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Abstract: The aim of this study is to examine the behaviour of a simulated neuronal network
in which neurons are located in topographical obstacles shaped as parallel tracks that reduce the
capacity of neurons to interconnect. The simulations show that three different scenarios of collective
activity are observed, depending on the connectivity between neurons, from few isolated groups of
neurons to the entire synchronous activation of the network. We also observed that, when neurons
strongly follow the topographical pattern, the activity of the system is highly tied to the structure
of the network, indicating that dynamics (functional connectivity) is highly linked to structural one.

I. INTRODUCTION

Neurons are the basic processing unit of the nervous
systems, which span from few hundreds in the worm C.
elegans to the 1011 of the human brain. In all cases,
the circuits shape complex networks, and where the con-
nectivity details between neurons can shape the overall
dynamics and functionality of the neuronal assembly.

Indeed, the complex networks that are the nervous sys-
tems are the responsible of much of the functions that
we use to interact and understand the world. Thus,
by studying these networks, we can understand better
the functions of the brain, for instance in the context of
processing information or propagating activity. This is
important in the context of neurodegenerative diseases,
where the loss of neurons and connections affect the ca-
pacity of the neuronal circuit to properly operate. For
this reason, the study of neuronal networks, and specif-
ically how the wiring among neurons shapes collective
dynamics, has become an important field of research.

Of course it would be ideal to study neuronal systems
in vivo, but this is impossible in practice due to the diffi-
culty involved in accessing systems as large and intricate
as the human brain. This causes us to have to use al-
ternative methods to study these systems. A first one
of these methods is the in vitro preparations of neural
cultures, which usually contain on the order of 100 to
1000 neurons, and where the complex behavior and the
physical connections can be tuned. Such an idea is nor-
mally termed neuroengineering and can be implemented
by arranging neurons in particular locations, or by guid-
ing them using topographical obstacles or other mecha-
nisms [1]. A second one of these methods is numerical
simulations (silico), which allows to model in a computer
the connectivity among neurons and the corresponding
collective dynamics.

In either case, the primary observable for the study of
activity in these experiments is the membrane potential,
which increases or decreases depending of the inputs from
other neurons. When the potential reaches a threshold,
it triggers a series of processes that, in the end, shape
an action potential and that becomes the input of other
neurons in form of a pulse. When we have this pulse, we

say that the neuron has fired, it have made a spike [2].
These spikes are measured experimentally or observed in
the simulations and, by analyzing them, we can extract
information and quantify the behavior of the neuronal
system.
Ideally, in order to understand how the brain and sim-

ilar complex systems work, we have to combine the stud-
ies of neural networks and the numerical simulations that
we can do with everything we know. One of the most ac-
curate simulations is the Hodgkin–Huxley-type model,
which is computationally inaccessible because we can
only simulate a few neurons in real time. On the other
hand, we have the Izhikevich model, which is a simplified
model of the previous one, which is capable to simulate
on order of 100 to 1000 neurons in real time, in a scale
of ms, using a desktop PC [3].
In the present study, we want to simulate and compare

with experiments a particular case of neuronal connectiv-
ity distribution, where inspired by Ref. [1] we add neu-
rons to topographical tracks in which neurons grow, con-
necting strongly along the track or weakly across neigh-
boring tracks.

II. METHODS

Here we describe the methods used in the numerical
study of neuronal networks, which includes the modelling
approach, in this case the Izhikevich model [3], and the
descriptors to characterize the network.

A. Izhikevich model

This model, presented in 2003, is determined by 4 pa-
rameters (a, b, c and d) and two differential equations:

v̇ = 0.04v2 + 5v + 140− u+ I, (1)

u̇ = a(bv − u), (2)

where u represents the membrane recovery parameter,
v represents the membrane potential of the neuron and
I represents the synaptic current. When the membrane
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potential of the neuron exceeds the 30 mV, the neuron
makes a spike and resets the variables u and v, which is
described as:

if v ≥ 30mV, then

{
v ←− c

u←− u+ d,
(3)

and termed ‘auxiliary after-spike resetting’.
The 4 parameters describe the next attributes:

• a: represents the time scale of the recovery of u.

• b: represents the sensitivity of u.

• c: represents the reset value of v.

• d : represents the reset value of u.

In this study, we used the MATLAB code provided in
Ref. [3], where we can simulate 1000 neurons in real time,
i.e., with a step of 1 ms. The original Izhikevich code
named above is the following:

% Created by Eugene M. Izhikevich,
%February 25, 2003
% Excitatory neurons Inhibitory neurons
Ne=800; Ni=200;
re=rand(Ne,1); ri=rand(Ni,1);
a=[0.02*ones(Ne,1); 0.02+0.08*ri];
b=[0.2*ones(Ne,1); 0.25-0.05*ri];
c=[-65+15*re.^2; -65*ones(Ni,1)];
d=[8-6*re.^2; 2*ones(Ni,1)];
S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];
v=-65*ones(Ne+Ni,1); % Initial values of v
u=b.*v; % Initial values of u
firings=[]; % spike timings
for t=1:1000 % simulation of 1000 ms
I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input
fired=find(v>=30); % indices of spikes
firings=[firings; t+0*fired,fired];
v(fired)=c(fired);
u(fired)=u(fired)+d(fired);
I=I+sum(S(:,fired),2);
v=v+0.5*(0.04*v.^2+5*v+140-u+I); % step 0.5 ms
v=v+0.5*(0.04*v.^2+5*v+140-u+I); % for numerical
u=u+a.*(b.*v-u); % stability
end;
plot(firings(:,1),firings(:,2),’.’;

Initially we can find a ratio of excitatory to inhibitory
neurons of 4 to 1, where the first ones increase the mem-
brane potential while the second ones reduces it, and this
activity is controlled by the matrix of synaptic connec-
tion weights S, which gives a certain interval of values if
the neuron is of one type or the other. The combination
of these two types of neurons is what gives the Izhikevich
model the biological plausibility and complex behaviour
of the mammalian brains [4]. There are other parame-
ters that we can change in order to simulate the model
with more precision. We will see that this parameters,
like the noise and the maximum weight of the excitatory

neuron connections, can substantially change the simu-
lations’ outcome.
The matrix S will be our observable to simulate the

neuronal network with the distribution of topographical
tracks that we desire. In our case, we define the connec-
tivity matrix A and then add the weight of every neuron.
This matrix A has 1000×1000 binary elements, where ev-
ery 1 represents a connection between a pair of neurons,
and 0 otherwise. This matrix is in general asymmetric,
since the connections may not be reciprocal.

B. Network measures

We will use analysis tools from complex systems [5],
which will allow us to collect information about the
most important characteristics of the simulated networks.
These measures are applied to the connectivity matrix A.
A first measure is the Global efficiency (Geff), which

represents how good the information can travel through
the network, and provides values between 0 (inefficient,
poorly connected) and 1 (highly efficient, well con-
nected). Its expression is:

Geff =
1

N(N − 1)

N∑
i̸=j

1

dij
, (4)

where N is the number of nodes of the network and dij is
the shortest path length between the nodes i and j, i.e.,
the minimum number of nodes between the i and j node.
A second measure is the modularity Q, with values be-

tween 0 and 1. It represents the tendency of neurons
to form groups of communities, with Q representing the
ratio between connections across nodes within the same
community and the connections across communities. A
network with a high Q indicates many connections be-
tween nodes in the same community, and low connections
among communities. This is what is named an segregated
network. In the extreme case we can consider a commu-
nity for every neuron or node. As a contrary, a network
with low Q values is named an integrated network.
These measures and other functions, such as the vi-

sualization of the network in the Gephi program, or the
arrangement of the connection matrix by modules, are
included in MATLAB programs provided by Dr. Sori-
ano, which I have adapted to my code. Another code
that I adapted was used to compute the fraction of neu-
rons that activated collectively in a given time window,
a concept that is called ‘global network activity’ (GNA).

III. RESULTS AND DISCUSSION

A. Initial model

First of all, we must determine the criteria to decide
if there is a connection between neurons or not. In this
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study, we applied a threshold that depended on an expo-
nential whose variable is the Euclidean distance between
neurons, given by:

th = 1− e−α·dist, (5)

where dist is the Euclidean distance between a given pair
of neurons and α is the exponent variable that we will
change depending how easy (α low) or difficult (α high)
we want the neurons to connect.

Then, we place neurons on a physical space, in this
case a square area of lateral size 3 mm. Next we create a
connectivity matrix A that is initially filled with random
values between 0 and 1. Thereafter, we look at each pair
of neurons (i, j), compute their Euclidean distance, get
the threshold value and apply it, so that if thi,j < Ai,j

then Ai,j = 1, and 0 otherwise, obtaining finally a binary
matrix of connections.

Conceptually, in this model we set a limit for the phys-
ical distance at which neurons can connect. If that limit
is exceeded, it automatically causes the coefficient to be
0 in the matrix. To be sure of the parameters to use, we
have done first a study to know the typical distances and
exponents that are interesting. As illustrated in Fig. 1,
we used a model of 6 vertical tracks of 0.25 mm wide and
3 mm long, with a space between them of 0.5 mm. In
these networks we considered two exponents, one along
tracks αA and and one transverse to them αT . But, first,
for clarity, we inspected what happened when a single
exponent α was used.

FIG. 1: Representation with Gephi of two extreme neuronal
distributions in 2D. Neurons show communities and are col-
ored according to them. A: (αA = 4.5, αT = 7). B:
(αA = 5.5, αT = 10.5)

.

As shown in Fig. 2, for a single exponent α, we investi-
gated how the modularity of the network changed when
we varied the maximum distance between neurons and
α. We can see that the typical values for α to obtain
an interesting modularity vary between 4 and 9, and a
distances of 0.5 mm onwards. This helped us to refine
the geometry of the tracks and the density of neurons.

FIG. 2: Behavior of the simulations by calculating the mod-
ularity Q as a function of the maximum connection distance
and the exponent α.

B. Final model with topographical obstacles

Now, having the parameters delimited in an interval of
values, we proceed to explore in detail the effect of the
topographical obstacles shaped as tracks in our model.
These obstacles limit the capacity of neurons to connect
freely in all directions, which we will represent by vary-
ing the parameter α of the exponents (Eq. 5) depending
on whether we are considering connections that are fa-
vored along the same track (low αA) and/or made diffi-
cult across tracks (high αT ). Overall, this causes asym-
metry between the same track and the neighboring ones.
We can also suggest a reduction of the maximum distance
between connections also because of these obstacles, de-
ciding that at most there will be connections between a
track and its second neighbor.
Applying now this construction to the dynamical

model of 1000 neurons, we can investigate different dy-
namical regimes. As seen in Fig. 3, three different regimes
can be considered, which can be studied by plotting
raster plots, i.e., the activation of the neurons along time.
The behavior of the regimes can be understood

through the exponents that are used in every example.
In the case of Fig. 3A, we have a mostly symmetrical
and synchronized activity, where the difference between
the two exponents (αA = 4.5 and αT = 7) is not very
large and does not cause a great difference from an ini-
tial scenario with a unique α. For the case of Fig. 3B,
the exponents are more contrasted (αA = 5 and αT = 9),
and we can see the beginning of the rupture of the syn-
chronization, which accentuates for the case of Fig. 3C
(αA = 5.5 and αT = 10.5), where the dynamics is con-
centrated at the level of groups that correspond to the
tracks themselves. Indeed, we can see that the bursts of
neurons within a community are not normally followed
by activity in neighboring communities.
All these explorations can be summarized in Fig. 4,

where we plot the average fraction of neurons in the net-
work that activate together (i.e., the groups we see in the
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FIG. 3: A, B and C: Raster plots of the different regions
of activity in our model, with time in ms on the x-axis and
the neuron label on the y-axis. The track and transversal
exponents are (αA = 4.5, αT = 7), (5, 9) and (5.5, 10.5)
respectively. D: Study in the variation of the mean of the
fraction of neurons activated changing the maximum weight
of the excitatory neurons, with the weight in the x-axis and
the mean in the y-axis.

raster plots), for all the combinations of exponents. We
can clearly see that the dynamic behavior of the neuronal
network depends on the exponents we use.

Additionally, to demonstrate the variation of the re-
sults by changing parameters, in Fig. 3D we provide a
study for the evolution of the average fraction of neurons
in the network that activate together as a function of the
maximum weight of the excitatory neurons. No other
parameters or variables are changed. We can see that
the variation of the mean clearly depends on this weight.
Therefore, the results obtained in a simulation (Figs. 3
and 4) depend very clearly on the parameters chosen.

FIG. 4: Dependence of the fraction of activated neurons
(GNA) as a function of the two different types of exponents.

C. Functional network

Here we are going to study with more detail the ex-
ample of Fig. 3B, where we found activity that encom-
passed neuronal groups. The example corresponds to the
exponents αA = 5 and αT = 9. These exponents gives
us many connections in the same track and few connec-
tions between them. By looking at the connectivity ma-
trix (shown in Fig. 5A) and the spatial representation
(Fig. 5B), we can conclude that every collective activa-
tion in Fig. 3B is associated to a burst in one or few
neuronal communities.

FIG. 5: A: Matrix of neuronal connections for the simulation
of Fig. 3B, ordered by communities, with the neural label in
both axis. Every blue dot represents a connections that goes
from the neuron of the row label to the neuron of the column
label. B: Representation with Gephi of the neuronal model
distribution in 2D, with the neurons of communities grouped
together by the same color.

We should point out that, in Fig. 5, it is clearly vis-
ible the difference among the connections that we have
said, as we notice that every line represents a connection
between two neurons, and these connections are mostly
between neurons in the same vertical track.
As an additional analysis, we calculated the correla-

tion of spikes between the neurons, to achieve what is
termed the functional network. Conceptually, this func-
tional network let us know how synchronous is the com-
munication among neurons. For that, we compute the
cross-correlation among neuronal pairs, which are ob-
tained from the simulation of 1000 ms. Then we represent
the correlation values. with 1 indicating that two neu-
rons are very similar in behavior and highly correlated
and 0 indicating that they are very different in behavior.
We can see the functional network matrix in Fig. 6A.
We are now interested in deleting non-significant func-

tional connections in Fig. 6A in order to achieve a more
accurate functional matrix. For that, we will apply a ran-
domness concept called ‘surrogates’, in which we consider
all the spikes from a neuron along the time of the sim-
ulation and distribute them randomly along time. Now,
with a totally random raster plot, we calculate again the
functional network as we have explained before. Once we
get the matrix of surrogates, we find the maximum value
of correlation between any two neurons that are not the
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FIG. 6: A: Matrix of correlation coefficients for the simula-
tions of Fig. 5. B: Binarized matrix according to a threshold.

same, because if it is the same neurons, we will always
get a value of 1. The obtained value is 0.38, and we used
as a threshold to eliminate non-significant connections.
In other words, correlation values in the original matrix
that are below 0.38 can appear by chance by having neu-
rons firing randomly, and by doing the surrogate analysis
we effectively eliminate those accidental cases, having a
final functional network that we can trust. To complete
the procedure, for every value of the original matrix, if
this value is equal or lower than the threshold we substi-
tute it by a 0, and if it is higher we substitute it by a 1,
obtaining the final matrix of Fig. 6B.

The functional matrix indicates the degree of syn-
chrony between neurons and in general is very different
from the structural one. Indeed, as we can see if we com-
pare the matrices of Fig. 5A and Fig. 6B, we can observe
that the percentage of common entries is 88.69%, a num-
ber that we can consider quite high. This result is so pow-
erful that we can get the matrix of connections in exper-
imental cases, as illustrated in Fig. 7 for a neuronal net-
work grown in vitro. We note that a strongly or weakly
correlated functional networks depend on the structural
connectivity and the dynamics of the neurons. In gen-
eral, the functional network resembles the structural one
only when the spatial constraints are very strong.

IV. CONCLUSIONS

We observed that for simulations with topographical
obstacles there are different scenarios of activity, with a
stronger or weaker synchrony among neurons. Simula-
tions are in general very sensitive to changes of param-
eters and variables, so a more exhaustive study would

made appear more interesting examples.
When we have a more individual activity of communi-

ties, as we have seen in the simulation studied with more
detail, we can obtain a functional network that resembles
the structural one. This is a strong result that indicates
that, when spatial constraints are very strong, one can
predict the structure of the network from its dynamics.
This could potentially give us information in experimen-
tal data with just data analysis of activity.

FIG. 7: Experimental case, given by Dr. Jordi Soriano, and
that can be found in Ref. [1], conceptually similar to the ex-
ample made here. A: the Gephi representation, B: the func-
tional connection matrix and C: the raster plot.

Finally, the study of these simulations with more and
different topographical obstacles would give us richer in-
formation, to take a most complete and improved model
and then achieve some new results.
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