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Abstract: The super-potential method is used to obtain exact solutions for scalar fields in-
teracting with gravity. Exponential and hyperbolic potentials are studied and their cosmological
behaviour is analysed. Universes exhibiting diverse expansion and contraction phenomena arise
from this models and are characterised.

I. INTRODUCTION

Cosmology has successfully addressed some of the most
challenging questions posed by nature, yet many key un-
knowns of our Universe remain unresolved [1, 2]. Re-
cently, there has been an increasing interest in formulat-
ing models that employ scalar fields as actors within di-
verse contexts. The discovery of the Higgs Boson and the
relevance of the inflation field have greatly influenced the
popularity of such models; and other theoretical scalar
particles, like the axion or the dilaton, have gained recog-
nition. What is interesting to us is that working with
scalar fields grants the opportunity to obtain exact solu-
tions using the super-potential method.

The super-potential method is a standard approach
to obtain exact solutions using Hamilton-Jacobi theory
with scalar fields, as extensively described in [3–5]. This
method allows us to investigate various potentials for a
set of scalar fields ϕi interacting with gravity and analyse
the cosmological behaviour when the potential leads to
an exactly solvable problem. In brief, given a Lagrangian
of the form

L =
1

2
Gij∂tϕ

i∂tϕ
j − V (ϕi), (1)

if the potential fulfills

V = −1

2
Gij ∂W

∂ϕi

∂W

∂ϕj
(2)

the solutions of the first-order equations of motion also
solve the second-order equations, and they satisfy

∂tϕ
i = ϵGij ∂W

∂ϕj
(3)

(with ϵ = ±1). So, based on this, we can skillfully se-
lect a super-potential W that leads to first-order exactly
solvable equations and a physically interesting potential.
Our text will be guided by the work of J. G. Russo and
P. K. Townsend in [6–9].

We will consider a flat (k = 0) Friedmann-Lemâıtre-
Robertson-Walker (FLRW) cosmology:

ds2 = −e2αφf2dτ2 + e2βφ(dx2
1 + ...+ dx2

d−1) (4)
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where

α = (d− 1)β β =
1√

2(d− 1)(d− 2)
(5)

are normalisation constants in d dimensions, and

φ = φ(τ) f = f(τ) ϕ = ϕ(τ) (6)

in order to maintain isotropy. Here we shall study the
d = 4 case. The function f(τ) allows us to make an
alternative choice for the time coordinate; unless stated
otherwise, our choice will be f = e−αφ, which corre-
sponds to the usual cosmological time t. It should be
noted that φ(t) is a function that dictates the behaviour
of the scale factor in the FLRW metric, expressed as
a(t) = eβφ; and it can be related to the Hubble parameter
since H(t) = ȧ(t)/a(t) = βφ̇.
A general expression for the Lagrangian of a set of

gravity coupled scalar fields can be written using the
proper choice of units κ2 = 8πG = 1/2 [1] as

L =
1

2

√
−|g|

(
2R− gµνGij(ϕ)∂µϕ

i∂νϕ
j − 2V (ϕ)

)
, (7)

which for the FLRW metric, reduces to the effective La-
grangian [6]

Leff =
1

2f

(
−φ̇2 +Gij ϕ̇

iϕ̇j
)
− fe2αφV (ϕ). (8)

A potential fulfilling (2) will be of the form

2e2αφV (ϕ) = (∂φW )
2 −Gij∂iW∂jW, (9)

and if we choose a super-potential W = eαφF (ϕ), we
will be able to express the potential solely in terms of
the scalar fields:

V =
1

2

(
α2F 2 −Gij∂iF∂jF

)
. (10)

As stated, the equations of motion that arise from (8)
when Euler-Lagrange theory is used will generally be of
second-order and difficult to solve exactly. As an exam-
ple, the equations derived from (8) for a single field have
been widely studied and can be written in terms of the
scalar field and the Hubble parameter H(t){

ϕ̈+ 3ϕ̇H + ∂V (ϕ)
∂ϕ = 0

H2 = 1
6

(
1
2 ϕ̇

2 + V (ϕ)
) . (11)
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FIG. 1: Potential generated by function F (ϕ) = −c exp(−λϕ/2). It is

shown for 0 < λ <
√
3. The red-dashed line shows the evolution of the

system with time.

The method grants us an opportunity to find simple so-
lutions of the problem, since we know that if (10) is sat-
isfied, then (3) will yield a solution of the second-order
equations. The expression of this solutions in terms of
F (ϕ) will come utmost useful:

φ̇ = −αfeαφF ϕ̇i = feαφGij∂jF (12)

II. SINGLE SCALAR FIELD

The most simple case we can analyse is a Lagrangian
comprising a single scalar field contribution. This leads
to two coupled differential equations governing the evo-
lution of φ(t) and ϕ(t). Of particular interest for analysis
is the equation of state p = ωρ, where p represents the
pressure and ρ the energy density. These variables are
derived from the energy-momentum tensor Tµν of a per-
fect fluid [1], and can be expressed as

ρ =
φ̇2

2
p =

φ̇2

2
− 2V (ϕ), (13)

therefore, ω can be written as

ω = 1− 4V

α2F 2
= −1 +

8

3

(∂ϕF )2

F 2
. (14)

A. EXPONENTIAL POTENTIAL

We can verify the efficacy of the super-potential
method using it in a extensively studied scenario, such
as the exponential potential. Choosing a function of the
form F (ϕ) = −c exp (−λϕ/2) for the usual cosmological
time coordinate (f = e−αφ), we obtain the potential

V (ϕ) =
c2

8

(
3− λ2

)
e−λϕ (15)

(shown in Figure 1). The parameters are chosen so c > 0
and λ > 0 yield an expanding solution for t > 0. The

differential equations obtained from (12) are then

ϕ̇ =
cλ

2
e−λϕ/2 φ̇ = αce−λϕ/2, (16)

which can be solved into

ϕ(t) =
2

λ
ln

(
λ2c

4
t

)
a(t) =

(
λc

2
t

) 1
λ2

. (17)

We can verify these results with [7], and we learn this
coincides with the late-time attractor solution. The
comparison can be done using the parameter V0 =
c2

(
3− λ2

)
/8 and t20V0λ

2 = 2
(
3/λ2 − 1

)
. It is required

that λ <
√
3 so the potential is positive.

To analyse the evolution of this cosmology, we will cal-
culate H(t) and ä(t)/a(t):

H(t) =
1

λ2t

ä(t)

a(t)
=

1

λ4t2
(
1− λ2

)
. (18)

We notice that ȧ(t) is positive definite, indicating a ex-
panding universe; and ä(t) corresponds to an accelerated
expansion for λ < 1. A similar analysis can be carried
out by examining the behaviour of ω, where values of
ω < −1/3 correspond to a positive ä [1]. In this case, ω
maintains a constant value ω = −1+2λ2/3, which meets
the constraint λ < 1 for an accelerated expansion.
A way to verify our approach is to find de Sitter phases,

where the potential acts as a cosmological constant and
the Hubble parameter remains constant. For example,
if we choose λ = 0, solving (16) again yields a constant
potential V0 = 3c2/8 and a vanishing kinetic energy since

ϕ̇ = 0. Such a case provides a solution with H = c/4.

B. HYPERBOLIC POTENTIALS: cosh(x)

Having established the utility of the method, we will
seek for F (ϕ) functions that have the potential to result
in interesting cosmologies. We will consider the specific
case where F (ϕ) = −b cosh(gϕ), and we will choose b > 0
and |g| < α. This choice is made so the solution exhibits
expansion for t > 0. The potential is then

V (ϕ) =
b2

2

(
α2 cosh2(gϕ)− g2 sinh2(gϕ)

)
. (19)

Figure 2 illustrates that the potential exhibits a well-like
shape that does not vanish at its minimum. Again, the
differential equations system given by (12) is

ϕ̇ = −bg sinh(gϕ) φ̇ = αb cosh(gϕ) (20)

and can be solved into

ϕ(t) =
1

g
ln

[
coth

(
bg2t

2

)]
a(t) =

[
2sinh

(
bg2t

)] 1
4g2 .

(21)
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FIG. 2: Potential generated by function F (ϕ) = −b cosh(gϕ). We
assume |g| < α and b > 0. The red-dashed line shows the evolution of

the system with time.
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FIG. 3: ȧ(t) (above) and ä(t)/a(t) (below) as a function of time.
Solutions for g2 < 1/4 (blue) and g2 > 1/4 (black) are shown.

Notice that ϕ(t) only exists for t > 0 and is positive def-
inite. Computing the derivatives ȧ(t) and ä(t) we obtain

ȧ(t) =
b

4
coth(bg2t)

[
2sinh

(
bg2t

)] 1
4g2

ä(t)

a(t)
=

b2

16

[
1 + (1− 4g2)csch2(bg2t)

]
.

(22)

Let us analyse these results and unmask the underlying
physics. As stated, the solution exists for the normal
flow of time t > 0 for any value of |g| < α. As shown
in Figure 3, ȧ(t) is positive and indicates an expanding
universe. Under time reversal change of variables t̃ ≡ −t,
ϕ(t) exists only for t < 0, when a(t) is real and positive
with the same constraint on g. Again, ȧ(t̃) is positive
definite, so the same expanding solution is found. The
acceleration parameter exhibits two distinct behaviours
(see Figure 3) for values of g above and below g2 = 1/4:
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FIG. 4: ω(t) as a function of time. Solution for g2 < 1/4 (blue) and
g2 > 1/4 (black) are shown. The dashed line represents the limit

ω = −1/3, above which acceleration is negative.

• For g2 ≤ 1/4 the acceleration is positive definite,
resulting in a monotonically expanding universe. A
slow early expansion is described. For g2 = 1/4, the
acceleration remains constant and positive.

• For g2 > 1/4 the acceleration parameter exhibits
an early deceleration phase with duration

τdec =
arccosh(2g)

bg2
(23)

followed by an accelerated expansion for t > τdec.
In this case, ȧ(t) presents a rapid expansion at early
times and a minimum at t = τdec.

Let us calculate the Hubble parameter and the equa-
tion of state for this specific potential:

H(t) =
b

4
coth(bg2t)

ω = −1 +
8

3
g2 sech2(bg2t).

(24)

It is evident that the behaviour of H(t) will be that of
ȧ(t). Given the expression of ω (see Figure 4) we can
further verify some of the deductions made above:

• For g2 < 1/4, ω < −1/3 is fulfilled for all t and the
acceleration is positive, as already stated.

• For g2 > 1/4, the threshold ω < −1/3 is surpassed
and a period of deceleration is found. Equaling ω =
−1/3 in (24) and solving for t the same duration
(23) is obtained.

In the limit t → ∞, ϕ → 0, the system rolls down to the
potential’s minimum value V0 = 3b2/8 and stays there.
The kinetic energy at the minimum of the well vanishes,
therefore the potential acts as a cosmological constant
and we encounter a de Sitter phase characterised by Λ =
V0. The Hubble parameter converges to a constant value
H = b/4. For the case g = 0, not previously discussed,
the potential is constant and a de Sitter universe emerges.
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FIG. 5: Potential generated by F (ϕ) = b tanh(gϕ). The red-dashed
line shows the evolution of the system with time.
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FIG. 6: t as a function of t̃ ≡ ϕ.

C. HYPERBOLIC POTENTIALS: tanh(x)

Consider the case where a function of the form F (ϕ) =
b tanh(gϕ) results in the potential

V (ϕ) =
b2

2

(
α2tanh2(gϕ)− g2sech4(gϕ)

)
. (25)

Note that the potential is bound from below but is not
positive definite (see Figure 5). This may result in a
model with negative energy phases, and it will be of in-
terest to analyse its cosmological implications. The dif-
ferential equations obtained from (12) are now

ϕ̇ = bg sech2(gϕ) φ̇ = −αb tanh(gϕ), (26)

and they are not so easily solved since the solution for
ϕ(t) is not invertible:

2bgt =
sinh(2gϕ)

2g
+ ϕ. (27)

For the choice g > 0, b > 0, the dependence t(ϕ) is
illustrated in Figure 6. t(ϕ) is a monotonic function and
it exhibits the following limits:

ϕ → −∞ =⇒ t →−∞ ϕ → +∞ =⇒ t → +∞
ϕ = 0 =⇒ t = 0;
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FIG. 7: ȧ(t̃) and ä(t̃) as a function of t̃ ≡ ϕ. The representation is
made using g = 1.

therefore we can use t̃ ≡ ϕ as a time variable (so the time
variable is no longer the usual cosmological time, as for
the other cases). Now ∂φ

∂t = ϕ̇∂φ
∂ϕ results in a differential

equation for φ(ϕ) that can be solved, yielding the scale
factor solution

a(ϕ) = exp

[
−cosh(2gϕ)

16g2

]
. (28)

As usual, we will now proceed to calculate meaningful
cosmological parameters and interpret their behaviour.
With ϕ = ϕ(t), we obtain

H(ϕ) = − b

4
tanh(gϕ)

ä(ϕ)

a(ϕ)
=

b2

16

(
tanh2(gϕ)− 4g2sech4(gϕ)

)
ω = −1 +

32

3
g2 csch2(2gϕ).

(29)

Firstly, the Hubble parameter yields an expanding uni-
verse for −∞ < t̃ < 0 that stops at t̃ = 0 and transitions
into a contracting phase for 0 < t̃ < ∞. On the other
hand, the acceleration parameter displays four distinct
periods, which can be easily distinguished in Figure 7:

• An initial period of accelerated expansion for
−∞ < t̃ < −ϕ0

• A period of deceleration that stops the expansion,
for −ϕ0 < t̃ < 0

• Followed by a period of accelerating contraction for
0 < t̃ < ϕ0

• And a final period of decelerating contraction for
ϕ0 < t̃ < ∞
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FIG. 8: H(t̃) and ω(t̃) as a function of t̃ ≡ ϕ. The representation is
made using g = 1/4. Notice that ω diverges at ϕ = 0.

where

ϕ0 =
1

2g
arcsinh(4g). (30)

Through the analysis of the equation of state we can
identify periods of acceleration for values of ϕ that meet
ω < −1/3, resulting in the same discussion made above
and the result (30). However, it is important to keep in
mind that the equation of state is typically bounded to
|ω| ≤ 1 [2, 10], and yet the expression of ω in (29) is
not bounded from above (see Figure 8). This behaviour
is anticipated in (14) for potentials that are not positive
definite. The values of ϕ that violate this restriction are

|ϕ| < 1

2g
arcsinh

(
4g√
3

)
(31)

which, as expected, is the period at which the potential
is negative.
The expression of ϕ̇ in (26) is positive definite. Hence

one would expect the system rolling down the potential
from −∞ and up again to ∞. Its expression also
shows that ϕ̇ vanishes at ±∞, and since the potential
is constant and not negligible at this limits, we find de
Sitter phases characterised by Λ = 3b2/8 and H = ∓b/4.

III. CONCLUSIONS

We have successfully used the super-potentials
method, initially verifying our ability to utilise it apply-
ing it to the exponential potential case, which resulted
in the expected outcome. In the case of the potential
derived from a cosh(gϕ) function, we have successfully
characterised an expanding solution exhibiting two dis-
tinct behaviours: a monotonically expanding universe,
and a universe with an initial phase of deceleration.
For the potential (25), we encounter a universe with

an initial expansion and a following contraction. The ex-
pansion is accelerated up to a turning point at t̃ = −ϕ0,
where it starts to slow down and eventually comes to a
stop. Similarly, the contraction undergoes initial acceler-
ation, and at t̃ = ϕ0 it starts to decelerate. This universe
goes through a phase of negative potential energy density,
which is theorized in some Early Universe models.
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