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Abstract: Memory is a fascinating phenomenon that has many interesting applications. This
work focuses on Return-Point Memory (RPM), which is a particular type of memory present on
ferromagnetic, spatially-extended disordered systems that manifests through quasistatic hysteresis.
By modelling these materials using the fluctuationless Random Field Ising Model (T=0 RFIM) and
computing the magnetization trajectories via a cellular automaton, we observe RPM, thus proving
the validity of the model for this purpose, and analyze it qualitatively both at macroscopic and
microscopic scales. We also perform a study on energy dissipation in this model and its relation
with hysteresis and Barkhausen magnetization jumps.

I. INTRODUCTION

Memory is a phenomenon that has been observed in
many different systems; from living biological systems to
glassy solids and complex fluids. It is often defined as the
capacity that systems have to store information and their
ability also to access it and wipe it out [1]. This paper will
focus on a type of memory called Return-Point Memory
(RPM), which plays a key role in hysteresis.

Hysteresis (from the greek, lag or delay) shows up
when the system does not react promptly if we change
a control parameter, so a certain delay in the response
of the system (the order parameter) appears. On gen-
eral grounds, there are two types of hysteresis: rate-
dependent and rate-independent. When the hysteresis
is rate-dependent, the time scale of forcing is compara-
ble to the time scale of relaxation of the system, whereas
when it is rate-independent the relaxation happens to be
much faster than the driving. The latter is also known
as quasistatic hysteresis or intrinsic hysteresis, since the
driving can be infinitely slow and the system will still dis-
play hysteresis (unlike the former where the phenomenon
dissapears if the driving is too slow). In this work we will
focus on quasistatic hysteresis as we want to study intrin-
sic memory properties of the materials.

The control and order parameters are typically the
applied field (H) and the magnetization of the system
(M), respectively, as many systems that exhibit hystere-
sis are magnetic (and we assume that their magnetism
is strongly anisotropic, with M being the magnetization
along the easy axis); but this effect can be generated from
many different conjugate parameter pairs, as hysteresis
is common in other out-of-equilibrium systems, such as
ferroelectricity, ferroelasticity, hydrology, etc. [2]. For
example, the hysteresis shown in Ref. [3] for ferroelas-
tic materials originates from the stress-strain pair. The
delay that characterizes hysteresis greatly influences the
H(M) curve and makes it irreversible: the path that the
system follows while H is increasing (increasing magneti-
zation) will not be the same as the path it follows whenH
is decreasing (demagnetization). Thus, if we start from
a sufficiently negative value of H such that the magne-

FIG. 1: Schematic representation of the hysteresis cycle of
a ferromagnetic system. The direction of the variation of H
is indicated with some arrows, and the different hysteretic
curves are labeled with (a) and (b).

tization is saturated to its most negative possible value,
increasing H monotonously gives rise to the outer curve
of increasing magnetization shown in Fig. 1, curve (a).
Equivalently, from the positive value of saturation mag-
netization, a decreasing excursion of H produces the de-
scending curve (a) of Fig. 1. The result is the widest
possible hysteresis cycle of the system. However, if we
had interrupted the descending curve (a) at a given value
of H and reversed its direction back to the saturation
magnetisation again, we would generate what is called
a First-Order Reversal Curve (FORC) that explores the
inner area within the cycle. An equivalent FORC could
also be entraced from the ascending curve (a) down to
the negative saturation magnetization value. During the
inner exploration of a FORC the RPM property shows
up: the point in which the direction inversion was done
gets “memorized” in the system. A second change of di-
rection while the system is still on a FORC will always
produce another curve (Second-Order Reversal Curve or
SORC) that will end on the return point, forming an in-
ner cycle (Fig. 1, curve (b)). The properties of the inner
cycle depend on the position of the return point in the
main cycle so that the system keeps memory of this re-
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turn point. However, once the system reaches the return
point again, this memory gets erased and the system fol-
lows normally the outer cycle until saturation. This will
be referred to as “wiping out”. Moreover, it is also possi-
ble to recur this procedure while the system is still on an
inner cycle. In this case, a cycle within the cycle will be
formed and a second return point will be stored. Further
recursions lead to more cycles within cycles and more re-
turn points being recorded, but the system will record
them with a certain hierarchy: the system cannot access
the data of the first return point without accessing and
erasing the information of all the return points that were
recorded afterwards.

Throughout the last century various models of qua-
sistatic hysteresis were developed. An important one is
the Preisach model, which is more of a “black-box” type
[4]. In the present work we will focus on the Random
Field Ising Model at zero temperature (T = 0 RFIM), as
it gives a microscopic view of the phenomena that helps
explaining the physical, macroscopic hysteresis that is
observed [5]. The T=0 RFIM is a minor modification
of the well-known Ising model that essentially introduces
disorder to the system. This disorder is a crucial in-
gredient of the model. It gives rise to magnetization
avalanches (Barkhausen jumps) extending over a wide
range of applied magnetic fields. Moreover, as Sethna et
al demonstrated in Ref. [5], it mediates a first-order phase
transition between a non-hysteretic phase in which spins
flip in an uncorrelated manner and a hysteretic phase in
which avalanches of spin flips are triggered by the disor-
der. This amazing discovery invigorated a new wave of
studies to generalize this disorder-controlled transition to
more systems and models than the T=0 RFIM originally
proposed by Sethna [6].

The objectives of this study are to write the code of
a T=0 RFIM as a cellular automaton, to prove that it
presents hysteresis even if the driving is quasistatic, to
study memory properties using the inner cycles and, fi-
nally, to analyze the energy dissipation in the model and
how it correlates with the discrete magnetization jumps.

It has been demonstrated that other types of cellular
automata such as the deterministic sandpile models also
present hysteresis and RPM [7]. For this reason we have
considered that understanding the fluctuationless RFIM
as a cellular automaton will be beneficial towards achiev-
ing the first of the objectives described before. The cycles
displayed in this work correspond to 2D systems com-
posed of L×L spins, with L = 64 and periodic boundary
conditions. We will first establish in Sec. II the rules of
the cellular automaton that represents the T=0 RFIM
and clarify how we simulate the hysteresis cycles. Next,
in Sec. III we will focus on RPM (specially on the demon-
stration presented in Ref. [5]) and we will prove that our
cycles exhibit this property. Lastly, in Sec. IV we will
change topics and put the spotlight on the energy dissi-
pation concomitant to hysteresis and its correlation with
the magnetization jumps.

II. THE T=0 RFIM AS A CELLULAR
AUTOMATON

The fluctuationless RFIM can be characterized using
the following hamiltonian, based on the typical Ising
model (in this study we will fix J ≡ +1 for ferromag-
netic behavior):

H = −
∑
⟨i,j⟩

sisj −H
∑
i

si −
∑
i

hisi, (1)

where the first and second terms are the contribution to
H of first-neighbors interaction and the applied magnetic
field, both present in the Ising model. The third term
gives rise to the model’s name, since it represents the
contribution of the interaction with the random fields,
hi. These are local magnetic fields that are quenched on
each lattice site, and may represent magnetic impurities
of the material. An alternative writing of Eq. (1) is:

H = −
∑
i

Fisi; Fi ≡
∑
⟨j|i⟩

sj +H + hi, (2)

where Fi refers to the total magnetic field that the spin
at position i experiences. To simulate this model as a
cellular automaton, initially, we establish a 2D L × L
lattice and generate N ≡ L2 random field values, fol-
lowing a Gaussian distribution centered at µ = 0 and
distributed through the lattice with a certain standard
deviation σ. The spin on each site has two well-defined
states: “up” (si = +1) and “down”(si = −1). Since the
system is simulated at T = 0, it does not experience ther-
mal fluctuations. A spin will flip only when its local field
changes sign, so that the hamiltonian in Eq. (2) is min-
imized. Therefore, the spins will evolve between states
following the rule:

Fisi ≤ 0 ⇒ si → −si. (3)

In each iteration step, first we fix a value of the external
field H. Then, we go across the N different sites checking
Eq. (3). If it becomes true, the position i is noted down.
Only when all N sites have been checked will the entirety
of noted values be flipped synchronously. After these first
flips, the Fi of sites that were first-neighbors of one of
the flipped spins may have changed and now they may
satisfy the condition of Eq. (3). Next, the sweeping across
the N different sites and the synchronous flipping must
be iterated until a sweeping results on none of the sites
satisfying the condition. This whole updating is defined
as an avalanche, as a spin flip may have caused a flip
of some of its first neighbors, and so on, in a collective
process. Once the avalanche stops, this step is completed,
and we must proceed to the next value of H. When
simulating, we cleverly decide the next relevant value of
H by keeping track of which random fields are associated
with the spins “up” or “down” and calculating the next
value that would cause, at least, one flip. To change the
direction of H at the hysteresis cycle we simply change
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the list of “down” spins by the list of “up” spins or vice
versa. Each simulation starts with all spins “down”, then
we start magnetizing (flipping spins to “up”) until all
spins are “up”. We complete the cycle demagnetizing
(flipping spins to “down”), though during this process
we change from demagnetizing to magnetizing and so on
arbitrarily in order to achieve FORCs and SORCs and
manifest RPM. This will be explored further on the next
section.

The cycles that result from this kind of simulations
exhibit what is known as Barkhausen effect: the field
variations correspond to the horizontal lines, while the
avalanches translate into the vertical jumps in Fig. 2.

III. DISPLAY OF MEMORY PROPERTIES

In this section we will show that our simulations dis-
play the RPM described in the Introduction.

FIG. 2: Hysteresis cycleM(H) generated via simulation fixing
σ = 2.2, with an additional inner cycle inside the first one to
prove the hierarchical nature of RPM. The inset zooms in on
the trajectories near the return points.

Figure 2 confirms that our cellular automaton is ca-
pable of reproducing the RPM property that the T=0
RFIM presents. Analyzing the figure with more detail,
we can appreciate that a FORC is performed at P1 while
the system is demagnetizing. Before letting the system
return to P1 with a SORC, we change the direction of H
once again at P2. The innermost cycle starts and ends

exactly at P2, and the middle cycle finally arrives ex-
actly at P1. This figure also illustrates very well both
the “wiping out” property (the system erases both P1

and P2 once it has accessed each point) and the hierar-
chical nature of the stored points (P2 must be accessed
and erased in order to reach P1).

FIG. 3: Comparative figure of different microstates of a disor-
dered, ferromagnetic system. This particular simulation has
been done with a particularly high σ (σ = 5.4). The first two
rows show the “up” and “down” sites painted as white and
black, respectively. The third shows in black the sites that
are not in the same state in both previous rows. Step 3 corre-
sponds to the return point. Taking it as a reference, the other
steps are 10 steps away from each other and correspond to the
demagnetization trajectories along the SORC (first row) and
along the outer path (second row).

We can extend this study to the microscopic scale.
Figure 2 proved that at macroscopic scale the system
exhibits memory (it “remembers”, at least, the point
(H,M) at which the FORC starts), but Fig. 3 takes it a
step further. Not only the values of H andM are stored,
but the system returns to the same exact spin configura-
tion {si} after traversing an inner cycle.
This result concurs with Ref. [5]: given a system that

evolves following an applied field H(t) so that H(0) ≤
H(t) ≤ H(T ) for a time 0 ≤ t ≤ T , the final configura-
tion of the system will only depend on H(T ) and will be
completely independent of the rest of parameters, such
as the particular path done by H(t). This property is
based on three key points:

• Since the model is fluctuationless (T=0), the sys-
tem evolution is deterministic: given a system that
starts at {si}A and HA, and ends at HB , all mono-
tonic paths that the applied field can follow to go
to HB will make the system evolve to the same
microstate {si}B .
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• There is a partial ordering of the possible mi-
crostates. Given two states {si} and {ri}, we con-
sider {si} ≤ {ri} if and only if si ≤ ri ∀i =
1, 2, . . . ,N .

• The system follows what is known as Middleton’s
no-passing rule: given two states {si} and {ri}
that satisfy {si}(0) ≤ {ri}(0) and evolve under re-
spective fields Hs(t) ≤ Hr(t), then it is true that
{si}(t) ≤ {ri}(t) ∀t. This is equivalent to affirm
that the partial ordering is preserved by the deter-
ministic dynamics. See Refs. [5, 7].

FIG. 4: Hysteresis cycles M(H), averaged using 100 realiza-
tions of the simulation program each. The difference between
the two subfigures is the variance σ taken to generate the
random field values (σ = 1.1 and σ = 1.7 for (a) and (b),
respectively).

Lastly, it is worth noting that averaging multiple dif-
ferent simulations done with the same parameters results
on cycles that do not present the Barkhausen effect but
still exhibit memory (macroscopically, at least). Figure
4 evidences this last statement and also proves that the
system displays memory regardless of the standard devi-
ation σ chosen to generate the random field values. Nev-
ertheless, it has been demonstrated that the variance σ of
the random field distribution greatly affects the shapes
of these cycles, as Fig. 4 exposes: at low values of σ
the cycles tend to have various-sized avalanches (a few of
them are large while the rest are rather small), whereas
high values of σ generate cycles with a larger number of
avalanches overall but with lower, more consistent size.
Several researches had the objective of finding the value
of σ that acts as a boundary between the two behaviors,
σc [5, 8]. However, σc depends on the size and the dimen-
sion of the system, so the values given by these authors

are not applicable to our simulations. The value of σc
specific to our system must be found between the values
σ = 1.1 and σ = 1.7 used for Fig. 4.

IV. ENERGY DISSIPATION

In the previous section we already distinguished be-
tween the macroscopic and the microscopic scales. The
following study on energy dissipation helps us delve
deeper into the relation between these scales, since the
hysteresis cycles that we can observe at macroscopic scale
result from the energy dissipated in the spin flips. This
energy can reach significant values when the flipping is
done collectively in the form of avalanches. The main
purpose of this section is to investigate the relationship
between magnetization jumps and the corresponding en-
ergy losses.

FIG. 5: Double-logarithmic representation of the amount of
energy dissipated in an avalanche versus the avalanche size,
represented by the change of magnetization in the avalanche.
Again, two behaviors have been studied taking the same val-
ues of σ as Fig. 4. The dashed line that appears in both
figures corresponds to the relation y ∝ x that a linear func-
tion would display.

To analyze energy dissipation, we may symbolically
differentiate the hamiltonian:

dH = −
n∑
i

Fidsi −
n∑
i

sidFi, (4)

where n refers to the number of spins that flip during a
particular avalanche. Regarding the second term, it can
be simplified to −

∑n
i sidH ≡ −MdH, as the random
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fields do not change and the first-neighbor interactions
are already considered within the synchronous dynam-
ics. Following Ref. [9], H = U − HM , where U is the
internal energy of the system, and the energy balance in
an avalanche reads dU = HdM − d̄ψ , where HdM is
the energy that the driving field supplies and d̄ψ is the
dissipated energy. This last contribution is then:

d̄ψ = HdM − dU = −MdH − dH =

n∑
i

Fidsi. (5)

Next we show that, contrary to what could be naively
expected, the energy dissipated in an avalanche and the
corresponding change of magnetization are not propor-
tional to each other. We are basically comparing the
following differentials:

d̄ψ =

n∑
i

Fidsi; dM =

n∑
i

dsi, (6)

which show that the dsi are weighted by the local fields
Fi in the expression for d̄ψ. Figure 5 compares these vari-
ables using logarithmic scales. If they were linearly re-
lated the points would adjust to the presented slope, but
they clearly deviate from it: at low avalanche sizes there
are many different amounts of energy dissipated (to the
point that they are orders of magnitude apart) whereas
at high avalanche sizes the dissipated energy tends to
be higher than what a linear relation would predict. The
results agree with the results of Ref. [9]: the energy dissi-
pation is not proportional to the size of the corresponding
magnetization jump.

V. CONCLUSIONS

By writing a program that treats the fluctuationless
RFIM as a cellular automaton, we have been able to sim-
ulate the typical quasistatic hysteretic behavior of ferro-
magnetic, extended disordered materials. We have stud-

ied the memory properties that the generated cycles ex-
hibited and found that they satisfactorily display RPM
as it is predicted for both the T=0 RFIM [5] and other
types of deterministic cellular automata [7]. Some par-
ticularities of RPM such as the “wiping out” property
and the return-point hierarchy have also been success-
fully verified. This property has been displayed at both
macroscopic and microscopic scales, as the system re-
turns to the same state that it departed from when the
FORC initiated (same values of H andM and same spin
configuration {si}).
Next, we performed averages over 100 realizations of

the random fields with the same parameters and proved
that RPM is not lost by conducting these averages. We
also noted the two possible behaviors of the average cy-
cles based on the standard deviation σ used to obtain the
random field values from a Gaussian distribution. Al-
though the exact value of the boundary σc has not been
determined, it has been enclosed by the values used for
Fig. 4.
Finally, we also analyzed the dependence that the en-

ergy dissipated in each avalanche could have with its size.
After a double-logarithmic representation (Fig. 5), we
have concluded that there is no clear correlation between
the two of them, in concordance with Ref. [9]. This rep-
resentation also served to classify the type of avalanches
that are present in each behavior and further characterize
them.
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