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Abstract: We study the production of gravitational waves by a thermalized plasma of N = 4
supersymmetric Yang Mills matter in the high number of colors, high coupling limits. This process
is governed by a particular light-like thermal correlator of the Energy-Momentum tensor that we
study via the gauge/gravity duality. We focus on the high-energy limit, k ≫ T , and via a WKB
approximation we drive an analytical solution for the energy density of emitted gravitational waves
from a thermal source, obtaining a non-trivial dependency dρGW

dtd3k
∝ ω4/3T 8/3; and for the Energy-

Momentum tensor thermal correlator at arbitrary momentum.

I. INTRODUCTION

The study of gravitational waves (GW) has emerged
as a groundbreaking field in modern physics, offering
a unique window into the dynamics of the Universe.
Recent measurements performed by the LIGO and
VIRGO collaboration [1] have had a profound impact
on our knowledge of compact objects in the cosmos.
However, despite these significant advancements, an
exciting frontier still awaits to be explored: the emission
of high-energy GW. This kind of GW are found in the
high-frequency region f ≳ 30 KHz, far beyond our
current capabilities for detection. Nevertheless, new
detector are being planned in order to study this range
of frequencies [2].

In this work, we study the production of GW by a
thermalized plasma of N = 4 supersymmetric Yang
Mills (N = 4 SYM) matter. We focus on the large
number of colors Nc → ∞, large ’t Hooft coupling
constant λ → ∞ limits. While we do not expect to
find such regime within the Standard Mordel (SM), it
is still an interesting limit to study, since we contemplate
the possibility that Beyond the Standard Model (BSM)
physics may be strongly coupled [3].

This limit can be addressed by employing the
gauge/gravity duality, with which we compute the
emission rate via the analysis of the Energy-Momentum
(EM) tensor thermal correlator, obtaining an analytic
expression in the high-energy limit for the energy density
of emitted GW per unit of time after making use of a
WKB approximation.

We find that this emission rate goes with a particular
power of ω and T . In order to try to better understand
this non-trivial dependency, we extend our study and also
compute the EM tensor thermal correlator at arbitrary
four-momentum k = (ω, 0, 0, k).

II. GRAVITATIONAL WAVES FROM A
THERMAL SOURCE

Gravitational waves far from its emission source may
be described in the weak field approximation by a
perturbation of the Minkowski flat spacetime [4],

gµν = ηµν + hµν . (1)

Removing the gauge freedom by sticking ourselves to
the harmonic gauge, and expressing physical excitations
in terms of the transverse traceless (TT) components of
the fluctuating fields, hTT

µν , the spatial Einstein equations
read

□2hTT
ij = −16πGTTT

ij , (2)

where TTT
ij are the components of the transverse traceless

part of the EM tensor. A solution in the momentum
space can be found as

hTT
ij (ω,k) = 16πG

TTT
ij (ω,k)

(ω + iϵ)2 − k2 , (3)

where the iϵ-prescription selects the retarded solution [5].
After Fourier transforming the frequency, the classical
energy carried away from the source by GW may be
expressed in terms of hTT

ij as [5]

EGW =
1

32πG

∫
d3k

(2π)3

[
ḣTT
ij (−k, t)ḣTT

ij (k, t)
]
, (4)

and after averaging over an observation period τ that is
long compared to the frequency of the wave, the energy
carried away by GW is

ĒGW =
1

τ

∫ t+ τ
2

t− τ
2

dt′ EGW . (5)

In order to connect this with section III, it is convenient
to express the production rate of GW in terms of a
particular thermal correlator of the EM tensor. Following
[5], we can write the following expression:

dρGW

dtd3k
=

4πG

(2π)3

∫
d4x ei(ωt−kx)

〈
1

2
{TTT

ij (x, t), TTT
ij (0, 0)}

〉
,

(6)

where dρGW

dtd3k is the energy density ρGW of emitted GW
per unit of time. Finally, as argued in [5], in the case
we are studying we can write (6) in terms of a particular
Wightman function as follows:

dρGW

dtd3k
=

4πG

(2π)3
Λijmn

∫
d4x ei(ωt−kx)

〈
T ij(0, 0)Tmn(x, t)

〉
,

(7)
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where Λijmn is a projector such that

TTT
ij (kµ) = ΛijmnTmn(k

µ) , (8)

and kµ = (ω,k) is the four-momentum of the wave.
This derivation has been performed in the weak-field

approximation, and no assumptions on the dynamics of
the plasma have been made, other than some general
symmetries such as spacetime invariance.

III. HOLOGRAPHIC COMPUTATION OF THE
EMISSION RATE

In order to obtain the emission rate (7), we need a
framework in which to calculate the two-point correlation
function of the EM tensor. The gauge/gravity duality
will provide us this framework.

The gauge/gravity, AdS/CFT conjecture, or
holography, is a relation between a d-dimensional
conformal quantum fields theory and a (d + 1)-
dimensional string or gravity theory [6]. The original
example of this duality establishes a relation between
N = 4 SU(Nc) SYM theory in the large number of
colors Nc → ∞ and the large ’t Hooft coupling λ → ∞
limits, for λ ≡ g2YMNc, and type IIB supergravity on
an AdS5×S5 background, whose metric, in the zero
temperature case, is given by

ds2 = ds2AdS5
+R2dΩ2

5 , (9)

where ds2AdS5
is the pure AdS metric, R is the radius

of AdS and dΩ2
5 is the metric of a unit five-sphere. In

this study it will suffice to restrict ourselves to the AdS
part of the background, and perturbations of the unit
five-sphere part of the background will not be considered
[5]. For a thermal system, the above equivalence can be
generalized by replacing the pure AdS metric by that of
a black brane in AdS5

ds2 = (πTR)2

u (−f(u)dt2 + dx2) + R2

4u2f(u)du
2 , (10)

where f(u) = 1 − u2, u = r20/r
2, and r0 represents

the position of the event horizon. In this case, the
temperature of the dual field theory is the Hawking
temperature of the black brane, T = r0/(πR

2).
According to the gauge/gravity duality, to each

possible source ϕ(x) for each possible local, gauge-
invariant operator O(x) in the quantum field theory,
there must correspond a dual bulk field Φ(x, u) (and vice-
versa) such that its value at the AdS boundary (∂AdS)
may be identified with the source [6]. This relation
between bulk fields and operators allows us to calculate
the n-point correlation function of local operators in the
gauge theory in terms of a gravity description.

In holographic AdS/CFT duality, fluctuations of the
metric hµν [13] couple to the EM tensor. Therefore,
the EM tensor two-point correlation function can be
determined by a perturbation of the form [5, 7]

hµν(t,x, u) = hµν(u)e
−iωt+ikz , (11)

where, without a loss of generality, we have assumed
these fluctuations to propagate along the z-axis, with
momentum k = (0, 0, k).
These metric perturbations can be classified according

to their transformation properties under rotations in the
xy-plane. Accordingly, in a conformal quantum field
theory, such as N = 4 SYM theory, the retarded two-
point correlation function of the EM tensor in a thermal
rotation-invariant state is given by

GR
µναβ(k) = −i

∫
d4xei(kt−kx) ⟨θ(t)[Tµν(0, 0), Tαβ(x, t)]⟩

= SµναβG1(k) +QµναβG2(k) + LµναβG3(k) ,

(12)

where Qµναβ , Sµναβ , Lµναβ are orthogonal projectors
onto the sound (spin 0), shear (spin 1) and tensor channel
(spin 2) respectively, providing three different Lorentz
index structures, and G1, G2, G3 three scalar functions
that determine the shape of the correlator. For a more
detailed derivation, and an extensive discussion on the
different symmetry channels, see [5, 7].
However, the energy production rate (7) we are

interested in does not rely on the retarded two-point
function, but rather on the spatial components of the
Wightman function. Nonetheless, following [5], and for
a three-momentum in the z-direction k = (0, 0, k), this
retarded correlator can be determined using the Kubo-
Martin-Schwinger (KMS) relations, finally obtaining:

dρGW

dtd3k
=

−16πGnB
(2π)3

ImG3 , (13)

where nB = 1/(exp(k/T )− 1).
To compute G3 we take a perturbation of the form of

(11) over the black brane metric (10). To linear order in
hµν the Einstein equations are:

R(1) = − 4

R2
hµν , (14)

with R(1) the Ricci tensor to linear order in h.
Restricting ourselves to the gauge-invariant variable in
the tensor channel [5, 7] Z(u) = hxy(u), and introducing it
in (14), we obtain the following second order differential
equation for Z:

Z ′′ − 1 + u2

uf
Z ′ +

w2 − κ2f

uf2
Z = 0 , (15)

where w = ω/(2πT ) and κ = k/(2πT ).
We express the solution obeying the incoming wave

boundary condition at the horizon (since classically a
black hole does not radiate) in terms of two local
solutions at the boundary as

Z(u) = Aϕ1(u) + Bϕ2(u) , (16)

where ϕ1 and ϕ2 are of the form ϕ1(u) = (1 + ...) and
ϕ2(u) = (u2 + ...) [7]. Then, G3 is given by [7]

G3(w, κ) = −π2N2
c T

4 B(w, κ)
A(w, κ)

, (17)
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where A and B are the connection (or matching)
coefficients of the ODE (15).

IV. THE WKB APPROXIMATION

Equation (15) it has no analytical solution. Although
it has been solved numerically before in [5], in this work
we will employ the Wentzel–Kramers–Brillouin (WKB)
approximation to find an analytical solution in the high-
energy limit.

The WKB theory is a method for approximating
the solution of a differential equation whose highest
derivative is multiplied by a small parameter ϵ. A well
known example in physics in which it is used, easily found
in many quantum mechanics text books (for example
[8, 9]), is to solve the Schrödinger equation.

For a Schrödinger-like equation

−ℏ2ψ′′(x) = 2m[E − V (x)]ψ(x) = F (x)ψ(x) , (18)

where ℏ is a small parameter and F (x) a potential this,
this method consists in proposing a solution of the form

ψ(x) = e
iQ(x)

ℏ , (19)

and then expand Q(x) as a power series in ℏ,

Q(x) = Q0(x) + ℏQ1(x) + ℏ2Q2(x) + ... . (20)

Introducing (19) into (18), and equating terms with
the same ℏ power, we obtain the following system of
equations:

[Q′
0(x)]

2 = F (x) , (21)

−iQ′′
0(x) + 2Q′

0(x)Q
′
1(x) = 0 , (22)

−iQ′′
1(x) + [Q′

1(x)]
2 + 2Q′

0(x)Q
′
2(x) = 0 , (23)

... , (24)

which is totally analogous to (18). From here, integrating
these equations we obtain

Q0(x) = ±
∫ x

X

√
F (x)dx+ C1 , (25)

Q1(x) =
i

2
ln |

√
F (x)|+ C2 , (26)

... , (27)

where X is a point in between the turning points of the
potential xa, xb, namely X ∈ [xa, xb], and C1, C2 are two
integration constants.

The WKB approximation consists on taking Q(x) ≃
Q0(x) + ℏQ1(x), thus for this approximation to be valid
we require the series to be rapidly convergent. This is
true when [9]

λ

4π
|V ′(x)| << |E − V (x)| , (28)

where λ is the local wavelength, and it is defined as λ ≡
2πℏ/

√
|F (x)|.

Therefore, the WKB solution is valid when the relative
variation of the potential energy over a wavelength is
small, or, equivalently, when the potential varies slowly
compared to the frequency of the solution. Namely, far
from the turning points. Near these points the solution
has to be studied more carefully and then matched to the
WKB solution.
Defining the analogous momentum and action as

p(x) ≡
√
F (x)/ℏ and S(x) ≡

∫ x

X
p(x)dx, and A′, B′,

A, B being constants, the WKB solution is:

ψ(x) = e
i
ℏ (Q0(x)+ℏQ1(x)) =

A′√
p(x)

eiS(x) +
B′√
p(x)

e−iS(x)

=
A√
p(x)

sin(S(x) + C1) +
B√
p(x)

cos(S(x) + C1) .

(29)

V. WKB COMPUTATION OF THE EMISSION
RATE

In the high-energy limit, when w is large, we may
use the WKB approximation to solve equation (15) away
from its singular points u = 0 and u = 1. Introducing
the following variable change in (15),

ψ(u) ≡
√

1− u2

u
Z(u) , (30)

and for a light-like momentum (ω = k), we get a
Schrödinger-like equation

−1

w2

d2ψ(u)

du2
=

1

4u2(1− u2)2

(
−3 + 6u2 + u4

w2
+ 4u3

)
ψ(u) .

(31)
Identifying 1/w with ℏ, and the function of u that

multiplies ψ(u) in the R.H.S. in (31) with a potential
F (x), following section IV we may write a WKB solution
of the form (29), where

p(u) =
w
√
u

1− u2
, (32)

S(u) =

∫ u

0

p(u′)du′ = w(tanh−1(
√
u)− tan−1(

√
u)) ,

(33)

in the high-energy limit. Near the turning points this
solution is not valid and a more detailed study is needed.
Near the boundary, when u→ 0, we expand the potential
and obtain the following equation

d2ψ(u)

du2
+

(
− 3

4u2
+w2u

)
ψ(u) = 0 , (34)

which has an analytical solution

ψ(u) = C1
Ai′((−1)1/3w2/3u)√

u
+ C2

Bi′((−1)1/3w2/3u)√
u

.

(35)
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Taking the determination (−1)1/3 = e−iπ/3 and
setting C2 = 0, using the asymptotic expansions of the
derivatives of the Airy functions we obtain the matching
formula

Ai′(e−iπ/3w2/3u)√
u

→
i−1
4

(
i+

√
3
)
w2/3√

p(u)
√
2π

eiS(u) , (36)

where in obtaining this formula we have used that p(u) ≃
w
√
u and S(u) ≃ 2/3wu3/2 when u→ 0.

Near the horizon, when u→ 1, we expand the potential
and obtain the following equation

d2ψ(u)

du2
+

1

4(u− 1)2
(1 +w2)ψ(u) = 0 , (37)

which has an analytical solution

ψ(u) = C ′
1(1− u)

1
2−iw

2 + C ′
2(1− u)

1
2+iw

2 . (38)

Taking the in-falling boundary condition we set C ′
2 =

0, and then we see that

i−1
4

(
i+

√
3
)
w2/3√

p(u)
√
2π

eiS(u) u→1−−−→ C(1 − u)
1
2−iw

2 , (39)

where we have used that S(u) ≃ −w/2 ln(−1 + u)
and p(u) ≃ w/(2(1 − u)) when u → 1, and C is a
constant irrelevant to what follows. Putting together the
connection formulas (36), (39), and undoing the variable
change (30), we find that

Ai′(e−iπ/3w2/3u)
u→1−−−→ C(1− u)−iw

2 . (40)

Up to a normalization constant this is the physical
solution. Expanding Ai′(e−iπ/3w2/3u) in a power series
of u near u = 0, we find that the asymptotic behavior of
the physical solution Z(u) near the boundary is

Z(u) =
−1

31/3Γ( 13 )
+

w4/3e−i2π/3u2

2 · 32/3Γ( 23 )
+ ... . (41)

Identifying this expression with (16) we obtain the
matching coefficients

A(w, κ) =
−1

31/3Γ
(
1
3

) , B(w, κ) = w4/3e−i2π/3

2 · 32/3Γ
(
2
3

) ,
(42)

and putting together the equations (17), (13), we obtain
an expression for the energy density of emitted GW from
a thermal source per unit of time

dρGW

dtd3k
=

31/6nBGN
2
c Γ

(
1
3

)
ω4/3T 8/3

4 · 21/3π4/3Γ
(
2
3

) . (43)

We observe that the emission rate obtained has a non-
trivial T dependency, with a particular fractional power
dependency on ω and T . In the high-energy limit, when
the wave fluctuations are much greater than the thermal

fluctuations, we could have expected the result found to
be the same as the one for a conformal theory in the
vacuum, and therefore to have only a dependency on ω4,
but it does not. Nonetheless, note that when T → 0
there is no emission, as expected in the vacuum.
In order to clarify this result, we will study how this

power dependency on ω changes for different types of
momentum.

VI. THERMAL CORRELATOR AT
ARBITRARY MOMENTUM

Although the energy density spectrum in (6)
is controlled by a light-like momentum two point
correlation function, in order to better understand the
dependency in ω and T obtained in (43), we may also
study the two point correlation function of the EM tensor
at arbitrary four-momentum k = (ω, 0, 0, k).
Parametrizing k as αω, and following the same steps

as in section V, we obtain the following equation

−1

w2

d2ψ(u)

du2
=

1

4u2(1− u2)2(
−3 + 6u2 + u4

w2
+ 4u(1− α2 + u2α2)

)
ψ(u) , (44)

after the variable change (30). The WKB solution far
from the singular points is (29), where

p(u) = w

√
1− α2 + u2α2

u(1− u2)2
, (45)

S(u) =

∫ u

0

p(u′)du′ , (46)

in the high-energy limit. Analogous to what we did in
section V, near the boundary the equation (44) becomes

d2ψ(u)

du2
+

(
− 3

4u2
+

w2(1− α2)

u

)
ψ(u) = 0 . (47)

We can write an analytical solution to this equation as

ψ(u) = w
√
u(−1 + α2)(

c1Y2

(
2w

√
u
√
1− α2

)
+ c2J2

(
2w

√
u
√
1− α2

))
,

(48)

where c1, c2 are constants, and J2, Y2 are Bessel functions
of the first and second kind, respectively. Using the
asymptotic expansions of the Bessel functions [10] we
obtain the matching formulas

w
√
u(−1 + α2)Y2

(
2w

√
u
√
1− α2

)
→ w

√
1− α2√
πp(u)

sin

(
S(u)− 5π

4

)
, (49)
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w
√
u(−1 + α2)J2

(
2w

√
u
√
1− α2

)
→ w

√
1− α2√
πp(u)

cos

(
S(u)− 5π

4

)
, (50)

where we have used that p(u) ≃
√
1− α2w/

√
u and

S(u) ≃ 2w
√
u
√
1− α2 when u → 0. Near the horizon

we obtain the equation (37), thus the solution is (38).
After taking the in-falling boundary condition, we can
see that

w
√
1− α2√
πp(u)

[
cos

(
S(u)− 5π

4

)
+ i sin

(
S(u)− 5π

4

)]
u→1−−−→ C(1− u)

1
2−iw

2 , (51)

where we have used that p(u) ≃ w
2(1−u) and S(u) ≃

−w
2 ln(1− u) when u→ 1.
Putting together the connection formulas (49), (50),

(51), undoing the variable change (30), we find that, up to
a normalization constant, we obtain the physical solution

u
(
J2

(
2w

√
u− uα2

)
+ iY2

(
2w

√
u− uα2

))
u→1−−−→ C(1− u)−iw

2 . (52)

Note that uY2 ∝ (1+...) and uJ2 ∝ (u2+...) when u→ 0.
Thus, expanding Y2 and J2 in power series of u near the
boundary, the physical solution becomes

Z(u) =
i

w2π(−1 + α2)
− 1

2
(w2(−1 + α2))u2 + ... , (53)

and identifying this expression with (16) we obtain the
matching coefficients

A(w, κ) =
i

w2π(−1 + α2)
, B(w, κ) = −1

2
(w2(−1+α2)) .

(54)

Using (17), we find that

G3(w, κ) =
−iN2

c ω
4(−1 + α2)2

32π
. (55)

Note that for α = 0, we recover the results obtained
in [11]. This thermal correlator does have the form we
could expect for a conformal theory in the vacuum.

VII. CONCLUSIONS

In this study we have obtained an analytical expression
for the energy density of emitted GW from a thermal
source per unit of time, which has a particular non-
trivial dependency on ω and T (see equation (43)).
When we try to better understand this dependency by
studying the EM tensor thermal correlation function at
arbitrary momentum, we find that it fades out for α = 1,
making α = 1 a special case. It would be interesting to
continue this study by doing further research in trying to
understand this discontinuity.
We also note that the result obtained in this study

(equation (43)) differs from the one obtained via

perturbative analysis in [12], according to which dρGW

dtd3k ∝
ω. Given this discrepancy, the analysis of future data
could serve as an indication of the presence of BSM
strongly coupled physics.
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