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Abstract: The precise modelling of gravitational waves has been crucial for their detection
by the LIGO-Virgo-Kagra Collaboration. While most of the detected mergers fit into a quasi-
circular description, some challenging events do not seem to fit in this category, and seem to be
more accurately interpreted as a highly eccentric merger of black holes. The aim of this project
is to study the gravitational waves emitted by highly eccentric black hole binaries. This research
has been conducted by performing simulations of Einstein’s equations (Numerical Relativity) using
the open software Einstein Toolkit in high-performance computers including the supercomputer
Mare Nostrum. After post-processing the output data, which is necessary in order to compute the
gravitational waveform, an analysis has been carried out on the obtained results so as to evaluate the
accuracy of the current methods of post-processing in the different scenarios of black holes mergers.

.

I. INTRODUCTION

The detection and characterisation of gravitational
waves (GW) in the recent years by the LIGO-Virgo-
Kagra (LVK) Collaboration has required a highly precise
newtork of interferometers along with sophisticated data
analysis techniques.

One of the major motivations for performing numer-
ical relativity simulations is the accurate calculation of
gravitational waveforms from promising sources in order
that these theoretically computed signals can be com-
pared with observational data from GW detectors.

Such comparison will be needed not only for the phys-
ical interpretation of any observational data, but also to
increase significantly the probability of a detection. Since
measured GW are extremely weak, foreknown knowledge
of the expected signals will greatly aid the initial detec-
tion and subsequent understanding of measurements.

The predominant type of detections made so far in
the LVK catalog have been categorized as binary black
holes (BBHs). While most of the mergers fit into a quasi-
circular (QC) description (which means that their orbits
have small or negligible eccentricity), some events do not
easily match with this characterization, and are more
likely to be interpreted as dynamical captures, which are
highly eccentric mergers of binary black holes.

Dynamical captures have a completely different phe-
nomenology from the QC ones. Therefore, in order
to detect and adequately characterize such events, de-
tailed modeling of the waveforms is requiered. Although
they have not been a majority in the detections up to
now, these events are expected to be relevant for next-
generation detectors such as LISA and the Einstein Tele-
scope.

In this project we have focused on the dynamical cap-
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ture regime and performed several simulations of BBH
mergers through Numerical Relativity, which consists
on the exact evolution dictated by Einstein’s equations.
For this purpose, it has been necessary to use high-
performance computers such as Mare Nostrum, given
that NR demands a large computational cost.
Even if it provides the most detailed description of

BBH mergers, NR is too computationally expensive and
it is impractical to directly employ it for GW searches.
That is why, in practice, approximate solutions of the
full general-relativistic two body problem (known as ”ap-
proximants”) are used as data analysis tools. Thus,
matched filtering techniques are performed by compar-
ing the observational data to this (semi-)analytical mod-
els that are fast to evaluate at expense of loss of accuracy.
The final purpose of performing NR simulations is to

make an assessment of the range of validity of these
approximants in different regimes. In particular, this
project is framed in the goal of making an evaluation
of one of the most popular approximants, the Effective
One Body (EOB) models, which needs a re-calibration
in the dynamical capture regime in order to increase its
accuracy.
To accomplish that, in this project we have performed

a number of NR simulations and analysed the obtained
post-processed results so as to evaluate the accuracy and
performance of the current methods of computing the
gravitational waveform. As an important outcome, it is
remarkable that the method of post-processing currently
used in dynamical captures has been seen not to be ap-
propriate for mergers with three encounters.

II. NUMERICAL RELATIVITY

The theoretical background on Numerical Relativity
simulations is of a huge importance in order to be able
to adequately develop them. We will assume the basics
on General Relativity are known, although we will briefly
go over its main points as far as GW are concerned.
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A. Physics of Gravitational Waves

First of all, it is crucial to clearly understand the basis
on General Relativity, in concrete, the origin and mean-
ing of gravitational waves.

A weak gravitational field is one in which the metric
can be written as the flat space-time metric, ηµν , plus
a perturbation, h: gµν = ηµν + hµν . For such a metric,
Einstein’s equations written in a convenient gauge (the
Lorenz gauge) lead to the following solution for the trace
reversed perturbation, h̄µν ≡ hµν − 1

2ηµνh:

h̄µν(t,x) = 4G

∫
1

|x− y|
Tµν(t− |x− y|,y)d3y . (1)

This solution has the following interpretation: the dis-
turbance in the gravitational field at (t,x) is a sum of the
influences from the energy and momentum sources at the
point (tr,x−y) on the past light cone, with tr ≡ t−|x−y|
the retarted time [4]. In vaccuum, a particular wave-like
solution arises:

h̄µν = Aµνexp(ikαx
α) . (2)

Regarding the physical meaning of gravitational waves,
we understand their propagation to cause a perturbation
in the proper distances between objects, that is, not in
their coordinates, but in the meshing of space-time itself
[6].

B. The 3+1 Decomposition of Einstein’s equations

Our interest, as far as gravitational waves, is perform-
ing simulations for the purpose of obtaining the waveform
h, so that it can be compared with detected signals. In
order to do so, we encounter two problems in our way.

1. Time evolution

To begin with, simulations, by their nature, need some
variables to evolve in time so as to calculate their dy-
namical evolution. The problem in Einstein field equa-
tions (EFE) is that they are written in a fully covariant
way, i.e., there is no distinction between space and time.
Therefore, it is necessary to split the roles of time and
space clearly to be able to formulate Einstein’s equations
as a Cauchy problem, that is, given adequate initial (and
boundary) conditions, the fundamental equations must
predict the future (or past) evolution [1].

This problem is solved using a 3+1 Decomposition of
the Einstein’s equations. Not entering into too much
detail, the clue step relies on assuming that space-time
(a manifold M, with a metric gµν) can be foliated into
a family of non-intersecting spacelike 3-surfaces which
arise, at least locally, as the level surface of a scalar func-
tion t, which can be interpreted as a global time function.
Then, within this formalism, we will be able to define

all sorts of magnitudes from the EFE (metric, energy-
momentum tensor, Riemann tensor, ...) in their spatial
(3-component) version [2].
This formulation leads the Einstein field equations to

split into two different types of equations: the constraint
equations and the evolution equations. The former im-
pose conditions on the gravitational fields at any instant
of time, including an arbitrary initial time, while the lat-
ter determine the time evolution of the fields.
Ideally, the constraint equations are first solved by us-

ing the so called conformal techniques, and the solutions
of the evolution equations must fulfill the constraints at
any time if they do at an initial time. Still, numerical
simulations have some error, and can therefore lead to
solutions that do not satisfy the constraints at all times.
This and other problems we may encounter in perform-
ing NR simulations can be solved with reformulations of
the 3+1 decomposition, that is, finding a formulation in
which the error behaves better and the implementation
is stable [3].

2. Extraction of waveforms

The second issue in performing NR simulations is as
follows. Our main aim from a NR perspective is the ex-
traction of gravitational waveforms in a numerical sim-
ulation, in order that, as it has been previously com-
mented, they can be compared with detected signals.
However, we encounter the next problem: in construct-
ing templates, natural observable is the one which is also
measured by detectors: the GW strain, h ≡ h++ih×, de-
composed into ‘+’ and ‘×’ polarizations in the TT gauge,
but this is not typically the quantity directly computed
in NR simulations.
Far from sources, gravitational radiation is weak and

can be described in the linearised formulation, in which
the wave information can be expressed in terms of the
two polarization amplitudes, h+ and h×.
Nevertheless, NR simulations focus on strong-field

regimes and compute 3+1 decomposed magnitudes. In
this formalism, it is not trivial to extract in a gauge-
invariant way the linearized wave quantities we have men-
tioned (h+ and h×).
In order to address that, there are different strategies.

We will just comment on the Weyl formalism [2], the
one that is implemented in most NR simulations, in par-
ticular in the Einstein Toolkit (see section III). In this
formalism, the information of the GW that is obtained
in a simulation is ψ4, which has the following expression:

ψ4 = − 1
4

(
(4)Rt̂θ̂θ̂θ̂ − 2i(4)Rt̂t̂t̂ϕ̂ − 2(4)Rt̂θ̂θ̂θ̂+

2i(4)Rt̂ϕ̂θ̂θ̂ −
(4)Rt̂ϕ̂ϕ̂ + (4)Rθ̂θ̂θ̂θ̂ + 2i(4)Rt̂θ̂r̂ϕ̂+

2(4)Rt̂ϕ̂ϕ̂ϕ̂ − 2i(4)Rr̂ϕ̂θ̂ −
(4)Rf̂ ϕ̂ϕ̂θ̂

) (3)

We note that computing ψ4 involves the covariant four-
dimensional Riemann tensor (4)Rabcd, while many nu-
merical simulations employ a 3+1 formalism based on
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working on 3D quantities. Before we can compute ψ4,
it is necessary to reconstruct (4)Rabcd from these spatial
quantities, reversing steps done in the 3+1 formalism.

It is not hard to verify that ψ4 provides a measure of
outgoing radiation, since to linear order in small devia-
tions from flat space-time expression 3 can be written:

ψ4 = ḧ+ − iḧ× . (4)

This way, we have found how to compute h+ and h× in
terms of ψ4. Moreover, knowing the relation between ψ4

and h, it is also possible to calculate the radiated energy
and momentum.

III. OBTAINING DATA: EINSTEIN TOOLKIT

Einstein Toolkit (ET) is an open source software of
core computational tools for relativistic astrophysics and
gravitational physics. It is an enormously powerful tool
to perform Numerical Relativity simulations.

Performing a simulation with ET involves the following
steps. First, one needs to download and build ET in the
cluster where the simulations are going to be carried out.

After the ET is installed, simulations require an exe-
cutable to be compiled. This executable has one manda-
tory argument: a parameter file. It is a simple text file
which contains all the variables and the desired settings
for the simulation in the form of key-value pairs: symme-
tries, time stepping, thin of the grid, initial data (spins,
masses, etc), boundary conditions, gauge fixing, and a
huge list of other parameters. Given this parameter file,
Einstein Toolkit performs the simulations and we obtain
as a result the output data.

We will just give a brief inside on how ET works. Solv-
ing partial derivatives equations numerically involves ap-
proximating the fields by their values on a Cartesian 3D
computational grid. This way, derivatives are approxi-
mated by finite differences (when working on evolution)
or spectral operators (when working on initial data).
Time evolution is performed by the method of lines, with
an iterative integrator, usually Runge-Kutta4.

In order to improve efficiency, Einstein Toolkit uses
what is called adaptive mesh refinement (AMR): it works
with grids that are finer (with smaller steps of time and
distance) near the black holes, since it is where we need
more precision, and a coarser grid at larger distances
[7]. The accuracy of the solution is adapted dynamically
while it is being calculated. This helps on reducing the
number of point updates in an order of 108.

Another improvement included is implementing sys-
tem symmetries, such as reflection symmetries by an axis
or 180◦ rotational symmetry. Since ET performs a full
simulation of the Einstein equations, with no approxi-
mations, its computational cost is huge, and therefore all
these improvements of efficiency are vital.

IV. POST-PROCESSING DATA

Now we move on to the final part of performing a Nu-
merical Relativity simulation, and the main focus of this
work, as it will be shown in the following section: extract-
ing physical information from the data obtained thanks
to Einstein Toolkit. So as to do so, it is necessary to
analyze in depth the obtained data, and work on codes
that let us read its physical meaning.

Since, as it has been previously commented, the out-
put data of ET is not directly the natural observable of
gravitational waves, h, but is instead ψ4, it is necessary
to post-process this data.

From equation 4 one may think that by directly inte-
grating twice the obtained ψ4 we should get h+ and h×
from its real and imaginary part. Still, when doing that
for quasi-circular orbits (the first type of simulations that
were studied), integrating ψ4 lead to a waveform with de-
viations from the expected h. In particular, h was seen
to be different from 0 for times quite after the encounter
has happened, which has no physical meaning, since there
is no more emission of GW long later than the merger.
These deviations are known as ”drifts” in the signal.

Another method of integration was then used, known
as fixed frequency integration (FFI) [5], which consists in
integrating a function in the frequency domain. In this
domain, derivating is equivalent to multiplying by iω:

f(t) =

∫
eiωtf(ω)dt→ ḟ(t) =

∫
eiωt(iωf(ω))dt .

Thus, integrating amounts to dividing by iω. In order
to avoid divergences, FFI defines a minimum frequency,
ω0, so that when ω < ω0, the integral is calculated by
dividing by iω0, while in any other case it is calculated
by dividing by iω. For QC orbits, this method has been
proven to avoid the drifts obtained by direct integration.

However, when working with dynamical captures, that
is, higher eccentric orbits than the QC ones, FFI is not
very well-defined, since the minimum frequency ω0 that
has to be chosen to avoid drifts is so big that it erases
all physical meaning of the wave. It has been decided,
hence, to return to direct time integration (DTI), imple-
mented with polynomial substraction, which consists of
choosing the integration constants so that the formerly
commented drifts are avoided and h = 0 is obtained when
the encounter has finished.

It should also be analyzed if h = 0 at the beginning of
the simulation, since, before the encounter, the emission
of GW must also be zero. This is a point being currently
examined, and no systematization has still been found to
ensure it. In fact, I have taken part in assessing the error
obtained regarding these initial drifts, as it will be later
explained.
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Figure 1: Plot of the trajectories for the collision of four
different black holes mergers.

Figure 2: Plot of ψ4 for the collision of four different black
holes mergers.

Figure 3: Plot of h for the collision of four different black
holes mergers.

Figure 4: Plot of the radiated energy and momentum for
the collision of four different black holes mergers.

V. RESULTS

Here we present four examples of simulations per-
formed using ET both in a cluster at the UB or, if neces-
sary in case of higher computational cost, in the super-
computer Mare Nostrum (as it was the case for the last
simulation (69◦), which demanded 60 hours running 192
CPUs). They represent a good sample of NR simulations,
since they show different possible scenarios expected de-
pending on the type of black holes merger.

For all the simulations, we show the trajectories of the
two black holes (figure 1); ψ4, the directly computed mag-
nitude by Einstein Toolkit (figure 2); h, the gravitational
waveform (figure 3), computed by direct time integra-
tion with polynomial substraction (see section IV); and
the radiated energy and momentum (figure 4).

The first simulation (42◦), the one with the smallest
initial relative angle between black holes (see figure 5),
shows just one encounter (the BHs merge the first time

they come close to each other). The second simulation
(48◦) shows an intermediate case between one and two
encounters. The third (50◦) and fourth (69◦) simulations
have two and three clear encounters respectively.

Figure 5: Schematization of the initial data.

Regarding the initial data for the simulations, in
addition to the relative angle between trajectories al-
ready commented, all simulations have a mass ratio
q ≡ m1/m2 = 1 and a total mass of the system M ≡
m1 + m2 = 1. The initial distance is D = 20M in
units of mass for the first three simulations, while the
last one has D = 40M . Finally, the last simulation also
differs from the others in its initial angular momentum:
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P = 0.061747 for the former, P = 0.026224 for the latter.
It is of particular interest the result obtained for the

gravitational waveform of the simulation with θ = 69◦.
As we can see in figure 3, this simulation shows huge
initial drifts in comparison to the other three, that is, the
signal h is significantly different from zero at the initial
times (contrarily as expected, since the emission of GW
is triggered when the two black holes start to accelerate
their motion around each other).

As it was explained in section IV, for this type of merg-
ers (with high eccentricity), the most accurate integra-
tion method to compute h is the direct integration of ψ4

with polynomial substraction so that the signal fits the
expected zero value at the end of the merger. This pro-
cedure has been seen to work for the eccentric mergers
with one or two encounters, but when analysing a case
with three encounters, we see that the drifts at initial
times become so big that it is not possible to consider it
anymore an adequate integration method.

Figure 6: Plot of h for the simulation with θ = 69◦

computed with different methods of integration.

In figure 6 we plot the obtained waveform for the
θ = 69◦ simulation using direct integration and frequency
fixed integration with different choices for w0. Although
we have not still found a systematic way of determin-
ing the optimal integration method, it is valuable for the
project to note that DTI is not working for computing
h when we reach three encounters, while FFI integration
avoids much better the drifts, with the optimal parame-
ter ω0 still to be determined.

VI. OUTLOOK AND CONCLUSIONS

In this project there has been an initial task of forma-
tion, both on the theoretical background of NR simula-
tions and also on acquiring the skills of remotely work-
ing with clusters to run the simulations and later post-
processing the obtained data. These abilities have en-
abled me to carry an analysis of the dynamical cap-
ture regime with some valuable results for the goal of
re-calibrating the EOB approximants (see section I).
It is of special interest the discovery that the DTI

method, performing well for dynamical captures with one
or two encounters, does not work anymore for three en-
counters. It is still necessary to analyze more in depth
these cases and find a systematic way of determining the
optimal ω0 parameter for the FFI method.
Although not shown in this article, it has also been

explored how the DTI method works on one and two
encounter dynamical captures, changing the initial time
of integration of ψ4 to see how it reflects in the computed
h. We have concluded that this initial time does not have
great effect on the final h.
All considered, this work has been quite satisfactory

and encouraging for my future tasks in this project. First,
I expect to make a deeper and more systematic analysis
on the best integration method for the different scenarios.
Also, I hope for initiating some research in an Einstein
Toolkit tool that obtains h directly as an output, so it is
not necessary to make an integration of ψ4, which may
be very useful in the future of GW modelling, but still
needs being investigated in more depth.
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