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Abstract: In this work, we compare neutrinoless double beta decay (0νββ) nuclear matrix
elements (NMEs) in calcium isotopes obtained with two different methods, the nuclear shell model
(NSM) and the generator coordinate method (GCM). We describe the steps needed to proceed with
the calculations, and give indications on how to select reliable results. Additionally, we estimate the
error in the GCM results. The 56Ca isotope shows the biggest NME discrepancy, when comparing
GCM to NSM, with 34%. For 44Ca and 52Ca, there is only a 7% and 5% discrepancy, and a slightly
larger one of 24% for 48Ca.

I. INTRODUCTION

New generations of experiments are emerging in search
of unobserved phenomena that could help us reformulate
and extend established theories. An example is the effort
in the observation of the neutrinoless double beta decay
(0νββ), where the violation of leptonic number could give
us a hint in the matter-antimatter imbalance, and the
need for a reformulation of the standard model of particle
physics. Additionally, the absence of neutrinos in the
decay would establish the Majorana nature of neutrinos,
being both its particle and anti-particle [1, 2].

The nuclear shell model (NSM) is one of the most suc-
cessful models in nuclear physics. It is an exact method,
because all the nucleus possible states are taken into ac-
count, with the nuclear wave function being a super-
position of all these states. However, in the NSM, the
number of states scales exponentially with the number
of particles, and is computationally unfeasible for heavy
nuclei [1]. This motivates the need for approximate
many-body methods that do not require using all these
different states and therefore require less computational
power. Results differ significantly between these meth-
ods and this is a relevant problem in current research,
making it difficult to study the 0νββ decay.

In this work, we compare the NSM and the generator
coordinate method (GCM), which uses the Hartree-Fock-
Bogoliubov (HFB) approximation in the calculation of
the nuclear wave functions. The HFB is a generalization
from the Hartree-Fock method that allows us to obtain
similar wave functions to those constructed by the NSM,
but only using one initial Slater determinant [3, 4].

In this work, we compute the 0νββ nuclear matrix el-
ements (NMEs) of the calcium isotopic chain for both
approaches. Additionally, we estimate the error in the
GCM calculations for the NME, and give some sugges-
tions for the improvement of our results based on our
findings and the ones obtained in [5].
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II. THEORY AND METHODOLOGY

A. The neutrinoless double beta decay (0νββ)

When a nucleus decays, it goes from the initial state
to a lower energy state. In our case, we study the 0νββ.
The nuclear half-life is

(T 0ν
1/2)

−1 = G0ν · |M0ν |2 ·mββ , (1)

where G0ν is the phase-space factor, mββ is the effective
neutrino mass, and M0ν is the NME [2]. While G0ν is
known, mββ is not, as it represents physics beyond the
standard model of particle physics [1].
We calculate the NME between the ground-states of

the initial and final nuclei. The NME is formed of three
parts according to their spin structure: the Fermi (F),
Gamow-Teller (GT) and Tensor (T) matrix elements,

M0ν = MGT
0ν −MF

0ν +MT
0ν . (2)

B. Nuclear shell model

The NSM is based on the empirical nuclear mean field
approximation that reproduces magic numbers, using the

FIG. 1: NSM single-particle orbitals [6]. On the left
side, levels given by the harmonic oscillator potential. On
the right side, orbital-splitting due to the spin-orbit coupling,
which leads to the magic numbers (numbers in parenthesis on
right extreme).
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surface corrected harmonic oscillator with spin-orbit cou-
pling [6]:

U(r) =
1

2
mω2r2 +Dl2 − Cls, (3)

where m is the mass, r the position, l the angular mo-
mentum, s the spin, ω the harmonic oscillator frequency
and C and D are constant coefficients [6].

In the NSM, only a few nucleons, in a restricted num-
ber of states, are able to determine the properties of the
nucleus. For example, in Fig.1, the orbitals inside the box
define the calcium and titanium valence space, which is
the pf shell for both neutrons and protons, and is com-
posed of the 1f7/2, 1f5/2, 2p3/2, and 2p1/2 orbitals. As a
result, the NSM Hilbert space is divided in three parts:
the inert core (fully occupied orbits), the valence space
(available orbits that can be occupied by the nucleons),
and the external space (remaining empty orbits) [7].

Once the relevant levels for the valence space are se-
lected, the NSM wave function is computed using an ef-
fective Hamiltonian,

Heff =
∑
ij

tija
†
iaj +

1

2

∑
ijkl

vijkla
†
ia

†
jalak. (4)

The Hamiltonian is diagonalized in the basis of many-
body Slater determinants that can be built from the
available single-particle states in the valence space. The
nuclear wave function |Φ⟩NSM is a superposition of Slater
determinants,

|Φ⟩NSM =
∑
α

cα |ϕα⟩ , |ϕα⟩ =
N∏
i

a†i |0⟩ , (5)

where |ϕ⟩α are the Slater determinants, |0⟩ is the particle
vacuum, and a†i is the single-particle creation operator in
the i state [7]. The number of Slater determinants needed
in the calculation depends on the valence space and the
nucleus.

The NME is then computed using the 0νββ operator
O0ν and the nuclear wave functions of the initial |Φi⟩ and
final |Φf ⟩ states,

M0ν
NSM = ⟨Φf |O0ν |Φi⟩NSM . (6)

We use the Nathan code for the NSM calculations [7].
Nathan has a computational limit of 1010 Slater determi-
nants in the construction of the wave function. In cases
like 124Xe, this value is 1012, and approximated many-
body methods such as GCM are needed.

C. Generator coordinate method

For our GCM calculations, the starting point are the
HFB states, which are a generalization of the Hartree-
Fock states. Hartree-Fock is a mean-field method, where

all the individual interactions between nucleons are re-
duced to an effective mean-field interaction. The varia-
tional principle is used to minimize the wave function en-
ergy and to determine the Hartree-Fock equations, which
give us the system’s ground-state.

1. Hartree-Fock-Bogoliubov

In order to generalize the Hartree-Fock scheme, we in-
troduce the Bogoliubov transformation, which goes from
the single-particle basis to the quasi-particle basis. The
transformation is defined by the operators,

b†k =
∑
i

(
Uika

†
i + Vikai

)
, bk =

(
b†k

)†
(7)

where Uij and Vij are the mixing matrices that give us
the quasi-particle states [8]. This transformation breaks
the number of particles in the quasi-particle states, as a
result of the particle-hole mixing, and, additionally, any
other symmetries that we mix [6]. In our case, we do
angular momentum mixing.
We find the HFB quasi-particle states with the varia-

tional principle applied to Uij and Vij matrices, using a
trial wave function and a Hamiltonian with certain con-
straints,

H = Heff − λZZ − λNN −
∑
k

λkQk, (8)

where λ are Lagrange multipliers, Z the number of pro-
tons operator, N the number of neutrons operator and
Qk the coordinate operators.

2. The GCM state

The GCM wave function of our nucleus is a superpo-
sition of a set of HFB states |ϕ(θ)⟩ projected to good
quantum numbers,

|ΦNZJ⟩GCM =
∑
θ

cNZJ
θ PNPZP J |ϕ(θ)⟩HFB , (9)

where J is the angular momentum, P are the projection
operators, and cNZJ are the coefficients that weight the
projected HFB states.
θ are the coordinates of the method, which give a fixed

value to the coordinate operators Qk. In our case, we use
the deformation parameters β and γ as our generator co-
ordinates, which are related to the quadrupole operators.
The quadrupole describes the nucleus deformation, for it
is a measure of the charge distribution and its deviation
from the spherical form [6].
Projection is needed to restore the broken symmetries

in the construction of the HFB states, resulting in the
quantum numbers of the GCM state being well-defined.
In order to find the cNZJ coefficients, we need to solve
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the Hill-Wheeler-Griffin equation (HWG),∑
θ′

(
HNZJ

θθ′ − ENZJNNZJ
θθ′

)
cNZJ
θ′ = 0, (10)

where H and N are the Hamiltonian and overlap kernels
respectively,

HNZJ
θθ′ = ⟨NZJ,θ|Heff |NZJ,θ′⟩ , (11)

NNZJ
θθ′ = ⟨NZJ,θ|NZJ,θ′⟩ , (12)

that we obtain with the HFB states for each (β,γ) defor-
mation, and ENZJ is the energy of the nucleus. To solve
the equation, we diagonalize the overlap matrix, which
is semi-positive defined, to obtain an orthonormal basis
(natural basis) [4]. We diagonalize then the Hamiltonian
in this basis to obtain the ground-state energy of the
nucleus. The second process can lead to numerical di-
vergence, because some states in the natural basis might
be linearly dependent to each other. We solve this with
a truncation of the natural basis, selecting only those
eigenvalues in the overlap matrix bigger than a certain
cutoff (typically 10−10) [3].

III. RESULTS AND ANALYSIS

A. Nuclear shell model results

The NSM 0νββ NMEs are presented in Table I. For
half-filled valence spaces, D# takes its biggest value, as
the number of possible many-body states is maximal.

Table I indicates that 42Ca isotope has the largest
NME. This is so because the initial state (42Ca) and the
final state (42Ti) are mirror nuclei, resulting in a favor-
able transition. On the other hand, the 60Ca decay has

TABLE I: Ground-state energy, number of Slater determi-
nants (D#) forming the nuclear wave functions and NMEs
for calcium and isotopic chain using NSM. A is the number
of nucleons of the calcium and titanium isotopes.

A Ca Ti MGT
0ν MF

0ν MT
0ν M0ν

E(MeV) D# E(MeV) D#

42 -2.69 4 -2.69 4 4.76 -1.43 -0.11 6.08

44 -4.96 28 -13.79 158 1.69 -0.22 -0.07 1.83

46 -6.66 137 -19.96 2343 1.19 -0.19 -0.07 1.30

48 -7.75 347 -24.23 14177 0.91 -0.15 -0.06 1.01

50 -2.85 468 -27.16 39899 1.04 -0.16 0.003 1.19

52 3.46 347 -25.03 55944 0.82 -0.12 -0.002 0.94

54 14.04 137 -20.60 39899 1.20 -0.14 0.03 1.34

56 26.17 28 -13.54 14177 1.20 -0.14 0.03 1.36

58 39.62 4 -4.22 2343 0.83 -0.13 0.06 1.03

60 54.29 1 -6.69 158 0.61 -0.11 0.06 0.78

the lowest NME value. This is because this isotope has a
full valence space for neutrons and is magic for protons.
The 60Ca is very stable as a result.

B. Generator coordinate method results

With the GCM, we study the 0νββ decay of
44,48,52,56Ca using the Fortran code Taurus [9].

1. Hartree-Fock-Bogoliubov functions

Fig.2 shows the nuclear energy surfaces as a function
of the deformation (coordinates γ and β used in the HFB
states), for 48Ca as an example. The energy is min-
imal in the spherical region, both for the unprojected
and projected HFB states. Fig.2 shows the effect of the
projection to good quantum numbers in the GCM state
(9). The energies are lowered, making the state’s energy
deeper. The position of the absolute minimum might
change slightly in the projection, but always keeping the
original form (oblate, prolate or spherical), where prolate
corresponds to a bean shape and oblate to a lentil shape.
All calcium isotopes show a minimum in the spherical
region and titanium isotopes in the prolate region.

2. Energy and NME convergence

We study the energy convergence resulting from the
second diagonalization in (10) to determine the ground-
state energy of the nucleus. The top panels of Fig.3 show
the convergence as a function of the number of states of
the natural basis for 48Ca and 48Ti. The GCM energy
must be higher than the NSM one, because the energy
given by the variational principle is always higher than
the exact value [6]. For this purpose, Fig.3 shows the
NSM exact value as well.
In the determination of the ground-state energy of a

nucleus, we only need to take one natural basis into ac-
count. However, 0νββ transitions involve two nuclei, and
therefore two natural bases. This results in a difficulty
when choosing the natural basis, because the basis af-
fects differently the energy and the NME. We prioritize
the convergence of the NME over the energy convergence,
since the former is our target of study. This means that,
in some cases, the ground-state energy could be lowered
and closer to the NSM value, but we choose a smaller
natural basis because the NME already diverges. In the
study of the NME convergence, we use the GT element,
for it is the biggest of the three parts (2) (Table II).
Fig.3 is an example of how we check the convergence

of the energy and NME for each transition. We find
where the NME element is more stable when changing
the number of states in the natural bases of the initial
(Ca) and final state (Ti). In Fig.3 c), when changing the
number of states in the 48Ca natural basis, with the 48Ti
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FIG. 2: Energy surface for the HFB states of 48Ca. The nucleus shows a spherical shape with minimum energy at β = 0.
Left panel: unprojected HFB states. Right panel: projected HFB states to good quantum numbers for J , N and Z.
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FIG. 3: Ground-state energy and 0νββ decay Gamow-Teller matrix element convergence for 48Ca . Top panels
correspond to the energy convergence and the bottom panels to the GT element convergence. a): 48Ca ground-state energy
convergence. b): 48Ti ground-state energy convergence. c): the number of states in the Ti natural basis is fixed and the number
of states in the Ca natural basis is varied. d): the number of Ti states in the natural basis is varied. The red dashed-lines show
NSM exact values both for the ground-state energy and the NME.

natural basis fixed, the NME is quite stable between 5
and 10 states (plateau of 6 states). On the other hand,
when changing the number of states in the 48Ti natural
basis, with number of states in the 48Ca basis fixed (panel
3 d) ), there is stability between 4 and 8 states. Panel 3
d) shows that the values that are closer to each other in
the y-axis are those with the number of Ca states fixed
between 5 and 10. These are precisely the number of

states in the Ca natural basis that give us stability in
panel 3 c), so panels 3 c) and 3 d) are easily related to
each other. Lastly, we check that the energy is converged
in the selected region and that its value is higher than
the NSM one. Ground-state energies are usually between
1 and 2 MeV higher in the GCM calculation of the final
state. On the other hand, the energy of the initial state
is much closer to the NSM value (panels 3 a) and 3 b) ).
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FIG. 4: Gamow-Teller NME for Ca isotopes. Compari-
son of NSM and GCM results. The GCM results are presented
with error bars given by the standard deviation.

TABLE II: NME mean value for each computed isotope. Each
result is presented with its standard deviation. A is the num-
ber of nucleons of the calcium and titanium isotopes.

A MGT
0ν MF

0ν MT
0ν M0ν

44 1.77±0.02 -0.280±0.007 -0.082±0.001 1.97±0.03

48 1.11±0.03 -0.277±0.011 -0.053±0.003 1.33±0.04

52 0.87±0.02 -0.141±0.003 -0.012±0.001 0.99±0.02

56 1.36±0.07 -0.135±0.009 0.079±0.004 1.57±0.08

Panels 3 c) and 3 d) show the typical behavior for
the NME convergence. When changing the number of
Ca states, firstly we have oscillations for few states and
a big plateau for a bigger number of states until there
is divergence to bigger values. On the other hand, when
changing the number of Ti states, the plateaus of stability
are shorter and there are some oscillations. The NME
presents more stability to changes in the natural basis of
the initial state, rather than changes in the final state
basis.

We follow this same procedure for other three iso-
topes, 44,52,56Ca. We calculate the NME for each decay
in the stability region, as the average value of the con-
sidered plateaus, and give an error to our calculations

with the standard deviation. Table II summarizes the
GCM NMEs we have found. Fig.4 compares the NSM
and GCM results for the NMEs of 44,48,52,56Ca. The
GCM is pretty close to the NSM values for 44Ca, 48Ca
and 52Ca isotopes, but not so much in the 56Ca decay.
Table II indicates that the error in 56Ca calculation is
larger, because we choose two different plateaus of sta-
bility in this case, and only one for the other isotopes.
We choose these two plateaus because both have a three-
state extension and show equally good stability, so it is
not possible to choose between them. The NME discrep-
ancies between NSM and GCM in 44Ca, 48Ca, 52Ca and
56Ca are 7%, 24%, 5% and 34%, respectively.

IV. CONCLUSIONS

We have shown that the GCM can approximately re-
produce some NSM 0νββ NME results, but that some
improvements are needed. The ground-state energies are
closer to the NSM ones for the initial state and between
1 and 2 MeV higher for the final state.

For the NME we have also always obtained bigger val-
ues with the GCM. Our best result was the NME for the
44Ca and 52Ca isotopes. These have a similar situation
in the final state. 44Ti has 2 neutrons and 2 protons in
partially filled shells. 52Ti has a full 1f7/2, two neutrons
in the 2p3/2 and two protons in the 1f7/2 shell. Partially
filled shells have two nucleons in both cases.

Still, the 48Ca and 56Ca isotopes NME calculation
needs improvement. Pairing correlations could be used
in the determination of the HFB states. In [5] it is shown
that isoscalar-pairing correlation improves the NME val-
ues calculated with GCM, getting them closer to the
NSM ones. This addition would considerably increase the
complexity of the GCM calculations of the corresponding
symmetry-projected Hamiltonian and overlap kernels.
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