
Application of dispersion relations to ηπ elastic scattering

Author: Johan Sebastián Guzmán Varela.
Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisor: Vincent Mathieu

Abstract: The existence of exotic mesons, particularly hybrid mesons, remains a subject of
investigation. Among these, the meson π1 with JPC = 1−+ is anticipated to be the lightest. In this
study, we examine the reaction η(′)π → η(′)π as π1 couples to the involved particles. By employing
dispersion relations for various channels of this reaction, incorporating Regge forms, and conducting
a partial wave expansion in both the forward and backward directions of the outgoing particles, we
estimate the P-wave contribution associated with the purported π1 meson.

I. INTRODUCTION

In the Standard Model of particle physics, gluons and
quarks are the fundamental particles that carry color
charge. Gluons mediate the strong interaction between
quarks, which is governed by Quantum Chromodynamics
(QCD).

The current quark model successfully describes the for-
mation of quark systems such as mesons (composed of a
quark and an antiquark) and baryons (composed of three
quarks). However, it is postulated that more complex
configurations are possible, such as hybrid mesons. Hy-
brid mesons consist of a quark-antiquark pair with an
excited gluonic field that acts as a constituent, resulting
in quantum numbers that are forbidden in the simple
quark model. Lattice QCD computations, as demon-
strated in [1], suggest that the π1 meson could be the
lightest exotic hybrid meson, possessing the quantum
numbers JPC = 1−+.

Therefore, one of the goals of the COMPASS experi-
ment has been to study η(′)π mesonic systems, as docu-
mented in [2]. These systems are expected to couple with
the π1 hybrid meson. More recently, a new facility called
GlueX has been developed as a complementary experi-
ment to COMPASS, and its results are eagerly awaited
and pending publication.

In this paper, a convenient scattering process is ana-
lyzed by studying its scattering amplitude A(s, t, u). This
allows for the establishment of a dispersion relation. An
estimation for this relation may be given by using the
Regge form, which is a valid approximation at high en-
ergies. The resulting identity is known as Finite Energy
Sum Rule (FESR). Subsequently, a partial wave expan-
sion is performed on the scattering amplitude to isolate
the P -wave component, which is theorized to correspond
to the π1 hybrid meson. Symmetries of the function
A(s, t, u) in different channels of the η(

′) + π → η(
′) + π

reaction are utilized for this purpose. Finally, an expres-
sion is derived to estimate the integral over a range of
energy of the P-wave of the amplitude using fitting tech-
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niques applied to data from [3].
The structure of the paper is organized as follows: In

Section II, the Mandelstam variables are introduced in
Subsection II A, followed by an analysis of the channels
and exchanged mesons in Subsection II B, and the estab-
lishment of dispersion relations and FESR using Regge
forms in Subsection II D. Subsection II E then applies a
series of approximations to derive an expression for es-
timation. Section III utilizes this expression along with
fitting on experimental data to estimate the P-wave. Fi-
nally, Section IV presents the conclusions.

II. DISPERSION RELATION

A. Kinematics

The first step is to establish a framework of tools for
effectively investigating a scattering reaction 2 → 2. Such
reactions involve two Lorentz invariant variables, and a
particularly advantageous set of variables known as the
Mandelstam variables, s, t, and u, prove to be valuable
in this context.

Let pi, and p′
i be the four-vectors of the incoming, and

outgoing mesons i, for i = π, η. Then, the Mandelstam
variables are defined as it follows:

s ≡ (pπ + pη)
2

=
(
p′
π + p′

η

)2; t ≡ (pπ − p′
π)

2

=
(
pη − p′

η

)2; u ≡
(
pπ − p′

η

)2
= (pη − p′

π)
2
,
(1)

which implies that s+t+u = 2(m2
π+m2

η) := Σ, and there-
fore only two Mandelstam variables are independent.

In the center-of-momentum (CM) frame, the conserva-
tion of energy and momentum ensures that the momenta
satisfy p = |p⃗1| = |p⃗2|, and p′ = |p⃗1′| = |p⃗2′|, and this
relationship holds:

zs = cos θ = 1 +
t

2p2
= −1− u− u0

2p2
, u0 =

(m1 −m2)
2

s
.

(2)
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B. Reaction π + η → π + η
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FIG. 1: Diagrams of the s-, and t-channels for the π + η →
π + η reaction.

Fig. 1 A) portrays the reaction π + η → π + η, and
the order in which the mesons are arranged in the figure
is labeled as the “s-channel”. When it is rotated by 90◦,
it resembles diagram B), except with a reversed direc-
tion for the π and η particles. This reversal is equivalent
to exchanging the particles with their respective antipar-
ticles. However, no differentiation will be needed be-
tween particles and antiparticles, and they will be treated
interchangeably. Consequently, the resulting reaction
is referred to as the t-channel, as t = (pπ − pπ)

2
=

(pπ + p̄π)
2 represents the energy associated with the col-

lision between the particle and antiparticle, where p̄ is
the antiparticle’s four-vector. Similarly, the u-channel
can be obtained analogously and is found to be equiva-
lent to the s-channel.

In conclusion, each channel involves a specific pair of
incoming and outgoing particles. These reactions occur
through the mediation of an intermediate meson, which
couples to both the incoming and outgoing pairs. In or-
der for this reaction to take place, the coupling of the
quantum numbers G, and I of the incoming, and outgo-
ing particles (shown in Fig. 2) should coincide with that
of the intermediate meson, whose quantum numbers are
collected in Table I.

TABLE I: Naming scheme of mesons with their quantum
numbers.

G=1 G=−1
PC Name PC Name

I=0 ++ f −− ω
−+ η +− h

I=1 −− ρ ++ a
+− b −+ π

On the one hand, the restrictions on the s-channel are:
1. ππ coupling: since the π meson has isospin I = 1,

the coupling has I = 0, 1, or 2; and its intrinsic
parity is G = +1 because it is the result of the
coupling of two equal particles. Then, according to
Table I, the candidates are f2, and ρ,

2. ηη coupling: since η has an isospin is I = 0, the
coupling of the isospin is I = 0; and G = 1. The

only compatible particle with these quantum num-
bers is f2.

An additional constraint is the minimum energy for
the scattering process to take place. Since

√
s coincides

with the energy of the particles, this constraint results in
a threshold for s, corresponding to the squared total rest
mass of the incoming particles: s > s0 = (mπ + mη)

2,
where mη = 135MeV, and mπ = 548MeV [3].

On the other hand, the t-channel reaction is solely con-
strained by the πη coupling. This coupling is character-
ized by the isospin values of η and π, which yield a total
I = 1 for the system. Additionally, the intrinsic parity
of η is G = +1, while that of π is G = −1, resulting in
G = −1 for the coupling. Consequently, the intermediate
mesons in this channel can be either a2 or π1. Moreover,
the threshold of s is s20 = (mπ +mπ)

2 = 4m2
π.
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FIG. 2: Mesons exchanged during the reaction π+ η → π+ η
in different channels. A) shows the s-channel, and B) shows
the t-channel. βxy

□ is the coupling of the intermediate meson
□ that couples to the particles x, and y.

C. Change of variables: ν and ν′

It is important to note that fixing either t or u in the
equation s+ t+ u := Σ, along with the previously deter-
mined thresholds, results in the existence of prohibited
points denoted as {(s, u)}, or {(s, t)}, respectively. These
sets, known as cuts, introduce an asymmetry in the com-
plex plane of ν along the Re(ν) axis with respect to 0.

Let the crossing variables ν, and ν′ be defined as:

ν =
s− u

2
, ν′ =

s− t+ 4m2
π − (mπ +mη)

2

2
. (3)

These variables allow to symmetrize the the two cuts
at fixed t, and u, respectively: s(−ν, t) = u(ν, t), and
s(−ν′, u) = t(ν′, u).

D. Finite Energy Sum Rules (FESR)

In a stationary-state scattering process, the scattering
amplitude A(s, t, u) quantifies the probability amplitude
of an outgoing spherical wave with respect to the incom-
ing plane wave. Due to the crossing symmetry arising
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from CPT symmetry, this function describes all three
channels s, t, u when evaluated in the corresponding
domains, which exclude the respective thresholds men-
tioned in Section II C.

Re(ν)

Im(ν)

............
+ν0−ν0 +Λ−Λ

FIG. 3: Cauchy’s integral theorem can be applied to the in-
tegral of the amplitude over the blue contour, and also over
the solid one, allowing to identify the absolute values of the
integrals over each distinct segment of the figure. ±ν0 limits
of the cuts, and Λ > ν0 is arbitrary.

The Regge form, given by A ∝ 1+τe−iπα

− sinπα βνα, where α
is the Regge trajectory, provides an approximation for the
amplitude that holds true for large |ν|, |ν| > Λ (Chapter
9 of [4]). Consequently, it is suitable for application over
the orange segment illustrated in Fig. 3. In this context,
τ represents the signature factor, and due to the slow
variation of β, it is reasonable to assume β(t) = β.

It is worth noting that the integrals of the amplitude
over the segments that enclose the real axis in parallel
correspond to the integral of the difference between the
amplitude evaluated above and below the axis. This dif-
ference is proportional to ImA due to the Schwarz re-
flection principle. In conclusion, when considering the
integrals over the orange segments in Figure 3, the inte-
grand can be expressed as ImA = τβνα.

1. Fixed and small t=x

In this scenario, Eq. (2) indicates that θ is a small an-
gle. Consequently, the π meson is moving in the forward
direction.

The value of ν, and u0, corresponding to the threshold
value of s, s0 = (mη + mπ)

2, and to t = x, can be
expressed as ν0(x) = 2mπmη + x

2 , and u0, respectively.
Due to the symmetry of ν explained in Section II C, the
integral over the blue and dashed line of Fig. 3 yields:

ˆ s(Λ)

s0

ImA(s, t, u) ds+

ˆ u(Λ)

u0

ImA(s, t, u) du =[ ˆ Λ

ν0(x)

ImA(s(ν, t), t, u(ν, t)) dν

+

ˆ −Λ

−ν0(x)

ImA(s(ν, t), t, u(ν, t)) dν

]∣∣∣∣det(Jf )

∣∣∣∣,
(4)

where the absolute value of the Jacobian determinant is
|det(Jf )| = 1.

This integral, as noted in the caption of Fig. 3, equals
the integral over the orange segment of the figure. If this
identity is then multiplied by νk, with k ∈ N so that
the analytic behaviour of the integrand is not affected,
and the change of variable ν → −ν is applied to the last
integral of Eq. (4), it yields:

ˆ Λ

ν0(t)

[
ImA(s(ν, t), t, u(ν, t))νk

+ ImA(s(−ν, t), t, u(−ν, t))(−ν)k
]
dν =

∑
±

ˆ ±∞

±Λ

βνα+kdν =
∑
i

[1 + τi(−1)k]βi
Λαi+k+1

αi + k + 1
.

(5)

where the second integral has split into integrals in cor-
respondence with the several particles i that mediate the
process, and that were determined in Section II B.

The fact that the s-, and u-channels are equivalent in
this reaction, along with the symmetry of ν, entails that
A(s(−ν, t), t, u(−ν, t)) = A(u(ν, t), t, s(ν, t)).

Since this scenario corresponds to the t-channel, τ =
+1. Then, k must be even, k = 2n, because otherwise,
Eq. (6) is trivial. The final expression is:

ˆ Λ

ν0(x)

ImA(s(ν, t), t, u(ν, t))dν =[
βππ
P βηη

P
ΛαP+2n+1

αP + 2n+ 1
+ βππ

f2 βηη
f2

Λαf2
+2n+1

αf2 + 2n+ 1

]
.

(6)

2. Fixed and small u=x

In this scenario, Eq. (2) indicates that θ represents a
straight angle. Consequently, the η meson is moving in
the forward direction, and ν′0(x) = (4m2

π − (mη −mπ)
2+

x)/2.
Similarly to the case treated above, an expression sim-

ilar to Eq. (5) may be retrieved if the crossing variable
ν′ is used, instead of ν:

ˆ Λ′

ν′
0(x)

Im

[
A(s(ν′, u), t(ν′, u), u)

+A(t(ν′, u), s(ν′, u), u)(−1)k
]
ν′kdν′

=
∑
i

[1 + τi(−1)k]βi(t)
Λαi+k+1

αi + k + 1
. (7)

In this instance, however, there are two different pos-
sibilities for τ :
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1. τ = −1, which implies that k is odd, k = 2n+ 1:

ˆ Λ′

ν′
0(x)

Im

[
A(s(ν′, u), t(ν′, u), u)

+A(t(ν′, u), s(ν′, u), u)(−1)2n+1

]
ν′2n+1dν′

= 2(βπη
π1

)2
Λ′απ1+2n+2

απ1 + 2n+ 2
, (8)

2. τ = +1 which implies that k is even, k = 2n:

ˆ Λ′

ν′
0(x)

Im

[
A(s(ν′, u), t(ν′, u), u)

+A(t(ν′, u), s(ν′, u), u)(−1)2n
]
ν′2ndν′

= 2(βπη
a2

)2
Λ′αa2+2n+1

αa2
+ 2n+ 1

. (9)

E. Approximation

The main objective of this study is to estimate the
integrals over the range of energies [ν0,Λ] of the P-wave
of A(s, t, u). To accomplish this, certain approximations
and simplifications are employed.

Firstly, the exchange of a π1 meson in the t-channel, as
depicted in Fig. 2 B), is exotic, implying that βπη

π1
(u) ≈ 0

(and also απ(u) ≪ 0). Consequently, Eq. (8) can be
simplified as:

ˆ Λ′

ν′
0(x)

Im

[
A(s(ν′, u), t(ν′, u), u)+

A(t(ν′, u), s(ν′, u), u)(−1)2n+1

]
ν′2n+1dν′ = 0, (10)

and since Λ′ is arbitrary, it follows that
ImA(s(ν′, u), t(ν′, u), u) = ImA(t(ν′, u), s(ν′, u), u).

The next step involves performing a partial wave ex-
pansion on A(s, x, u), and A(s, t, x) using the variables
defined in Equation 2 and the Legendre polynomials,
Pℓ(z):

A(s, x, u) = 16π

∞∑
ℓ

(2ℓ+ 1)tℓ(s)Pℓ(z1), z1 = 1 +
x

2p2πη
,

A(s, t, x) = 16π

∞∑
ℓ

(2ℓ+ 1)tℓ(s)Pℓ(z2), z2 = −1− x− u0

2p2πη
.

(11)
Additionally, the Regge trajectories of a2 and f2 are

equal, αa2
= αf2 [5]; and the approximation mπ ≈ mη is

made, which implies that ν0(x) ≈ ν′0(x). In addition, ν,
and ν′ are dummy variables, and Λ = Λ′ is fixed. With
these considerations in mind, the Eqs. (6) and (9) may

be subtracted, resulting in the following equation for the
P-wave (ℓ = 1):

48π

ˆ Λ

ν0(x)

Im

[
t1(s(ν, x)

[
P1(z1)− P1(z2)

]
ν2n

]
dν =

2βππ
P (t)βηη

P (t)
ΛαP+2n+1

αP + 2n+ 1

+ 2

[
βππ
f2 (t)βηη

f2
(x)− (βπη

a2
(x))2

]
Λαf2

+2n+1

αf2 + 2n+ 1

−
∑

ℓ∈even

ˆ Λ

ν0(x)

Im tℓ(sν)∆ℓ(ν, x)ν
2ndν, (12)

where ∆ℓ(ν, x) = 16π(2ℓ + 1) [Pℓ (z1)− Pℓ (z2)] is as-
sumed to be negligible, since the recurrence relation of
Pℓ indicates that ∆ℓ vanishes when mη → mπ for ℓ even.

III. ESTIMATION OF THE P-WAVE

In the last section, the integral of the P-wave over a
range of energies [ν0,Λ] is expressed in terms of a set of
couplings, β. The objective of this section is to retrieve
the their numerical value in order to obtain an estimation
of the integral.

In general, the cross section of a scattering reaction is:

σ =
(ℏc)2

s
β
(s
s̄

)α

, (13)

where s̄ is a normalization factor and may be taken to
be s̄ = 1GeV. Furthermore, in natural units, ℏc = 1
(otherwise, (ℏc)2 = 0.389GeV2 mbarn), and the cross
section may be written as σ = βSᾱ, where S = s/s̄, and
ᾱ = α− 1.

The total cross section of a reaction can be modelized
as σTOT = XSᾱP + Y X ᾱR , with ᾱP = 0.0808, and ᾱR =
−0.4525 [5], where X and Y are the terms associated
with the Pomeron, and the Reggeons, respectively. It
is noteworthy that Y can be further decomposed into a
sum of terms, each corresponding to a specific Reggeon.
Then, the experimental data for hadron collisions from
various experiments found in [3] can be fitted, as shown
in Fig. 4, and the resulting parameters are used to solve
the following system:



σpp = (βpp
P )2SᾱP +

(
(βpp

f2
)2 − (βpp

ρ )2 + (βpp
a2
)2 − (βpp

ω )2
)
SᾱR ,

σpp̄ = (βpp
P )2SᾱP +

(
(βpp

f2
)2 + (βpp

ρ )2 + (βpp
a2
)2 + (βpp

ω )2
)
SᾱR ,

σpn = (βpp
P )2SᾱP +

(
(βpp

f2
)2 + (βpp

ρ )2 − (βpp
a2
)2 − (βpp

ω )2
)
SᾱR ,

σp̄n = (βpp
P )2SᾱP +

(
(βpp

f2
)2 − (βpp

ρ )2 − (βpp
a2
)2 + (βpp

ω )2
)
SᾱR ,

σπ±p = βpp
P βππ

P SᾱP +
(
βpp
f2
βππ
f2

∓ βpp
ρ βππ

ρ

)
SᾱR .

(14)
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FIG. 4: Total cross section of the p̄p and pp; π+p and π−p;
and p̄n and pn scattering processes, respectively, in function
of the energy,

√
s.

The two relevant terms of the solution are presented:

βππ
P = (2.982± 0.013)mb1/2,

βππ
f2 = (3.28± 0.06)mb1/2.

(15)

The rest of the necessary couplings for the estimation
of Eq. (12) can be retrieved via relations with the de-

cay widths of the channels of the reactions, Γ, and the
momenta of the decay products, p, available at [3]:

βηη
f2

= βππ
f2

√
Γ (f2 → ηη)

Γ (f2 → π0π0)

(
pππ
pηη

)5/2

= (1.14± 0.12)mb1/2,

βπη
a2

= βππ
f2

√
Γ (a2 → πη)

Γ (f2 → π0π0)

(
pππ
pπη

)5/2

= (1.51± 0.08)mb1/2.

(16)

Similarly, βπη′

a2
= (1.38± 0.12)mb1/2 by replacing η by

η′ (notice m′
η > mπ [3]). Also, βη′η′

f2
= βηη

f2
tan2 θq =

(0.96 ± 0.10)mb1/2 is found by using the η − η′ mixing
angle (θd = 42.52◦) found at [6]. Furthermore, βη′η′

P ≈
120
73 βηη

P , which is the quotient of the values corresponding
to the channels πη, and πη′ in Table 1 of [7].

TABLE II: Estimations of Eq. (12). Λ = 3GeV2 ≫ ν0.
n = 1 n = 2 n = 3

η (95± 3)mbGeV (427± 13)mbGeV3 (2560± 70)mbGeV5

η′ (147± 4)mbGeV (668± 14)mbGeV3 (4030± 80)mbGeV5

IV. CONCLUSION

In this study, we examined the scattering reaction
πη(

′) → πη(
′), its channels, and it was argued that a sin-

gle scattering amplitude function describes all of them.
We established dispersion relations for the different

channels, in the forward and backward direction of the
scattering. Then, Regge theory and a partial wave expan-
sion were applied, yielding an expression for the integral
of the P-wave amplitude, which corresponds to the π1

hybrid meson, within the low energy range of [ν0,Λ].
We evaluated the integral using parameters derived

from fitting experimental data. Interestingly, we found
that the integrals were larger for η′ than for η, which
aligns with existing theoretical expectations.

Similarly, waves other than the P could have been
studied, or a parametrization of the scattering amplitude
could be used to estimate the integral in Eq. (12).

Throughout this work, the courses in Quantum Me-
chanics and Complex Analysis (Faculty of Mathematics)
played a crucial role in achieving my objectives.
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