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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Jaume Garriga Torres

Abstract: We consider a physical scenario of spherically symmetric gravitational collapse involv-
ing a domain wall. A static black hole produces a shadow of apparent radius bBHS = 3

√
3 GM ,

where M is the black hole mass. Here we analyze how this shadow is generated dynamically. We
consider the medium to be transparent and the shadow arising solely from gravitational effects.
We discuss this phenomenon quantitatively by studying null geodesics in a dynamical spacetime.
Tracing the trajectories of photons we obtain how the distribution of energies varies as a function
of time and impact parameter. In the model considered the process of shadow formation takes a
time of the order of ∆t ∼ 40 GM .

I. INTRODUCTION

Phase transitions are ubiquitous phenomena in
physics, which may give rise to topological defects. The
simplest examples of topological defects are domain
walls, which result from broken discrete symmetries.
These may be relevant for primordial black hole (PBH)
formation in the early universe [1]. Here, we consider
a scenario in which a spherical domain wall separates
two regions of spacetime. By Birkhoff’s theorem, the
metric outside will be Schwarzschild, while inside it will
be Minkowski. The wall will have a surface tension, that
will drive its collapse before gravity takes over.

For simplicity, we shall consider this as an isolated
system without matter other than the domain wall.
Our focus will be on the dynamics of photons in this
background.

Our goal will be to study the formation of the black
hole shadow that follows from the warping of spacetime.
Aside from the Einstein equations determining the back-
ground, our basic tool will be the use of conserved quan-
tities implied by the symmetries.

II. SCHWARZSCHILD SOLUTION

It is well-known that, in vacuum, the Schwarzschild
solution is the most general metric with spherical sym-
metry [2].

ds2 = −
(
1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2dΩ2 . (1)

(We use units where G = c = 1). The coefficients of the
metric diverge for values r = 0 and the Schwarzschild
radius rS = 2M , corresponding to the black hole (BH)
horizon. However, only r = 0 is a physical singularity,
since the one at rS can be avoided by a clever choice of
coordinates.

A. Killing vectors

Killing vectors satisfying ∇(µξν) = 0 correspond
to spacetime symmetries. As usual, these imply the
existence of conserved quantities, so that if Kα is the
4-momentum of a photon, then Kαξ

α is a constant of
motion [2].

In the Schwarzschild metric, two useful Killing vectors
are ξα(1) = (∂φ)

α and ξα(2) = (∂t)
α. They lead to conserva-

tion of angular momentum and total energy, respectively:

ξα(1)Kα = Kφ = L ,

ξα(2)Kα = K0 = −E . (2)

B. The shadow of a black hole

To be precise about the concept of shadow, in this sec-
tion we study the static BH shadow and afterwards we
apply the same definition in the dynamical case. We will
consider a setup where every point in spacetime contains
a light source that emits in every direction at a certain
instant of time t = 0. After that, rays follow different
paths, but there will not be any additional light source.
Therefore, the shadow can be defined as the region from
which the observer does not receive light [5].
Massless particles satisfy gµνK

µKν = 0, which leads
to (

dr

dλ

)2

= E2 −
(
1− 2M

r

)L2

r2
, (3)

where λ is an affine parameter. The circular unstable
orbits for a photon can be found from the extrema of
the effective potential in the right hand side of Eq. (3),
resulting in rc = 3M . This is not the same as the radius
of the shadow. Instead, we have to use the definition of
impact parameter b ≡ L/E, consistent with the classical
definition in the asymptotic region if we recall that for
a photon the linear momentum is equal to the energy.
From Eq. (3), one can obtain the impact parameter in
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terms of the radius r at the turning point. Note that
the apparent radius of the shadow will be determined by
the impact parameter for which the turning point is the
radius of the unstable orbit, b(rc) = 3

√
3M ≡ bBHS . At

a lower impact parameter, photons fall into the BH.

III. COLLAPSE OF A DOMAIN WALL

A domain wall is characterized by the equation of state
T = σ, where T is the surface tension of the wall and
σ the surface energy density [3]. The trajectory of the
domain wall is given by R(τ) , where τ is proper time on
the wall. For r < R the the metric is Minkowski and for
r > R it is Schwarzschild

ds2− = −dt2 + dr2 + r2dΩ2 ,

ds2+ = −
(
1− 2M

r

)
dt′2 +

1(
1− 2M

r

)dr2 + r2dΩ2 , (4)

where dΩ2 = dθ2 + sin θ2dφ2. Without loss of gener-
ality, we can fix the geodesic to be equatorial, θ = π

2 .
Unlike the angular coordinates, the radial and temporal
coordinate do not follow the same structure inside and
outside the wall. Notice, however, that r has a geometric
meaning that can be expressed in a coordinate invari-
ant way: it corresponds to the ratio between the proper
length of an arc subtending an angle dφ, and that angle.
In other words, it is the proper circumferential radius.
By continuity of the metric at the location of the wall
r = R(τ), the circumferential radius must be the same
on both sides. Note that this is not the case for the tem-
poral coordinate, and so we use two different names for
it, t and t′.

A. Junction conditions

The domain wall has a surface tension that will even-
tually make it collapse. In order to obtain a dynamical
equation for it, a useful tool is to consider junction condi-
tions in the Gauss-Codazzi formalism [4]. As we take the
zero-thickness limit, the energy-momentum tensor of the
wall requires a Dirac δ distribution Tµν = Sµνδ(η), with
Sµν = −σhµν being interpreted as the energy-momentum
tensor restricted to the surface. Here, hµν = gµν − nµnν

is the metric induced on the wall, with nµ being the nor-
mal vector to the 4-momentum of the wall. Also, we
use adapted coordinates xµ ≡ (xi, η) with xi ≡ (τ, θ, φ)
parametrizing points along the surface and η being the
proper distance along a normal geodesic from the surface
of the wall. It can be shown that the Einstein equations
lead to [4]:

[Kij ] ≡ KS
ij −KM

ij = −4πσhij , (5)

where K
S(M)
µν = ∇(µn

S(M)
ν) is the extrinsic curvature as

seen from each side of the wall and n
S(M)
µ is outward

pointing and different on each side.
In the spacetime we are studying, this junction condi-

tion reduces to

βM − βS = 4πσR = κR , (6)

where we have labeled κ = 4πσ for convenience and
βS(M) are defined as:

βS =

(
1− 2M

R

)
ṫ = ±

(
1− 2M

R
+ Ṙ2

)1/2

, (7)

βM = ṫ′ = ±(1 + Ṙ2)1/2 . (8)

Here, the dot means differentiation with respect to the
proper time on the surface of the wall τ . By rearranging
terms in Eq. (6) and taking the square, we arrive at an

expression for Ṙ2 that only depends on R.

(
dR

dτ

)2

=
2M

R
− 1 +

(
2M − κ2R3

2κR2

)2

. (9)

This is the equation of motion for the domain wall.
As we have argued before, R is continuous on both sides
of the wall. Since we are dealing with trajectories that
might cross this wall, the optimal strategy for integrat-
ing the geodesic equations is to take R as the indepen-
dent variable. In order to calculate the trajectory of the
spherical wall, we can relate Ṙ2 to the time coordinates
outside t and inside t′ by means of Eq. (7) and (8) and
(dRdt )

2 = (dRdτ )
2/( dt

dτ )
2:

(
dt

dR

)2

=
1

1− 2M
R

[
1−

(
1− 2M

R

)(
2κR2

2M − κ2R3

)2
]−1

, (10)

(
dt′

dR

)2

= 1−

[
2M

R
+

(
2M − κ2R3

2κR2

)2
]−1

. (11)

Note that the sign ambiguity of Eq. (7) and (8) has
not disappeared, since the terms are now squared. If we
assign an initial radius to the domain wall and impose
both time coordinates to start when it begins to collapse,
we can integrate the previous equations to establish the
evolution of the bubble from both regions: t(R) from
Schwarzschild and t′(R) from Minkowski.

B. Continuity conditions

Once the evolution of the wall is determined, we can
consider photons emitted at t = t′ = 0. Our domain
wall is not a opaque, so nothing prevents light rays
from crossing it. Hence, it is essential to discuss which
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quantities remain conserved when we cross from the
outside to the inside, and viceversa.

Let Kµ be the 4-momentum of a photon. The geodesic
equation of the photon is given by

dKµ

dλ
=

1

2
KσKνgσν,µ . (12)

Since the right hand side is not singular (it is discontin-
uous but it does not have Dirac δ singularities), we can
conclude that the vector Kµ is continuous in adapted
coordinates. Therefore Kφ is continuous and the an-
gular momentum takes the same value on both sides
(Kφ′ = L′ = L = Kφ). For the case of the energy, the
consideration is more elaborate, since we use a different
temporal coordinate on each side of the wall, adapted
to the corresponding temporal Killing vector. When a
photon goes through the wall, the tangential and normal
projections of Kµ with the surface must be continuous.

Kµgµνn
ν = Kµ′

gµ′ν′nν′
, (13)

KµgµνU
ν = Kµ′

gµ′ν′Uν′
, (14)

where Uµ is the 4-velocity of the wall and nµ its orthogo-
nal 4-vector. The primed and unprimed expressions refer
to the inner an outer regions, respectively. More explic-
itly, their expression will change depending on the metric
of the region.

Uµ = (ṫ, Ṙ) , nµ =

(
Ṙ

1− 2M
R

,

[
1− 2M

R

]
ṫ

)
.

Uµ′
= (ṫ′, Ṙ) , nµ′

= (Ṙ, ṫ′) . (15)

It becomes clear from this expressions that the angu-
lar part of Kµ will play no role in the continuity: the
4-velocity of the wall has only radial and temporal com-
ponents.

With all this in mind, Eq. (13) and (14) can be em-
ployed to determine how the energy of photons emitted
at t = t′ = 0 changes as they cross from one region to
the other. Their trajectory might cross the wall twice or
once from the time of emission to the time of observa-
tion, depending on whether the photon starts inside the
bubble or outside. We will use unprimed expressions for
a photon emitted in Schwarzschild, primed expressions
for this photon entering the bubble and double-primed
for the same photon escaping the wall and returning to
Schwarzschild. Using K0U

0 +KrU
r = K0′U

0′ +Kr′U
r′

and substituting L = Eb, L = E′b′ and L = E′′b′′ where
appropriate, we get:

− E

1− 2M
R

[√
1− 2M

R
+ Ṙ2 − Ṙ

√
1−

(
1− 2M

R

)
b2

R2

]
=

= E′

[√
1 + Ṙ2 ± Ṙ

√
1− b′2

R2

]
, (16)

where we have used K0′ = −E′ and K0 = −E. Here, Ṙ
represents the motion of the wall, given by Eq. (9). For
each crossing we need 2 equations in order to solve for
both the new impact parameter and the sign of Kr. The
normal projection is K0n

0 +Krn
r = K0′n

0′ +Kr′n
r′ :

− E

1− 2M
R

[
−Ṙ−

√
1−

(
2M

R

)
b2

R2

√
1− 2M

R
+ Ṙ2

]
=

= E′

[
−Ṙ± Ṙ

√
1− b′2

R2

√
1 + Ṙ2

]
. (17)

The equations for a Minkowski to Schwarzschild crossing
can be obtained equivalently. It is essential to choose
appropriate values of the parameters κ and the initial
radius of the domain wall R0. We will take rS as the
unit of distance. That implies the units of κ are r−1

S .
If we inspect Eq. (10), with R0 ≫ rS (since we want
the bubble to start collapsing far from rS) and κ ≪ R0

(because it represents an energy density) in these units:

R0 ∼
(rS
κ

)1/2
. (18)

That means the maximum radius is determined by the
surface energy density of the bubble.

Another relevant detail is the distance at which we ob-
serve the shadow. Ideally, we would want an observer
at infinity, but in order to integrate the trajectories, we
must set a finite distance. We will set it to be 10 times
the size of the shadow of the black hole bBHS = 3

√
3M ,

where the effects of curvature are negligible. The crite-
ria used for choosing a specific numerical value for κ in
TABLE I were that the value of R0 (determined by Eq.

(9) with Ṙ = 0) is big enough to allow some photons to
enter and escape the bubble before it collapses.

Numerical value

κ (r−1
S ) 0.003

R0 (rS) 13.038

d∞ (rS) 25.981

TABLE I: Parameters used for simulations.

The strategy to calculate trajectories will be setting a
time at d∞ and tracing null geodesics backwards:(

dr

dt

)2

=

[
1−

(
1− 2M

r

) b2
r2

](
1− 2M

r

)2
.(

dr

dt′

)2

= 1− b′2

r2
. (19)

Whenever the trajectory intersects the collapsing bubble,
we make use of Eq. (16) and (17) to get the change in
energy and continue the evolution until the initial surface
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t = t′ = 0, as can be seen in FIG. 1. For simplicity, we
will consider photons emitted at the Tolman-Ehrenfest
temperature (which would correspond to global thermal
equilibrium in a static gravitational field before the emis-
sion of the photons).

(a) Schwarzschild

(b) Minkowski

FIG. 1: a) Time coordinate as a function of radius of two
photons with different impact parameter traced backwards
from the observer until the intersection with the bubble. b)
Time coordinate inside as a function of radius for the same
two photons, starting at the instant when they enter the wall.
This shows that the domain wall trajectory differs from both
perspectives.

IV. RADIAL PHOTONS

First, we can study the simplest case by setting b = 0,
that is, photons with no angular momentum. This sim-
plifies continuity equations, although they are still crucial
to compute the variation in energy.
We can study how a detector at d∞ receives these pho-
tons from the moment the collapse starts until what is
left is a BH. In order to establish the range of times of
interest, we must integrate Eq. (19) from two charac-

teristic radii until d∞. The lower bound is defined by
the first photon of interest that arrives at the detector,
corresponding to the one emitted outwards at R0. The
upper bound, will be determined by the last photon that
can escape. However, we know it is not possible to evolve
the trajectory from rS . Such photon is not able to es-
cape the BH until infinite time. Therefore, we must set a
minimum radius different from rS . This can be thought
of as setting a minimum energy cut-off to trigger our de-
tector. We consider a detector that triggers only when
light received has at least a 10% of the original energy
of the emitted photons. This corresponds to photons es-
caping at r = 1.11 rS . We get t∞(R0) = 15 rS and
t∞(1.11 rS) = 51 rS .

FIG. 2: Energy detected at d∞ in units of energy emitted in
terms of the Schwarzschild time at which they are received.

In FIG. 2 we observe the expected behaviour. It is
remarkable that at initial stages of the collapse, photons
suffer only a small decrease in energy. It is only for pho-
tons escaping near the moment of formation of the BH
that the shift becomes increasingly appreciable. This fact
can be understood intuitively since photons that cross
the surface outwards near rS appear in a spacetime with
extreme curvature.

V. GENERAL CASE

In this section, we will focus on the formation of the
BH shadow. We have seen previously that this shadow is
defined by b′′BHS = 3

√
3M . It can be analyzed by study-

ing how energies vary when considering different impact
parameters b′′. Photons with different b′′ will still be
received simultaneously at a certain t∞. This can be ex-
plored for many values of t∞.
When computing trajectories backwards, a diversity of
options should be contemplated. The light ray will ar-
rive at its minimum radius when dr/dt=0 and bounce
outwards. If this is achieved before reaching the wall, it
must be taken into account by changing the sign in ra-
dial velocity and continuing the evolution. If it intersects
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the bubble, it is necessary to set K ′′
r < 0. Nonetheless,

depending on the radius at which the change in direction
occurs, the photon might not cross the wall. That would
mean it was emitted at t = 0 outside, so E′′ = E0.

FIG. 3: Energy detected at d∞ in units of energy E0 at the
time of emission as a function of the impact parameter b′′

for different t∞ in units of the Schwarzschild radius rS . The
dashed profile in black corresponds to the limiting case of a
static black hole shadow.

FIG. 3 can be confusing at first glance, but it resembles
what should occur:

1. For initial times, the profile approaches a straight
line. In fact, if we showed the region with greater
b′′, it would tend to 1 as expected. The reason
for this is that at this stages the domain wall is
still huge. Therefore, for a light ray to pass by
without entering the bubble, it should have b ≈
R0. Furthermore, there exists an energy decrease
because photons with lower b′′ cross the surface.

2. As time gets closer to the moment at which the
domain wall is approximating rS , the energy dis-
tribution approaches the one that constitutes the
shadow of a BH. Indeed, it is a step-like distribution
since no light is received from the near regions of
the BH. All photons with impact parameter greater

than bBHS are deflected by the curvature produced
by the BH and are detected at d∞.

VI. CONCLUSIONS

We have analyzed how the black hole shadow is formed
dynamically. For this purpose, we have considered the
dynamical collapse of a domain wall that divides space
in two regions: an inner Minkowskian and an outer
Schwarzschild one. By considering the simultaneous
emission of photons in every point in space, the trac-
ing of light trajectories backwards has allowed us to
obtain, in this simplified model, how the shadow changes.

• For radial photons, we have obtained the profile of
energies as a function of time. The result matches
what was expected: photons lose a greater amount
of energy as the domain wall is closer to rS , until
the BH is formed and no light arrives. The process
of darkening for the parameters considered takes a
time of the order of ∆t∞ ∼ 40 GM .

• Photons with angular momentum have been ana-
lyzed for different t∞. It has been shown how the
profile expected for the shadow of a BH is recov-
ered as the wall collapses. Once the wall achieves
R = rS , the spacetime is indistinguishable from the
Schwarzschild solution in the vacuum.

• At the initial stages, a vast region of size ∼ R0 loses
colour. However, as the wall shrinks, the area that
suffers a blackout becomes more localized.
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