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Symmetric nuclear matter, asymmetric nuclear matter and β-stable nuclear matter are discussed
and modeled through a Lagrangian density of relativistic mean field (RMF) theory using a σ meson to
describe the attractive interaction between nucleons, a ω meson to describe the repulsive interaction
and a ρ meson to describe the asymmetry effects with the NL3 parametrization [1].

I. INTRODUCTION

Understanding the internal structure and properties of
neutron stars has presented a challenge for the scientific
community since their discovery. Over the last decades,
great progress has been made [2].

In this project, the main focus will be studying the
equation of state (energy per particle and pressure) of
three different nuclear matter compositions by means of
a relativistic mean field (RMF) formalism that correctly
predicts known nuclear characteristics like the saturation
point. Although there are non-relativistic models, obser-
vations of finite nuclei indicate that there must be some
relativistic effects that are relevant [3], and also at the
densities found in the core of neutron stars the nucleons
and other components present a relativistic behaviour.
Using the Dirac equation instead of the Schrödinger equa-
tion provides a more natural and consistent way of pro-
ceeding.

We know that the main interaction between nucleons,
which are one of the main components of neutron stars
or nuclei, is the strong interaction. The theory that ex-
plains this kind of interaction, quantum chromodynamics,
is very complex and works with degrees of freedom that
we cannot really observe, gluons and quarks. Can we be
successful ignoring this underlying structure? Choosing
hadrons (baryons and mesons) as our main degrees of
freedom is a natural step considering our objectives and
it is also a great step in making the theory much more
accessible. This model is often referred to as quantum
hadrodynamics [4].

We want to successfully reproduce the known results
for the energy per particle (∼ −16 MeV) and density
(∼ 0.15 fm−3) at saturation using the NL3 values for
the free parameters [1]. The project will be organised
as follows. First, we will introduce the RMF formalism.
Second, we will discuss the symmetric nuclear matter,
where the density of protons and neutrons is equal. Then
we will move onto asymmetric nuclear matter, where the
density of protons and neutrons is different, and we will
study how the proportion of each nucleon affects our
magnitudes of interest. Lastly, we will introduce elec-
trons to be able to get closer to the description of matter
inside a neutron star and study the β-stable nuclear mat-
ter.

II. FORMALISM

As it has been briefly discussed before, our degrees
of freedom will be hadrons (baryons and mesons). For
the baryons we will be working with neutrons and pro-
tons, incorporated through a baryon field ψ. For the
mesons we will be working with a scalar-isoscalar σ me-
son, to describe the attractive interaction between nu-
cleons and represented by a scalar field ϕ. A vector-
isoscalar ω meson, to describe short range-repulsion and
introduced through a repulsive four-vector field Vµ. Fi-
nally, a vector-isovector ρ meson to take into account the
asymmetry effects between nucleons, represented by the
Rµ field, which is a four-vector in Minkowski space and a
three-vector in isospin space. Later on we will introduce
electrons.
We can now build our Lagrangian density [1,2,6]:

L = ψ[iγµ∂
µ − gV γ
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where Fµν = ∂µVν − ∂νVµ and Gµν = ∂µRν − ∂νRµ

are the field tensors, M is the baryon mass (939 MeV)
and non-linear terms on ϕ0 have been included. The
mass of the σ meson, mS , and the couplings gS , gV ,
gρ, g2 and g3 are the free parameters tuned to fit the
experimental values of the saturation point. Solving the
equations derived directly from this Lagrangian density,
quantizing every baryon and meson field, is extremely
complicated.
The next step is to adopt a mean field approximation.

The way to proceed is quantize only the baryon field and
substitute the meson fields by their expectation value,
which are constants:

ϕ −→ ⟨ϕ⟩ ≡ ϕ0 , V µ −→ ⟨V µ⟩ ≡ V0, (2)

Rµ −→ ⟨ Rµ⟩ ≡ R0,3.

The 3 in the meson ρ subscript is for the third com-
ponent of the isospin vector. We will be working with
infinite uniform matter, so there is no spatial variation
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in any magnitude, including the spatial contribution to
the expectation value of the mesons. Taking into account
the RMF approximation and the vanishing of spatial de-
pendence in nuclear matter the Lagrangian density will
be [1,2,6]:

L = ψ[iγµ∂
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To obtain themean-field equations obeyed by the nucleon
and meson fields we have to derive the Euler-Lagrange
equations from the Lagrangian density. Let us define the
baryon density ρ and the scalar density ρS :

ρ = ⟨ψ†ψ⟩ =
∑
k

φ†
kφk (4)

ρS = ⟨ψ̄ψ⟩ =
∑
k

φ†
kβφk. (5)

The nucleons are fermions, so they will occupy states till
a Fermi momentum kF . We are considering an infinite
system so we can transform the sums to integrals:
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where g is the degeneracy, ϵk is

ϵk =
√
k2 +M∗2, (8)

ϵF = ϵk(kF ) andM
∗ is the effective mass of the nucleons,

and it is defined as

M∗ =M − gSϕ0. (9)

The σ meson acts upon the nucleon by reducing its mass.
With those definitions made, let us write the mean-field
equations:

m2
V V0 = gV ρ (10)
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2
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(γµ(i∂µ − gV Vµ) − (M − gSϕ0))ψ = 0. (13)

The first equation determines by itself the value of V0
given a value for the baryon density ρ. The second equa-
tion, that determines ϕ0, needs to be iterated because of
the dependence ρS(ϕ0). It will be numerically solved by
Newton-Raphson. The third equation determines R0,3

for a given value of both the proton and neutron density.
It will only be relevant in cases with asymmetry.

The fourth equation is a Dirac equation for the nu-
cleons, with minimal couplings from the mesons. Its
solution is relevant to successfully compute the scalar
(7) and baryon (6) density. In nuclear matter we can
treat the “modified nucleons” as free particles, so we seek
stationary-state solutions of the form

ψ = φke
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By replacing (14) in the Dirac equation (13), we obtain
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The energy density is obtained by the usual means of
QFT:

ε =
∑
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We have now developed the ingredients needed to write
the pressure p and the chemical potential µ:

p =
∑
i

ρiµi − ε (18)

µi =
∂ε

∂ρi
. (19)

The index i is for protons, neutrons and electrons.

III. SYMMETRIC NUCLEAR MATTER (SNM)

Let us begin with the simpler case. In the symmetric
case, we have

ρ = ρn + ρp (20)

ρn = ρp =
ρ

2
. (21)

We are considering baryons as a single degree of freedom
so we will have spin-isospin degeneracy (g = 4). The
RMF Lagrangian density for this case is

LSNM = ψ̄[iγµ∂
µ − gV γ
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It is important to note that in the symmetric case, the ρ
meson does contribute, so (12) will not be solved.
We can move on now onto the energy density εSNM :
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Let us call the first term ε0.
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One of the requirements of our RMF theory is for the
energy per particle ( ερ −M) to have a minimum of ∼ −16

MeV at the saturation density of ∼ 0.15 fm−3 [2]. We
have obtained the behaviour of the energy per particle
through numerical calculations using the NL3 values [1]
of the parameters of the Lagrangian dennsity. Let us
inspect it in FIG. 1:

FIG. 1: Energy per particle as a function of the baryon
density.

As we expected, there is a minimum around the said
values. To calculate accurately this point, we need
to search for the minimum of the energy per particle,(

∂( ε
ρ )

∂ρ

)
ρ0

= 0. This derivative is equal to the pressure

being 0. Developing this derivative, which is equal to
(18), gives

p = ρ (ϵF + gV V0)− εSNM . (24)

Solving numerically the mean-field equations we can rep-
resent the pressure as a function of ρ in FIG. 2:

FIG. 2: Pressure as a function of the baryon density.

The pressure goes to 0 around the value of the density

we expected. Both the energy per particle and pressure
increase fast at high density. The behaviour at high den-
sity is important for the study of neutron stars and can
be tuned with the free parameters of the Lagrangian den-
sity.
The exact value calculated for the saturation point is

ρ0 = 0.148 fm−3, E/A−M = −16.240 MeV. For this den-
sity we have, M∗ = 558.806, M∗/M = 0.595 MeV and
gV V0 = 307.935 MeV. The symmetric matter is bound
while the energy per particle is smaller than 0.
A notion of the behaviour at high density can be ob-

tained through the compression modulus K. It defines
the curvature of the energy per particle at saturation ρ0:

K = 9

[
ρ2

d2

dρ2

(
εSNM

ρ

)]
ρ0

= 272.527MeV. (25)

IV. ASYMMETRIC NUCLEAR MATTER
(ANM)

We no longer have the same density for protons and
neutrons. We have now 2 different degrees of freedom
for the baryons, and its degeneracy will be 2, only due to
spin. Let us define the asymmetry parameter :

δ =
ρn − ρp

ρ
, ρ = ρn + ρp. (26)

Writing the densities and Fermi momenta of the baryons
in terms of the asymmetry parameter will allow us to
study the behaviour of the energy per particle and pres-
sure with the variation of the asymmetry of nuclear mat-
ter:

ρn = ρ

(
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2

)
(27)
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2

)
(28)

kF,n = kF (1 + δ)
1/3

(29)

kF,p = kF (1− δ)
1/3

. (30)

The ρ meson is now important. We will have to add its
contribution to the Lagrangian density, taking the form
written in (3). Its field equation will determine its value
for each asymmetry.
We need to add the free and interacting contributions

of the ρ meson to the energy density :

εANM = εSNM +
1

2
gρR0,3(ρp − ρn)−

1

2
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ρR
2
0,3. (31)

The term εSNM includes ε0,p and ε0,n.
The expression of the pressure will also change due to

the contribution of the ρ meson. Following the prescrip-
tion given at (18), the expression for the pressure takes
the following form:

p = ρn(ϵF,n + gV V0 −
1

2
gρR0,3) (32)

+ρp(ϵF,p + gV V0 +
1

2
gρR0,3)− εANM .
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In this case, we will not always have bound matter. Let
us inspect the energy per particle for different δ in FIG.
3 and discuss its effect on the presence of bound matter.

FIG. 3: Energy per particle as a function of the baryon
density for different δ values, from symmetric nuclear
matter (δ = 0) to pure neutron nuclear matter (δ = 1).

In this figure we can see the extreme cases for δ and
some intermediate ones.

The δ = 0 case corresponds to the symmetric nuclear
matter, which we have just discussed in section III.

The δ = 1 case corresponds to pure neutron matter,
which works as a first approximation to the interior of a
neutron star. We can see that the bound matter is found
in smaller intervals of density for increasing δ till it is no
longer bound. The energy per particle also grows with δ
for a fixed density. The same happens with the pressure.
It increases with δ for a fixed density. We computed
the behaviour of the pressure with the density and the
asymmetry in FIG. 4.

FIG. 4: Pressure as a function of the baryon density for
different δ values, from symmetric nuclear matter (δ = 0)
to pure neutron nuclear matter (δ = 1).

It is important to note that neutron matter needs

something more apart from the strong interaction to stay
bound, a gravitational pull. Neutron stars are stable be-
cause both nuclear forces and gravity are present.

V. β-STABLE NUCLEAR MATTER

Our last section will be devoted to the β equilibrium.
Free neutrons are not stable. They decay to protons and
electrons. In the densities found inside neutron stars, the
inverse reaction can also take place:

n −→ p+ e− + ν̄e (33)

p −→ n+ e+ + νe (34)

We will impose two conditions for the β equilibrium:
Charge neutrality:

ρp = ρe. (35)

Chemical potentials satisfying:

µn − µp = µe, (36)

modeling the electrons as a relativistic Fermi sea and
with

µn = ϵF,n + gV V0 −
1

2
gρR0,3 (37)

µp = ϵF,p + gV V0 +
1

2
gρR0,3 (38)

µe =
√
k2F,e +m2

e. (39)

For every baryon density, there will only be one possible
value for the asymmetry parameter δ that satisfies these
conditions. We can apply these conditions to our model
and compute the correct value of δ for each density. The
results are presented in FIG. 5:

FIG. 5: Evolution of the asymmetry parameter δ with
the baryon density to satisfy the β equilibrium.

We can see that the system tends to lower asymmetry
with increasing density. The behaviour of δ(ρ) depends
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on the symmetry energy of the chosen parametrization
[1].

The energy density will only have a new contribution
from the electrons, ε0,e. The pressure will have a new
contribution of the form ρeµe − ε0,e. Let us see how it
differs from the nucleon pressure (without the electron
contribution) and from fixed δ. Once again through nu-
merical calculations, we present the results in FIG. 6:

FIG. 6: Pressure for the β-stable matter with and with-
out the electron contribution compared to symmetric nu-
clear matter (δ = 0) and pure neutron matter (δ = 1).

We see that the nucleon pressure is between the sym-
metric and neutron matter pressures and consistent with
FIG. 4 and FIG. 5. The electron contribution to the pres-
sure is large, increasing the pressure to almost the same
as the pure neutron matter at high density. With some
other parametrization, the nucleon-plus-electron pressure
can even surpass the pure neutron matter pressure. This
important contribution can be better understood looking
at the evolution of the chemical potentials. We have cal-
culated their evolution with the density, as can be seen
in FIG. 7:

FIG. 7: Evolution of the chemical potentials with the
density.

Electrons end up with a chemical potential larger than
200 MeV at ρ = 0.45 fm−3, more than 400 times their rest
mass. Their contribution to the pressure is proportional
to its chemical potential, explaining why it is relevant.

VI. CONCLUSIONS

The RMF theory proves to be able to reproduce some
central known values for symmetric nuclear matter. Sym-
metric nuclear matter (δ = 0) is self-bound and has a sat-
uration or equilibrium point at ρ = 0.148 fm−3. Neutron
matter (δ = 1) is unbound at all densities. The inclusion
of electrons has a significant effect on the pressure.
To get closer to a real neutron star one could include

other leptons such as muons to the β equilibrium. The
inclusion of hyperons would be also a good generalization
of the project. Also, one could apply other parametriza-
tions like the one presented at [6]. Finally, a natural
continuation of the project would be to apply the calcu-
lated equation of state to study the mass-radius relation
of neutron stars [2].
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