censorship conjecture states
that such singularities must hide behind a black hole event horizon. We consider cosmic censorship
in the context of a dust dominated universe, with a spherically symmetric primordial overdensity.
This admits an exact description in terms of the Lemaitre-Tolman-Bondi (LTB) solution, in which
both black holes and naked singularities can occur. We numerically construct causal diagrams for
both cases, identifying the apparent horizons, event horizons and cauchy horizons when applicable.

I. INTRODUCTION

According to general relativity (GR), a massive enough
star will undergo gravitational collapse once it has ex-
hausted all its nuclear fuel. When a trapped surface oc-
curs during this process, it implies the presence of some
form of spacetime singularity [1].

According to the cosmic censorship (CC) conjecture,
this spacetime singularity will be necessarily ”hidden”
behind a black hole (BH) horizon. Primordial black holes
(PBH) may have originated in the early universe, and
they are a possible candidate for dark matter if they
formed during the radiation dominated era [2–4]. Here
we are interested in PBH for different reasons, as a test-
ing ground for CC, and for simplicity, we consider their
formation in the matter dominated era.

The CC conjecture still stands as an unproved hypoth-
esis. Furthermore, several scenarios have been found
where gravitational collapse results in the formation of
a naked singularity (NS). being the LTB solution one of
the better known ones [5, 6]. The consequences of NS as
well as their fate are still not totally clear. The semiclas-
sical approximation is not valid in the vicinity of a NS,
where curvature is Planckian. Their further evolution
should be studied by including quantum gravity effects
[6, 7].

In this work we will review CC and the formation
of NS. For this purpose, we describe the formation of
both a PBH and a NS in terms of the LTB solution
for spherically symmetric dust collapse, considering an
overdense region of the universe surrounded by a spa-
tially flat homogeneous Friedmann-Lemaitre-Robertson-
Walker (FLRW) space. We will numerically construct
the causal diagram of both models, studying some of its
physical properties and identifying the formation of hori-
zons during the gravitational collapse. We will see that
some parts of the universe crunch into singularities a fi-
nite time after the Big Bang, while in others the world-
lines of dust particles continue forever into the future.

II. COSMIC CENSORSHIP

A trapped surface is defined as a closed, spacelike, two-
surface from which null geodesics converge for both in-
going and outgoing congruences [8]. The boundary of
a trapped surface is an apparent horizon (AH). In the
present context, singularity theorems state that the ex-
istence of a trapped surface implies the existence of a
spacetime singularity. Furthermore, Penrose’s weak cos-
mic censorship (WCC) conjecture states that any space-
time singularity cannot be observable from infinity, and
must then be hidden behind an event horizon (EH) [1].
In this sense, the WCC conjecture denies the existence
of ”globally naked” singularities for dynamical evolution
of generic initial conditions.

In the strong cosmic censorship (SCC) conjecture,
also ”locally naked” singularities would not be admitted,
where the observer is not necessarily at infinity [5]. In or-
der to understand the SCC conjecture we shall introduce
the Cauchy horizon (CH), the boundary of deterministic
evolution. The CH separates the regions where the equa-
tions of GR can predict the future from those in which
it cannot [9]. So as to preserve the determinism in Ein-
stein’s equations, regions beyond the CH should have no
influence for any distant observer. The reasoning behind
SCC is that Einstein’s equations are unstable under per-
turbations when approaching the CH. An observer ap-
proaching the CH would see an exponential blue-shift
effect of perturbations associated to a divergent energy
flux, which would imply the existence of a singularity [9].
This property, proven in Reissner-Nordström BHs [10],
is assumed to extend to the general case.

Nevertheless, the validity of CC is still under dis-
cussion. Recent articles related to the stability of the
CH present several examples which would contradict CC
[9, 11, 12], as well as refinements which would reinforce
the conjecture [13]. A part from these cases, beyond the
scope of this work, there are also many known models
where gravitational collapse from physically reasonable
initial data leads to the formation of a NS [14].
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Among these models, the LTB solution is the one best
understood. Aside from the conditions under which NS
arise in this model, we are also interested in the implica-
tions of their existence in relation to CC. Classical physics
ceases to be valid about one Planck time before the for-
mation of the singularity as curvature becomes Planckian
and quantum gravity effects must be taken into account
[7, 15]. In this context, it is interesting to introduce the
concept of effective naked singularities, understood as
sufficiently high-curvature regions with observable effects
for distant observers [7, 16]. May these regions of space-
time exist, we would be able to observe fully quantum
gravitational effects.

III. THE LTB SOLUTION

The LTB solution is given by a spherically symmetric
metric in the form

ds2 = −dt2+
R′(t, r)2

1− k(r)
dr2+R(t, r)2(dθ2+sin2 θdϕ2), (1)

together with the stress-energy tensor for dust particles

Tab = ρ(t, r)δtaδ
t
b. (2)

In what follows, a prime denotes derivatives with respect
to the radial coordinate, r, and a dot denotes derivatives
with respect to the time coordinate, t. R(t, r) is the areal
radius, k(r) is a free function, and we use natural units
G = c = 1.

In this context, Einstein’s equations are

Ṙ2 = 2mR−1 − k, (3)

k̇ = 0, (4)

ṁ = 0, (5)

where m(r) represents the mass function, which must
satisfy the constraint

m′ = 4πR2R′Ttt. (6)

The later equations together with the metric determine
the LTB general solution. For k = 0 we have the homo-
geneous Einstein-de Sitter solution:

R(t, r) =

(
9

2

)1/3

m1/3t2/3. (7)

For k > 0, by parametric integration we find:

t(η, r) = mk−3/2(η + π + sin η), (8)

R(η, r) = 2mk−1 cos2 (η/2) , (9)

where−π ≤ η ≤ π. Thus, t(−π, r) = 0 represents the Big
Bang and tc(r) = t(π, r) = 2πmk−3/2 gives us the time of
collapse, for both of which R(−π, r) = R(π, r) = 0. This

solution is then determined by the free functions m and
k. For the models later reviewed, we take k as follows:

k =

{
3
4 sin

2 (r) r < π

0 r ≥ π,
(10)

while the mass function will be chosen below. If ρ̄ is the
mean density

ρ̄ =
3m

4πR3
, (11)

then one can see for t ≪ tc and k > 0 that

δρ

ρ
=

ρ̄− ρ∞
ρ

≈ 3

20

(
6πt

tc

)2/3

> 0, (12)

being ρ∞ the density at infinity. In this sense, the region
r < π represents an initial overdensity of spacetime go-
ing smoothly to 0 at r = π and then becoming spatially
flat. In this spacetime, the overdense region expands af-
ter the Big Bang and then undergoes gravitational col-
lapse, while the homogeneous FLRW space continues for-
ever into the future.

A. Naked singularities in LTB spacetimes

Two types of singularities can develop during gravita-
tional collapse of inhomogeneous dust distributions. The
ones of our interest are the so-called shell focusing sin-
gularities, which are naked when they occur on the cen-
tral worldline [17]. In order to understand when central
shell-focusing singularities arise, we consider the time of
formation of the AH, determined by R = 2m. From (8)
and (9) we find

η±ah(r) = ±2 arccos
√
k, (13)

t±ah(r) = mk−3/2(η±ah + π + sin η±ah). (14)

The result for the + sign represents the time at which
a trapped surface is formed when approaching tc, while
the − sign would give the analogous time approaching
the Big Bang. In this context, the formation of a naked
singularity in marginally bound collapse has been widely
reviewed [5, 7, 18]. For this case it is found that tc > t+ah
for any r > 0, and thus any region beyond r = 0 can-
not be naked [5]. Nevertheless, null rays emanate from
(tc(0), 0) under some conditions for the mass function. In
particular, NS arise for k = 0 and a mass function

m(r) = M3r
3 +M4r

4 +M5r
5 +M6r

6 + ..., (15)

for M4 = M6 = 0, M5 < 0 and also for M4 = M5 = 0,

M6 < −
(
26 + 15

√
3
)
M

5/2
3 /2 [5, 18]. Then, local visibil-

ity is determined only by the central expansions of the
mass function, while global visibility requires of a func-
tional form such as (15) in the whole range of r. The
physical reason behind the exposure of the singularity
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would be related to shearing effects which, when strong
enough near the central worldline, would delay the for-
mation of the AH [17].

Next, we will make further considerations for a more
general case. If we recover the idea of effective NS, we
should consider the physical singularity not to occur at
tc, but rather at ts(r) = tc − 1 (one Planck time before
tc, where spacetime curvature and density are already
Planckian [7, 15]). With this assumption, we find from
(14) that t+ah > ts for a non-zero range of r, meaning that
null geodesics would emerge not only from the central
worldline.

When this consideration is taken into account, we will
see that NS appear for new different choices of the pa-
rameters from (15). Unfortunately, there is no analytical
treatment to determine what factors make the NS arise
for the k > 0 case, or to understand whether it will be
global or local. In general, a null ray which propagates
from this region and later crosses t+ah will fall again into
the singularity, thus being locally naked. On the other
hand, a globally NS will have formed if null rays reach
the surface of the overdense region instead of crossing
t+ah.

IV. CONFORMAL DIAGRAMS

In the following section, we introduce an algorithm to
numerically construct conformal diagrams. In conformal
diagrams, cosmological infinities are reduced to finite dis-
tances and light rays are represented by ingoing or outgo-
ing lines of slope equal to one. This algorithm will then
be used to represent the conformal diagrams of both a lo-
cally and a globally NS. For the purpose of this work, it
will be convenient to use two different coordinatizations.

A. Coordinatization and compactification

1. Coordinates U, V → T,X

Given an arbitrary point P in our (t, r) space, null
coordinates U and V are defined such that

V = ti + ri, (16)

U = ti − ri, (17)

being ti and ri the initial values of t, r for either an in-
going (V ) or an outgoing (U) light ray passing through
P . The trajectories of these rays are obtained by numer-
ically integrating the null geodesics differential equation
for metric (1) together with expressions (8) and (9):

dt

dr
=

±R′
√
1− k

. (18)

One can see that any ingoing ray will start propagating
from the Big Bang, taking V = ri, while outgoing rays

propagate both from the Big Bang, U = −ri or from r =
0. Nevertheless, coordinates U, V have the particularity
that for r = 0, U = V , so that we can associate to
any outgoing null geodesic starting at (ti, 0) an auxiliary
ingoing ray such that U = Vaux = ri,aux. An example of
this is shown in Fig. 1.

- Singularity
- Outgoing
- Ingoing
- Auxiliar

- Singularity
- Outgoing
- Ingoing

- Singularity
- Outgoing
- Ingoing
- Auxiliar

- Singularity
- Outgoing
- Ingoing

_________

V = ri

____

U = ri,aux

___

__________V = rs + (3ti)
1/3

.P1
P2.

U = - ri

FIG. 1: Example of the assignment of U and V to points
P1, P2. The red line represents the physical singularity. Blue
and purple lines represent ingoing rays. Outgoing rays are
represented in orange. In the left panel, an auxiliary ray is
used to define U . In the right panel, rs represents the value of
r at the surface of the overdensity. Also, the expression given
for V is obtained by propagating an ingoing ray starting at
the Big Bang in the k = 0 region that crosses the overdensity
surface at (ti, rs).

Then, a compactification and a rotation is applied:

T = arctanU + arctanV , (19)

R = − arctanU + arctanV . (20)

2. Coordinates U ′, V ′ → T ′, X ′

As will be seen later, it can be convenient to define a
new coordinatization. Let be rf , tf the final values of t, r
for an ingoing (V ′) or an outgoing (U ′) ray, where

V ′ =
[

tf
ts(rf )

]1/γ
+

rf
rs
, (21)

U ′ =
[

tf
ts(rf )

]1/γ
− rf

rs
. (22)

In a similar way to what we saw for U, V , we find in
Fig. 2 that any ingoing light ray propagating inside the
overdensity must end either at r = 0 or at the singularity.
Also, any outgoing ray will end at the surface rs (in what
follows, we take rs = π) or at the singularity. In addi-
tion, the factor γ is used to visually enhance the range of
values of V ′ where tf ≪ ts(rf ). Otherwise, V ′ would be
very small in this region and would give no information
about its causal structure. Since V ′ and U ′ are already
compactified, they just need to be rotated:

T ′ = U ′ + V ′, (23)

X ′ = −U ′ + V ′. (24)
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 V’ = tf /tc(0)

P1. P2.
U’ = 1 + tf /tc(rs)

V’ = 1 + rf /rs
_

__

U’ = 1 + rf /rs

- Singularity
- Outgoing
- Ingoing

- Singularity
- Outgoing
- Ingoing

- Singularity
- Outgoing
- Ingoing

- Singularity
- Outgoing
- Ingoing

_

FIG. 2: Example of the assignment of U ′ and V ′ to points
P1, P2. The red line represents the physical singularity. Blue
lines are ingoing light rays. Outgoing light rays are shown in
orange. For this example, γ = 1.

B. Conformal diagram of a locally naked
singularity in a PBH

When considering k given in (10) and a mass function
m = 2r3, with a total mass of the overdense region M ≈
62, we find a locally naked singularity arise. Its diagram
using null coordinates T,X is shown in Fig. 3.

FIG. 3: Conformal diagram of a locally naked singularity in
a PBH hole with mass function m = 2r3 for null coordinates
T,X. Plotted in the diagram are the singularity and the
Big Bang (solid red), the symmetry time tc/2 (thin purple),
surfaces r = 0 and r = π (solid and dashed black), minus
(t−ah) and plus (t+ah) AH (dashed orange), EH (dashed black),
and dust particle geodesics (dashed blue).

In particular, one can observe that ts < t+ah for any
r < 0.7. Every light ray emanating from the singularity
in this region then crosses the AH and thus falls again
into the singularity, being locally naked. It is interesting

to recall that in Fig. 3 all AH, EH, singularity and over-
density surface seem to merge together when approach-
ing future infinity at the surface r = π. This is the result
of joining two regions of spacetime, one in which a dust
particle has a finite life-time (immediately before r = π),
and another one with an infinite life-time (immediately
after r = π). To see with more detail the region near fu-
ture infinity, we can use the coordinates T ′, X ′, as shown
in Fig. 4.

FIG. 4: Conformal diagram of a locally naked singularity in
a PBH for null coordinates T ′, X ′, taking γ = 14. Plotted
in the diagram are the singularity and the Big Bang (in solid
red), tc/2 (solid purple), surfaces r = 0 and r = π (solid
black), plus and minus AH (dashed orange), EH, CH (dashed
black), and dust particle geodesics (dashed blue).

By contrast with Fig. 3, here the re-collapse phase
(t > tc/2) occupies the majority of the diagram. On
the other hand, as an outgoing null geodesic propagating
beyond r > π will not necessarily cross the overdensity
surface, we cannot study the outside region r > π using
coordinates U ′, V ′.

C. Conformal diagram of a globally naked
singularity

When we take m = 2r3 + 2.5r4, with a total mass
M ≈ 305.5, then ts < t+ah for r < 0.59 and a globally
NS is formed. In this case, null geodesics starting at the
NS for r < 0.027 reach the surface of the overdensity
and propagate to future infinity. Those emanating from
0.027 < r < 0.59 fall again into the singularity. As a
consequence, for this mass function a non-zero range of r
beyond the CH is exposed to distant observers and deter-
minism is lost. Interestingly, neither the mass function
taken here nor the one we used for the PBH fulfill the
conditions under which NS arise in marginally bound col-
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lapse. We can say that both locally and globally NS arise
in cosmological context, although we don’t have an an-
alytical treatment to determine under what conditions.
The conformal diagram for this case is shown in Fig. 5.

FIG. 5: Conformal diagram of a globally naked singularity
with mass function m = 2r3 +2.5r4 using coordinates T ′, X ′,
with γ = 16. Plotted in the diagram are the singularity and
the Big Bang (solid red), tc/2 (purple), surfaces r = 0 and
r = π (solid black), plus and minus AH (dashed orange), EH,
CH (dashed black), and dust particle geodesics (dashed blue).

V. CONCLUSIONS

We have reviewed the status of the cosmic censorship
conjecture in the context of the LTB solution. One

finds that naked singularities can arise for physically
reasonable initial data. This scenario, widely analysed
for marginally bound collapse, has been studied here
in a cosmological context. Introducing the idea of
effective naked singularities, we see that locally and
globally naked singularities appear. These regions of
extremely high curvature would presumably be governed
by quantum effects.

We have described two different algorithms to numeri-
cally build conformal diagrams. We have seen that using
different coordinatizations we can study in more detail
different regions of our spacetime, depending on what we
are most interested in.

In particular, we have analysed the conformal diagrams
of both locally and globally naked singularities in figures
3, 4 and 5 . These examples violate strong and weak cos-
mic censorship, respectively. For the second case, space-
time regions beyond the Cauchy horizon are exposed to
future infinity. This implies a breakdown of determin-
ism in classical physics, and suggests the idea that new
physics beyond general relativity may be exposed to dis-
tant observers. It would be interesting to clarify the
regime of parameters where global or local naked singu-
larities are formed in the context of gravitationally bound
collapse. This issue is left for further research.
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