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Abstract 

ABSTRACT 
 

Food fraud is an intentional and misleading act in food that generally does not comply 

with food law and is motivated by economic gain. It encompasses several fraudulent 

practices such as deception during manufacture, diversion into illicit supply chains, 

interventions with the food product, or misrepresentation. In this context, the coming 

to light of the horse meat scandal at the beginning of 2013 highlighted the 

shortcomings of the European system against food fraud, increasing concern and 

interest among European citizens and administrative bodies. 

Under these circumstances, in recent years, omics tools —comprising genomics, 

transcriptomics, proteomics, metabolomics, and elementomics/isotopollomics— 

have been applied to solve food fraud issues, along with biostatistics and 

chemometrics. In most cases, their application has relied on profiling (focusing on 

determining targeted secondary chemical markers) or fingerprinting approaches 

(based on the unspecific detection of instrumental responses without assuming any 

previous knowledge about the sample composition), overcoming the traditional 

targeted analysis. In particular, since a food product’s metabolome varies according 

to its biological nature and several external conditions (i.e., either from a natural or 

anthropogenic origin), metabolomics has shown excellent potential to assess several 

issues related to its authenticity and quality. 

Therefore, in this thesis, several metabolomic profiling and fingerprinting approaches 

were developed to address different food fraud cases. In this line, liquid 

chromatography coupled to low- or high-resolution mass spectrometry (LC–LRMS, 

LC–HRMS) was proposed for the targeted approaches. In contrast, non-targeted 

methods were based on liquid chromatography with ultraviolet detection (LC-UV) or 

fluorescence detection (LC-FLD), LC–HRMS, or direct mass spectrometry (MS)- 

based techniques. Furthermore, non-supervised and supervised chemometric 

techniques allowed sample assignation and classification. As a result, the proposed 

analytical methodologies were successfully applied to several food products 
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—including paprika, nuts and seeds, hen eggs, vegetable oils, and red wine— 

guaranteeing their classification and authentication regarding the geographical origin, 

botanical origin, production system, or quality category. 
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RESUM 
 

El frau alimentari és un acte intencionat i enganyós produït en els aliments que, 

generalment, no compleix amb la legislació alimentària i que està motivat per un 

benefici econòmic. Comprèn diverses pràctiques fraudulentes, com ara l’engany 

durant la producció, la desviació a cadenes de subministrament il·lícites, les 

manipulacions del producte alimentari o la tergiversació. En aquest context, la sortida 

a la llum de l’escàndol de la carn de cavall a principis del 2013 va posar de manifest 

les mancances del sistema europeu contra el frau alimentari, augmentant la 

preocupació i l’interès entre els ciutadans i els organismes administratius europeus. 

En aquestes circumstàncies, en els darrers anys, s’han aplicat eines òmiques —que 

inclouen la genòmica, la transcriptòmica, la proteòmica, la metabolòmica i 

l’elementòmica/isotopol·lòmica— per resoldre qüestions relacionades amb el frau 

alimentari, juntament amb bioestadística i quimiometria. En la majoria dels casos, la 

seva aplicació s’ha efectuat mitjançant estratègies basades en perfils (centrant-se en 

la determinació dirigida de marcadors químics secundaris) o empremtes dactilars 

(basades en la detecció inespecífica de respostes instrumental sense assumir cap 

coneixement previ sobre la composició de la mostra), superant l’anàlisi dirigida 

tradicional. En concret, com que el metaboloma d’un producte alimentari varia 

segons la seva naturalesa biològica i un seguit de condicions externes (siguin d’origen 

natural o antropogènic), la metabolòmica ha demostrat un excel·lent potencial per 

avaluar diverses qüestions relacionades amb la seva autenticitat i qualitat. 

Per tant, en aquesta tesi, es van desenvolupar diverses estratègies de perfils i 

empremtes dactilars metabolòmiques per abordar alguns casos de frau alimentari. En 

aquesta línia, es va proposar la cromatografia líquida acoblada a l’espectrometria de 

masses de baixa o alta resolució (LC–LRMS, LC–HRMS) per als enfocaments 

dirigits. En canvi, els mètodes no dirigits es van basar en la cromatografia líquida 

amb detecció ultraviolada (LC-UV) o fluorescent (LC-FLD), LC–HRMS o tècniques 

basades en l’espectrometria de masses (MS) directa. A més, tècniques 
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quimiomètriques no supervisades i supervisades van permetre l’assignació i 

classificació de les mostres. Com a resultat, les metodologies analítiques proposades 

es van aplicar amb èxit a diferents productes alimentaris —incloent el pebre vermell, 

fruits secs i llavors, ous de gallina, olis vegetals i vi negre— garantint-ne la 

classificació i autenticació pel que fa a l’origen geogràfic, l’origen botànic, el sistema 

de producció o la categoria de qualitat. 
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This thesis’ main goal is the development of metabolomic profiling and 

fingerprinting approaches, consisting of chromatographic- and mass spectrometric- 

based methods combined with chemometrics, to solve different food fraud cases. 

Thus, the subgoals set in order to attain the primary objective are detailed below: 

• Development of targeted liquid chromatography coupled to mass 

spectrometry (LC–MS) for the determination of phenolic compounds and 

capsaicinoids and carotenoids in paprika. Then, evaluation of these 

compounds as chemical markers for classifying paprika samples according 

to their geographical origin. 

• Application of liquid chromatography with spectroscopic detection 

fingerprinting —liquid chromatography with ultraviolet detection (LC-UV) 

or fluorescence detection (LC-FLD)— to address different food fraud issues 

regarding nuts, hen eggs, and paprika samples. 

• Use of non-targeted liquid chromatography coupled to high-resolution mass 

spectrometry (LC–HRMS) to address the classification of nut samples 

according to their type and to tentatively identify type-related chemical 

markers. Then, evaluation of the found chemical markers in a case study of 

adulterating almond-based products with hazelnut or peanut. 

• Assess several food authentication issues through direct mass spectrometry 

(MS)-based fingerprinting methods, based on flow injection analysis coupled 

to high-resolution mass spectrometry (FIA–HRMS) and differential mobility 

spectrometry coupled to mass spectrometry (DMS–MS). Application to red 

wine, paprika, and vegetable oil samples. 

• Evaluation of different chemometric tools —including the principal 

component analysis (PCA), partial least squares regression-discriminant 

analysis (PLS-DA), soft independent modelling of class analogies (SIMCA), 

and partial least squares (PLS) regression— depending on the aim of each 

food fraud study. 
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Thereby, this thesis is presented as a compendium of scientific publications and is 

structured in four chapters. 

Chapter 1 is divided into two main concepts: food fraud and foodomics. On the one 

hand, it introduces food fraud by providing historical background, defining its most 

relevant related terms, detailing the current European Union (EU) legislation and 

structure to combat it, and describing some current tools for its vulnerability 

assessment. Moreover, common threats and fraudulent practices carried out on the 

food products analysed in this thesis (i.e., paprika, hen eggs, olive oil, wine, and nuts 

and seeds) are also reported. On the other hand, and from a foodomics perspective, 

Chapter 1 introduces targeted and non-targeted approaches, describes the application 

of omics tools —genomics and transcriptomics, proteomics, metabolomics, and 

elementomics and isotopollomics— in food authentication, and summarises the most 

used chemometric techniques. 

Chapter 2 focuses on applying metabolomic profiling approaches, combined with 

chemometrics, in food authentication. Hence, this chapter includes an introduction, 

which distinguishes between targeted and suspect profiling approaches and describes 

the main metabolites used for food authenticity purposes, the results section, and a 

discussion of the obtained results. In this context, the results shown in this chapter 

correspond to the next scientific articles: 

Publication I – Barbosa, S.; Campmajó, G.; Saurina, J.; Puignou, L.; Núñez, O. 

Determination of phenolic compounds in paprika by ultrahigh performance liquid 

chromatography-tandem mass spectrometry: Application to product designation of 

origin authentication by chemometrics. Journal of Agricultural and Food Chemistry. 

2020, 68, 591. 

https://dx.doi.org/10.1021/acs.jafc.9b06054 
 

Publication II – Arrizabalaga-Larrañaga, A.; Campmajó, G.; Saurina, J.; Núñez, 

O.; Santos, F. J.; Moyano, E. Determination of capsaicinoids and carotenoids for the 
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characterization and geographical origin authentication of paprika by UHPLC– 

APCI–HRMS. LWT. 2021, 139, 110533. 

https://doi.org/10.1016/j.lwt.2020.110533 
 

In contrast, Chapter 3 evaluates metabolomic fingerprinting approaches based on 

chromatographic and mass spectrometric methods to authenticate food products 

using multivariate analysis. The chapter is structured in three sections: the 

introduction, the results, and the discussion. In this case, the introduction contains the 

next scientific book chapter and is complemented with further information: 

Publication III – Campmajó, G.; Núñez, O. Chromatographic fingerprinting 

approaches in food authentication. In G. Campmajó & O. Núñez (Eds.), 

Chromatographic and related separation techniques in food integrity and 

authenticity. Volume A: Advances in chromatographic techniques. World Scientific 

Publishing. 2021, 137 – 165. 

https://doi.org/10.1142/9781786349958_0006 
 

Furthermore, the results contained in Chapter 3 correspond to the following scientific 

articles: 

Publication IV – Campmajó, G.; Navarro, G.J.; Núñez, N.; Puignou, L.; Saurina, 

J.; Núñez, O. Non-targeted HPLC-UV fingerprinting as chemical descriptors for the 

classification and authentication of nuts by multivariate chemometric methods. 

Sensors. 2019, 19, 1388. 

https://doi.org/10.3390/s19061388 
 

Publication V – Campmajó, G.; Cayero, L.; Saurina, J.; Núñez, O. Authentication 

of hen eggs by HPLC-UV fingerprinting and chemometric methods. Foods. 2019, 8, 

310. 

https://doi.org/10.3390/foods8080310 
 

Publication VI – Campmajó, G.; Saez-Vigo, R.; Saurina, J.; Núñez, O. High- 

performance liquid chromatography with fluorescence detection fingerprinting 
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INTRODUCTION 
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Chapter 1. Introduction 
 
 
 

1.1. FOOD FRAUD 
 

1.1.1. FROM ANCIENT TIMES TO NOWADAYS 
 

Food fraud goes back to ancient times, arguably near the origin of trading, which was 

initially based on barter. At that time, most of the products offered in the markets 

were raw, and mainly processed foods (e.g., ales, honey, wine, and oils) were 

vulnerable to deceptive practices. Nevertheless, raw products could also be altered 

by fraudulent actions like overweighting [1]. Furthermore, as the complexity of goods 

and the food chain increased over time, fraudsters gained more knowledge, which led 

to subtler and more sophisticated frauds. For instance, as the spices trade grew in the 

Medieval Period, being highly valued and expensive products, their adulteration with 

local dried herbs did too. Subsequently, the Industrial Revolution caused a massive 

migration from rural communities into urban areas in the most developed countries. 

Thus, urbanisation distanced consumers from primary food production, raising the 

opportunities for food fraud [2]. 

In 1820, Friedrich Accum published the Treatise on Adulterations of Food and 

Culinary Poisons [3], containing the first comprehensive study of food fraud. It 

comprised several adulteration cases that could impact consumers’ health and 

provided some methodologies for their detection (i.e., microscopy, physical property 

measurements, or wet chemistry). Moreover, the combination of different 

simultaneous factors —growing concern about food quality, progress in health and 

scientific knowledge, and food fraud scandals causing thousands of deaths— led to 

several food regulatory laws set up during the 19th and early 20th centuries. In this 

regard, the United Kingdom (UK) Public Health Act in 1875 [4] (consolidated later 

through the Food and Drugs Adulteration Act in 1928) [5], the French Food Law in 

1905 [6], and the United States of America (USA) Federal Meat Inspection Act [7] 

and Pure Food and Drug Act [8] in 1906 established a benchmark for public 

administrations. In addition, throughout the 20th century, the development of both 
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food fraud legislation and analytical techniques used to detect it (gaining sensitivity 

and specificity) continued [9,10]. 

However, the progress and application of strict food regulations, supported by more 

sophisticated analytical techniques, have still not impeded fraudsters from 

committing fraud without being detected. Several food fraud scandals during the last 

decades have highlighted the shortcomings of the worldwide detection system. 

Besides, some indirectly became a food safety issue because they threatened human 

health. For instance, in 1981, olive oil was adulterated with rapeseed oil denatured 

with aniline, which had an industrial use, causing more than 1,000 deaths in Spain. 

More recently, in 2008, milk powder was adulterated with melamine in China. 

Melamine is a toxic organic compound, and its addition aimed to increase milk 

powder nitrogen content, shaming a more extensive protein abundance. As a 

consequence, six babies died, and almost 300,000 were severely intoxicated. Finally, 

beef products were found to contain horse meat in 2012 illegally. Although this fraud 

was originally detected in the UK, further research indicated its spread to other 

European countries. This latter case proved the danger of large-scale fraud due to a 

globalised supply system with cut-price agri-food productivism and an incomplete 

labelling system [11,12]. Besides, despite not entailing a public health threat, it 

questioned the effectiveness of the existing controls at national and European levels. 

Furthermore,    besides   food    safety,   consumers’    interest    in    food    quality 

—encompassing attributes such as the presence of a specific ingredient, the 

production system (e.g., organic products), or the region of origin— has increased. 

These attributes are often related to higher prices, making these products susceptible 

to fraud. In this context, although this kind of fraudulent practice does not generally 

pose a threat to human health, it misleads both consumers and official authorities. 

In summary, nowadays, it is easy to conduct food fraud without being detected 

because of factors such as the complexity of the food chain (many players are 

involved between production and consumption), the massive diversity of products, 
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and the lack of analytical solutions. Indeed, the actual extent of fraudulent practices 

is unknown, and only some are discovered. Combating food fraud is, therefore, a 

complex challenge that requires an international effort from a multidisciplinary 

perspective. 

 
 

1.1.2. DEFINITIONS AND RELATED TERMS 
 

Up to now, the term ‘food fraud’ still misses an international harmonised legal 

definition. As a result, researchers and regulatory bodies have diversely interpreted it 

alongside its associated terminology. However, several common aspects can be 

pointed out from these food fraud definitions. In this context, it is an intentional and 

misleading act in food (by modification of the food itself or related documentation), 

which generally does not comply with food law and is motivated by economic gain 

[13]. Besides, it is considered that food fraud becomes food crime when it evolves 

from random individual acts to organised activities perpetrated on a large scale [14]. 

Similarly, it has also been inconsistently categorised into different types. The 

categorisation of the food fraud incidents proposed by Manning et al. [15] is taken as 

a reference in this thesis with some modifications. In this line, Table 1.1 summarises 

the types and sub-types of food fraud. Briefly, ‘deception during manufacture’ 

includes two sub-types: overtreating and overrun. On the one hand, the undeclared or 

incorrectly labelled addition of water in frozen seafood products —either through 

phosphate or non-phosphate treatment or glazing— is an example of an overtreating 

practice. In this case, fraudsters aim to manipulate the product price by increasing its 

weight [16]. On the other hand, overrun includes fraudulent acts, such as intentionally 

underreporting the total amount of production, which usually result in subsequent 

‘diversion into illicit supply chains’ activities. This latter food fraud type does not 

necessarily imply a food law violation (the foodstuff might comply with the safety 

requirements of the food legislation) but may infringe upon other regulations. 

Foodstuff smuggling to evade specific tax payments is an example of these practices. 



-6-  

Chapter 1. Introduction 
 
 
 

Instead, the food fraud type named ‘interventions with the food product’ encompasses 

practices such as adding substances to accentuate specific organoleptic properties 

(e.g., adding Sudan dyes to enhance chilli powder colour) or adulterating by adding 

lower quality and cheaper products to the authentic one (e.g., mixing extra-virgin 

olive oil with other vegetable oils). Finally, this classification’s last food fraud type 

is ‘misrepresentation’, which mainly includes deceptions by presence or omission in 

the product label. For instance, it comprises acts such as non-declaration of allergens 

or banned substances and mislabelling of the product’s geographical origin or 

production system. 

Table 1.1. Types and sub-types of food fraud. Adapted from Manning et al. classification 

[15]. 
 

Type Sub-type 
Deception during 
manufacture 
Diversion into illicit 
supply chains 

 
Interventions with the food 
product 

Overtreating 
Overrun 
Diversion 
Smuggling 
Theft 
Addition 
Adulteration 
Substitution 
Product tampering 
Unapproved processes 

 

Misrepresentation Misdescription 
Record tampering 
Misrepresentation of food characteristics, country of origin, 
food ingredients, or food packaging 
Claim violation 
False or misleading statements 

 
 

One of the difficulties of classifying food fraud practices is that, in most cases, a 

given fraudulent practice can be categorised into multiple types. In this context, most 

lead to misrepresentation or mislabelling in the final product. For instance, while the 

fraudulent adulteration of honey with cheaper sweeteners (i.e., corn sugar or rice 
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syrups) is performed by omission in the product label, a false statement is carried out 

when substituting a seafood species for a cheaper one. Furthermore, ‘duplication’ 

frauds —simulation and counterfeiting—, described in the original classification of 

Manning et al. [15], have not been considered in this thesis since they can also be 

classified as ‘interventions with the food product’ or ‘misrepresentation’. 

From a broader point of view, the concept of food integrity goes beyond food fraud. 

According to the European Union (EU) Food Integrity Project [17], it is ‘the state of 

being whole, entire, or undiminished or in perfect condition’. Different 

complementary categorisations of this term have been proposed. On the one hand, 

Robson et al. [13] defined it as an overarching term in the so-called food protection 

risk matrix [18]. Hence, as shown in Figure 1.1, food integrity is composed of four 

key elements —food quality, food safety, food fraud, and food defence— whose risks 

differ in both their intentionality of the cause and final motivation. 
 

 
 

Figure 1.1. Food protection risk matrix. 
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In this context, food quality includes negative and positive attributes influencing 

foodstuff value and consumer acceptance. Thus, unlike food fraud, its risk emerges 

from an unintentional event, such as a mishandling in the food supply chain, that 

alters the product reducing the expected characteristics and properties. Therefore, 

even with the reduced brand equity, if not detected, a food quality incident does not 

impede food business operators (FBOs) from obtaining an economic gain 

unwittingly. Furthermore, it is noteworthy to mention that although the motivation 

neither of food quality nor food fraud is to threaten human health, on some occasions, 

it can be an effect. Instead, food safety and defence risks give rise to potential harm, 

which is generally related to public health. In this line, while food safety risk derivates 

unintentionally (e.g., due to contamination along the production step), a food defence 

case is born from the will to produce damage. 

On the other hand, Manning [19] broke food integrity down into the items that can 

be affected by fraud along the supply chain: 

• Product integrity refers to the inherent and intrinsic characteristics of the 

foodstuff. 

• Process integrity encompasses extrinsic characteristics (such as the 

production method, organic or vegan label, or country of origin), often highly 

valued and related to the food production step. 

• People integrity relies on the honesty of each actor involved in the whole 

food chain not committing fraud. 

• Data integrity mainly applies to the logistics and qualitative information that 

concerns a specific foodstuff. 

Another relevant term commonly employed in food fraud is ‘food authenticity’. 

Authenticity is the quality of being genuine, ergo authentic. In this line, according to 

the European Committee for Standardisation (CEN), food product authenticity is 

correlated to the ‘match between the actual characteristic of the food product and the 

claim made about it’ [20]. Therefore, it is directly linked to product and process 
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integrity since it involves the foodstuff’s intrinsic and extrinsic properties. 

Furthermore, Popping et al. [21] recently proposed using the term ‘inauthentic’ rather 

than ‘food fraud’ since fraud is a legal term and, therefore, requires a successful 

prosecution in a court of law. Nevertheless, ‘food fraud’ is preferred in this thesis due 

to its widespread use in the field. 

Moreover, data integrity is strongly associated with traceability, which was defined 

as ‘the ability to trace and follow a food, feed, food-producing animal or substance 

intended to be, or expected to be incorporated into a food or feed, through all stages 

of production, processing and distribution’ in the European General Food Law [22]. 

 
 

1.1.3. EUROPEAN UNION FOOD LEGISLATION 
 

As established by the European Union (EU) Treaties, the European legislature 

—composed of the European Parliament, the Council of the EU, and the European 

Commission (EC)— is responsible for legislation on certain issues such as food. 

Thus, while the European Parliament acts on behalf of the citizens and the Council 

of the EU does it on the Member States, the EC is the day-to-day European 

administration. In this context, legislation can be mainly enacted as a Regulation 

(REG) or a Directive (DIR). The first must be directly applied across the EU 

(affecting both people and businesses), whereas the last fixes a specific objective that 

the Member States must achieve by harmonising their laws [23]. 

Regarding food law, although food fraud practices are illegal, most do not threaten 

public health, and the EU authorities did not prioritise them. Thus, regulatory 

agencies initially focused on food safety, ergo the unintentional presence of residues 

or contaminants in food or feed implying a potential danger to human health. In this 

context, the White Paper on Food Safety [24], presented by the EC in 2000, reflected 

the EU’s will to assure the highest food safety standards through proper legislation 

and organisation. As a result, in 2002, REG (EC) No 178/2002 [22], known as the 

General Food Law Regulation, was subsequently implemented and approved by the 
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European Council and the European Parliament. Establishing the general 

requirements and procedures to assess food and feed safety in the whole food chain 

and the creation of the European Food Safety Authority (EFSA) and the Rapid Alert 

System Feed and Food (RASFF) were among its scope. Moreover, several guidelines 

and obligations mentioned in it were further developed through complementary 

independent regulations. 

For instance, on the one hand, the General Food Law’s Article 17 makes responsible 

FBOs to ensure that food complies with food law at all stages of the food chain and 

the Member States to check it. In this line, in 2004, REG (EC) No 882/2004 [25] and 

REG (EC) No 854/2004 [26] were established. The first dealt with the official controls 

performed to verify compliance with feed and food law, animal health, and animal 

welfare rules. Instead, REG (EC) No 854/2004 detailed the specific rules for the 

organisation of official controls on products of animal origin intended for human 

consumption. Therefore, they did not only provide a legal framework for inspection 

agencies to assess FBOs’ law compliance but also the corresponding measures to be 

taken in the opposite case. 

Additionally, rules regarding the use of food additives in food products were laid 

down in REG (EC) No 1333/2008 [27]. Food additives encompass any substance not 

consumed as food nor used as a characteristic ingredient. Only those substances that 

do not threaten consumers’ health, meet a technological need (i.e., food preservation, 

product supplementation for consumers with special dietary needs, or organoleptic 

properties enhancement), and do not mislead consumers, are included in the so-called 

positive lists. Therefore, while additives in the lists are authorised under the specified 

conditions (i.e., maximum level), the not included ones are prohibited. 

On the other hand, REG (EC) No 1169/2011 [28] provided the bases to ensure a high 

level of consumer protection regarding food information (food labelling), as 

requested in Article 16 of the General Food Law, which specifies that the labelling 

of food shall not mislead consumers. This regulation, which repealed the DIR 
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2000/13/EC [29], contains the mandatory, prohibited, and voluntary information that 

a food product can be labelled with, among other instructions. Hence, for instance, 

the indication of up to 12 particulars (e.g., the product’s name, the list of ingredients, 

the presence of allergens, or the date of durability) is mandatory in all food products, 

except for tiny labels. Instead, messages misleading the consumers or making health 

claims are forbidden. In this line, only nutrition or health claims following REG (EC) 

No 1924/2006 [30] can be voluntarily labelled in food. 

Nevertheless, despite the development and implementation of the above-mentioned 

food laws (mainly focusing on the food safety field), food fraud was not explicitly 

addressed in any of them. Indeed, only the general stipulation that consumers may 

not be misled, contained in REG (EC) No 178/2002 [22], indirectly assessed this 

issue. Under these circumstances, the coming to light of the horse meat scandal at the 

beginning of 2013 was an inflexion point. In response to the food crisis, the European 

Parliament Committee on the Environment, Public Health and Food Safety drew up 

a report [12] emphasising the needs of the European food fraud system and making 

recommendations to improve it. In brief, the report’s main request to the CE was to 

pay full attention to combat food fraud becoming of crucial priority. As a result, the 

EU policies concerning food fraud changed, and some of the suggestions were 

established. For instance, because of the call to implement a system to collect and 

exchange data related to fraud cases, the Agri-Food Fraud Network (FFN) and the 

Administrative Assistance and Cooperation (AAC) system were set up in 2013 and 

2015, respectively. 

Furthermore, this new approach towards food fraud also ended up in law 

modifications. Hence, some of the requests made in the report were established in 

2019 through the REG (EU) No 2017/625 [31], repealing the previous legislation in 

the field: REG (EC) No 882/2004 [25] and REG (EC) No 854/2004 [26]. Thus, the in- 

force regulation aimed to harmonise the existing regulatory framework (official 

controls and other activities) of the entire agri-food chain, focusing not only on food 

safety issues but also on preventing fraud. This purpose was reflected in Article 9, 
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which makes the competent authorities responsible for regularly performing official 

controls to identify intentional fraudulent or deceptive practices in the areas included 

in the regulation. In this regard, Article 1 of the regulation widened its field of 

application by including the following sectors: plant health, trade and use of protected 

plant products, organic production, and use and labelling of protected designation of 

origin (PDO), protected geographical indication (PGI) or traditional specialities 

guaranteed (TSG) products. Furthermore, Article 9 contained other report 

recommendations, such as performing the official controls based on a risk-based 

approach and without prior notice (unannounced inspections). 

Moreover, Article 131 of the regulation on official controls described the CE’s duty 

to establish the information management system for official controls (IMSOC) in 

collaboration with the Member States. In this context, Commission implementing 

REG (EU) 2019/1715 [32] laid down the rules for its set-up and management. Further 

details about its operation are given in Section 1.1.4. 

Besides the previously described general food laws, specific legislation concerning 

food labelling has also been established. In the last decades and due to greater access 

to the food supply, European consumers have become increasingly interested in 

products with attributes socially associated with high-quality standards (i.e., 

geographical origin, production or processing system, or product variety), aside from 

their nutritional value. In this context, the EU has developed different regulations that 

establish the legal requisites to ensure a specific standard and properly label it. In this 

line, REG (EC) No 1151/2012 [33], repealing REG (EC) No 509/2006 [34] and REG 

(EC) No 510/2006 [35], covers the quality schemes to identify agricultural products 

and foodstuffs with value-added characteristics or attributes. Both PDO and PGI 

distinctions (see Figure 1.2 to observe the corresponding logos) link the products with 

a specific geographical area, recognising their unique and distinctive characteristics. 

Thus, the PDO label identifies a product originated in a specific region, whose 

environment (natural and human factors) influences its quality and where the whole 

production chain is carried out. Instead, although the PGI label demands similar 
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guidelines, it allows more flexibility since it only requires one production step in the 

defined geographical area. Currently, there are 1861 PDO and 1372 PGI registered 

products [36]. It is noteworthy to mention that this regulation does not apply to the 

geographical indication (GI) of spirit drinks or grapevine products, which follows 

REG (EU) 2019/787 [37]. However, according to Article 16 of the regulation, they 

can use the PGI symbol. Besides, REG (EC) No 1151/2012 did neither apply to 

aromatised wines, but this was recently amended to simplify the legal framework due 

to the limited number of registrations [38]. 
 

 

Protected designation of origin 
(PDO) 

Protected geographical 
indication (PGI) and 

Geographical indication (GI) 

Traditional Speciality 
Guaranteed (TSG) 

 

  
 

EU’s outermost regions Organic production 

 
Figure 1.2. EU geographical origin and production method quality certifications. 

 
Furthermore, REG (EC) No 1151/2012 describes the scheme for TSG, whose logo 

can be observed in Figure 1.2. In this case, a TSG foodstuff shall result from a 

traditional practice (either in the production, processing, or composition) with 

specific ingredients. Up to now, 69 products are registered as TSG, such as the 

Spanish Panellets and Jamón Serrano, or the Italian Amatriciana Tradizionale and 

Pizza Napoletana [39]. In addition, this regulation also includes two other optional 
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quality terms: the mountain product and the product of island farming labels. In both 

cases, raw materials and feedstuff must come from a mountain area or island as 

appropriate, and in processed products, processing must also occur in such locations. 

An additional EU law related to the product’s geographical origin is REG (EU) No 

228/2013 [40], which specifies agricultural measures for the EU’s outermost regions: 

French overseas departments (France), the Azores and Madeira (Portugal) and the 

Canary Islands (Spain). Hence, among other objectives, this regulation aims to 

strengthen the competitiveness of crops and agricultural products from these areas. 

In this line, Figure 1.2 shows the logo used to enhance consumer awareness and 

consumption. 

Instead, regarding the food production and processing system, consumers’ interest in 

organic farming products has exponentially risen in the last few years. This fact has 

been mainly caused due to increasing environmental consciousness within society 

and the belief that organic foodstuffs are healthier than conventional ones. In this 

regard, REG (EC) No 834/2007 [41] ruled in the EU in matters of organic production 

and the labelling of its products until 2022, when REG (EU) 2018/848 [42] repealed 

it. Briefly, the new regulation comprised a scope extension to cover other products 

linked to agriculture (e.g., essential oils, cotton, or sea salt), a trade agreement with 

recognised third countries having equivalent organic standards, and the simplification 

for small farmers to join the organic scheme. 

Moreover, according to the regulation, some of the main principles applied to 

agricultural and aquaculture activities of organic production and the processing of 

organic food are summed up next: 

• Organic production shall base on practices respecting nature’s system and 

cycles, preserving natural landscapes, and sustainably exploiting energy and 

natural resources (i.e., water, soil, organic matter, and air) and, therefore, 

protecting the environment. For instance, using non-renewable resources is 

limited, while recycling waste and by-products is desired for further use. 
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• It shall lead to producing a wide variety of high-quality goods, preferably 

locally produced and distributed through short channels. 

• High-level of biodiversity is pursued through methods employing living 

organisms and mechanical production techniques, excluding genetically 

modified organisms (GMOs), and based on risk assessment approaches. 

• Choosing appropriate plant varieties and animal breeds is required for a high 

degree of genetic diversity, with disease resistance, longevity, and adaptation 

to local conditions. Besides, plant agronomic performance and animal 

breeding value shall also be considered. 

• A high level of animal health and welfare is essential. Livestock must be fed 

with organic feed, and animal husbandry practices enhancing their immune 

system must be applied. 

• Finally, processed organic food shall originate from organic agricultural 

ingredients without adding food additives or micronutrients. Indeed, the 

integrity of organic production shall be ensured at any stage of the food chain. 

Regarding their presentation and labelling, organic products shall contain the 

corresponding logo (see Figure 1.2) and be labelled as detailed in Article 30. For 

instance, although only the term ‘organic’ may be used to label them in English, other 

languages accept different terms too (e.g., Spanish includes terms such as ‘ecológico’ 

and ‘biológico’). 

In summary, despite the above-mentioned initial prioritisation of food safety issues 

and the lack of specific and consistent nomenclature for food fraud, the EU has made 

recent efforts to include food fraud in the scope of its legislation. Thus, no single law 

can holistically address its broad scope, but several laws indirectly do it. The 

following Section presents the current EU organisation to fight against it. 
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1.1.4. CURRENT EUROPEAN UNION STRUCTURE REGARDING FOOD 

FRAUD 

As mentioned in the previous Section, the General Food Law founded the EFSA in 

2002 [22]. The EFSA is an independent agency of the EU whose mission focuses on 

providing scientific advice on issues related to the food chain (mainly regarding food 

safety), communicating to the common public its outputs, and collecting data to 

identify and monitor current and emerging risks. Moreover, it cooperates closely with 

Member States and institutional partners, such as the Directorate General for Health 

and Food Safety (DG SANTE) or the Joint Research Centre (JRC) [43]. 

At the European level, a total of 31 departments, known as Directorate Generals 

(DGs), constitute the EC [44]. Among them, the DG SANTE has a crucial role in 

health —protecting human, animal, and plant health and animal welfare— and food 

areas —promoting a high level of food safety and sustainability along the supply 

chain—. Indeed, regarding the latter case, the DG SANTE is currently contributing 

to the ‘European Green Deal’, one of the general objectives set by the CE’s President, 

Ursula von der Leyen. Hence, within this general objective, three specific objectives 

are detailed: 1) the food and feed safety, 2) the sustainable food systems – the ‘Farm 

to Fork’ strategy, and 3) the international promotion of the EU food safety standards. 

Among them, some refer to food fraud [45]. 

For instance, within the first specific objective, DG SANTE works on properly 

implementing REG (EU) No 2017/625 on official controls [31] and the management 

and maintenance of the IMSOC. In this regard, the IMSOC was established in 2021 

in the application of the Commission implementing REG (EU) 2019/1715. Briefly, it 

consists of four EU information systems: the Animal Diseases Information System 

(ADIS), the European Union notification system for plant health interceptions 

(EUROPHYT), the Trade Control and Expert System (TRACES), and the iRASFF 

platform [32]. Specifically, the iRASFF platform allows information exchange 

between the Alert and Cooperation Network (ACN) members regarding non- 
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compliances with the EU legislation of cross-border nature through the food chain. 

This information is obtained from the networks that compose the ACN [46]: 

• The RASFF allows exchanging information (RASFF notifications) 

concerning food safety. Hence, only direct or indirect risks to human health 

due to food or feed products are reported. 

• Instead, detected cross-border EU food legislation’ violations, without 

posing a priori a health risk, are released by non-compliance notifications in 

the AAC. 

• Finally, the FFN deals with potential food fraud cases. Therefore, food non- 

compliances suspected to be intentional for an economic purpose are 

confidentially shared (fraud notifications) within it. 

ACN members comprise the EU Member States, the European Economic Area (EEA) 

countries, the EFSA, Switzerland, and the EC. Besides, in the case of FFN 

notifications, only contact points designated previously by each member can have 

access. For instance, the Spanish contact point is the Spanish Agency for Food Safety 

and Nutrition (AESAN), through the sub-directorate general of alerts and official 

control programming [47]. In addition, as depicted in Figure 1.3, cooperation 

between the ACN (especially by the FFN), the police and customs agencies —the 

European Union Agency for Law Enforcement Cooperation (EUROPOL) and the 

European Anti-Fraud Office (OLAF), respectively—, and the European Union 

Agency for Criminal Justice Cooperation (EUROJUST) is carried out when needed. 

Instead, one of the main goals of the ‘Farm to Fork’ strategy is fighting against food 

fraud. Thereby, DG SANTE conducts different studies (e.g., the launch of a 

coordinated control plan on the authenticity of herbs and spices) [48] to check the 

effective implementation of Member States’ national measures. Finally, the specific 

objective of the international promotion of EU food safety standards is based on 

initiatives to improve bilateral trade relations with non-European countries. 
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EU FOOD FRAUD 
NETWORK 

 

Figure 1.3. EU cooperative approach to combat food fraud. 
 

Nevertheless, the DG SANTE is not the only DG actively preventing and detecting 

food fraud. On the one hand, the Knowledge Centre for Food Fraud and Quality (KC- 

FFQ) unit, created within the JRC, shares updated scientific publications about food 

fraud and quality, creates food fraud databases (e.g., European Wine DataBank or the 

Oleum DataBank), or develops harmonised methodologies for assessing food quality 

[49]. On the other hand, the Directorate General for Agriculture and Rural 

Development (DG AGRI) or the Directorate General for Maritime Affairs and 

Fisheries (DG MARE) are also involved in the marketing regulations and the 

development of analytical methodologies to check compliance of agricultural and 

seafood products, respectively [21]. 

 
 

1.1.5. FRAUD VULNERABILITY ASSESSMENT 
 

As the General Food Law describes, FBOs are responsible for ensuring food safety 

and protecting consumers from fraudulent practices [22]. Thus, they must assess and 

monitor both by developing and applying effective internal systems. 
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As previously discussed, food safety threatens public health due to unintentional risks 

derived from the presence of known contaminants or pathogens (e.g., pesticides, 

veterinary drug residues, and mycotoxins). Food safety events are inevitable and 

frequently occur because of their involuntary nature. Thus, these issues have 

traditionally been handled following internal process controls based on mitigation 

strategies (risk assessment), trying to reduce the negative consequences of particular 

emergencies. In this context, predictive risk-based assessment tools —being risk the 

probability of loss or injury from a hazard [50]— share common steps such as risk 

identification, risk analysis, and risk evaluation [15]. For instance, the Hazard 

Analysis and Critical Control Point (HACCP) plan, which is one of the most extended 

systems, is structured in the following seven principles: risk identification is 

performed by 1) conducting hazard analysis, risk analysis by 2) determining the 

critical control points, and finally, risk evaluation by establishing 3) the critical limits, 

4) monitoring procedures, 5) corrective actions, 6) verification procedures, and 7) 

record-keeping and documentation procedures [51]. 

Otherwise, food fraud originates from fraudsters’ intentionality to obtain economic 

gain. In this case, the primary strategy followed by FBOs to address fraud is based 

on preventing the event from occurring rather than detecting it once it has happened. 

Therefore, food fraud assessment focuses on reducing its vulnerabilities, which are 

gaps, weaknesses, or flaws of the food system that create opportunities for fraudsters 

[52]. These vulnerabilities can be intrinsic —at the individual or organisational 

levels— or extrinsic —related to the suppliers and customers, the wider food chain 

network, or the international environment— to the food business. Furthermore, as 

reported by van Ruth et al. [53], they can be defined by three key elements that 

enhance and favour fraud likelihood: opportunities, motivations, and control 

measures. 

First, opportunities can be divided into technical opportunities and opportunities in 

time and place. The former encompasses factors such as the ease of adulterating 

specific food products or the absence of detection methods. Instead, the latter is 
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strongly related to the length and complexity of the food supply chain since the more 

stages (i.e., production, processing, storage, distribution, retailing, administration 

requirements, and consumption) and actors involved in it, the greater fraud 

vulnerability. Second, both economic and cultural or behavioural motivations can 

increase fraud vulnerability. For instance, economic motivations comprise low 

availability of expensive goods, products with value-added attributes (e.g., PDO, 

PGI, or TSG), or business economic health, among others. In contrast, factors such 

as business strategy, ethical culture, or corruption are related to cultural motivations. 

Finally, control measures are capable of counteracting and decreasing the 

vulnerability arising from opportunities and motivations when properly executed, or 

on the contrary, intensifying it due to lack or deficiencies. In this context, fraud 

detection or prevention can be carried out by technical (i.e., development of effective 

analytical methods and application of traceability tools) or managerial measures (i.e., 

ethical codes of conduct, integrity screening, or whistleblowing systems), 

respectively [53]. 

Unlike food safety, where HACCP measures have been internationally recognised 

through their incorporation into Codex Alimentarius standards, no food fraud 

prevention tool has been validated [54]. Nevertheless, the Vulnerability Assessment 

and Critical Control Point (VACCP), which follows the principles of HACCP, the 

Safe Supply of Affordable Food Everywhere (SSAFE), or other in-house food fraud 

vulnerability assessments, are currently the preferred models to address fraud in food 

businesses [55]. 

 
 

1.1.6. FOOD MATRICES UNDER STUDY 
 

Food production and distribution offer possibilities for evasion of taxes or other 

duties through fraudulent practices mentioned in Section 1.1.2, such as diversion or 

smuggling. However, this thesis evaluates fraud directly aimed at the buyer’s level. 

In this context, food fraud threatens various products, either from plant or animal 
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origin, and can usually affect their composition, cultivar or variety, species, 

geographical origin, production system, or processing [56]. 

As a case of study, frauds related to different food matrices —including paprika, hen 

eggs, olive oil, wine, and nuts and seeds— are herein addressed. In this line, the 

current context of each analysed good is detailed below. 

 
 

1.1.6.1. Paprika 
 

Spices —encompassing products such as paprika, saffron, pepper, cinnamon, and 

turmeric— are well-known for their organoleptic properties, which make them good 

seasonings for culinary purposes. They are also used as the main ingredient of 

different food supplements or over-the-counter pharmaceuticals due to their high 

content of bioactive compounds with beneficial effects on human health (e.g., anti- 

inflammatory or antimicrobial activities) [57]. Besides, other uses include cosmetics, 

promoting these products as ‘natural’. 

The plant species used for producing spices cannot be properly cultivated in the 

European area due to climate conditions, except for dried paprika and chilli. In this 

line, paprika is a valued red powder spice obtained from drying and grinding red 

pepper fruits of the Capsicum annuum species (Capsicum L. genus and Solanaceae 

family) [58]. In Europe, up to seven paprika products are distinguished with the PDO 

label: Pimentón de la Vera (La Vera, Extremadura, Spain), Pimentón de Murcia 

(Murcia, Spain), Pebre bord de Mallorca (Mallorca, Spain), Kalocsai fűszerpaprika- 

őrlemény (Kalocsa, Hungary), Szegedi fűszerpaprika-őrlemény (Szeged, Hungary), 

Žitavská paprika (Žitavská, Slovak Republic), and Piment d’Espelette – Ezpeletako 

Biperra (Espelette, France) [36]. Nevertheless, Asia predominantly leads the spice 

market, while the EU needs to import them to supply its population, running a 

sizeable trade deficit for these products [59]. For instance, 94,000 tons of paprika and 

allspice were imported to the EU in 2019, 69% from China [48]. 



-22-  

Chapter 1. Introduction 
 
 
 

In this context, paprika (like other spices) is at high risk of adulteration because of 

different factors or vulnerabilities that increase fraud opportunities. For example, its 

supply chain is long and complex, requiring several intermediates’ participation and 

passing through different countries [60]. Additional difficulties in keeping paprika 

free from fraud comprise its presentation form, which makes easier adulteration 

practices from being detected, and its high economic value [61]. 

Typical forms of adulteration that have been detected in spices are the substitution 

for foreign matter with physical similarities (i.e., granulometry or colour) or inferior 

production-own materials, the addition of synthetic dyes to reach a fresh appearance, 

and the geographical origin mislabelling [62]. In this line, due to a coordinated 

control plan on the authenticity of herbs and spices launched by the DG SANTE, 

almost 6% of the paprika samples tested were suspicious of adulteration [48]. Among 

these samples, 63% contained non-declared constituents such as ash (with a content 

above 10%, which is the maximum level established), maize, carrot, tomato, 

sunflower seed, onion, or garlic. Instead, the remaining 37% contained dyes (e.g., 

Sudan dyes) whose use is not authorised in food [27]. However, other deception 

practices related to the misdescription of the geographical origin or production 

system were not evaluated. Therefore, analytical methods to detect paprika 

geographical origin fraud are developed in this thesis. 

 
 

1.1.6.2. Hen eggs 
 
Hen egg is consumed worldwide due to its high nutritional value, high culinary 

potential (i.e., it is a coagulant, foaming, and emulsifying), and affordable price. 

Indeed, it is considered one of the cheapest foods of animal origin whose intake can 

provide the essential amino acids, lipids, vitamins, and minerals, while offering a 

moderate calorie source [63]. From 2010 to 2020, Asia was the leading hen egg 

producer yielding 61.4%, followed by America and Europe, with 19.7% and 13.5%, 

respectively [64]. 
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Although hen eggs can be subject to different kinds of fraud —such as adding specific 

dyes or adulterating with melamine—, their freshness and correct identification 

category have become complex and critical issues to be solved. On the one hand, egg 

freshness is strongly related to its quality since it affects the properties mentioned 

above while increasing the risk of developing undesired microorganisms or 

degradation products [65]. In this regard, the European legislation sets the following 

deadlines related to egg ageing: the terms ‘extra’ or ‘extra fresh’ can only be used 

until the ninth day after laying, eggs must reach the consumer within 21 days after 

being laid, and finally, their minimum durability shall be fixed at most up to the 

twenty-eighth day after laying [66,67]. Therefore, for instance, falsification of the 

expiry date, aiming to length the product’s commercial life, can be carried out by 

fraudsters. In order to detect age-related fraudulent practices in hen eggs, REG (EC) 

No 853/2004 establishes 3-hydroxybutyric and lactic acids as chemical markers, since 

their high content indicates severe product deterioration [67]. 

On the other hand, different European directives and regulations limit the legal 

framework for producing, trading, and selling hen eggs. In this line, the DIR 

1999/74/EC [68] established the minimum standards that the Member States shall 

ensure to protect the laying hens, distinguishing three types of rearing systems: the 

unenriched cage, the enriched cage, and the alternative systems. Besides, the same 

directive had foreseen the prohibition of the unenriched cage system (often called 

battery cages), where laying hens have at least 550 cm2 of cage area per hen, for 

animal welfare reasons by 2012, as it was done [69]. Furthermore, the DIR 2002/4/EC 

[70] demanded the Member States to properly register the establishments keeping 

laying hens, while REG (EC) No 589/2008 [66] detailed the rules for egg marketing 

standards. Thereby, hen eggs must contain the so-called producer code, which 

consists of a distinguishing number composed of a digit indicating the farming 

method, followed by the Member State’s code (e.g., ES for Spain, FR for France, or 

IT for Italy), and an identification number defined by the Member State to trace the 

producer. 
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According to the regulation, class A eggs are destined for human consumption and 

must comply with several quality features. Among them, four types of eggs can be 

found in the European market concerning the farming method. Their corresponding 

digit and some of their specific characteristics are summarised below: 

• 3 – Eggs from cage hens. In this case, hens are bred in cages of at least 750 

cm2 per hen. Each cage has a nest, litter that allows pecking and scratching, 

and perches. 

• 2 – Eggs from barn hens. In this farming system, hens can move freely around 

the farm building, which consists of multiple aviaries where drinking and 

feeding facilities are equally distributed. Besides, a maximum allowed 

stocking density of 9 hens per m2 (at least 1110 cm2 per hen) is established. 

• 1 – Eggs from free range hens. Barn system requirements must be fulfilled 

and complemented with continuous daytime access to open-air runs, mainly 

covered by vegetation. In this line, hen density in open-air runs must not 

exceed 1 hen per 4 m2. 

• 0 – Organic eggs. Hens producing these eggs are free range but follow 

organic production principles in terms of the origin of the animals, nutrition, 

animal welfare, and veterinary treatment, among others [42]. Moreover, the 

maximum indoor stocking density is 6 hens per m2, while the same conditions 

as the free range farming system are permitted outdoors. 

In 2019, 49.5% of the European hen eggs were from cages, 32.5% from barns, 11.8% 

from free range hens, and 6.2% from organic production [71,72]. However, in 

response to the European citizens’ initiative ‘End the cage age’, which requests a 

transition to more ethical and sustainable farming systems, the EC is planning to 

prohibit the use of the cage system (possibly by 2027) [73]. 

Furthermore, there is an increase in the hen egg’s price from type 3 to 0 due to the 

differences in the stocking density, feed costs, and productivity [74]. This fact makes 

eggs of higher category susceptible to mislabelling with ones of lower category. 
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Currently, this fraudulent practice can only be detected by competent authorities 

through the administrative traceability of the product [75]. For this reason, in this 

thesis, the authentication of the hen egg category is addressed with a particular focus 

on identifying eggs obtained through organic production. 

 
 

1.1.6.3. Olive oil 
 

Virgin olive oil is mechanically and physically produced from the fruits of the olive 

tree (Olea europaea L.). Its appreciated quality, sensorial attributes, nutritional 

properties, and health benefits make it the most characteristic and representative 

product of the Mediterranean area. In this line, according to the Food and Agriculture 

Organization (FAO) of the United Nations, Spain, Italy, and Greece constituted the 

largest olive oil producers from 2010 to 2020 [64]. Furthermore, these countries 

possess 29, 42, and 20 olive oil products registered as PDO, respectively [36]. 

It is known that parameters such as the olive cultivar, the environmental conditions, 

the agronomic practice, the harvest season, the olive maturation, the storage, and the 

technological processes strongly affect olive oil quality [76]. In this context, REG 

(EU) No 1308/2013, in agreement with the International Olive Council (IOC), 

classifies olive oils in accordance to their quality category [77]: 

• As previously mentioned, ‘Virgin olive oil’ comprises oils obtained from 

Olea europaea L. fruits only through mechanical or physical means. They 

are classified as extra virgin olive oil (EVOO), virgin olive oil (VOO), or 

lampante olive oil depending on their free acidity value in terms of oleic acid 

(≤ 0.8%, ≤ 2.0%, and > 2.0%, respectively). 

• ‘Refined olive oil’ consists of oils obtained by refining virgin olive oil. 

• ‘Olive oil’ (OO) encompasses olive oils resulting from blending refined and 

virgin olive oils (except for lampante oil). 
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Besides, the regulation’s classification includes oils obtained from olive-pomace: 

crude olive-pomace oil, refined olive-pomace oil, and olive-pomace oil. 

In this context, olive oil is one of the most regulated food commodities in the world. 

For instance, in the EU, Commission REG (EU) 2022/2104 and Commission 

implementing REG (EU) 2022/2105 [78,79], which recently repealed the REG (EEC) 

No 2568/91 [80], detail what parameters have to be checked to evaluate olive oil 

quality and purity, which are their established limits, and which analytical method 

have to be applied to determine them. Briefly, testing laboratories verify olive oil’s 

category by following a decision tree (each rule node consists of a parameter) until 

one final decision is reached. First, rule node parameters are based on quality criteria 

—i.e., acidity, peroxide value, ultraviolet (UV) spectroscopy, or organoleptic 

assessment— and then on purity criteria —i.e., stigmastadienes, trans-isomers of 

fatty acids, fatty acid composition, equivalent carbon number (ECN) 42, sterol 

composition and total content, erythrodiol and uvaol, waxes, and 2-glyceryl- 

monopalmitate—. 

However, despite being highly regulated, the olive oil sector is still a target for 

fraudulent practices due to the high-profit margin. Thus, according to the 2021 ACN 

annual report [46], the ‘fats and oil’ product category was the third with the most 

fraud notifications in 2021. Remarkably, most remain related to OO or VOO sold as 

EVOO. In this context, the misdescription of the olive oil category and the addition 

of lower quality oils from the same species (refined or olive-pomace oils) or from 

different species (other vegetable oils) are practices commonly carried out [81]. 

Furthermore, undeclared pigments, such as copper complexes of chlorophylls or 

carotenoids, whose use is banned in this product, may also be added to mask 

tampering [82]. In addition, as reported by Conte et al. [83], current regulatory 

methods do not cover the misdescription of the cultivar or the geographical origin nor 

the detection of selected blends of virgin olive oil with lower-quality vegetable oils 

(including soft deodorised olive oils). 
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In addition, it is noteworthy that different global and local projects have been recently 

launched to combat olive oil fraud. On the one hand, at the European level, the Oleum 

project (from 2016 to 2020) aimed to assure olive oil quality and authenticity by 

1) developing new analytical methodologies, 2) establishing the Oleum Databank, 

and 3) promoting a worldwide community of the sector stakeholders [84]. On the 

other hand, at the Catalan level, the Federació de Cooperatives Agràries de 

Catalunya led the Autenfood project between 2018 and 2020. Similarly, it aimed to 

find new analytical methods capable of detecting olive oil fraud [85]. 

Therefore, under these circumstances, the present thesis proposes a high-throughput 

analytical method to address olive oil authenticity in terms of botanical origin and 

category. 

 
 

1.1.6.4. Wine 
 

Wine is an alcoholic beverage obtained from the fermentation of grapes, usually from 

one or more varieties of the Vitis vinifera species. It is internationally consumed due 

to its enjoyable flavour, its historic cultural relevance (i.e., it promotes conviviality 

and social engagement), and its link to the Mediterranean diet, which includes its 

moderate consumption (especially red wine) and is associated with heart disease 

prevention [86]. In this line, the USA, France, and Italy led the consumption ranking 

in 2020, according to the International Organisation of Vine and Wine (OIV) [87]. 

Instead, regarding its production, almost 27 million tonnes of wine were produced 

worldwide that year, with Europe being the leading producer. Indeed, Italy, France, 

and Spain have been the top three wine producers in the last decade [64]. 

Wine quality is strongly influenced by diverse parameters such as the type of grape 

varieties, viticultural practices, winemaking techniques, ageing conditions, and 

terroir. In this last case, the French term terroir refers to the combination of 

environmental factors (i.e., geographical, climatic, and pedological conditions) 

affecting the grape’s phenotype [88]. Therefore, due to its significant connection with 
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the origin area, wine is one of the agricultural products most regulated by the EU 

through REG (EC) No 1151/2012 [33]. Hence, for instance, 1184 wines are 

distinguished with the PDO label (362 are French, 408 Italian, and 101 Spanish) and 

445 with the PGI one [36]. 

Furthermore, wine is not exempt from fraud as a product with high commercial value 

and desirability in the market. On the contrary, it is one of the beverages most 

manipulated or mislabelled for economic purposes. In this line, while practices such 

as the dilution with water, the addition of alcohol, the addition of sugar 

(chaptalisation), or the addition of colouring or flavouring substances alter its 

intrinsic properties; others, including misrepresentation of the grape variety, the age 

of the wine, or the geographical origin, affect its extrinsic properties [89]. 

Particularly, wine authentication according to its geographical designation is of great 

concern, considering that most consumers choose wine depending on it. 

Currently, Commission implementing REG (EU) 2019/34 [90] lays down the rules 

for the application of REG (EU) No 1308/2013 [77] as regards PDO, PGI, and TSG 

labels in the wine sector. Thereby, in agreement with the regulation, PDO and PGI 

correct compliance shall be verified through the revision of mandatory 

documentation and organoleptic (i.e., visual appearance, odour, and taste) and 

physicochemical analytical tests (i.e., control of alcoholic strength, sugars, acidity, 

volatile acidity, sulphur dioxide, and carbon dioxide). In addition, the analytical 

databank of wine isotopic data (called European Wine DataBank), which the JRC 

operates, was recently established and implemented through Commission delegated 

REG (EU) 2018/273 [91] and Commission implementing REG (EU) 2018/274 [92]. 

It contains data on the isotopic profile of authentic wines regularly collected from 

different European countries. Besides, its use aims to detect multiple types of fraud, 

including geographical identification. 
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Nevertheless, this thesis contains the development of a new analytical strategy to 

address wine’s geographical origin. This study does not pretend to substitute the 

existing isotopic profile approach but to be used complementarily or as an alternative. 

 
 

1.1.6.5. Nuts and seeds 
 

Nuts and seeds encompass an extensive range of products, including almonds, Brazil 

nuts, cashew nuts, chestnuts, hazelnuts, macadamia nuts, pecans, pine nuts, 

pistachios, pumpkin seeds, sunflower seeds, and walnuts. Besides, although peanuts 

are botanically classified as legumes (grow in a pod), consumers often relate them to 

tree nuts. Therefore, in this thesis, they are included in the nut category. 

Consumers usually eat them as a snack, although they can also be added to salads, 

specific sausages, stews, and bakery products. In addition, various kinds of nut oil 

and beverages (colloquially known as milks) are also commercialised. Indeed, 

incorporating some of these goods in the diet is highly recommended since their 

regular intake has beneficial health effects in humans (i.e., prevention of 

cardiovascular diseases) [93]. In this line, they are rich in unsaturated fatty acids 

—monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA)— 

and phenolic and polyphenolic compounds, which play a crucial role in those effects 

[94,95]. 

In this context, nuts and seeds are among the most appreciated goods by society, 

leading to increasing demand and production in the last decades. Nevertheless, they 

are highly exposed to fraud practices causing economic deception and a threat to 

human health due to their allergenic properties (mainly because of specific proteins 

or glycoproteins) [96,97]. Thus, they turn a food fraud issue into a food safety one. 

Thereby, the most diffuse nuts deceits comprise the substitution with low-quality and 

cheaper products and the mislabelling of the variety, the geographical origin (in some 

cases including PDO or PGI labels), the production system, or the crop year [98]. 

Suman et al. [99] summarised the current approaches in industrial facilities to detect 
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some of these practices. In this regard, direct visual inspection and morphological 

evaluation are used for detecting defective nuts and recognising specific cultivars. 

Besides, enzyme-linked immunosorbent assays (ELISA) and lateral flow devices 

(LFD) are generally employed to detect allergens derived from specific nuts, 

sometimes followed by deoxyribonucleic acid (DNA) marker analysis for 

confirmation. Nevertheless, most nut frauds are committed in processed or semi- 

processed products, making their detection more complicated. 

Therefore, this thesis addresses the authentication of nut flour and custard cream, 

with a special focus on almond products. 
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1.2. FOODOMICS 
 

The term ‘foodomics’ was first described in 2009 by Prof. Cifuentes as a discipline 

that studies the Food and Nutrition domains through the application of omics 

technologies [100]. In this context, in recent years, omics tools —comprising 

genomics, transcriptomics, proteomics, metabolomics, and 

elementomics/isotopollomics (see Figure 1.4)— have been applied to the food fraud 

field, along with biostatistics and chemometrics [101,102]. 
 

OH 
 
 

Metabolomics Elementomics and 
isotopollomics 

 
Figure 1.4. Omics tools. 
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1.2.1. TARGETED AND NON-TARGETED APPROACHES 
 

Traditionally, the analytical methodologies proposed to detect fraudulent practices 

have relied upon targeted approaches, focusing on the detection and usually 

quantification of a specific analyte or group of analytes directly linked to the 

authenticity issue. These analytes are primary markers and often need to meet certain 

legal limits (i.e., their presence is prohibited or has to be below an established value). 

For instance, primary markers encompass flavouring/colourant additives or DNA 

from a specific species, sometimes illegally added. Furthermore, these methods are 

well-established in routine analysis. This fact is mainly due to the available validation 

guidelines, which are based on the evaluation of several parameters —i.e., linearity, 

selectivity, the limit of detection (LOD), the limit of quantification (LOQ), accuracy, 

robustness, and uncertainty—, and has validity as legal evidence [103]. 

Furthermore, targeted methods can also be used to determine qualitatively or 

quantitatively secondary markers whose content can provide helpful information to 

assess the authenticity of a product indirectly. In this line, ‘profiling’ refers to 

simultaneously determining several targeted analytes (i.e., at least three secondary 

markers). In this case, profiling results can be either employed to calculate a value to 

be tested to a reference threshold limit or, more commonly, to be compared to a 

database. For example, stable isotope ratios and multi-elemental profiles are widely 

used to classify food products according to their geographical origin. 

Finally, non-targeted methods —also so-called ‘fingerprinting’— are based on the 

unspecific detection of instrumental responses without assuming any previous 

knowledge about the sample composition. Generally, fingerprinting methods are used 

in qualitative studies when primary or secondary markers are unknown [104]. In this 

context, this approach has been extensively used in both proteomics and 

metabolomics. 

Thus, while detecting specific primary markers through targeted methods is typical 

for an official control purpose in food surveillance, the presence of profiling and 
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fingerprinting applications is currently limited since there still needs to be a 

consensus regarding how their validation procedure should be. Nevertheless, food 

scientists have become increasingly interested in these approaches in the last decade. 

Therefore, this thesis evaluates the potential of profiling (Chapter 2) and 

fingerprinting (Chapter 3) approaches to assess several food authentication issues 

focusing on metabolite detection. 

 
 

1.2.2. GENOMICS AND TRANSCRIPTOMICS 
 

Genomics involves the comprehensive evaluation of the structure and function of the 

complete set of DNA, including all of its genes (genome), in an organism or body. 

Unlike the other omics technologies, it is context-independent since DNA sequences 

are almost constant in front of exogenous agents. Hence, because of genetic similarity 

within a species, DNA-based methods have been mostly developed for detecting 

frauds requiring animal- or plant-species identification or discrimination. Besides, 

DNA presents good stability, allowing its detection in raw foodstuffs and their 

processed forms [105]. In this line, several techniques and approaches have been 

proposed to address food authentication from a genomics perspective. 

In this context, most techniques employed in genomics are based on polymerase 

chain reaction (PCR), one of the most widespread analytical techniques in the food 

industry, with good sensitivity, accuracy, and ease of testing [106]. Briefly, it allows 

the exponential amplification of a targeted DNA small region in a thermal cycler, 

using the corresponding complementary sequence of oligonucleotides (primers), 

DNA polymerase, and deoxynucleotide triphosphates. Subsequently, DNA 

fragments are separated electrophoretically (i.e., agarose gel electrophoresis), and the 

corresponding banding patterns are detected by UV (a fluorescent tag is usually added 

before the DNA amplification procedure). However, several more recent techniques, 

such as multiplex-PCR, real-time PCR —also known as quantitative PCR (qPCR)— 
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or digital droplet PCR (ddPCR), among others, have emerged from conventional PCR 

[107,108]. 

Hence, while conventional PCR only focuses on a specific DNA segment, multiplex- 

PCR simultaneously amplifies several of them using the appropriate primers for each 

one. For instance, this technique has been applied to identify the octopus species or 

the meat type in processed products [109,110]. However, despite the usefulness of 

qualitative species identification in a food product, sometimes accurate quantitation 

(in the case of matrix effect is rather an estimation) of its content by real-time PCR 

is required. Thereby, in this technique, and distinctly to the conventional PCR, the 

DNA amplification is monitored by adding a specific or non-specific substance 

marked with a fluorophore. Besides, nuclear DNA is preferred over mitochondrial or 

chloroplast DNA (generally selected for qualitative assays due to its high cell copy 

number) since the latter can vary between species or tissues, affecting the quantitative 

step. For example, Lopes et al. [111] applied real-time PCR to check that the content 

of Pittosporum undulatum Vent. pollen grains was over 30% in incense honey. 

Instead, Kim et al. [112] successfully employed it to determine the porcine content 

in processed goods. Recently, methods for on-site food authentication combining 

PCR-based techniques with microfluidics or biosensors technology have been 

developed. For instance, authentication of the Atlantic white shrimp (Litopenaeus 

setiferus) was achieved by Kwawukume et al. [113] through a developed multiplex 

PCR-LFD method. 

DNA barcoding emerged two decades ago as an alternative to the already mentioned 

DNA-based techniques, aiming to identify biological species. It compares 

orthologous DNA regions (approximately 400 – 800 base pairs) after their 

amplification by PCR and sequencing, which traditionally has been carried out by the 

Sanger method and, more recently, by next generation sequencing (NGS) tools. Thus, 

ideally, the DNA barcode should contain low intraspecific and high interspecific 

genetic variation, with high taxonomic coverage and high resolution [114,115]. In 

this line, the mitochondrial gene cytochrome c oxidase 1 (COI) is usually employed 
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as the DNA barcode to identify animal and fungal species, whereas, in the case of 

plant species, the chloroplast genes carboxylase (rbcL) and maturase K (matK) are 

used [107]. Furthermore, computerisation and standardisation are among the 

strengths of this approach [116]. Indeed, the Barcode of Life Data System (BOLD) 

is an online digital library used as a reference for all living species [117]. For 

example, in the food fraud field, DNA barcoding has been used for porcini (Boletus 

edulis Bull.), Thai fish fillets, or honey authentication [118–120]. 

Finally, other techniques —such as high-resolution melting (HRM)— have also been 

used to assess food authenticity from a genomics perspective. Particularly, HRM is a 

post-PCR technique that compares the melting curve of amplified DNA segments 

[108]. For instance, this technique has been employed to address meat species 

identification of raw and cooked products [121] or the adulteration of commercial tea 

products with cashew nut husk [122]. 

Concerning transcriptomics, although it has been used in other food issues [101], its 

application in the food fraud field is limited. 

 
 

1.2.3. PROTEOMICS 
 

Studies in proteomics (and, to a lesser extent, peptidomics) have increased in the last 

years, mostly because of the spread of high-resolution mass spectrometry (HRMS) 

mass analysers. Particularly in the food field, proteomics comprehensively studies 

the composition, modifications, and functional properties of protein from products 

for human consumption [123]. In this line, since protein and peptide composition and 

content pivot on both endogenous (i.e., genetically derived processes) and exogenous 

factors (i.e., either from a natural or anthropogenic origin), several mass spectrometry 

(MS)-based methods have been developed either for biological origin identification 

or the geographical origin or production system determination [124]. 
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Highly specific and targeted methods to detect a particular protein through ELISA 

are commonly used in the food industry (especially for meat product analysis) [106]. 

However, aside from limitations due to interfering compounds or the omission of 

protein post-translational modifications (PTMs) (e.g., due to protein denaturation 

caused by thermal procedures), ELISA requires prior knowledge about the markers 

that need to be determined to solve the issue under study. In most cases, these markers 

are still unknown, and therefore, a non-targeted discovery phase step is demanded, 

followed by a targeted-driven phase. In this context, as previously mentioned, MS 

plays a fundamental role. 

Bottom-up and top-down proteomics are the most spread workflows for evaluating 

protein content and composition [125,126]. Thereby, the peptides resulting from 

protein enzymatic digestion (i.e., proteolytic cleavage), generally using trypsin, are 

determined in the bottom-up approach (peptide level). Within this approach, two 

procedures can be proposed, mainly differing when the separation step and the 

enzymatic digestion are carried out. 

• On the one hand, the traditional bottom-up approach consists of a first protein 

fractionation by two-dimensional polyacrylamide gel electrophoresis, 

followed by the enzymatic digestion of each separated spot, and the 

subsequent peptide characterisation employing matrix-assisted laser 

desorption ionisation−mass spectrometry (MALDI−MS). Then, protein 

identification is commonly carried out through peptide mass fingerprinting 

(PMF), which compares the obtained MS spectra with proper databases. 

• On the other hand, the so-called shotgun proteomic approach is usually 

preferred since liquid chromatography coupled to mass spectrometry 

(LC−MS) improves the proteome coverage of the analysis. In this case, the 

entire protein mixture is enzymatically digested, and the resulting peptides 

are subjected to LC−MS. Thus, peptide fragmentation fingerprinting (PFF) 

is commonly performed for protein identification and characterisation, 

implying the study of peptides tandem mass spectrometry (MS/MS) spectra, 
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which are compared with theoretical ones generated from in silico digestion 

and stored in protein databases. In this line, while in a non-targeted discovery 

phase, liquid chromatography coupled to high-resolution mass spectrometry 

(LC−HRMS) is generally used to identify peptide markers—either with the 

data-dependent acquisition (DDA) or data-independent acquisition (DIA) 

modes—, liquid chromatography coupled to low-resolution mass 

spectrometry (LC−LRMS) allows their targeted monitorisation for protein 

quantification through the multiple-reaction monitoring (MRM) mode 

[124,127]. 

In this context, multiple methods based on the shotgun proteomics approach that 

address food authenticity are described in the literature. Thus, as mentioned, most of 

them present a previous non-targeted step with LC−HRMS followed by targeted 

analysis with LC−LRMS. For instance, the bottom-up approach has been employed 

to quantify beef and pork meat in highly processed foods (i.e., Bolognese sauce) 

[106], discriminate shrimp species [128], detect exogenous products such as meat or 

honey in leguminous-based products [129], or address honey botanical source [130]. 

In contrast, the top-down proteomics approach is based on the direct MS 

characterisation of intact proteins (protein level). It does not require enzymatic 

digestion and sometimes is preceded by LC separation. Unlike the bottom-up 

approach, it enables obtaining exhaustive structural information (i.e., the complete 

characterisation of PTMs and isoforms) using HRMS and different dissociation 

techniques such as collision-induced dissociation (CID), high-energy collision 

dissociation (HCD), or electron transfer dissociation (ETD). However, this approach 

still presents limitations such as instrumental constraints or difficulty of data 

interpretation [123,127]. Therefore, it has yet to be applied for food authentication 

purposes. Instead, some authors have evaluated intact protein profiles or fingerprints 

obtained with other analytical techniques as chemical markers. For instance, Yue et 

al. [131] analysed different mono-floral honey types by capillary zone 

electrophoresis (CZE) to obtain their protein profile, which was subsequently 
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subjected to discriminant analysis (DA) for sample classification. In another case, 

Galindo et al. [132] developed a MALDI−MS protein fingerprinting method, using a 

time-of-flight (TOF) mass analyser, for quinoa grains discrimination according to 

their variety by partial least squares regression-discriminant analysis (PLS-DA). 

Furthermore, peptidomics focuses on endogenous peptides in their native form. Thus, 

peptide determination is also frequently done by LC−MS. However, their low 

abundance in some matrices makes their determination difficult. Besides, hydrolysis 

caused by endogenous proteases may differ from the one caused by trypsin, on which 

traditional databases are based, hindering peptide identification. Therefore, 

alternatives such as de novo sequencing, suspected screening, or non-specific 

protease databases must be used. Nevertheless, these molecules, especially those of 

short amino acid chains, have proven to play a relevant role in biological organisms 

[133]. In this line, Zhao et al. [134] authenticated mountain-cultivated ginseng from 

cultivated one using non-targeted LC−HRMS, which allowed the identification of 52 

peptides, of which 20 were discriminant between samples. 

 
 

1.2.4. METABOLOMICS 
 

The metabolome of a biological cell, tissue, organ, or organism describes its complete 

set of metabolites, which are organic compounds with a molecular weight of up to 

1,500 Da. These compounds present great diversity, with distinct structures and 

physicochemical properties —being assigned to diverse classes (i.e., amino acids, 

carbohydrates, lipids, organic acids, or nucleotides, among others)— and can be 

found in a wide range of concentrations. In this context, metabolomics is the closest 

omics technique to the phenotype since endogenous metabolites are the end product 

of multiple processes involving genes, transcripts, and proteins [123,135]. Moreover, 

external factors such as those of environmental or anthropological origin strongly 

affect the metabolome, altering its endogenous composition and contributing to 

exogenous metabolites (e.g., additives, adulterants, or contaminants) [124]. 
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Regarding food analysis, considering that the metabolome of a food product varies 

according to its biological nature and external conditions, metabolomics has shown 

excellent potential to assess several issues related to its authenticity and quality. For 

instance, it has been applied to address food biological identity, geographical origin, 

and cultivation or production method [136]. In this line, the techniques most used for 

metabolomic targeted or non-targeted studies are based on spectroscopic, separation, 

and MS-based techniques (with or without previous separation). 

Molecular spectroscopy studies the interaction of different types of electromagnetic 

radiation with the molecules present in a sample, exciting them and producing an 

absorption spectrum that contains structural and compositional information [137]. 

Data obtained from different spectroscopic techniques are widely used in the food 

authentication field, frequently following a fingerprinting approach. In this line, 

although infrared (IR), Raman, and nuclear magnetic resonance (NMR) 

spectroscopies are predominantly chosen, other techniques, such as UV or 

fluorescence spectroscopies, have also been employed. 

UV spectroscopy is based on the fact that molecules containing a chromophore group 

absorb ultraviolet-visible (UV-Vis) light, causing the excitation of an electron to an 

excited state. Hence, it evaluates the absorption spectrum after passing UV-Vis light 

from an incident beam —wavelength range from 1 to 780 nm— through a sample. 

Although UV spectroscopy has been widely used to estimate quality parameters such 

as the peroxide value of an oil or the antioxidant capacity of a product, it has also 

been proposed to solve more complex authenticity-related questions [138]. For 

instance, UV spectroscopic fingerprints, in combination with chemometrics, have 

been employed to detect adulteration of organic red pepper powders or authenticate 

honey from sugar syrups [139,140]. In contrast to UV spectroscopy, fluorescence 

spectroscopy focuses on the sample emission spectrum after excitation with a UV- 

Vis light incident beam. As an example of its application, excellent classification of 

fruit spirits was achieved by subjecting spectra collected through this technique to 

multivariate analysis [141]. 
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As mentioned, vibrational spectroscopy, which embraces IR and Raman 

spectroscopies, plays an important role in developing methodologies to assess food 

quality and authenticity. Indeed, these techniques are suitable for this purpose mainly 

due to their non-destructive nor invasive nature, green technology, high speed, low 

cost, reliability, and capability to detect many compounds simultaneously [61,142]. 

IR spectroscopy measures the absorption spectrum of an IR beam within a sample. 

Thereby, IR radiation is absorbed when its frequency matches a molecule’s 

vibrational frequency, inducing a molecular vibration (i.e., stretching, bending, or 

twisting) and causing a change in the dipole moment. Moreover, the IR range is 

constituted of three regions: the far- (FIR), mid- (MIR), and near-infrared (NIR), with 

wavelengths ranging from 500,000 to 5,000,000 nm, 3,000 to 500,000 nm, and 780 

to 3,000 nm, respectively. 

For a long time, IR spectroscopy (especially MIR) was only used to characterise the 

chemical structure of purified compounds. Nevertheless, over the last decades, IR’s 

relevance in the food science field has increased due to not only technical 

developments —such as using Fourier transformation (FT) or attenuated total 

reflectance (ATR)— but also its combination with multivariate analysis. Thus, 

although MIR was traditionally preferred over NIR for structural characterisation 

since it provides more sensitive data and narrower bands (making it easier to interpret 

the spectra), both have already been established in routine analysis to determine 

chemical properties such as moisture, fat, and protein content in food [143]. In 

addition, more recent applications have shown that they can also be useful to generate 

distinctive patterns to authenticate food products. In this context, MIR spectroscopy 

provides sensitive data related to the fundamental vibrations of the molecules 

contained in the sample under analysis, being suitable for detecting compounds at 

low concentrations or discriminating samples with subtle differences. In addition, 

fitting the MIR spectrophotometer with an ATR module has allowed overcoming its 

intense water absorption, which was its main drawback when analysing food [142]. 

Thus, for instance, it has been applied to quantify the adulteration of Australian tea 
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tree oil (Melaleuca alternifolia) with eucalyptus oil [144], to authenticate true 

cinnamon from false one [145], and to assess Ternera de Navarra PGI tenderness 

[146]. In contrast, although NIR spectroscopy provides broader spectral bands and, 

hence, less rich in terms of descriptive information, it lacks water interferences and 

can penetrate much further into the surface of samples, making it convenient for 

analytical analyses within the agri-food sector [138]. In this line, for example, NIR 

has been employed in the authentication of Apulo-Calabrese pork meat (used in 

different PDO products) [147], the study of rice freshness [148], and the 

determination of cocoa shell content in cocoa products [149]. 

Raman spectroscopy relies on the inelastic Raman scattering phenomenon, which 

consists of energy exchange between the incident beam (i.e., UV-Vis or IR radiation) 

and matter. In this case, a photon interacts with the electron cloud of a molecule, 

causing its polarizability and molecular vibration. Besides, the photon loses energy 

(Stokes radiation) or, in the case that the molecule is excited, gains it (anti-Stokes 

radiation), and a shift of the incident light is observed and measured. Because of the 

inherent weakness of this effect, Raman spectroscopy was challenging to be applied. 

However, recent developments in terms of instrument design, detector sensitivity, 

laser construction, and sampling probes have spread its use, although it has also 

increased its price [137]. 

In this line, it provides more characteristic spectra (the corresponding bands are 

sharper) than IR spectroscopy in a faster way. Moreover, Raman spectroscopy is 

especially adequate for food analysis since it is not altered by moisture content (weak 

O-H polarizability) and allows analysing samples through their plastic or glass 

package [61]. Thus, for instance, it has been applied for botanical differentiation of 

honey varieties [150] and varietal, geographical, and vintage discrimination of white 

wines [151]. In addition, Arroyo-Cerezo et al. [152] addressed the animal origin 

authentication of plastic-packaged sliced cheeses without requiring the package 

opening. 
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Furthermore, beyond lab-based benchtop applications, both IR and Raman 

spectroscopies have excellent characteristics to be adapted for on-site analysis (e.g., 

portability, no requirement of highly trained personnel, and provision of reproducible 

data). Indeed, several handheld spectroscopic devices have already been used in 

several food fraud applications [153]. 

Nevertheless, NMR spectroscopy is probably the most suitable spectroscopic 

technique for comprehensively detecting small molecules (metabolites). It consists 

of applying radio frequency (RF) radiation to nuclei with magnetic properties while 

subjected to a constant magnetic field. Briefly, in the presence of a constant magnetic 

field, the nuclear magnetic moments line up in parallel —spin state α (lower 

energy)— or antiparallel —spin state β (higher energy)— to it, generating an energy 

difference. This energy difference is characteristic of each type of nucleus (i.e., 1H, 
13C, 15N, 19F, or 31P). Then, the absorption of the equivalent RF radiation produces 

the resonance of the active nuclei, which emit signals that are detected by the NMR 

spectrometer and provide structural information [154]. 

The resonant frequency, as well as the energy of the RF radiation absorbed and the 

intensity of the signal (sensitivity), are proportional to the strength of the magnetic 

field. In this line, the NMR instruments available in the market work with resonant 

frequencies ranging from 40 (low-resolution) to 900 MHz (high-resolution). 

Moreover, regardless of the device employed, NMR is characterised by its high- 

throughput and reproducibility. Thus, on the one hand, it allows non-invasive rapid 

analyses with minimal sample handling [155]. On the other hand, no significant 

instrumental drift is observed in NMR, and new technological developments have 

reduced its inter-laboratory variation. These facts have allowed the development of 

platforms such as Bruker’s FoodScreenerTM, which is composed of four proton 

nuclear magnetic resonance (1H-NMR) reference databases for honey, olive oil, juice, 

and wine authentication. Hence, this tool contains representative spectra of authentic 

samples that can be used for comparison after following a standardised operating 
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protocol [156,157]. However, its implementation in official controls is limited due to 

its intellectual property [158]. 

In general, food authentication studies found in the literature that use NMR rely on 

400 MHz spectrometers (chosen as a compromise between the acquisition cost and 

the resolution) and follow a non-targeted approach followed by multivariate analysis. 

For instance, oregano and ‘super-seeds’ authentication has been addressed in this way 

[159,160]. Instead, Haddad et al. [161] proposed a suspected targeted analysis for 

species, geographical origin, and variety authentication of cheese, focusing on 

triacylglycerols NMR signals. Moreover, 600 MHz NMR spectrometers have also 

been used for this purpose, providing a higher resolving power and, hence, increasing 

the amount of chemical information and the capacity to characterise unknown 

compounds [162]. In contrast, some authors have used low-resolution NMR 

spectrometers, whose purchase and maintenance costs are lower, to address food 

issues through less resolved spectra. For instance, Gunning et al. [163] used the NMR 

spectra acquired by a 40 MHz spectrometer to assess saffron authenticity in front of 

different adulterants. 

Despite the usefulness of the above-mentioned techniques for food authentication 

through metabolomic analysis, this thesis exploits separation and/or MS-based 

techniques for this purpose. In this context, specific details of these techniques are 

further detailed in Chapter 2 and Chapter 3. 

 
 

1.2.5. ELEMENTOMICS AND ISOTOPOLLOMICS 
 

Elementomics and isotopollomics approaches comprehensively determine and 

characterise the sub-molecular composition, ergo metal and non-metal elements. 

Both have been widely proposed to assess food authentication, particularly 

geographical origin- or production system-related issues [124]. 
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On the one hand, elementomics focuses on determining the elemental profile, which 

includes major, minor, trace, and rare-earth elements. In contrast to atomic absorption 

spectroscopy (AAS) techniques, almost all atomic emission spectroscopy (AES) ones 

allow performing multi-elemental analysis, which is advantageous for addressing 

food fraud. In fact, flame atomic emission spectroscopy (FAES) is the only one that 

does not. In this context, plasma-based systems —inductively coupled plasma atomic 

emission spectroscopy (ICP-OES) and inductively coupled plasma mass 

spectrometry (ICP−MS)—, where temperatures around 10,000 K are reached in the 

excitation and atomisation (and ionisation in ICP−MS) steps, allow the simultaneous 

determination of a broad range of chemical elements at trace levels, with high 

reproducibility and a wide dynamic range. Besides, lower LODs are obtained in 

ICP−MS compared to ICP-OES since m/z detection reduces potential interferences 

[164,165]. 

Therefore, considering that the elemental composition of agri-food products is 

strongly influenced by the soil of the growing area (among other factors), either 

quantitative or semi-quantitative approaches using AES plasma-based techniques, 

and combined with chemometrics, have been developed to ensure their authenticity 

[166]. For instance, Inaudi et al. [167] quantified 13 elements by ICP-OES to 

distinguish Tonda Gentile Trilobata PGI and Turkish hazelnuts through chemometric 

exploratory analysis. Instead, in Quinn et al. study [168], 40 elements were detected 

through ICP−MS in rice samples from different origins (China, India, and Vietnam), 

whose proper authentication was achieved by chemometrics. Furthermore, it is 

noteworthy that despite the dominance of plasma-based techniques, other techniques 

—such as energy dispersive-X ray fluorescence (ED-XRF)— have also been 

employed [169]. 

On the other hand, isotopollomics provides information regarding the abundance of 

the isotopic composition of certain elements by means of the stable isotope ratio (δ), 

which compares the obtained isotope ratio in a sample to the one in a reference 

material, and is expressed as indicated in Eqn. 1.1. 
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ℎ𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 
ℎ𝑋𝑋𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠 

1.1 δ 𝑖𝑖 𝑋𝑋 (‰) =  𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠       𝑠 𝑠𝑠𝑋𝑋𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠 

𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠 
 

𝑠𝑠𝑋𝑋𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠 

 
 

× 1000 
 

where X is the corresponding element, i is the atomic mass number of the heavier 

isotope, hX is the concentration of the heavier isotope, and lX is the concentration of 

the lighter isotope. 

According to their atomic mass, stable isotopes can be divided into light isotopes (i.e., 
13C/12C, 15N/14N, 18O/16O, 2H/1H, and 34S/32S), usually determined by isotope ratio 

mass spectrometry (IRMS), or heavy isotopes (i.e., mostly 87Sr/86Sr and 206Pb/204Pb), 

determined using multi-collector-ICP−MS (MC-ICP−MS) [170]. However, 

generally, a single element's stable isotope ratio is insufficient to provide 

unambiguous information to assess the food fraud problem. Therefore, the 

combination of different stable isotopes is used. In this line, the combination of 
13C/12C and 18O/16O or 13C/12C and 2H/1H has been traditionally used to check the 

presence of exogenous substances or additives in food products. More recently, 

changes in the stable isotope ratios of certain elements have been attributed to 

external factors related to the geographical area. Hence, 18O/16O and 2H/1H (present 

in the organic matter of food) are usually linked to the composition of water in the 

region of origin, 15N/14N and 13C/12C to the agricultural practices and the climate, and 
34S/32S and 87Sr/86Sr to the soil geology [171,172]. Therefore, several applications of 

this technique to trace the geographical origin of food products have been described 

in the last years. For example, Chung et al. [173] classified rice samples through 

stable isotope ratios according to their geographical origin. Besides, some other 

authors have combined multi-elemental analysis results with stable isotope ratios to 

achieve sample geographical origin discrimination [174,175]. 

ℎ𝑋𝑋 
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1.2.6. CHEMOMETRICS 
 

As shown in Section 1.2.1, food fraud issues can be tackled differently depending on 

their complexity: from highly specific targeted assays to compositional profiles or 

instrumental fingerprints. In this context, while food scientists have widely employed 

univariate statistics to evaluate the significance of the results obtained for a certain 

primary marker in a targeted determination, their application in profiling and 

fingerprinting methodologies is inadequate. In this case, chemometrics (multivariate 

data analysis) allows handling the large amount of data generated in these approaches 

by modern analytical techniques, extracting as much valuable information as 

possible. Besides, unlike univariate statistics, it considers the complexity of the food 

product composition describing the information related to each variable individually 

and the interrelations amongst them, which cannot explicitly be detected [176,177]. 

Chemometrics was defined by Massart et al. [178] as ‘the chemical discipline that 

uses mathematical, statistical, and other methods employing formal logic to design 

or select optimal measurement procedures and experiments, and to provide maximum 

relevant chemical information by analysing chemical data’. Current chemometric 

methods can be classified as non-supervised (employed for exploratory data analysis) 

and supervised (used for prediction through regression or classification and 

discrimination) [179]. In this line, some of them are herein introduced, focusing on 

those applied in this thesis’ research studies. 

In general, multivariate data are arranged in a matrix structure. Thus, the so-called X- 

matrix contains the experimentally obtained data, with rows corresponding to the 

analysed samples and columns to each experimental variable. At this stage, and 

before the chemometric analysis, it is fundamental to pre-process the data in order to 

remove unwanted variability sources (i.e., due to sample inhomogeneity or 

instrumental drifts) and focus on the information of interest. In this line, the selection 

of the proper data pre-treatment is strongly influenced by the experimental data type 

and the purpose of the analysis [180]. For instance, on the one hand, profiling 
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approaches usually involve simple data consisting of concentration values or 

instrumental signals used for abundance comparison (e.g., chromatographic peak 

area or height). Thus, in this case, normalisation using an overall scaling factor 

—such as the total area or the total sum of intensities— can correct variations 

between samples. Moreover, since multivariate data analysis is scale dependent and 

tends to be attracted to larger variations, it is necessary to centre the mean (mean 

centring) and/or scale the standard deviation (unit scaling) of each variable to equalise 

their influence on the subsequent model [181]. The so-called autoscaling is the 

combination of both. On the other hand, data derived from fingerprinting approaches 

are generally more complex and require extensive pre-processing procedures (e.g., 

smoothing for noise removal, baseline correction, peak alignment, or working 

window selection) aside from normalisation and autoscaling. 

Non-supervised chemometric techniques are commonly used for exploratory analysis 

and, therefore, to identify natural trends (similarities and differences) between the 

analysed samples without previous knowledge. Essentially, they can be divided into 

principal component analysis (PCA) and cluster analysis —e.g., hierarchical cluster 

analysis (HCA)—, being the former the most popular in food analysis. Briefly, PCA 

relies on linearly reducing the dimensionality of the original data (X-matrix) into a 

set of orthogonal components, known as principal components (PCs), while 

preserving the maximum variation. Because of their orthogonal nature, the amount 

of variation described by the PCs decreases consecutively from PC1 to the last. PCA 

decomposition follows Eqn. 1.2. 

1.2 𝑋𝑋 = 𝑇𝑇𝑃𝑃𝑡𝑡 + 𝐸𝐸 
 

where X (samples × variables) is the original data matrix, T (samples × PCs) is the 

scores matrix, P (variables × PCs) is the loadings matrix, and E (samples × variables) 

is the matrix of residuals. 

As a result, representing the obtained PCs’ scores in scatter plots (i.e., plotting the 

scores of two PCs against each other) illustrates the dominant patterns present within 
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the samples. For instance, the samples’ closeness indicates the similarity between 

them. Instead, loadings plots allow identifying the type of correlation between the 

original variables and the observed sample trends (direct, inverse, or none). 

Furthermore, it is noteworthy that apart from being used to detect sample patterns, 

PCA is also used for quality control (QC) checks and outlier detection. In this last 

case, the so-called Hotelling’s T2 (extension of the t-test applied to the PCA model) 

and the Q-statistics (the sum squared residuals) play a crucial role [182]. 

In contrast, supervised chemometric techniques attempt to predict a characteristic of 

the food samples under analysis. With this purpose, their models simultaneously 

consider experimental data (X-matrix) and sample information (Y-matrix), aiming to 

maximise the description of Y as a function of X. Depending on whether this sample 

information is quantitative (contiguous parameters such as percentages, 

concentrations, or time) or qualitative (any category or class), they can be classified 

as regression- or classification-based techniques. Nevertheless, a common strategy 

usually employed in both cases involves building the supervised model through a 

calibration dataset, which sets its parameters, and testing it by validation or unknown 

samples [183]. 

As mentioned in Section 1.2.1, standardised guidelines for method validation in 

multivariate analysis are currently unavailable. However, in this thesis, the validation 

scheme proposed by Riedl et al. has been followed [103]. This scheme (see Figure 

1.5) distinguishes four main phases regardless of the supervised chemometric 

technique type: 1) data preparation, 2) model optimisation by internal validation, 

3) model testing by external validation, and 4) stability testing of the model by system 

challenges. 
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Figure 1.5. Validation scheme for chemometric methods. Adapted from Riedl et al. [103]. 
 

• Data preparation, which includes pre-processing and pre-treatment, must be 

identical for all the datasets subjected to the same chemometric model. 

• Moreover, model optimisation by internal validation is usually carried out 

through cross-validation (CV). As shown in Figure 1.6, CV methods (e.g., 

Venetian blinds, random subsets, or leave-one-out) divide the calibration 

dataset into diverse splits. Some are selected to construct the chemometric 

model (training set), and others to test it (test set). This procedure is done 

iteratively, and the obtained results allow determining the optimal model 

complexity (i.e., the proper number of components or variables to build the 

model) and estimating its predictive performance. Therefore, CV prevents 

poor model prediction results because of an excessive amount of redundant 

information and noise content (overfitting) or a lack of captured variability 

in the dataset leading to an information loss (underfitting) [176]. 
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• Instead, the whole dataset is separated into calibration and test sets to validate 

the model externally. Generally, this is done following ratios of 70:30 or 

60:40 (training:test). Thus, while the calibration sample set is used to build 

and optimise (including the CV step) the supervised chemometric model, the 

test sample set assesses its prediction ability. 

• Finally, to fully validate the chemometric model, the stability testing of the 

model by system challenges is required. This stage comprises the long-term 

evaluation of the model by analysing new samples and, therefore, increasing 

analytical and biological variance. However, this step has not been performed 

in this thesis due to limited resources. 
 

Training set Test set 
 

Variables Variables Variables 

1 n 
Sub-validation models 

 
Figure 1.6. Basic operation of the CV procedure. 

 
Focusing on partial least squares (PLS) regression, it is the most employed 

regression-based chemometric technique and, therefore, usually preferred over other 

options such as multiple linear regression (MLR). Similarly to PCA, PLS 

decomposes the original X-matrix following Eqn. 2. Nevertheless, in this case, the 

original data are transformed into orthogonal linear combinations, known as latent 

variables (LVs), constructed so that covariance between X and Y is maximum [184]. 

Different statistics are commonly employed to assess its model performance. For 

instance, on the one hand, the determination coefficient (R2) indicates the correlation 

between the predicted parameter and the experimental data used when presenting 

values close to 1. On the other hand, root-mean-square errors of calibration 
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(RMSEC), cross-validation (RMSECV), and prediction (RMSEP) appraise the 

average uncertainty of potential predictions. Thus, these values are expected to be 

low in case of good model performance. Moreover, small differences between 

RMSEC and RMSECV demonstrate good internal consistency, while between 

RMSECV and RMSEP indicate good predictive capability [142,176]. 

Furthermore, PLS regression presents different methods to identify and select which 

are the most relevant variables related to the parameter under study. Hence, variable 

importance in projection (VIP), regression vector, and selectivity ratio are among the 

most employed. Besides, they are also used in PLS extensions such as PLS-DA, 

which is introduced below. 

Alternatively, as previously mentioned, supervised classification-based techniques 

address qualitative issues such as whether a sample belongs to a specific class or not. 

Currently, they are classified in discriminant analysis and class-modelling 

techniques. Moreover, it is noteworthy to mention that although some applications 

have used supervised non-linear techniques —e.g., support vector machine (SVM), 

artificial neuronal networks (ANN), and k-nearest neighbour (kNN)—, this thesis 

focuses on supervised linear techniques since their use is more widespread in the food 

fraud field. 

Discriminant analysis techniques classify the samples into limited predefined classes. 

Although both linear discriminant analysis (LDA) and PLS-DA are widely used, 

PLS-DA is often preferred when dealing with profiling and, particularly, 

fingerprinting data since LDA requires datasets with a lower or equal number of 

variables than samples [142]. In this line, PLS-DA is an extension of PLS in which, 

instead of quantitative values, the Y-matrix contains categorical dummy variables 

describing sample class membership (i.e., 1 for class 1, 2 for class 2, and so on). Thus, 

predicted samples are attributed to the class that presents the minimal distance 

between Ypred and Y [185]. Nevertheless, PLS-DA results cannot be evaluated using 

PLS common statistics due to the dummy nature of the Y values. In this case, 
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parameters such as the overall classification performance (Eqn. 1.3), class sensitivity 

(Eqn. 1.4), and class specificity (Eqn. 1.5) are used. In addition, some authors also 

employ the receiver operating characteristic (ROC) curves since they express the 

balance between sensitivity and specificity [186]. 

1.3 Classification accuracy (%) = Well−classified samples · 100 
Total samples 

 

1.4 Sensitivity (%) = TP
 

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

1.5 Specificity (%) = TN
 

TN+FP 

· 100 
 

· 100 
 

where TP = true positive samples, TN = true negative samples, FP = false positive 

samples, and FN = false negative samples. 

Although their great classification power, discriminant analysis techniques are highly 

influenced by the number of classes included in the model and the number of samples 

per class. In this regard, optimal discriminant analysis models include few classes, 

each with many samples. Therefore, some strategies to break down complex 

classification cases, which include many predefined classes, have been proposed (i.e., 

classification decision trees). 

The main limitation of discriminant analysis techniques concerns the classification 

of unknown samples that do not belong to one of the classes included in the developed 

model. In this case, the model would wrongly assign the sample to the class showing 

more similarities. Thus, this chemometric approach requires extensive coverage of 

the existing classes to decrease this risk. In contrast to discriminant analysis, class- 

modelling techniques generate individual models for each targeted class. In this line, 

the chemometric model is built using only samples belonging to that specific class to 

define a characteristic multivariate fingerprint; therefore, no information from other 

classes is used. Hence, each model aims to confirm and detect whether new samples 

belong to the corresponding class or not [187]. 
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Currently, soft independent modelling of class analogies (SIMCA), the most applied 

class-modelling chemometric technique in food authentication, follows a two-step 

procedure. First, a PCA is carried out on the calibration samples of the targeted class 

to be modelled. Then, since SIMCA is a distance-based technique, the PCA results 

are used to calculate the class boundary by means of the linear combination of two 

relevant distances: the score distance (SD) —corresponds to the position of a sample 

within the score space— and the orthogonal distance (OD) —indicates the distance 

of a sample to the score space—. Indeed, while SD class limits are computed using 

Hotelling’s T2, the class boundaries for OD refer to the Q-statistics (in both cases, at 

a specific confidence limit). Therefore, when an unknown sample is projected, its SD 

and OD values are compared to the model ones through the so-called reduced 

distance (d), calculated as shown in Eqn. 1.6. Then, the sample’s class membership 

is confirmed in case d is lower or equal than √2 [188,189]. 

 
 

2 
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� 
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2 

≤ √2 
 

where i = index of each given unknown sample and j = class of the model. 
 

In this case, the same figures of merit as in discriminant analysis-based techniques 

are used to evaluate the performance of the developed models. However, since it is a 

soft technique, SIMCA may sometimes assign a sample to several or no classes, 

which suggests that the used data is not sufficiently characteristic to each class. 

Moreover, although results are not comparable with discriminant techniques since 

they present different purposes, SIMCA is less powerful in classification. In this line, 

the PCs used to construct a SIMCA model are based on the largest variation and thus, 

they could not be related to the targeted class under evaluation [183,185]. 
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2.1. INTRODUCTION 
 

Separation techniques such as gas chromatography (GC) and liquid chromatography 

(LC) are fundamental in developing metabolomic profiling approaches for food 

authentication. These techniques allow the separation of the metabolites found in 

complex mixtures (e.g., food samples) according to their size, charge, solubility, or 

polarity. Alongside the applied sample treatment, selecting the chromatographic 

technique, the chosen conditions, and the detection method strongly influences the 

number and type of detectable metabolites. Nevertheless, these techniques generally 

provide more sensitive and selective results than the spectroscopic techniques 

detailed in Section 1.2.4. 

Independently of the chosen chromatographic technique, two different profiling- 

based acquisition strategies have been commonly proposed in food authentication: 

targeted and suspected analysis. Both focus on determining a given group of known 

selected metabolites, generally sharing chemical similarities and even belonging to 

the same family. On the one hand, targeted analysis allows accurate compound 

quantification and confirmation by using the proper analytical reference standards. 

However, this approach is often not possible due to the lack of commercial standards, 

which is especially noticeable in the case of secondary metabolites because of their 

complexity and diversity. Alternatively, on the other hand, suspected analysis collects 

instrumental data related to specific compounds for which no analytical standards are 

usually available. For this purpose, metabolite inclusion lists are built based on 

knowledge in the scientific literature or experimental databases/libraries. Hence, 

although semi-quantification (e.g., using the analytical reference standard of a 

structurally similar compound) or relative quantification are sometimes carried out, 

the suspected analysis provides more qualitative than quantitative benefits [1,2]. 

Therefore, although some authors comprise suspected analysis within the non- 

targeted analysis, in this thesis, it is considered more appropriate to include it within 

the profiling approach since it looks for differences between specific compounds 

rather than between all the detected metabolites. 
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In this context, GC has been commonly proposed for both targeted and suspected 

strategies to detect food fraud practices. This technique separates the compounds in 

the analysed sample after vaporisation. Thus, the analytes’ migration through the GC 

column, under high pressure using an inert gas (usually He or N2), depends on their 

interaction with the stationary phase. Therefore, GC —with a flame ionisation 

detector (GC-FID) or coupled to mass spectrometry (GC−MS)— is especially 

suitable for determining and detecting volatile and thermally stable compounds such 

as aldehydes, alcohols, or organic acids. Moreover, medium-volatile or thermolabile 

compounds can be determined by this technique after chemical derivatisation. For 

instance, amino acids, fatty acids, or carbohydrates need this previous step to be 

determined by GC [3,4]. 

Furthermore, focusing on GC−MS, 70 eV electron ionisation (EI) is commonly 

chosen in metabolomic profiling studies as the ionisation method. Its reproducibility 

allows compound identification by comparison of the experimental mass spectral 

fragmentation pattern to spectral libraries, such as of the National Institute of 

Standards and Technology (NIST) or Wiley, being especially interesting for 

suspected and non-targeted screening. Therefore, although some compounds present 

weak or absent molecular ions at 70 eV EI due to high fragmentation, it is still 

preferred over well-established soft ionisation methods —such as chemical ionisation 

(CI)— due to its compatibility with library-based identification [5]. 

Fatty acids (FAs) have been the most studied lipid compounds for food authentication 

and classification purposes by targeted GC methodologies. Their detection through 

GC-FID or GC−MS is well-established after a widespread sample treatment 

consisting of three main steps: 1) FAs extraction with a non-polar solvent (e.g., n- 

hexane or petroleum ether), 2) compound derivatisation consisting of acid or basic 

methyl esterification, and 3) separation of the resulting fatty acid methyl esters 

(FAMEs) from the aqueous phase [6]. Thus, since FAs are abundantly found in edible 

oils, their profile has been evaluated as a potential chemical marker to discriminate 

cultivars of processed olives [7] or to detect VOO adulteration with other vegetable 
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oils [8]. Moreover, other applications involving these lipids’ determination in 

different food products, such as almonds or green coffee beans, have also been 

developed to assess their geographical origin [9,10]. 

Moreover, profiling approaches focusing on specific volatile organic compounds 

(VOCs) have also been proposed in some food fraud applications. For instance, 

samples belonging to the Pasta di Gragnano PGI were authenticated through the 

targeted GC−MS analysis of 20 flavour compounds (derived from the Maillard 

reaction and lipid oxidation). In this case, all the compounds were identified by 

comparison of the experimental retention times and mass spectra with those of the 

reference standards [11]. Instead, the combination of targeted and suspected analysis 

by gas chromatography coupled to high-resolution mass spectrometry (GC−HRMS) 

of 36 hydrophilic compounds was proposed to address the geographical origin 

classification of adzuki beans (Vigna angularis). Thus, spectra information was 

obtained from both reference standards and in-house databases [12]. Nevertheless, it 

is noteworthy to mention that because of the great potential in compound 

identification of GC−MS, most of its current methods developed for food 

authentication or characterisation purposes are based on non-targeted analysis. In this 

line, some examples of the application of this approach are given in Section 3.1. 

Alternatively, LC allows the separation of a mixture of analytes according to their 

interactions with the LC column stationary phase and the mobile liquid phase. Thus, 

while GC focuses on the volatile metabolome, LC offers a more comprehensive 

metabolomic coverage (higher detectability) comprising non-polar and polar 

compounds. In this line, liquid chromatography —with ultraviolet detection (LC- 

UV), fluorescent detection (LC-FLD), electrochemical detection (LC-ECD), or 

LC−MS— has been widely employed in the determination of metabolite profiles. 

Moreover, the recent development of ultra-high-performance liquid chromatography 

(UHPLC), which implies using sub-2 µm particle packed columns or sub-3 µm 

superficially porous particle columns, has substantially diminished the separation 
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time compared to high-performance liquid chromatography (HPLC), while keeping 

or improving the chromatographic resolution [13]. 

LC−MS has been the most employed technique in metabolomic targeted and non- 

targeted approaches (in this last case, the reader is referred to Chapter 3 of the thesis 

for further information). In this line, using MS as the detection system improves the 

method’s sensitivity (noise reduction) and specificity, being adequate for both 

qualitative and quantitative studies. Hence, while LRMS mass analysers —mainly 

triple quadrupole (QqQ) and ion trap (IT)— are especially suitable for targeted 

analysis, HRMS ones —Orbitrap- and TOF-based mass analysers— present excellent 

capabilities for suspected analysis. For instance, HRMS mass analysers provide 

accurate mass measurements with high resolution; thus, comprehensive information 

about the exact molecular mass and the elemental composition can be obtained. 

Besides, they allow the elucidation of the chemical structure of a particular compound 

by studying the corresponding fragmentation pattern. Thereby, tentative compound 

identification or annotation can be carried out without analytical reference standards. 

Finally, these instruments usually acquire data under the full-scan mode, which 

increases the number of investigated analytes and enables retrospective analysis 

[2,14]. 

Lipids and phenolic compounds have been the most employed families of metabolites 

to assess food authentication through profiling LC methodologies. In general, lipids 

have been used as chemical markers in applications involving animal-derived 

products, fats, or oils, whereas polyphenols have been applied to plant-related 

foodstuffs. Thus, focusing on lipids, the triacylglycerols (TAGs) profile has been 

widely studied in food products for authentication purposes. The thermolability of 

these compounds, formed by three FAs linked to one glycerol, impedes their 

determination by GC. Therefore, they are typically determined by LC after extraction 

with a non-polar solvent [6]. In this line, lard content in cocoa butter was evaluated 

through the targeted determination of 16 TAGs, comprising unsaturated and saturated 

structures, by liquid chromatography with a refractive index detector (LC-RID). The 
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obtained results allowed the detection of admixtures ranging from 1% to 30% of lard 

[15]. Similarly, the content of 11 TAGs in different edible oils was assessed by 

relative quantification after liquid chromatography with charged aerosol detection 

(LC-CAD) analysis. Then, PCA allowed the distinction of EVOO samples in front of 

the other vegetable oils and their blends [16]. 

In addition, the suspected analysis of lipid compounds is encompassed within the 

‘lipidomics’ term. Thus, it is generally carried out by LC−HRMS, focusing on 

compounds belonging to one or more classes of lipids that are included in in-house 

or online databases. Currently, the LipidMaps online database is the most commonly 

used in this approach since it contains information related to 47,877 unique lipid 

structures [17]. For example, the discrimination of TSG hay milk against maize or 

grass silage milk was achieved using the profile composed of 232 suspected TAGs 

LC−HRMS signals. Among them, 14 TAG molecular species showed significant 

differences between the sample groups under study. Thus, after their DDA analysis, 

the discriminant TAGs were tentatively annotated based on their exact mass and 

fragmentation [18]. Besides, following a similar procedure, 53 TAGs were tentatively 

identified in milk by LC−HRMS to distinguish organic and conventional production. 

As a result, 10 TAG compounds were significantly lower in organic milk, while 11 

were significantly higher [19]. 

Furthermore, as previously mentioned, phenolic and polyphenolic compounds are 

one of the main classes investigated by LC for food characterisation, classification, 

and authentication. These compounds are secondary metabolites with an aromatic 

structural skeleton. Moreover, they are ubiquitously spread through the plant 

kingdom and some present bioactive activity (e.g., antioxidant or anticancer). 

Besides, depending on their chemical structure —the number of phenol rings and 

how they are bound—, phenolic compounds are classified into four main classes: 

phenolic acids, flavonoids, lignans, and stilbenes. Particularly, phenolic acids (i.e., 

hydroxybenzoic and hydroxycinnamic acids) and flavonoids (i.e., flavonols, 
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flavones, isoflavones, flavanones, anthocyanins, and flavanols) account for almost 

90% of the total extractable phenolic and polyphenolic content in the diet [20]. 

Since this chapter will describe the application of a phenolic liquid chromatography 

coupled to tandem mass spectrometry (LC−MS/MS) profiling method for the 

classification of paprika samples according to their geographical origin (Publication 

I), especial attention to developed methodologies has been paid. In this context, Table 

2.1 presents a compilation of recent studies in which phenolic and polyphenolic LC 

profiles have been used to address different plant-related foodstuff authentication 

issues. Hence, as reported in Table 2.1, soluble phenolic and polyphenolic 

compounds are commonly investigated as chemical markers instead of non- 

extractable ones (polymeric polyphenols or individual polyphenols linked to 

macromolecules), whose determination in this field is limited [21]. Therefore, 

considering that these compounds are more soluble in polar organic solvents than 

water, their extraction is usually carried out through solid-liquid extraction (SLE) or 

liquid-liquid extraction (LLE) procedures, using extracting mixtures of water with 

organic solvents such as methanol, ethanol, or acetone. Moreover, in most cases, this 

extraction step is enhanced by applying ultrasound waves to the sample [20]. 

Moreover, as shown in Table 2.1, reversed-phase chromatography predominates in 

the chromatographic separation of polyphenolic compounds over other options, such 

as hydrophilic interaction chromatography (HILIC). In this context, it usually relies 

on using C18 stationary phase columns. However, in some applications, other 

reversed-phase stationary phases have been proposed. For instance, Rivera-Pérez et 

al. [22] employed a reversed-phase pentafluorophenyl (PFP) column to separate 

phenolic compounds within a suspected LC−HRMS analysis to authenticate thyme. 

In any case, the mobile phase used in the reversed-phase separation of polyphenols 

is commonly composed of water and methanol or acetonitrile as the organic solvent. 

Besides, a low amount of acid (i.e., formic or acetic acids) is commonly added to the 

mobile phase since it improves the chromatographic peak shapes, resulting in better 

chromatographic resolution and sensitivity. 
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Regarding the detection system, it is strongly dependent on the profiling approach 

used. Thus, similarly to the previously described TAGs determination, while 

polyphenolic targeted analysis is generally performed using LC-UV or LC−MS, 

suspected analysis is exclusively carried out by LC−HRMS. 

Therefore, as detailed in Table 2.1, several targeted LC-UV methods have been 

developed for different food authentication purposes. In this context, phenolic acids 

display absorption bands in the 300 – 400 nm range, whereas more complex 

polyphenolics structures —such as stilbenes, flavanols, flavonols, or anthocyanins— 

also do it in the visible range [23]. For instance, González-Domínguez et al. [24] 

evaluated the effect of cultivar and cultivation conditions in strawberry samples by 

combining different determinations: sugars, organic acids, phenolic compounds, and 

mineral elements. In the case of targeted phenolics, LC-UV was used for their 

detection at different wavelengths: 260 nm for ellagic acid and derivatives, 280 nm 

for benzoic acids and flavanols, 320 nm for cinnamic acids, 360 nm for flavonols, 

and 520 nm for anthocyanins. As a result, 13 phenolic compounds were quantified 

and, combined with the other determined components, allowed clear chemometric 

discrimination according to the sample cultivar. Similarly, Kalogiouri et al. [25] used 

the profile of 18 phenolic compounds to address the geographical classification of 

walnut samples. In this case, the phenolic compounds were detected by LC-UV, using 

a diode array detector (DAD), which allowed quantitating the analytes at their 

maximum absorption wavelengths. Therefore, for instance, p-coumaric acid 

(hydroxycinnamic acid) was detected at 270 nm and myricetin (flavonol) at 370 nm. 



 

 
 

Table 2.1. Compilation of some LC profiling methodologies, focusing on phenolic and polyphenolic compounds as chemical markers, to 

address different food authentication issues. 
 

Sample Compounds and 
extraction 

Chromatographic separation Detection system Data analysis Ref. 

Cultivar/botanical origin 
Edible flowers 18 phenolics (phenolic acids LC UV Heat map, [26] 

 and flavonoids) Agilent Poroshell EC-C18 column (150 × 4.6 mm, λexc: 217 and 327 HCA, and PLS-  
 SLE with methanol:water 2.7 µm) nm DA  
 (50:50, v/v) Solvents: A) water with 0.1% phosphoric acid    
  (v/v) and B) acetonitrile    

Honey 18 phenolics (phenolic acids LC UV PCA [27] 
 and flavonoids) Nucleosil 100-5 C18 column (250 × 4.6 mm, 5.0 λexc: 280, 320, and   
 SPE with Chromabond C18 µm) 350 nm   
 SPE column and elution with Solvents: A) water with 2% acetic acid (v/v) and    
 methanol B) water:acetonitrile (50:50, v/v) with 0.5% acetic    
  acid (v/v)    

Honey 5 phenolics (phenolic acid LC UV LDA [28] 
 and flavonoids) Eclipse XDB C18 column (150 × 4.5 mm, 5.0 µm) λexc: 280 and 330   
 SLE with ethyl acetate Solvents: A) water with 2% acetic acid (v/v) and nm   
  B) acetonitrile    

Lemon and 11 phenolic derivatives LC UV PCA [29] 
Persian lime (coumarins and psoralens) Phenomenex Kinetex C18 column (150 × 4.6 mm, λexc: 190 to 370 nm   
juices LLE with ethyl acetate 2.6 µm) LRMS (IT)   

  Solvents: A) water:acetonitrile:tBME (85:13:2, 
v/v/v) and B) acetonitrile:methanol:tBME 
(65:30:5, v/v/v) 

Full-scan (m/z 100 – 
1500) and MS2 and 
MS3 (m/z 50 – 400) 

  

   ESI (+)   
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Fruit extracts 26 phenolics (phenolic acids, 
flavonoids, and derivatives) 
SLE with acetone:water 
(70:30, v/v) with 0.1% 
hydrochloric acid 

 
LC 
Kinetex C18 column (100 × 4.6 mm, 2.6 µm) 
Solvents: A) water with 0.1% formic acid (v/v) 
and B) methanol 

 
LRMS (QqQ) 
MRM 
H-ESI (-) 

 
PCA [30] 

Chia, sesame, 
and flax seeds 
bakery products 

 
 
 

Turmeric and 
curry 

44 phenolics (phenolic acids, 
flavonoids, and lignans) 
SLE with water:methanol 
(50:50, v/v) 

 
 

53 phenolics (phenolic acids, 
flavonoids, stilbenes, and 
others) and suspected 
phenolics (curcuminoids) 
SLE with DMSO 

LC 
Phenomenex Luna C18 column (250 × 5.0 mm, 
4.6 µm) 
Solvents: A) water and B) methanol, both with 
0.5% formic acid (v/v) 

 
LC 
Ascentis Express C18 column (150 × 2.1 mm, 2.7 
µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

UV 
λexc: 200 to 600 nm 
HRMS (Q-TOF) 
Full-scan (m/z 80 – 
1500) and DDA 
H-ESI (±) 
HRMS (Q-Orbitrap) 
Full-scan (m/z 100 – 
1500) and DDA 
H-ESI (-) 

PCA, CA, and 
DA 

 
 
 
 

PCA and PLS- 
DA 

[31] 
 
 
 
 
 

[32] 

Cranberry-based 
extracts 

53 phenolics (phenolic acids, 
flavonoids, stilbenes, and 
others) 
SLE with acetone:water 
(70:30, v/v) with 0.1% 
hydrochloric acid 

LC 
Ascentis Express C18 column (150 × 2.1 mm, 2.7 
µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

HRMS (Q-Orbitrap) 
Full-scan (m/z 100 – 
1500) and DDA 
H-ESI (-) 

PCA and PLS [33] 

Berry fruit juices 43 phenolics (phenolic acids 
and flavonoids) 
Dilution with water 

 
EVOO 70 phenolics (phenolic acids, 

flavonoids, lignans, others) 
and suspected phenolics 
LLE with methanol:water 
(80:20, v/v) 

LC 
Phenomenex C18 column (100 × 2.1 mm, 2.6 µm) 
Solvents: A) water and B) methanol, both with 
0.1% formic acid (v/v) 
LC 
Thermo Fisher Scientific Acclaim C18 column 
(100 × 2.1 mm, 2.2 µm) 
Solvents: A) water:methanol (90:10, v/v) and B) 
methanol, both with 5 mM ammonium acetate 

HRMS (Q-TOF) 
Full-scan (m/z 50 – 
1000) and DDA 
H-ESI (+) 
HRMS (Q-TOF) 
Full-scan (m/z 50 – 
1000), DIA, and 
DDA 
H-ESI (-) 

OPLS-DA [34] 
 
 
 

ANOVA [35] 
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Berry seeds Suspected phenolics 
SLE with methanol:water 
(70:30, v/v) with 0.1% 
hydrochloric acid (v/v) 

 
Geographical origin 

 
LC 
Syncronis C18 column (100 × 2.1 mm, 1.7 µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

 
HRMS (LTQ- 
Orbitrap) 
Full-scan (m/z 100 – 
1500) and DDA 
H-ESI (-) 

 
- [36] 

 

Walnuts 
 
 
 
 

Green coffee 

18 phenolics (phenolic acids 
and flavonoids) 
SLE with methanol:water 
(60:40, v/v) with 0.05% TFA 
(v/v) 
11 chlorogenic acids 

LC 
C18 Fortis UniverSil column (250 × 4.6 mm, 5.0 
µm) 
Solvents: A) water with 1% acetic acid (v/v) and 
B) acetonitrile 
LC 

UV 
λexc: 250 to 400 nm 

 
 
 

UV 

PLS-DA 
 
 
 
 

PCA and LDA 

[25] 
 
 
 
 

[37] 
beans SLE with methanol:water 

(95:5, v/v) 
BEH C18 column 
Solvents: A) water with 1% formic acid (v/v) and 
B) acetonitrile 

λexc: 200 to 400 nm 
HRMS (Q-TOF) 
H-ESI (-) 

  

Harvesting time      

Hangbaiju 
(Chrysanthemum 
morifolium 
Ramat.) 

19 flavonoids and suspected 
flavonoids 
SLE with methanol:water 
(50:50, v/v) 

LC 
Phenomenex C18 column (150 × 2.0 mm, 3.0 µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

HRMS (Q-TOF) 
Full-scan (m/z 100 – 
1250) and DIA 
H-ESI (-) 

PCA and OPLS- 
DA 

[38] 

Processing      

Zingiberis 
Rhizoma 

7 gingerols and suspected 
gingerols 
SLE with methanol:water 
(80:20, v/v) 

LC 
Phenomenex Kinetex C18 column (100 × 3.0 mm, 
2.6 µm) 
Solvents: A) water with 0.1% formic acid (v/v) 
and B) acetonitrile 

HRMS (Q-TOF) 
Full-scan (m/z 100 – 
800) and DIA 
H-ESI (+) 

PCA and OPLS- 
DA 

[39] 
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Adulteration and geographical origin 
Saffron Suspected phenolics (Phenol- 

Explorer) 
SLE with methanol:water 
(80:20, v/v) with 1% formic 
acid (v/v) 

 
Cultivar/botanical origin and harvesting time 

 
LC 
Knauer Blue Orchid C18 column (100 × 2.0 mm, 
1.8 µm) 
Solvents: A) water and B) methanol, both with 
0.1% formic acid (v/v) and ammonium formate 5 
mM 

 
HRMS (Q-TOF) 
Full-scan (m/z 100 – 
1000) 
H-ESI (+) 

 
HCA and 
OPLS-DA 

 
[40] 

EVOO 19 phenolics (phenolic acids, 
flavonoids, lignans, and 
derivatives) 
LLE with methanol:water 
(70:30, v/v) 

Cultivar/botanical origin and processing 

LC 
Phenomenex Luna C18 column (150 × 2.0 mm, 
3.0 µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

HRMS (Q-TOF) 
Full-scan (m/z 50 – 
1200) and MS/MS 

PCA [41] 

Strawberry and 
blueberry fruits 
and jams 

36 phenolics (phenolic acids 
and flavonoids) 
SLE with ethanol:water 
(70:30, v/v) with 1.5% 
hydrochloric acid (v/v) 

LC 
Phenomenex Synergi Polar-RP C18 column (250 
□ 4.6 mm, 4.0 µm) 
Solvents: A) water and B) methanol, both with 
0.1% formic acid (v/v) 

LRMS (QqQ) 
Dynamic-MRM 
H-ESI (±) 

- [42] 

Geographical origin and processing 
Thyme Suspected phenolics (Phenol- 

Explorer) 
SLE with methanol:water 
(80:20, v/v) with 0.1% formic 
acid (v/v) 

 
LC 
Agilent Poroshell PFP column (100 × 2.1 mm, 
1.9 µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

 
HRMS (Q-TOF) 
Full-scan (m/z 100 – 
1200) and DDA 
H-ESI (+) 

 
HCA, PLS-DA, 
and OPLS-DA 

 
[22] 

 

Chapter 2. M
etabolom

ic profiling approaches  

- 83-  



 

exc 

exc 

 
 

 

Geographical origin and variety 
Paprika 53 phenolics (phenolic acids, 

flavonoids, stilbenes, and 
others) 
SLE with water:acetonitrile 
(20:80, v/v) 

Adulteration, geographical origin, and variety 
EVOO Suspected phenolics (Phenol- 

Explorer) 
LLE with methanol:water 
(80:20, v/v) with 0.1% formic 
acid (v/v) 

 
LC 
Ascentis Express C18 column (150 × 2.1 mm, 2.7 
µm) 
Solvents: A) water and B) acetonitrile, both with 
0.1% formic acid (v/v) 

 
LC 
Agilent Zorbax Eclipse plus C18 column (50 × 2.1 
mm, 1.8 µm) 
Solvents: A) water and B) acetonitrile 

 
HRMS (Q-Orbitrap) 
Full-scan (m/z 100 – 
1500) and DDA 
H-ESI (-) 

 
 

HRMS (Q-TOF) 
Full-scan (m/z 100 – 
1200) 
H-ESI (+) 

 
PCA and PLS- 
DA 

 
 
 
 

OPLS-DA and 
ANN 

 
[43] 

 
 
 
 
 

[44] 

 

Cultivar/botanical origin, harvesting time, and production system 
Strawberry 13 phenolics (coloureda: 

phenolic acids and flavonoids 
/ colourlessb: anthocyanins) 
SLE with methanol 

LC 
Ultrabase C18 column (100 × 2.5 mm, 4.6 µm) 
Solventsa: A) water:methanol (95:5, v/v) and B) 
methanol, both with 2% acetic acid (v/v) 
Solventsb: A) water with 10% formic acid (v/v) 
and B) methanol 

UV 
λ   a: 260, 280, 320, 
and 360 nm 
λ b: 520 nm 

PCA, SIMCA, 
LDA, and PLS- 
DA 

[24] 

 

Cluster analysis (CA); dimethyl sulfoxide (DMSO), electrospray ionisation (ESI), heated-electrospray ionisation (H-ESI), linear trap 
quadrupole-Orbitrap (LTQ-Orbitrap), orthogonal partial least squares regression-discriminant analysis (OPLS-DA), quadrupole-Orbitrap (Q- 
Orbitrap), quadrupole-time-of-flight (Q-TOF), solid-phase extraction (SPE). 
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Instead, targeted analysis of phenolic and polyphenolic compounds can also be done 

by LC−MS. In this context, as reflected in Table 2.1, heated-electrospray ionisation 

(H-ESI) has been established as the most common option for the ionisation step of 

these compounds, especially in the negative mode. Moreover, several targeted 

LC−MS methodologies have been developed using low-resolution mass 

spectrometers. Thus, while the MRM mode is typically applied in QqQ instruments, 

full-scan or product-ion scan are employed in IT ones. Therefore, for instance, the 

quantification of 26 phenolic compounds in fruit extracts was carried out through 

LC−MS/MS, using H-ESI in the negative mode and a QqQ as the mass analyser. The 

obtained phenolic profile was then subjected to PCA to discriminate cranberry-based 

extracts from grape ones [30]. Alternatively, positive H-ESI ionisation can improve 

the ionisation efficiency of specific phenolic classes. For example, Mustafa et al. [42] 

quantified 36 phenolic compounds to evaluate significant differences between 

blueberry and strawberry and their corresponding jams. Hence, compound detection 

was carried out using a QqQ, and negative or positive H-ESI ionisation was chosen 

depending on the phenolic class. In this line, nine compounds —six anthocyanins, 

two flavonols, and one flavanone— were detected under the positive ionisation mode. 

Moreover, similarly, the identification of targeted coumarins and psoralens, which 

were previously quantified through LC-UV to authenticate lemon samples, was 

confirmed by LC−MS through MS1, MS2, and MS3 data acquired in the positive mode 

by the IT mass analyser [29]. 

Furthermore, targeted analysis has also been carried out through LC−HRMS, which 

allows the monitorisation of more compounds than LC−LRMS through the full-scan 

mode. For instance, 53 different targeted phenolic compounds, whose analytical 

reference standards were available, were determined by LC−HRMS in fruit-based 

extracts. In this case, the obtained phenolic profile allowed the authentication of 

cranberry-based extracts through PCA and PLS [33]. Moreover, LC−HRMS has also 

allowed the suspected analysis of these compounds, often in combination with 

targeted analysis. In this context, the suspected analysis of phenolic compounds is 
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frequently based on in-house databases built according to the existing literature data 

or the Phenol-Explorer database, an online tool containing information regarding 

phenolic and polyphenolic compounds in food products [45]. For instance, the 

phenolic LC−HRMS profile comprising targeted phenolic compounds and suspected 

curcuminoids was employed to assess the authenticity of turmeric and curry samples 

by PLS-DA [32]. In contrast, the Tagiasca Ligure EVOO authentication was 

addressed by means of a suspected LC−HRMS analysis using the entire Phenol- 

Explorer database. Besides, in this case, sterol data from the LipidMaps database was 

also combined in the subsequent chemometric analysis [44]. 

Aside from lipid and phenolic compounds, other metabolite families have also been 

exploited to address specific food fraud cases. In this line, Section 2.2 of this chapter 

contains the determination of the capsaicinoid and carotenoid profile through 

LC−HRMS to classify paprika samples according to their geographical origin and 

variety (Publication II). In this context, as shown in Table 2.2, some studies have 

already focused on these compounds for authentication purposes. 

Capsaicinoids are the compounds responsible for the spicy flavour of red peppers. 

Thus, since red pepper and its derived products are commonly used as food additives 

worldwide, LC−MS/MS detection of targeted capsaicinoids was proposed to assess 

the authentication of vegetable oils in front of waste cooking oil [46,47]. Moreover, 

Barbosa et al. [43] carried out the suspected LC−HRMS analysis of several 

capsaicinoids and capsinoids (combined with suspected phenolic analysis) in paprika 

samples. As a result, these compounds allowed the discrimination of paprika varieties 

for all the geographical origins under study. Furthermore, although these studies have 

proposed LC−MS-based methods to detect these compounds, their determination can 

also be performed by LC-UV with a maximum absorption level at 280 nm [48]. 



 

 
 

Table 2.2. Compilation of some LC profiling methodologies, focusing on capsaicinoids and carotenoids as chemical markers, to address 

different food authentication issues. 
 

 

Sample Compounds and extraction Chromatographic separation Detection 
system 

Data 
analysis 

Ref. 

 

CAPSAICINOIDS 
Adulteration 
Edible and 
crude vegetable 
oils 

3 capsaicinoids 
LLE with methanol:water (44:56, v/v), defatting step 
with hexane, and SPE with C18 cartridges and eluting 
with methanol:water (80:20, v/v) 

LC 
Agilent Zorbax Eclipse Plus C18 

column (50 × 2.1 mm, 1.8 µm) 
Solvents: A) water and B) 
acetonitrile, both with 0.1% formic 
acid (v/v) 

LRMS (QqQ) 
MRM 
ESI (+) 

- [47] 

Vegetable oils 2 capsaicinoids 
LLE with methanol, IAC, and elution with methanol 

 
 
 

Geographical origin and variety 

LC 
Hypersil Gold C18 column (100 × 
2.1 mm, 3.0 µm) 
Solvents: A) water with 0.1% 
formic acid (v/v) and B) acetonitrile 

LRMS (QqQ) 
MRM 
ESI (+) 

- [46] 

 

Paprika Suspected capsaicinoids LC HRMS (Q- PCA and [43] 
 SLE with water:acetonitrile (20:80, v/v) Ascentis Express C18 column (150 Orbitrap) PLS-DA   
  □ 2.1 mm, 2.7 µm) Full-scan (m/z 100    
  Solvents: A) water and B) – 1500) and DDA    
  acetonitrile, both with 0.1% formic H-ESI (-)    
  acid (v/v)     
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LLE with acetone:ethanol (40:60, v/v) 

Cultivar/botanical origin 
Olive oil 3 carotenoids 

LLE with hexane and SPE with C18 

cartridges eluting with acetone 
 
 
 

Geographical origin 

Solvents: A) water and B) acetonitrile 
 

LC 
Waters Spherisorb ODS-2 C18 reversed-phase column 
(250 × 4.6 mm, 5.0 µm) 
Solvents: A) 0.05 M tetrabutylammonium and 1 M 
ammonium acetate aqueous solution:methanol (2:8, v/v) 
and B) acetone:methanol (1:1, v/v) 

 
 
 

UV 
λexc: 430 nm 

 
 
 

PCA [50] 

 
 
 
 
 
 
 
 

aChlorophylls and xanthophylls (4 
carotenoids) 
Elution with acetone 
bβ-carotene (carotenoid) 
Elution with hexane, saponification 
with 10% KOH (v/v) in ethanol, and 
cleaning with water 

 
Solventsa: A) water, B) methanol, C) acetonitrile, and 
D) acetone 
Solventsb: A) acetonitrile and B) acetone 

 
Full-scan (m/z 
200 – 1000) and 
AIF 
APCI (+) 
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CAROTENOIDS  

Adulteration     

Sea buckthorn oil 3 carotenoids (lutein, lycopene, and 
food supplement β-carotene) 

LC 
Agilent Poroshell 120 column (100 × 2.1 mm, 2.7 µm) 

UV 
λexc: 450 nm 

- [49] 

 

Saffron Suspected carotenoids and flavonoids 
SLE with water:methanol (50:50, v/v) 

LC 
Phenomenex Synergi C18 column (250 × 4.6 mm, 4.0 

UV 
λexc: 250, 310, 

LDA [51] 

  µm) and 441 nm   
  Phenomenex Kinetex C18 column (250 × 4.6 mm, 5.0    
  µm)    
  Solvents: A) water and B) acetonitrile    

EVOO SPE with SupelcleanTM LC-Si SPE 
cartridges 

LC 
Accucore C18 column (100 × 2.1 mm, 2.6 µm) 

HRMS (Q- 
Orbitrap) 

PCA [52] 

 



 

 
 

 

Production system 
Hen 
eggs 

9 targeted carotenoids and suspected 
carotenoids 
LLE with hexane 

LC 
Agilent Zorbax Eclipse XDB-C18 column (150 × 4.6 mm) 
Solvents: A) methanol:water (90:10, v/v) and B) acetonitrile:2- 
propanol (63:37, v/v) 

UV 
λexc: 445 
nm 

PCA and 
kNN 

[53] 

 

All-ion fragmentation (AIF), atmospheric pressure chemical ionisation (APCI). 

Chapter 2. M
etabolom

ic profiling approaches  

- 89-  



-90-  

Chapter 2. Metabolomic profiling approaches 
 
 
 

Instead, carotenoids are natural pigments strongly involved in the final colour of 

several food products. As reported in Table 2.2, LC-UV has been extensively used to 

determine the carotenoid profile in different food matrices. Thus, for instance, van 

Ruth et al. [53] carried out the targeted and suspected LC-UV analysis of hen eggs, 

focusing on nine specific carotenoids and some reported in the literature, 

respectively. Since chickens do not produce carotenoids naturally, their content in 

hen eggs comes from hen feed, which depends on the production system (i.e., organic 

or conventional). In this line, the carotenoid profile allowed excellent chemometric 

sample classification according to the production system. Moreover, D’Archivio et 

al. [51] tentatively identified several carotenoid-related compounds in saffron using 

LC-UV at different wavelengths. Subsequently, the obtained profile was subjected to 

LDA for sample discrimination according to geographical origin. Similarly, 

Arrizabalaga-Larrañaga et al. [52] evaluated EVOOs’ carotenoid profile and other 

pigments (i.e., chlorophylls) to evaluate through PCA potential sample trends linked 

to their geographical origin. In this case, five targeted carotenoids were determined 

by LC−HRMS, using atmospheric pressure chemical ionisation (APCI) in the 

positive mode as the ionisation source. 

Finally, it is noteworthy to mention that capillary electrophoresis (CE) has also been 

used in some specific applications [54]. CE separates charged chemical analytes 

based on their migration through a silica capillary, filled with a background 

electrolyte and under a high electric field strength. However, it still presents some 

drawbacks compared to GC and LC (i.e., low sensitivity and robustness and relatively 

complex coupling to MS) that have limited their use in these metabolomic studies 

[55]. 
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2.2. RESULTS 
 

This chapter includes two scientific studies in which metabolomic profiling 

approaches, based on targeted LC−MS methods, were proposed to address the 

geographical origin authenticity of paprika samples by multivariate analysis. On the 

one hand, 36 phenolic compounds determined by LC−MS/MS were evaluated as 

chemical markers to address this issue. On the other hand, the capsaicinoid and 

carotenoid profile acquired by LC−HRMS, using APCI as the ionisation source, was 

proposed with the same purpose. 

The resulting scientific articles of these studies are herein presented as Publications I 

and II. 

 
 

Publication I: Scientific article 
 

Determination of phenolic compounds in paprika by ultrahigh performance liquid 

chromatography-tandem mass spectrometry: Application to product designation of 

origin authentication by chemometrics. 

Barbosa, S.; Campmajó, G.; Saurina, J.; Puignou, L.; Núñez, O. 
 

Journal of Agricultural and Food Chemistry. 2020, 68, 591. 
 
 
 

Publication II: Scientific article 
 

Determination of capsaicinoids and carotenoids for the characterization and 

geographical origin authentication of paprika by UHPLC–APCI–HRMS. 

Arrizabalaga-Larrañaga, A.; Campmajó, G.; Saurina, J.; Núñez, O.; Santos, F. J.; 

Moyano, E. 

LWT. 2021, 139, 110533. 
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2.2.1. PUBLICATION I 
 
 

Determination of phenolic compounds in paprika by ultrahigh performance liquid 

chromatography-tandem mass spectrometry: Application to product designation of 

origin authentication by chemometrics. 

Barbosa, S.; Campmajó, G.; Saurina, J.; Puignou, L.; Núñez, O. 
 

Journal of Agricultural and Food Chemistry. 2020, 68, 591. 
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ACCESS Metrics & More Article Recommendations *sı    Supporting Information 

 
 
 
 
 
 
 
 
 

■ INTRODUCTION 
Paprika is a spice obtained after drying and grinding fruits of the 
genus Capsicum that belongs to the Solanaceae family.1 Within 
this genus there are approximately 39 species, including wild, 
semidomestic, and domestic ones, such as Capsicum annuum, C. 
chinense, C. baccatum, C. frutescens, and C. pubescens, growing in 
different parts of the world, with C. annuum being the most 
usual.2,3 Paprika is commonly used to add flavor and color to 
many foods such as baked goods, beverages, meat, soup, ice 
cream, candy, and seasoning mixes4 but is also used in medicine, 
cosmetics, protective sprays, or even as adsorbents to remove 
contaminants.5−9 Paprika contains a large number of bioactive 
compounds with great health-promoting properties such as 
carotenoids (provitamin A), ascorbic acid (vitamin C), 
tocopherols (vitamin E), capsaicinoids, and phenolic com- 
pounds.10 Among them, it is worth noting the importance of 
phenolic compounds that are widely distributed in plants, many 
of which are essential secondary metabolites that contribute to 
the sensory properties of foods such as color and aroma.11 These 
phenolic and polyphenolic compounds have a high antioxidant 
activity and show potential health benefits such as vascular 
protection, antihepatotoxic, antiallergic, antiproliferative, anti- 
osteoporotic, anti-inflammatory, antitumor, antidiabetic, and 
antiobesity.12−14 

Current methods for the determination of polyphenols 
include global tests for the total polyphenolic content based 
on colorimetric or fluorimetric methodologies or more specific 
ones employing capillary electrophoresis, liquid chromatog- 
raphy, or gas chromatography techniques.1,14−16 By far, liquid 

 
 

chromatography with either UV detection or coupled to mass 
spectrometry is the most widely used technique for the 
determination of polyphenols.13,17 Nevertheless, the great 
chemical diversity of these compounds and the low concen- 
tration levels in which they are found make liquid chromatog- 
raphy coupled to mass spectrometry or tandem mass 
spectrometry (LC−MS(/MS)) the most effective method for 
the characterization, identification, and determination of 
polyphenols in paprika samples.11,18,19 Previous studies have 
reported that the main phenolic compounds found in paprika 
are vanillic, caffeic, ferulic, p-coumaric, and p-hydroxybenzoic 
acids.20 

Food manufacturers, as well as the public in general, are 
increasingly concerned about food quality attributes, and 
therefore, the demand for food products of a specific 
geographical origin grows. Within this context and with the 
aim of preserving the reputation of the products and supporting 
good practices in rural and agricultural activities, the European 
legislation has established several quality parameters related to 
the protection of geographical indications and appellations of 
origin of agricultural and food products (Council Regulation, 
EEC No. 510/200621): Protected Designation of Origin (PDO) 
that links the products with the defined geographical area where 
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the determination of 36 phenolic compounds in paprika. The proposed method showed good method performance with limits of 
quantitation between 0.03 and 50 μg/L for 16 compounds and between 50 μg/L and 1 mg/L for 12 compounds. Good linearity (R2 
> 0.995), run-to-run and day-to-day precisions (%RSD values < 12.3 and < 19.2%, respectively), and trueness (relative errors < 

Spain (La Vera PDO and Murcia PDO) and Czech Republic, each one including different flavor varieties (sweet, bittersweet, and 
spicy). Phenolic profiles and concentration levels showed to be good chemical descriptors to achieve paprika classification and 
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they are produced; Protected Geographical Indication (PGI) 
that links products to a geographical area where at least one step 
of production occurred; and Traditional Specialties Guaranteed 
(TSG) that protects traditional production methods.22 

In Spain, there are two production areas of paprika with PDO 
recognized by the European Union: La Vera, from the north of 
the province of Cac ́eres (Extremadura), and the province of 
Murcia. Despite having a common origin and practically parallel 
development, the production process is different in each of these 
areas.23 In both cases, the product is the result of drying and 
grinding the fruits of Capsicum species, but differences in fruit 
varieties and drying processes provide different organoleptic 
characteristics. The red fruits used for the production of La Vera 
paprika are dried with oak or holm oak firewood, by the 
traditional Vera system, and belong to the C. annuum varieties of 
the Ocales group (Jaranda, Jariza, and Jeromın ́) and Bola. In 
contrast, red fruits of C. annuum from the Bola variety are used 
for the production of Murcia Paprika PDO, of sweet flavor and 
with little weight, dried under sun conditions.1,21,24−26 

Paprika is a spice consumed worldwide that is susceptive of 
adulteration practices to attain economic benefits. The 
substitution of ingredients, the addition of (illegal) substances, 
and false declarations of origin are important and challenging 
issues facing the authorities of the food industry.27 Moreover, 
the characteristics of paprika, as well as the content of phenolic 
compounds, may differ due to multiple factors such as the 
varieties, climatic conditions, growing areas, water resources, 
ripening stage, agronomy conditions, and pre- and postharvest 
treatments.11 As a result, the content of phenolic and 
polyphenolic compounds in paprika products can be exploited 
as a source of analytical data to establish the product 
classification and authentication, both in the prevention of 
fraudulent adulterations and in the correct assignment of the 
PDO declarations. 

In this work, an ultrahigh performance liquid chromatog- 
raphy-electrospray-tandem mass spectrometry (UHPLC-ESI- 
MS/MS) method using a triple quadrupole (QqQ) analyzer has 
been developed for the determination and quantification of 36 
phenolic and polyphenolic compounds in paprika and 
subsequent characterization, classification, and authentication 
of paprika samples by multivariate chemometric methodologies. 
Chromatographic and electrospray ion source conditions were 
optimized, and the method performance was established by 
determining quality parameters such as linearity, limits of 
detection, limits of quantitation, run-to-run and day-to-day 
precisions, and trueness. 111 paprika samples belonging to La 
Vera PDO and Murcia PDO (Spain) and to Czech Republic 
were analyzed with the proposed methodology after applying a 
simple extraction method using acetonitrile/water (80:20 v/v) 
solution as the extracting agent. Then the contents of the 36 
phenolic and polyphenolic compounds were employed as 
chemical descriptors of the analyzed paprika samples to their 
classification and authentication by principal component 
analysis (PCA) and partial least squares regression-discriminant 
analysis (PLS-DA). 

■ MATERIALS AND METHODS 
Reagents and Solutions. All standards and chemicals used in this 

work were of analytical grade, unless otherwise indicated. Structures, 
family groups, CAS numbers, and suppliers of the 36 phenolic and 
polyphenolic compounds under study are indicated in Table S1 
(Supporting Information). Individual stock standard solutions (ca. 
1000 mg/L) were prepared in methanol in amber glass vials. 

Intermediate standard working solutions were prepared weekly from 
these individual stock standard solutions by appropriate dilution with 
water. All stock and intermediate working solutions were stored at 4 °C 
for no more than 1 month. LC−MS quality water, methanol, and 
acetonitrile (Chromasolv quality) were purchased from Honeywell 
(Riedel-de-Haen̈, Seelze, Germany). Formic acid (≥98%) was obtained 
from Sigma-Aldrich (St. Louis, MO, USA). 

Instrumentation. The determination of polyphenols and phenolic 
acids was carried out on an Open Accela UHPLC instrument (Thermo 
Fisher Scientific, San Jose, ́CA, USA), equipped with a quaternary pump 
and a CTC autosampler. The separation was performed by reversed- 
phase chromatography using an Ascentis Express C18 fused-core (100 
× 2.1 mm, 2.7 μm partially porous particle size) column from Supelco 
(Bellefonte, PA, USA) and gradient elution using 0.1% formic acid in 
water (solvent A) and 0.1% formic acid in acetonitrile (solvent B) as 
mobile phase components, with a mobile phase flow rate of 300 μL/ 
min. The elution gradient program was as follows: 0−5.5 min, isocratic 

elution at 5% solvent B; 5.5−6.5 min, linear gradient up to 10% solvent 

B; 6.5−12 min, isocratic elution at 10% followed by a 1 min increase to 

20% solvent B; 13−18 min, isocratic elution at 20% solvent B; 18−19 
min, linear gradient raising up to 50% solvent B and then 2 min elution 
at this percentage; 21−22 min, linear gradient to 95% solvent B and 3 
min keeping this composition of the mobile phase. Afterward, initial 
conditions for a 5 min column re-equilibration were returned, 
completing a total elution program time of 30 min. The chromato- 
graphic column was kept at room temperature, and an injection volume 
of 10 μL, full loop mode, was employed. 

The UHPLC instrument was coupled to a TSQ Quantum Ultra AM 
triple quadrupole (QqQ) mass analyzer (Thermo Fisher Scientific), 
equipped with hyperbolic quadrupoles and a heated-electrospray 
ionization (H-ESI) source. Nitrogen  with a purity of  99.98% was 
employed for the ESI sheath gas, ion sweep gas, and auxiliary gas at flow 
rates of 60, 0, and 20 a.u. (arbitrary units), respectively. Other H-ESI 
parameters were as follows: capillary voltage in negative ion mode, −2.5 
kV; H-ESI vaporizer temperature, 350 °C; ion transfer tube 
temperature, 350 °C. For compound quantitation and confirmation, 
multiple reaction monitoring (MRM) acquisition mode by recording 
two selected reaction monitoring (SRM) transitions (quantifier and 
qualifier transitions) was employed for all studied compounds except 
betulinic acid that showed no fragmentation under working conditions. 
A mass resolution of 0.7 m/z full width at half-maximum (FWHM) on 
both quadrupoles (Q1 and Q3) and a scan width of 0.5 m/z were used. 
Fragmentation was carried out by using argon as collision gas at a 
pressure of 1.5 mtorr, and the optimal normalized collision energies 
(NCEs) for each SRM transition monitored (quantifier and qualifier) 
are shown in Table 1. The precursor ion selected, precursor and 
product ion assignments, quantifier/qualifier ion ratios, and the tube 
lens offset voltage for each compound under study are also summarized 
in Table 1. To improve sensitivity, the acquired chromatogram was 
segmented into four windows (Table 1), and a dwell time of 50 ms and 
1 microscan were employed. The control of the UHPLC-ESI-MS/MS 
system and the data processing were performed by using Xcalibur 
software version 2.1 (Thermo Fisher Scientific). 

Samples and Sample Treatment. Paprika samples (total of 111), 
purchased from local markets in Spain and Czech Republic, were 
analyzed. The set included 72 La Vera PDO paprika samples (26 sweet, 
23 bittersweet, and 23 spicy flavors), 24 Murcia PDO paprika samples 
(12 sweet and 12 spicy flavors), and 15 Czech Republic paprika samples 
(5 sweet, 5 smoked-sweet, and 5 spicy flavors). 

Sample treatment was performed following a previously described 
method.1,28 Briefly, 0.3 g of paprika was extracted with 3 mL of 
water:acetonitrile (20:80 v/v) solution in a 15 mL PTFE tube. 
Extraction was performed by stirring in a vortex mixer for 1 min (Stuart, 
Stone, United Kingdom) followed by sonication for 15 min (2510 
Branson ultrasonic bath, Hampton, NH, USA). Then sample extracts 
were centrifuged for 30 min at 4500 rpm (Rotana 460 HR centrifuge, 
Hettich, Germany), and the supernatant extract was filtered through 
0.45 μm nylon filters (Whatman, Clifton, NJ, USA) and stored at −18 
°C in 2 mL glass injection vials until analysis. 
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Table 1. Instrumental MRM Acquisition Parameters 
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3 14.4 21 veratric acid −86 181.0 [M−H]− 136.9 15 [M−H−CO2]− 107.0 25 [M−H−C2H2O3]− 5.9 
3 14.4 22 ferulic acid −91 193.2 [M−H]− 134.1 18 [M−H−C2H3O2]−• 178.1 14 [M−H−CH3]−• 1.3 
3 14.7 23 sinapic acid −91 223.0 [M−H]− 207.9 15 [M−H−CH3]−· 163.8 18 [M−H−C2H3O2]−· 1.9 
3 14.9 24 polydatin −144 389.1 [M−H]− 227.0 20 [M−H−C6H10O5]− 185.2 38 [M−H−C8H12O6]− 9.8 
3 15.0 25 rutin −139 609.0 [M−H]− 300.1 35 [M−H− 270.9 60 [M−H− 1.8 

 
3 

 
15.7 

 
26 

 
procyanidin A2 −155 

 
575.1 [M−H]− 

 
284.9 

 
22 

C12H21O9]−•
 

[M−H− 
 

449.0 
 

23 

C13H22O10]−
 

[M−H−C6H6O3]− 
 

1.3 

3−4 15.7 27 nepetin-7-glucoside −135 477.1 [M−H]− 315.2 25 [M−H−C6H10O5]− 299.7 35 [M−H− 1.4 

3−4 16.8 28 hesperidin −139 608.8 [M−H]− 301.0 20 [M−H− 325.1 35 [M−H− 21.8 

 

3−4 17.2 29 homoplantaginin −163 461.0 [M−H]− 283.1 34 [M−H−C7H14O5]− 297.1 35 [M−H−C9H8O3]− 4.2 
3−4 17.7 30 fisetin −108 285.1 [M−H]− 135.1 23 [M−H−C8H6O3]− 120.9 27 [M−H−C8H4O4]− 1.9 
3−4 17.8 31 rosmarinic acid −115 358.7 [M−H]− 161.0 18 [M−H−C9H10O5]− 133.2 40 [M−H− 4.3 

4 19.8 32 morin −91 301.0 [M−H]− 151.1 21 [M−H−C8H6O3]− 148.9 29 [M−H−C7H4O4]− 1.8 
4 20.2 33 quercetin −121 300.9 [M−H]− 151.1 25 [M−H−C7H2O4]− 179.1 20 [M−H−C6H2O3]− 1.8 
4 20.5 34 kaempferol −107 285.0 [M−H]− 185.2 25 [M−H−C4H4O3]− 117.2 43 [M−H−C7H4O5]− 1.1 
4 21.6 35 asiatic acid −126 487.3 [M−H]− 409.1 35 [M−H−C2H6O3]− 379.4 45 [M−H−C3H8O4]− 1.3 

 

precursor ion quantifier product ion qualifier product ion 

 
segment 

time 
(min) 

 
number 

 
compound 

tube lens offset voltage 
(V) 

 
m/z 

 
assignment 

  
m/z 

NCE 
(eV) 

 
assignment 

  
m/z 

NCE 
(eV) 

 
assignment 

quantifier/qualifier ion 
ratio 

1 0.7 1 D-(−)-quinic acid −50 190.9 [M−H]−  85.2 20 [M−H−C3H6O4]−  93.2 20 [M−H−C4H2O3]− 2.6 
1 1.0 2 arbutin −124 271.0 [M−H]−  161.3 10 [M−H−C6H10O5]−  108.7 25 [M−H−C6H6O2]− 10.0 
1 1.4 3 gallic acid −95 169.0 [M−H]−  125.1 15 [M−H−CO2]−  79.0 23 [M−H−C2H2O4]− 17.5 
1 2.3 4 homogentisic acid −94 167.2 [M−H]−  123.0 13 [M−H−CO2]−  121.9 23 [M−H−CHO2]−• 2.0 
1 4.9 5 protocatechuic aldehyde −72 137.0 [M−H]−  135.9 20 [M−H−H]−•  92.1 25 [M−H−CHO2]−• 3.9 
1 5.3 6 4-hydroxybenzoic acid −90 136.9 [M−H]−  93.2 20 [M−H−CO2]−  65.0 35 [M−H−C2O3]− 20.2 
1 5.7 7 gentisic acid −87 153.0 [M−H]−  109.0 20 [M−H−CO2]−  81.4 20 [M−H−C2O3]− 15.6 
1−2 8.4 8 chlorogenic acid −148 353.0 [M−H]−  190.9 21 [M−H−C9H6O3]−  85.1 44 [M−H− 23.7 

2 8.5 9 (+)-catechin −73 288.9 [M−H]− 
 

244.8 15 [M−H−C2H4O]− 
 

203.2 20 [M−H−C4H6O2]− 2.0 
2 8.8 10 caffeic acid −63 179.0 [M−H]−  134.9 16 [M−H−CO2]−  133.8 25 [M−H−CHO2]−• 6.2 
2 9.2 11 homovanillic acid −97 181.1 [M−H]−  137.2 10 [M−H−CO2]−  122.0 16 [M−H−C2H3O2]−• 6.3 
2 9.4 12 syringic acid −83 196.9 [M−H]−  182.0 14 [M−H−CH3]−•  123.1 24 [M−H−C2H2O3]− 2.8 
2 10.3 13 vanillin −77 151.2 [M−H]−  136.0 15 [M−H−CH3]−•  91.9 20 [M−H−C2H3O2]−• 7.4 
2−3 11.6 14 (−)-epicatechin −95 289.1 [M−H]−  244.9 16 [M−H−C2H4O]−  203.0 20 [M−H−C4H6O2]− 1.9 
2−3 11.9 15 ethyl gallate −97 197.2 [M−H]−  123.9 22 [M−H−C3H5O2]−•  169.0 15 [M−H−C2H4]− 1.6 
2−3 12.2 16 p-coumaric acid −85 163.1 [M−H]−  118.8 17 [M−H−CO2]−  93.1 35 [M−H−C3H2O2]− 14.8 
2−3 12.3 17 (−)-epigallocatechin −125 457.0 [M−H]−  169.0 19 [M−H−  125.2 39 [M−H− 3.1 

 
3 

 
12.5 

 
18 

gallate 
syringaldehyde −57 

 
181.1 [M−H]− 

 
166.2 

 
13 

C15H12O6]−
 

[M−H−CH3]−• 
 

150.9 
 

21 

C16H12O8]−
 

[M−H−CH2O]− 
 

1.3 
3 12.9 19 umbelliferone −94 160.9 [M−H]− 133.1 20 [M−H−CO]− 105.1 23 [M−H−C3H4O]− 2.9 
3 14.2 20 procyanidin C1 −151 864.8 [M−H]− 407.0 40 [M−H− 286.9 30 [M−H− 1.4 
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A quality control (QC) solution was prepared by mixing 50 μL of 
each sample extract. This QC was employed to evaluate the 
repeatability of the method and the robustness of the chemometric 
results. 

Samples were randomly analyzed with the proposed UHPLC-ESI- 
MS/MS method. Moreover, a QC and an instrumental chromato- 
graphic blank of acetonitrile were also injected every 10 analyzed 
samples. 

Data Analysis. Principal component analysis (PCA) and partial 
least squares regression-discriminant analysis (PLS-DA) calculations 
were performed using Stand Alone Chemometrics Software (SOLO) 
from Eigenvector Research.29 A detailed description about the 
theoretical background of these methods can be found elsewhere.30 

X-data matrices in both PCA and PLS-DA consisted of the 
concentration levels of the 36 phenolic and polyphenolic compounds 
quantified in the set of paprika samples and QCs, whereas the Y-data 
matrix in PLS-DA defined the membership of each sample in the 
corresponding class. Data was autoscaled to equalize the influence of 
major and minor compounds on the descriptive models. Scatter plots of 
scores and loadings from principal components (PCs), in PCA, and 
from latent variables (LVs), in PLS-DA, were employed to study the 
distribution of samples and variables (quantified compounds), 
revealing patterns that could be correlated with their characteristics. 

■ RESULTS AND DISCUSSION 
UHPLC Chromatographic Separation. As commented in 

the Introduction section, one of the objectives of the present 
work is the development of an LC−MS/MS method for the 
determination of a total of 36 phenolic and polyphenolic 
compounds, which belong to different phenolic classes, in 
paprika samples. The separation of polyphenols and phenolic 
acids in food products by LC−MS techniques is normally 
addressed by reversed-phase chromatography under gradient 
elution conditions using acidified water and methanol or 
acetonitrile as mobile phase components.18 For that purpose, 
as a first attempt in this work, the separation was carried out with 
an Ascentis Express C18 fused-core (100 × 2.1 mm, 2.7 μm 
partially porous particle size) column, using water and 
acetonitrile, both acidified with 0.1% formic acid, as mobile 
phase components, and applying a universal gradient elution 
profile from 0 to 90% acetonitrile in 25 min. Under these 
conditions, multiple co-elutions were observed, and almost all 
the analyzed compounds eluted within the first 5 min, showing 
that, when acetonitrile was used as the organic mobile phase 
modifier, low elutropic strength was needed for the elution of 
this family of compounds by reversed-phase chromatography. 
Therefore, the separation of the studied compounds was 
optimized by combining isocratic and linear gradient elution 
steps at low acetonitrile contents (5 to 50%) to improve 
separation among the more polar phenolic acids, increasing then 
the acetonitrile content to elute all the compounds. It should be 
noted that, due to the high number of compounds under study, a 
compromise between chromatographic resolution and analysis 
time was considered. Figure 1 shows the proposed UHPLC 
chromatographic separation for the 36 studied phenolic and 
polyphenolic compounds (see the elution program in the 
Instrumentation section). As can be seen, an acceptable 
chromatographic separation was obtained in less than 26 min, 
although still some partial and total co-elutions were found for 
some compounds, such as for homovanillic and syringic acids 
(peaks 11 and 12), p-coumaric acid, (−)-epigallocatechin 
gallate, and syringaldehyde (peaks 16, 17, and 18), and veratric 
and ferulic acids (peaks 21 and 22). However, the use of MS 
detection under MRM acquisition mode allowed us to overcome 
problems dealing with partial and total co-elutions for the 
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Figure 1. UHPLC-ESI-MS chromatographic separation of the 36 studied compounds (standard of 500 μg/L in water) under the proposed elution 
program (see Instrumentation). MS acquisition was performed in secondary ion monitoring (SIM) mode by following the [M−H]− ion for each 
compound. Peak identification: 1, D-(−)-quinic acid; 2, arbutin; 3, gallic acid; 4, homogentisic acid; 5, protocatechuic aldehyde; 6, 4-hydroxybenzoic 
acid; 7, gentisic acid; 8, chlorogenic acid; 9, (+)-catechin; 10, caffeic acid; 11, homovanillic acid; 12, syringic acid; 13, vanillin; 14, (−)-epicatechin; 15, 
ethyl gallate; 16, p-coumaric acid; 17, (−)-epigallocatechin gallate; 18, syringaldehyde; 19, umbelliferone; 20, procyanidin C1; 21, veratric acid; 22, 
ferulic acid; 23, sinapic acid; 24, polydatin; 25, rutin; 26, procyanidin A2; 27, nepetin-7-glucoside; 28, hesperidin; 29, homoplantaginin; 30, fisetin; 31, 
rosmarinic acid; 32, morin; 33, quercetin; 34, kaempferol; 35, asiatic acid; 36, betulinic acid. 

 
correct determination of the studied compounds. In this regard, 
different SRM transitions were monitored for the co-eluting 
compounds, and no ion-suppression effects within ESI were 
present (that will be addressed in the next section). 

UHPLC-ESI-MS/MS Acquisition Conditions. The ioniza- 
tion of the studied compounds under H-ESI conditions was 
thoroughly investigated. First, ion source parameters were tuned 
to generate the highest number of ions and to improve the 
obtained signal. For that purpose, these parameters were 
optimized by infusion of 100 mg/L standard solutions of each 
one of the studied compounds at a flow rate of 15 μL/min and 
using the syringe pump integrated in the TSQ QqQ instrument, 
mixed with 200 μL/min of a 0.1% formic acid acidified water/ 
acetonitrile (1:1 v/v) solution by means of a Valco zero dead 
volume tee piece from Supelco. Then, for each one of the 
indicated ion source parameters, the optimal value was selected 
as the one providing the highest signal for most of the studied 
compounds (see the Instrumentation section). In contrast, a 
specific ESI tube lens offset voltage was selected for each 
compound, and the optimal values obtained are summarized in 
Table 1. 

Full-scan MS spectra (m/z 50−1000) of individual solutions 
of all the studied compounds in negative ionization mode were 
also registered. As an example, Figure S1a (Supporting 
Information) shows the obtained MS spectra of syringaldehyde 
and ethyl gallate. As can be seen, the most abundant ion (base 
peak) in both spectra is the deprotonated molecule, [M−H]−, at 
m/z 181.1 and 197.2 for syringaldehyde and ethyl gallate, 
respectively. Similar results were obtained for most of the 
studied phenolic and polyphenolic compounds, with the 
deprotonated molecule being the spectrum base peak. More- 
over, adduct formation with the mobile phase components was 
not observed. In general, no ion in-source fragmentation was 
obtained, except some particular compounds. For instance, in 
the case of polydatin, the spectrum base peak was not the 
deprotonated molecule but the [M−H−C6H10O5]− ion at m/z 
227.0, although the [M−H]− was also very abundant. In the case 
of syringaldehyde (Figure S1a) and gentisic and 4-hydrox- 
ybenzoic acids, ion source fragmentations with relative 
intensities lower than 40 and 60%, respectively, were observed. 
Finally, it should be mentioned that, in most of the MS spectra 

 
obtained, a signal at m/z 91.2 was also observed due to the dimer 
formation of the formic acid present in the mobile phase 
([HCOOH−HCOO]−). After the study of the MS spectra, the 
deprotonated ion was then proposed as the precursor ion for 
further fragmentation studies (Table 1). 

Fragmentation of the phenolic and polyphenolic compounds 
under study in the QqQ mass analyzer was also evaluated under 
tandem MS conditions. As an example, Figure S1b,c 
(Supporting Information) shows the normalized collision 
energy curves and the product ion scan spectra, respectively, 
for syringaldehyde and ethyl gallate. The two most intense and 
characteristic product ions of each compound were selected for 
the quantifier and qualifier SRM transitions, and they are 
summarized in Table S1, together with the optimal NCE for 
each SRM transition and the quantifier/qualifier ion ratio. As 
can be seen in the table, all the compounds with partial or total 
co-elution in the chromatographic separation previously 
commented (Figure 1) showed different precursor-product 
ion transitions for both quantifier and qualifier ions. 

In addition, the ion-suppression effect in the ESI source for 
those co-eluting compounds was evaluated by comparing their 
signal when analyzed individually and under co-elution 
conditions at the same concentration level. In all cases, ion 
suppression was lower than 10%, in agreement with previous 
reported studies.31 Therefore, baseline chromatographic sepa- 
ration is not mandatory because these co-elutions can be 
selectively resolved by tandem MS using the appropriate SRM 
transitions. 

Instrumental Method Performance. Method perform- 
ance was evaluated from instrumental quality parameters such as 
limits of detection, limits of quantitation, linearity, run-to-run 
and day-to-day precisions, and trueness. The obtained results for 
the 36 phenolic and polyphenolic compounds determined are 
summarized in Table 2. 

Limits of detection (LODs), based on a signal-to-noise ratio 
of 3:1, were assessed by analyzing standard solutions at low 
concentration levels, obtaining values in a wide range depending 
on the compound (from 0.01 μg/L for D-(−)-quinic acid to 1.4 
mg/L for kaempferol). Limits of quantitation (LOQs), based on 
a signal-to-noise ratio of 10:1, in the range of 0.03 μg/L−4.5 
mg/L were then established. Of those, 7 compounds showed 
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Table 2. Method Performance: Instrumental Quality Parameters 

 
run-to-run precision (RSD, %) day-to-day precision (RSD, %) trueness (relative error, %) 

number compound LOD (μg/L) LOQ (μg/L) linearity (R2) 5 μg/L 50 μg/L 500 μg/L 10 mg/L  5 μg/L 50 μg/L 500 μg/L 10 mg/L  5 μg/L 50 μg/L 500 μg/L 10 mg/L 
1 D-(−)-quinic acid 0.01 0.03 0.998 7.0 4.9 4.7 2.2  14.6 6.3 6.0 4.2  5.0 0.1 5.2 3.6 
2 arbutin 0.22 0.73 0.996 9.5 8.2 4.5 1.9  16.5 9.7 5.2 4.9  4.6 0.9 2.3 2.1 
3 gallic acid 964 3214 0.995    3.0     3.7     4.1 
4 homogentisic acid 770 2566 0.996    2.5     3.0     3.8 
5 protocatechuic aldehyde 2 7 0.995 6.4 5.3 3.2 2.8  8.9 6.1 5.6 4.4  5.6 2.7 1.5 3.0 
6 4-hydroxybenzoic acid 21 71 0.999  8.0 3.8 1.4   9.5 4.8 3.9   5.3 4.1 3.1 
7 gentisic acid 11 35 0.998  1.5 0.4 0.2   9.4 7.9 5.0   15.0 6.8 3.3 
8 chlorogenic acid 0.87 3 0.999  4.0 2.9 2.1   6.7 4.8 3.7   7.9 0.3 4.7 
9 (+)-catechin 161 537 0.999    2.2     5.0     1.2 
10 caffeic acid 18 60 0.995  5.1 2.6 2.5   8.9 6.1 2.9   9.7 6.0 3.1 
11 homovanillic acid 425 1417 0.995    2.3     4.4     1.5 
12 syringic acid 18 59 0.998  7.9 4.0 1.9   15.9 8.6 3.3   14.0 12.6 0.8 
13 vanillin 10 33 0.998  5.4 1.5 1.1   6.6 2.3 1.7   3.4 4.5 1.7 
14 (−)-epicatechin 1282 4272 0.999    2.8     4.3     3.6 
15 ethyl gallate 262 872 0.998   3.1 1.3    6.7 2.6    9.4 6.9 
16 p-coumaric acid 4 12 0.995  5.8 2.9 2.0   14.1 4.3 4.1   13.7 5.5 8.2 
17 (−)-epigallocatechin gallate 770 2565 0.999    1.1     2.0     0.9 
18 syringaldehyde 2 8 0.999  9.9 5.0 0.7   10.6 5.5 1.9   4.5 0.3 1.5 
19 umbelliferone 0.37 1 0.998 12.3 6.4 3.4 2.3  15.4 8.3 5.6 5.4  9.4 5.3 3.4 4.0 
20 procyanidin C1 359 1196 0.998    1.0     2.6     3.9 
21 veratric acid 281 936 0.999    3.9     8.5     1.4 
22 ferulic acid 2 6 0.997 6.2 4.4 5.5 4.0  18.5 9.3 7.8 6.0  13.3 0.2 0.9 0.4 
23 sinapic acid 25 84 0.995   5.9 2.5    6.5 5.3    1.4 0.7 
24 polydatin 0.14 0.48 0.999 5.9 2.3 2.6 2.2  19.2 13.6 5.8 2.8  11.1 4.4 2.1 4.3 
25 rutin 3 9 0.996  5.0 4.8 4.4   15.7 7.3 6.4   2.6 3.0 4.4 
26 procyanidin A2 170 566 0.998    1.1     2.5     2.1 
27 nepetin-7-glucoside 0.06 0.21 0.998 6.2 5.0 3.0 1.9  12.6 7.7 5.8 5.1  12.3 8.0 4.0 3.8 
28 hesperidin 0.31 1 0.999 7.9 4.1 2.7 2.1  16.3 5.3 5.2 3.8  10.5 0.7 2.3 1.6 
29 homoplantaginin 0.19 0.63 0.998 9.1 3.5 1.9 1.3  11.4 4.7 5.7 3.3  11.8 1.2 4.0 1.9 
30 fisetin 759 2529 0.995    1.0     1.4     4.4 
31 rosmarinic acid 12 41 0.999  2.7 1.2 0.8   5.2 4.4 2.0   7.3 0.6 1.9 
32 morin 209 696 0.999  4.5 2.1 1.2   9.6 6.2 3.5   8.6 2.6 2.2 
33 quercetin 89 296 0.996   1.8 1.2    7.1 2.0    1.4 7.0 
34 kaempferol 1357 4522 0.998    1.6     2.7     3.4 
35 asiatic acid 210 700 0.995    6.7     13.2     0.9 
36 betulinic acid 265 885 0.998    7.3     10.3     5.6 
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Table 3. Concentrations of Studied Compounds in the Analyzed Paprika Samplesa 

 
 

 
3 gallic acid <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 
4 homogentisic acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 
5 protocatechuic 

aldehyde 
0.1−0.6 0.3 ± 0.1 0.2−0.7 0.3 ± 0.1 0.1−0.6 0.3 ± 0.1 0.1−0.5 0.4 ± 0.1 0.4−0.8 0.7 ± 0.1 0.6−0.8 0.7 ± 0.1 0.5−0.6 0.5 ± 0.1 0.6−0.8 0.7 ± 0.1 

8 chlorogenic acid 5.0−10.1 7.4 ± 1.5 5.3−10.4 6.9 ± 1.9 5.1−9.7 6.8 ± 1.2 5.2−6.8 6.0 ± 0.6 7.1−12.4 10.4 ± 1.5 6.6−7.5 7.1 ± 0.4 5.6−8.3 7.0 ± 1.0 5.8−8.4 7.0 ± 1.0 
10 caffeic acid 1.4−2.8 1.8 ± 0.3 1.2−2.0 1.7 ± 0.2 1.0−2.4 1.6 ± 0.3 1.8−2.6 2.2 ± 0.3 1.6−2.0 1.8 ± 0.1 2.3−5.2 3.2 ± 1.2 2.3−7.4 4.0 ± 2.2 1.9−5.5 3.0 ± 1.5 
11 homovanillic acid 2.8−8.9 6.1 ± 1.7 1.6−10.3 5.6 ± 2.3 0.5−12.9 5.9 ± 2.8 n.d. n.d. n.d. n.d. n.d. n.d. 4.23−5.0 4.6 ± 0.3 n.d. n.d. 
13 vanillin 1.9−11.2 3.9 ± 2.0 0.9−6.4 3.3 ± 1.4 1.4−7.2 3.5 ± 1.5 3.2−4.4 3.7 ± 0.3 2.3−3.3 2.7 ± 0.3 2.1−3.3 2.7 ± 0.5 1.9−2.7 2.3 ± 0.3 1.7−2.8 2.2 ± 0.5 
16 p-coumaric acid 1.6−5.6 3.3 ± 1.0 2.1−4.5 3.3 ± 0.7 1.4−5.0 3.1 ± 0.9 3.9−10.3 8.2 ± 1.8 1.3−3.7 2.8 ± 0.8 9.7−10.7 10.1 ± 0.4 7.4−8.7 8.0 ± 0.6 6.2−8.6 7.3 ± 1.0 
18 syringaldehyde 4.5−10.8 7.7 ± 1.7 4.0−14.3 8.5 ± 2.9 1.2−14.8 8.0 ± 3.0 0.8−1.8 1.2 ± 0.3 0.8−1.8 1.2 ± 0.4 1.4−1.8 1.6 ± 0.2 3.0−4.1 3.6 ± 0.5 1.6−1.9 1.7 ± 0.1 
19 umbelliferone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.1−0.2 0.1 ± 0.1 n.d. n.d. n.d. n.d.. 
22 ferulic acid 1.4−16.3 7.1 ± 3.4 2.6−8.1 5.2 ± 1.6 1.3−9.9 5.7 ± 2.4 2.8−19.1 10.3 ± 5.2 4.7−16.1 9.6 ± 3.6 11.8− 

18.4 
14.9 ± 2.7 12.8− 

19.2 
15.2 ± 2.8 5.4−12.1 9.5 ± 3.2 

23 sinapic acid 2.0−5.7 3.4 ± 1.0 1.9−5.0 3.2 ± 1.0 1.6−4.8 3.1 ± 1.0 1.2−6.8 2.6 ± 1.5 1.7−4.5 3.2 ± 0.9 1.9−4.6 3.7 ± 1.1 2.1−5.5 3.6 ± 1.4 3.1−4.5 4.1 ± 0.6 
25 rutin 1.3−6.1 3.0 ± 1.2 1.4−5.0 2.9 ± 0.8 1.3−4.5 2.8 ± 0.9 1.0−1.8 1.4 ± 0.3 3.8−5.4 4.5 ± 0.5 3.4−3.8 3.6 ± 0.2 2.8−3.3 3.0 ± 0.2 2.5−3.0 2.6 ± 0.2 
27 nepetin-7- 

glucoside 
n.d. − 0.2 0.1 ± 0.1 n.d.−0.2 0.1 ± 0.1 n.d.−0.1 0.1 ± 0.0 0.1−0.2 0.2 ± 0.0 0.1−0.2 0.1 ± 0.0 0.3−0.4 0.3 ± 0.0 0.2−0.2 0.2 ± 0.0 0.6−0.7 0.6 ± 0.0 

28 hesperidin <LOQ− 
0.4 

0.4 ± 0.0 <LOQ− 
5.1 

2.6 ± 3.6 <LOQ− 
5.8 

5.8 ± 0.0 0.1−0.5 0.2 ± 0.1 3.8−6.1 4.6 ± 0.7 7.1−9.2 7.9 ± 1.0 1.2−2.4 1.9 ± 0.5 <LOQ− 
0.2 

0.1 ± 0.10 

29 homoplantaginin 0.001− 0.004 ± 0.002− 0.005 ± 0.001− 0.004 ± 0.004− 0.008 ± 0.008− 0.011 ± 0.011− 0.031 ± 0.004− 0.012 ± 0.011− 0.027 ± 
  0.008 0.002 0.009 0.002 0.008 0.002 0.011 0.002 0.017 0.003 0.040 0.012 0.024 0.010 0.038 0.012 
31 rosmarinic acid 1.1−5.5 2.3 ± 1.8 1.4−8.3 3.8 ± 2.5 1.1−5.6 2.5 ± 1.6 1.5−2.1 1.7 ± 0.2 1.2−4.4 3.6 ± 0.9 5.7−10.4 7.4 ± 1.8 3.7−7.5 4.7 ± 1.6 2.9−4.8 3.7 ± 0.7 

33 quercetin <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 
34 kaempferol <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 
36 betulinic acid 1.2−6.4 3.2 ± 1.6 1.4−9.1 3.6 ± 1.5 1.0−8.3 3.0 ± 1.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

an.d.: not detected; SD: standard deviation. 
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LOQ values equal to or below 1 μg/L, 9 compounds were in the 
range of 1−50 μg/L, 12 compounds were in the range 50 μg/L− 
1 mg/L, and only 8 compounds provided LOQ values higher 
than 1 mg/L. Taking into account that these compounds are 
naturally occurring secondary metabolites in plant-based 
products and the huge variety of compounds and concentration 
levels that can be found (usually at the relatively low to high mg/ 
L level), these values are acceptable for the quantitation of this 
family of compounds in paprika samples. 

External calibration curves using phenolic and polyphenolic 
standards prepared in water and based on peak area at 
concentrations above LOQ to 15 mg/L were established. Very 
good linearities with correlation coefficients (R2) higher than 
0.995 were obtained. 

Run-to-run and day-to-day precisions for compound 
quantification were also calculated at four concentration levels 
(5 μg/L, 50 μg/L, 500 μg/L, and 10 mg/L), and the results are 
also given in Table 2. In the case of run-to-run precision, five 
replicate determinations for each concentration level were 
performed within the same day. For day-to-day precision, 15 
replicate determinations at each concentration level were carried 
out within three nonconsecutive days (five replicate determi- 
nations each day). In general, run-to-run precisions below 
12.3%, expressed as percent relative standard deviations (% 
RSD), were obtained in all cases. As expected, better precisions 
were achieved at the highest concentration level evaluated (10 
mg/L), with RSD values in the range of 0.2−4.4% (for 33 
compounds), and only asiatic and betulinic acids showed higher 
RSD values (6.7 and 7.3%, respectively). Precision slightly 
worsened at lower concentrations for those compounds that 
were still detected under the selected conditions, but the figures 
of merit were very acceptable, with values below 5.9, 9.9, and 
12.3% for the 500, 50, and 5 μg/L concentration levels, 
respectively. RSD values slightly increased when calculating day- 
to-day precisions, as expected. Nevertheless, RSD values below 
13.2, 8.6, 15.9, and 19.2% for the 10 mg/L, 500 μg/L, 50 μg/L, 
and 5 μg/L concentration levels, respectively, were quite 
acceptable, taking into consideration the evaluated concen- 
tration levels and the methodology employed. 

Method trueness was also evaluated at the four concentration 
levels by comparing the spiked concentrations with those 
calculated by external calibration using standards prepared in 
water. Relative errors (%) lower than 8.2, 12.6, 15.0, and 13.3% 
for the 10 mg/L, 500 μg/L, 50 μg/L, and 5 μg/L concentration 
levels, respectively, were obtained. 

The results showed that the proposed UHPLC-ESI-MS/MS 
method was very satisfactory in terms of sensitivity, precision, 
and trueness for the determination of the 36 studied phenolic 
and polyphenolic compounds at the expected concentration 
levels. 

Sample Analysis. The applicability of the proposed 
UHPLC-ESI-MS/MS method for the determination of the 36 
studied compounds in paprika was evaluated. Paprika samples 
were extracted by solid−liquid extraction with water:acetonitrile 
(20:80 v/v) as described in the Materials and Methods. The 
obtained extracts were then analyzed in triplicate with the 
proposed analytical method, and targeted compounds were 
quantified by external calibration. Quantitation results for all the 
111 paprika samples analyzed are provided in the Supporting 
Information. As an overview, Table 3 shows, for each 
compound, the concentration ranges and the mean values ± 
standard deviations found in the analyzed paprika samples 
depending on the production region (La Vera PDO, Murcia 

PDO, and Czech Republic) and the paprika flavors. Gallic acid, 
quercetin, and kaempferol were always detected below the LOQ 
value. 16 of the studied compounds (D-(−)-quinic acid, arbutin, 
4-hydroxybenzoic acid, gentisic acid, (+)-catechin, syringic acid, 
(−)-epicatechin, ethyl gallate, (−)-epigallocatechin gallate, 
procyanidin C1, veratric acid, polydatin, procyanidin A2, fisetin, 
morin, and asiatic acid) were not detected in any of the 111 
paprika samples (these compounds were not included in Table 
3). Anyway, these compounds were preliminarily selected for 
this study because of their presence in other similar matrices 
such as Serbian red spice paprika, Italian red sweet pepper, or in 
red pepper fruits and seed oils.11,32−34 

Data was first analyzed with univariate methods trying to 
recognize some tentative biomarkers of the different paprika 
types. The average concentrations and boxplots comparing the 
three geographical origins and/or the flavor varieties suggested 
that some compounds were up- or down-expressed depending 
on the classes. Some representative examples are given in the 
boxplots with whiskers of Figure S2 (Supporting Information) 
including model compounds much more abundant in one of the 
classes and others quite homogeneously distributed. 

In more details, some compounds were only found in some 
specific paprika samples depending on the production region, so 
they could be considered as putative markers with high 
selectivity with respect to origins. For example, homogentisic 
acid was only detected in Czech Republic samples, although 
always below the LOQ. Umbelliferone was only found, at low 
concentrations, in the spicy flavor paprika from Czech Republic, 
while betulinic acid was only found in La Vera PDO samples. 

Other general patterns were extracted concerning non- 
selective compounds. For instance, homoplantaginin, rosmar- 
inic acid, and nepetin-7-glucoside exhibited concentrations 3- to 
10-fold higher in Czech Republic samples than in the other 
origins. A similar trend was found with hydroxycinnamic acids, 
also more abundant in Czech Republic paprika. For La Vera 
PDO, homovanillic acid and, especially, syringaldehyde, were 
quite characteristic. In contrast, no unique or featured molecules 
were encountered for Murcia samples, which displayed, in 
general, intermediate concentration values between La Vera and 
Czech Republic. As an example, Figure S3 (Supporting 
Information) depicts bar plots showing the distribution of 
three selected compounds (syringaldehyde, rutin, and nepetin- 
7-glucoside) in the analyzed paprika samples. It can be seen that 
rutin shows quite similar levels within all the paprika samples. In 
contrast, as commented above, syringaldehyde and nepetin-7- 
glucoside are more characteristic of La Vera PDO and Czech 
Republic samples, respectively. These clear differences in 
phenolic and polyphenolic distributions and concentrations 
depending on the region and flavor varieties may allow us to 
propose polyphenols as good chemical descriptors to address 
paprika authentication. 

The significance of the differences in the concentration values 
among classes was evaluated using statistical tests. As a result, 
most of the previous considerations regarding the occurrence of 
quite featured compounds of different classes could be 
confirmed. Results commented here have been limited to 
various illustrative cases since a comprehensive analysis dealing 
with all variables seems to be excessive. Data given as follows 
corresponds to the probability (p values) of Student’s t test for 
the comparison of means of two classes before a Fisher test of 
variances. We assume a confidence level of 0.99, so when p < 
0.01, differences in the analyte concentrations among the classes 
are significant. Results reveal the existence of several compounds 
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Figure 2. PCA score plot of PC1 vs PC2 when using the 36 compound concentrations found in the analyzed paprika samples as chemical descriptors. 

 
such as syringaldehyde (at least, p < 0.0006), caffeic acid (at 
least, p < 0.0042), and homoplantaginin (at least, p < 0.0016) 
with statistically relevant differences in the concentration levels 
depending on the origin. Other species such as ferulic acid and 
nepetin-7-glucoside show no significant differences among 
Murcia and Czech Republic (p = 0.02 and 0.048, respectively). 
Finally, compounds such as chlorogenic acid are unspecific, so 
their role in class description and discrimination is quite 
irrelevant (p = 0.04, 0.04, and 0.91 for La Vera/Murcia, Murcia/ 
Czech Republic, and La Vera/Czech Republic, respectively). 

PDO Authentication. Phenolic and polyphenolic concen- 
tration levels found in the analyzed paprika samples were 
evaluated as potential chemical descriptors to address sample 
classification and authentication. As a first approach, a 
nonsupervised exploratory PCA strategy was employed with 
the aim of studying the grouping trends among the analyzed 
samples. A matrix data was built including the 36 compound 
concentrations found in the 111 paprika samples and the QCs 
and was subjected to PCA. Figure 2 shows the score plot of PC1 
versus PC2 obtained. As can be seen, QCs appeared grouped 
and located close to the center area of the plot, showing the good 
performance and robustness of the proposed method and the 
chemometric results. QCs appeared distributed in the same area 
than La Vera Paprika PDO samples because QC composition is 
enhanced on La Vera Paprika due to the high number of samples 
belonging to this group (72 out of 111 paprika samples). Paprika 
samples were perfectly discriminated by PC1 in three separate 
groups: La Vera PDO at the left of the score plot, Murcia PDO at 
the top-right area, and Czech Republic samples at the bottom- 
right area of the plot. Therefore, concentration levels found with 
the proposed UHPLC-ESI-MS/MS method are excellent 
chemical descriptors to achieve sample discrimination regarding 
the paprika production region. In addition, paprika flavors from 
Murcia PDO (sweet vs spicy) and from Czech Republic (sweet 
vs smoked-sweet vs spicy) samples are also perfectly separated, 
being discriminated by PC2 and by PC1 in the case of Murcia 

 
PDO and Czech Republic samples, respectively. In contrast, no 
discrimination was observed among La Vera PDO paprika 
flavors (sweet, bittersweet, and spicy), and all the samples 
appeared to be mixed. As previously commented in the 
Introduction, phenolic and polyphenolic distribution and 
content in plant-based products may be related to multiple 
parameters such as climatic conditions, growing areas, water 
resources, and agronomy conditions. 

The study of the PCA loading plot allows us to see which 
variables (concentration) are defining the separation observed 
in the score plot. Figure S4 (Supporting Information) shows the 
obtained PCA loading plot of PC1 versus PC2. Thus, the 
separation of Czech Republic samples is achieved mainly by the 
presence of homoplantaginin, nepetin-7-glucoside, p-coumaric 
acid, and kaempferol among other compounds. Chlorogenic 
acid, rutin, and hesperidin are more discriminating compounds 
for the Murcia PDO samples. In contrast, vanillin, homovanillic 
acid, syringaldehyde, and quercetin seem to be the more 
characteristic compounds to separate La Vera PDO samples 
from the other two groups. Although more studies will be 
necessary, a priori, these compounds would be good candidates 
as potential biomarkers for the authentication of paprika. 

A supervised pattern recognition technique such as PLS-DA 
was used to discriminate paprika according to their geographical 
and/or botanical origins for authentication purposes. In this 
case, the X-data matrix was again the concentration of the 
compounds determined in the studied samples, while the Y-data 
matrix was the sample class. 

The first study was focused on the classification of paprika 
samples according to geographical origin into La Vera, Murcia, 
and Czech Republic types. In this case, the calibration set was 
composed of 48 La Vera, 16 Murcia, and 10 Czech Republic 
samples randomly selected, which approximately corresponded 
to 70% of the analyzed samples. The other ∼30% of the samples 
were used as the test set for prediction purposes. The optimum 
number of LVs established by cross validation using Venetian 
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Figure 3. PLS-DA classification plots according to the production region. (a) La Vera versus other classes; (b) Murcia versus other classes; (c) Czech 
Republic versus other classes. Sample assignment: rhombus = La Vera PDO, square = Murcia, triangle = Czech Republic. The dashed line means the 
classification boundary. 

 
blinds was 4, providing the minimum of the root mean square 
error of cross validation (RMSECV) function. The analysis of 
scores and loadings of LV1 versus LV2 (not shown here) 
revealed that the three classes were perfectly separated, and 
relevant compounds for their discrimination were similar to 
those annotated for PCA. 

Figure S5 (Supporting Information) shows the plots of the 
qualitative parameters (regression vector, variable importance in 
projection (VIP), and selectivity ratio) for the previously 
obtained PLS-DA model. These parameters allow us to predict 
which variables (compounds) are more discriminant to achieve 
the obtained PLS-DA distribution. As can be seen, homovanillic 
acid and syringaldehyde are the compounds appearing as the 
most important variables in the three qualitative parameters, 
therefore being the two most relevant compounds for the PLS- 
DA classification when dealing with the paprika production 
region. 

Figure 3 shows the classification plots corresponding to (a) La 
Vera (rhombus symbols) versus the other samples, (b) Murcia 
(square symbols) versus the other samples, and (c) Czech 
Republic (triangle symbols) versus the other samples. The 
dashed line indicates the classification boundary, so samples 
belonging to the targeted class were located to the top while 
those belonging to the other types were to the bottom. Samples 
to be used for calibration were on the left, and those for 
prediction were on the right side. Results indicated that the 
classification rate was 100%, so all the samples were correctly 
assigned to the corresponding classes in both calibration and 
prediction steps (confusion matrix was [24, 0, 0; 0, 8, 0; 0, 0, 5] 
for La Vera, Murcia, and Czech Republic, respectively). 

Table S2 (Supporting Information) shows the validation 
results for both calibration and prediction. The obtained 
validation results are satisfactory. Calibration sensitivity and 
specificity are 1, and the RMSECV and the bias showed values 
tending to zero, ensuring a good calibration model. 

PLS-DA models were also applied to each paprika production 
region in order to study the classification of samples according to 
the flavor variety, and the obtained results are shown in Figure 
S6 (Supporting Information). In order to build them, 4, 2, and 2 
LVs were needed for La Vera, Murcia, and Czech Republic 
sample classifications, respectively. As can be seen, again, no 
discrimination was observed among the different La Vera PDO 
paprika samples, showing that the distribution and content of 
the targeted compounds found in La Vera samples are not 
enough to allow discrimination between sweet, bittersweet, and 

 
spicy samples. In contrast, perfect discrimination among flavor 
varieties was obtained for both Murcia PDO and Czech 
Republic paprika samples. Based on the qualitative parameters 
(regression vector, VIP, and selectivity ratio) for the PLS-DA 
models applied to Murcia PDO and Czech Republic samples 
(Figure S7 in the Supporting Information), compounds such as 
vanillin, kaempferol, and p-coumaric acid seem to be important 
for the discrimination of Murcia DOP flavor varieties, and others 
such as rutin, hesperidin, and chlorogenic acid play also an 
important role. In the case of Czech Republic samples, nepetin- 
7-glucoside seems to be the most important compound to 
discriminate among the three flavor varieties under study, 
together with other compounds such as rutin, herperidin, and p- 
coumaric acid, among others. 

In this work and for the first time, an important number of 
phenolic and polyphenolic compounds belonging to different 
families were determined in a high number of Spanish paprika 
samples with PDO attributes. This is very important to know the 
distribution and levels of these chemicals, with antioxidant 
properties, in paprika samples with PDO, giving additional 
benefits and attributes to the agricultural practices and regions 
producing paprika. In addition, the results obtained in this work 
demonstrate that the phenolic and polyphenolic profiles and 
contents obtained by the proposed UHPLC-ESI-MS/MS 
method after a very simple sample extraction can be employed 
as good chemical descriptors for the characterization and 
classification of paprika samples. These compounds proved to be 
very useful also for the discrimination of flavor varieties in the 
case of Murcia PDO and Czech Republic paprika samples. 
Finally, several compounds proved to be important factors to 
address sample classification by PCA and PLS-DA and could be 
considered as potential biomarkers for paprika authentication. 
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Table S1. Structures, family group, CAS number and supplier of the 36 polyphenolic compounds 
under study. 

 

Compound Family Structure CAS 
number 

 

Supplier 

1 D-(-)-Quinic acid Phenolic acid 77-95-2 Sigma-Aldrich 
 
 

2 Arbutin Other phenolics 497-76-7 Sigma-Aldrich 
 
 
 

3 Gallic acid Phenolic acid 149-91-7 Fluka 
 
 

4 Homogentisic acid Phenolic acid 451-13-8 Fluka 
 
 

5 Protocatechuic aldehyde Phenolic aldehyde 139-85-5 Sigma-Aldrich 
 
 

6 4-Hydroxybenzoic acid Phenolic acid 99-96-7 Sigma-Aldrich 
 
 

7 Gentisic acid Phenolic acid 490-79-9 Sigma-Aldrich 
 

8 Chlorogenic acid Phenolic acid 327-97-9 HWI Analytik GMBH 
 
 
 

9 (+)-Catechin Flavonoid 154-23-4 Fluka 
 

10 Caffeic acid Phenolic acid 331-39-5 Sigma-Aldrich 
 

11 Homovanillic acid Phenolic acid 306-08-1 Sigma-Aldrich 
 
 
 

12 Syringic acid Phenolic acid 530-57-4 Fluka 
 
 

13 Vanillin Phenolic aldehyde 121-33-5 Fluka 
 
 
 

14 (-)-Epicatechin Flavonoid 490-46-0 Sigma-Aldrich 
 
 

15 Ethyl gallate Other phenolics 831-61-8 Sigma-Aldrich 
 
 

16 p-Coumaric acid Phenolic acid 501-98-4 Sigma-Aldrich 
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17 (-)-Epigallocatechin gallate     Flavonoid 989-51-5 Sigma-Aldrich 
 
 
 

18 Syringaldehyde Phenolic aldehyde 134-96-3 Sigma-Aldrich 
 
 

19 Umbelliferon Other phenolics 93-35-6 Sigma-Aldrich 
 

20 Procyanidin C1 Flavonoid 37064-30-5 Fluka 
 
 
 
 
 

21 Veratric acid Phenolic acid 93-07-2 Fluka 
 
 
 

22 Ferulic acid Phenolic acid 1135-24-6 Fluka 
 

23 Sinapic acid Phenolic acid 530-59-6 Sigma-Aldrich 
 
 

24 Polydatin Estilben 65914-17-2 Sigma-Aldrich 
 
 

25 Rutin Flavonoid 207671-50-9  Sigma-Aldrich 
 
 
 

26 Procyanidin A2 Flavonoid 41743-41-3 Fluka 
 
 
 
 

27 Nepetin-7-glucoside Flavonoid 569-90-4 PhytoLab 
 
 
 

28 Hesperidin Flavonoid 520-26-3 Sigma-Aldrich 
 
 
 

29 Homoplantaginin Flavonoid 17680-84-1 PhytoLab 
 
 
 

30 Fisetin Flavonoid 345909-34-4  Sigma-Aldrich 
 
 

31 Rosmarinic acid Phenolic acid 2083-92-5 Sigma-Aldrich 
 
 

32 Morin Flavonoid 654055-01-3  Sigma-Aldrich 
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33  Quercetin Flavonoid 6151-25-3 Riedel-de-Haën 

34  Kaempferol Flavonoid 520-18-3 Sigma-Aldrich 

35  Asiatic acid Phenolic acid 464-92-6 Sigma-Aldrich 

36  Betulinic acid Phenolic acid 472-15-1 Sigma-Aldrich 

 
 

Sigma Aldrich (St. Louis, MO, USA); Fluka (Steinheim, Germany); HWI Analytic GMBH (Rülzheim, Germany); 
PhytoLab (Vestenbergsgreuth, Germany); Riedel-de-Haën (Seelze, Germany) 

 
 
 
 
 

Table S2. Quality indicators for the calibration and prediction of the proposed PLS-DA model 
when dealing with the classification of paprika samples regarding the production region. 

 

  Calibration model  
 La Vera PDO Murcia PDO Czech Republic 

Calibration sensitivity 1 1 1 
Calibration specificity 1 1 1 
Calibration R2 0.907 0.786 0.892 
RSMEC 0.145 0.190 0.113 
Calibration Bias -4·10-16 -3·10-17 0 

  Prediction model  
 La Vera PDO Murcia PDO Czech Republic 

Prediction sensitivity 1 1 1 
Prediction specificity 1 1 1 
Prediction R2 0.883 0.788 0.890 
RMSEP 0.185 0.207 0.185 
Prediction Bias 0.015 -0.082 0.067 
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Figure S1. (a) MS full scan spectra, (b) collision energy curves, and (c) MS/MS product ion scan spectra for 
Syringaldehyde and Ethyl gallate. 
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Figure S2. Boxplots with whiskers representing the concentration of selected compounds in the set of La Vera, Murcia and Czech 
Republic samples. From the left to the right: homoplantaginin, ferulic acid and chlorogenic acid. 
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Figure S3. Bar plots showing concentration levels found in the analyzed paprika samples for syringaldehyde, 
rutin and nepetin-7-glucoside. HLV: hot (spicy) La Vera PDO; BLV: Bittersweet La Vera PDO; SLV: Sweet La Vera 
PDO; HM: Hot (spicy) Murcia PDO; SM: Sweet Murcia PDO; HCR: Hot (spicy) Czech Republic; SSCR: Smoked- 
sweet Czech Republic; SCR: Sweet Czech Republic. 
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Figure S4. PCA loadings plot of PC1 vs PC2 when using the 36 compound concentrations found in the analysed 
paprika samples as chemical descriptors. 
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Figure S5. Plots of La Vera PDO class qualitative parameters (regression vector, the variable importance in 
projection (VIP) and the selectivity ratio) for the PLS-DA model obtained for the classification of paprika 
samples according to the production region (La Vera PDO, Murcia PDO and Czech Republic). 
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Figure S6. PLS-DA score plots of LV1 vs LV2 when using the 36 compound concentrations as chemical descriptors for the classification of each production regions 
(La Vera PDO, Murcia PDO and Czech Republic samples) according to their different flavor varieties. 
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Figure S7. Plots of a) hot Murcia PDO and b) sweet Czech Republic paprika qualitative parameters (regression 
vector, the variable importance in projection (VIP) and the selectivity ratio) for the PLS-DA models obtained 
for the classification according to the different flavor varieties. 
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A  R  T  I  C  L  E I  N  F  O   
 

 ey ords 
Paprika 
Capsaicinoids 
Carotenoids 
UHPLC-HRMS 
Food authentication 

A  B  S  T  R  A  C  T   
 

The production area mislabeling of a food product is considered a fraudulent practice worldwide. In this work, a 
method that uses ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry 
using atmospheric pressure chemical ionization (UHPLC–APCI–HRMS) was used for the geographical origin 
authentication of paprika based on the determination of capsaicinoids and carotenoids. Satisfactory instrumental 
method performance was obtained, providing good linearity (R2 > 0.998), run-to-run and day-to-day precisions 
( RSD < 15 and 10 , respectively), and trueness (relative errors < 10 ), while method limits of quantification 
were between 0.21 and 51 mg kg−1. Capsaicinoids and carotenoids were determined in 136 paprika samples, 
from different origins (La Vera, Murcia, Hungary, and the Czech Republic) and types (hot, sweet, and bitter- 
sweet). The composition of capsaicinoids and carotenoids was used as chemical descriptors to achieve paprika 
authentication through a classification decision tree built by partial least  squares  regression−discriminant 
analysis (PLS−DA) models and reaching a rate of 80.9 . 

 
 

 
l. Introduction 

 
Food authentication has become a concern for consumers, manu- 

facturers, researchers, and international government administrations, 
due to the recent increase of food fraud, which implies illegal manipu- 
lation practices of foodstuff (e.g., adulteration, ingredient substitution, 
mislabeling, and dilution) with an economic gain purpose. It aims to 
certify intrinsic food properties, usually related to quality and safety, 
geographical origin, and production systems (Medina, Perestrelo, Silva, 
Pereira, & Câmara, 2019). Among food products, spices are at extremely 
high risk of food fraud (Food Fraud Risk Information, 2020; Hong et al., 
2017) because of their high cost and demand, as well as their complex 
supply chain. Other vulnerabilities, such as availability of the crops or 
weather events, also influence (Galvin-King, Haughey, & Elliott, 2018). 

Paprika is a dried and ground spice obtained from different varieties 
of red pepper (genus Capsicum that belongs to the Solanaceae family). Its 
distinctive organoleptic properties, such as intense red color, charac- 
teristic aroma, and sometimes, a pungent flavor, make it widely used in 

international cuisines, although it is also employed in the cosmetic and 
pharmaceutical fields. Some of these properties are mainly related to 
bioactive substances named capsaicinoids and carotenoids. Moreover, 
these compounds have been found to gather human health beneficial 
aspects,  being  both  anticarcinogenic  substances,  among  others  (de  Sá 
Mendes & Branco de Andrade Goncalves, 2020). 

The worldwide production of paprika was estimated to be  around 
four million tons in 2018, with Asia being the main producer (“Food and 
Agriculture Organization of the United Nations,” 2019). Its production 
in Europe is mainly located in Spain and certain countries in Eastern 
Europe such as Hungary and the Czech Republic. Moreover, the Euro- 
pean Commission on Agriculture and Rural Development distinguishes 
six European paprika products with the Protected Designation of Origin 
(PDO) (“European Commission. eAmbrosia - the EU geographical in- 
dications  register,”  2020)    Pimentón  de  La  Vera  (Spain),  Pimentón  de 
Murcia   (Spain),    alocsai   fűszerpaprika-őrlemény   (Hungary),   Szegedi 
fűszerpaprika-őrlemény   (Hungary),   Piment   d’Espelette   (France),   and 
Paprika  Žitava  (Slovakia).  The  presence  of  the  PDO  label  ensures  the 
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geographical origin as well as the inherent qualities of the product. 
However, it is also related to higher prices, making them more vulner- 
able to fraudulent practices such as the mislabeling of the agricultural 
origin of paprika. Therefore, analytical methodologies to detect and 
prevent these frauds are needed. 

In the last years, a large variety of analytical strategies combined 
with chemometrics —mostly using principal component analysis (PCA), 
linear discriminant analysis (LDA), and partial least squares regres- 
sion discriminant analysis (PLS DA)— have been developed to 
address the authenticity of paprika origin. For instance, some authors 
have proposed multi-elemental content profiling, determined by both 
inductively coupled plasma optical emission spectroscopy (IPC OES) or 
mass spectrometry (ICP MS), for the authentication of Szegedi 
fűszerpaprika PDO (Brunner, Katona, Stefánka, & Prohaska, 2010), the 
comparison  of  hot  and  sweet  Hungarian  paprika  (Ö rdög  et  al.,  2018), 
and the discrimination between La Vera and Murcia denominations (Ana 
Palacios-Morillo,  Jurado,  Alcázar,  &  De  Pablos,  2014).  Instead,  other 
techniques such as spectrophotometric measurements (A. Palacios-Mo- 
rillo, Jurado, Alcázar, & Pablos, 2016) or the combination of different 
parameters (e.g., sample moisture, elemental analysis, and total ash, 
lipids, nitrogen, saccharides content) (Václav Štursa, Pavel Diviš, 2018) 
have also been evaluated. Alternatively, several chromatographic 
fingerprinting approaches using high-performance liquid chromatog- 
raphy with electrochemical detection (HPLC/ECD) (Serrano et al., 2018) 
or  ultraviolet  detection  (HPLC/UV)  (Cetó  et  al.,  2018;  Cetó,  Sánchez, 
Serrano, Díaz-Cruz, & Núñez, 2020), and ultra-high-performance liquid 
chromatography coupled to high-resolution mass spectrometry 
(UHPLC   HRMS)  (Barbosa,  Saurina,  Puignou,  &  Nuñez,  2020),  have 
recently focused on La Vera and Murcia PDO discrimination and adul- 
teration detection. 

Chemical profiling based on the determination of targeted com- 
pounds by liquid chromatography-mass spectrometry (LC-MS) has also 
been exploited to authenticate paprika according to its agricultural 

 
                      

 
origin. The presence, distribution, and content of bioactive substances is 
directly related to many food features, such as the production area. 
Thus, they are commonly used as chemical descriptors for classificatory 
purposes  through  a  semi-quantification  (Campmajó,  Núñez,  &  Núñez, 
2019). To date, ultra-high-performance liquid chromatography coupled 
to  tandem  mass  spectrometry  (UHPLC-MS/MS)  for  targeted  poly- 
phenols and UHPLC-HRMS for polyphenols and capsaicinoids (Barbosa, 

Saurina, Puignou, & Nuñez, 2020), and polyphenols and carbohydrates 
(Mudrić  et  al.,  2017),  have  also  been  evaluated  for  paprika  classifica- 
tion. Thereby, although capsaicinoid and carotenoid content has been 
extensively studied in red pepper and its derived products (Giuffrida 
et  al.,  2013;  Nagy,  Daood,  Koncsek,  Molnár,  &  Helyes,  2017),  their 
simultaneous analysis has not yet been used to deal with the classifi- 

cation of paprika. Therefore, this study aimed to develop an UHPLC- 
HRMS method for the determination of capsaicinoids and carotenoids in 
European paprika, and the subsequent use of target compound compo- 
sition for the geographical origin authentication by multivariate che- 
mometric methodologies. 

2. Experimental 
 

2 1  Reagents and materials 
 

Chemical formula, acronyms, and chemical structures of target 
capsaicinoids and carotenoids are summarized in Fig. 1 and they were 
purchased from Sigma-Aldrich (Steinheim, Germany) with purities 
higher than 90 . 

Individual stock standard solutions of capsaicinoids (1000 mg L−1) 
were prepared in LC-MS grade methanol, except capsaicin and dihy- 
drocapsaicin that were prepared in ethanol, while carotenoid were 
prepared in acetonitrile (500 mg L−1). Intermediate mixture containing 
all target compounds (50 mg L−1) was weekly prepared from stock so- 
lutions by appropriate dilution in acetonitrile acetone (1 1, v v) and was 

 

 
Fig. l. Chemical structures, acronyms, and chemical formula of the studied capsaicinoids and carotenoids. 
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subsequently used to obtain calibration solutions (0.001–10 mg L−1) for 
quantification. All stock solutions were stored at 20 ◦C until their use. 

Acetone for pesticide residue analysis  (  99.8 ),  LC-MS  grade 
water, methanol, and acetonitrile were purchased from Sigma-Aldrich, 
whereas absolute ethanol for analysis was obtained from Panreac 
(Barcelona, Spain). Moreover, a 0.22 µm pore size Nylon membrane 
(Whatman, Clifton, NJ, USA) was employed to filter mobile phase 
components before their use. 

 
2 2 Instrumentation 

 
An UHPLC system equipped with an Accela 1250 quaternary pump, 

an Accela autosampler, and a column oven (Thermo Fisher Scientific, 
San Jose, CA, USA) was used for the chromatographic separation. 
Accucore C18 analytical column (100 mm × 2.1 mm id, 2.6 µm particle 
size) and guard column (10 mm 2.1 mm id, 2.6 µm particle size), both 
packed with superficially porous particles, were employed for the 
chromatographic separation of both carotenoid and capsaicinoid fam- 
ilies. The developed chromatographic method used a quaternary 
gradient elution program with water, methanol, acetonitrile, and 
acetone as solvent A, B, C, and D, respectively. After optimization of the 
chromatographic separation (see Section 3.2) the gradient elution pro- 
gram used in this study started with a 3 min isocratic step at 60 solvent 
A and 40 solvent C and followed by a linear gradient elution up to 80 
solvent C in 0.5 min, and an isocratic step at these last conditions for 2.5 
min. Later, solvent B was introduced, and the mobile phase was linearly 
changed to 10 solvent B and 90 solvent C in 1.25 min, keeping in 
these conditions for 3 min. Afterward, another linear gradient elution 
changed the composition in 1 min up to 50 solvent C and D and kept at 
isocratic conditions for 1.5 min. Finally, solvent D was linearly increased 
up to 80  in 3 min, and this last percentage was used in an isocratic step 
for 2 min, before turning back to the initial conditions. The mobile phase 
flow rate was 600 µL min−1, the injection volume was 10 µL, and the 
column oven temperature was 25 ◦C. 

The UHPLC system was coupled to a hybrid quadrupole-Orbitrap 
mass spectrometer (Q-Exactive Orbitrap, Thermo Fisher Scientific) 
equipped with an atmospheric pressure chemical ionization (APCI) 
source (positive-ion mode). Nitrogen was purchased from Linde (Bar- 
celona, Spain) and used as a sheath, sweep, and auxiliary gas at flow 
rates of 60, 0, and 40 a.u. (arbitrary units), respectively. Both vaporizer 
and capillary temperatures were set at 350 ◦C, corona discharge current 
at 6 kV and SLens RF level at 70 V. The Q-Exactive Orbitrap system was 
tuned and calibrated every three days, using a calibration solution for 
positive-ion mode. The HRMS instrument operated in full scan MS mode 
(miz 50–700) at a mass resolution of 70,000 full width at half maximum 
(FWHM) at miz 200. Moreover, an automatic gain control of 3.0 106 

and a maximum injection time of 200 ms was used. For the analysis of 
samples, two-events acquisition mode was used an MS full scan and an 
"all-ion fragmentation” (AIF) (miz 50–700, in both events) with stepped 
normalized collision energies (NCE) of 20, 30, 40 eV for ion fragmen- 
tation. The Xcalibur software v 4.1 (Thermo Fisher Scientific) was used 
to control the LC–MS system and to acquire and process data. 

 
 

2 3  Sample analysis 
 

A total of 136 paprika samples from different origins and types were 
purchased and analyzed in this work. They were produced in Spain (La 
Vera and Murcia), Hungary and the Czech Republic; regarding types, 
hot, bittersweet, and sweet paprika were considered. Table 1 summa- 
rizes sample details such as the acronyms used for each region and the 
number of samples analyzed for each type of sample. 

A simple solid-liquid extraction of target analytes from paprika 
samples was carried out as follows  0.05 g of paprika were extracted 
with 4 mL of methanol acetone (1 1, viv) solution in a 15 mL PTFE tube. 
Subsequently, the sample was stirred in a Stuart Vortex for 0.5 min 
(Staffordshire, United Kingdom) and sonicated for 10 min (5510 Bran- 
son ultrasonic bath, Hampton, NH, USA). Afterward, the extract was 
centrifuged for 15 min at 4500 rpm (ROTANTA 460 HR Centrifuge, 
Hettich, Germany). Finally, the supernatant was filtered  through 0.22 
µm Nylon membrane filters and stored at 4 ◦C in 2 mL glass injection 
vials until the analysis by UHPLC-HRMS. 

2 4  Instrumental and quality parameters 
 

Instrumental and method limits of detection (ILODs, MLODs) were 
estimated as the smallest analyte concentration, providing a well- 
defined chromatographic peak with a good peak shape. This criterion 
was used because of the absence of baseline noise in the extracted ion 
chromatograms using a narrow mass tolerance window (<5 ppm) under 
high-resolution mass spectrometry conditions (FWHM 70,000 at miz 
200) on the Orbitrap mass analyzer. Instead, instrumental and method 
limits of quantification (ILOQs, MLOQs) were calculated from LOD 
values and considering the established ratio of three to ten between 
LODs and LOQs. In this way, ILODs have been determined using stan- 

dard solutions in solvent injected directly into the UHPLC-HRMS sys- 
tem, whereas MLODs were calculated considering the sample treatment 
recovery and the matrix effect. Besides, both precision and trueness were 
studied by analyzing in triplicate two standard solutions at low and 
medium level concentrations, being near and around ten times higher 
than the LOQs, respectively. Precision (run-to-run and day-to-day) was 
expressed as the relative standard deviation (RSD, ), whereas trueness 
was defined as the relative error (RE, ), both calculated according to 
the obtained concentrations. 

Due to the lack of a blank paprika (free of target analytes), matrix 
effect (ME,   ) in the UHPLC–APCI–HRMS method was evaluated by 
spiking a sweet paprika from the Czech Republic (which presented the 
lowest concentration of target compounds) at 1 mg kg−1. This concen- 
tration was three times higher than the endogenous one determined 
previously in the same sample. Thus, the ME in the ionization process 
was evaluated by estimating the relative difference between the chro- 
matographic peak area obtained in the analysis of the spiked extract and 
that obtained from the analysis of standard mixtures at the same con- 
centration level. 

To ensure the quality of the results and check the reproducibility of 
the LC separation and sensitivity of the UHPLC APCI HRMS system, a 
solution of a mixture of standards and procedural blanks were included 
within the sample batch when analyzing calibration curves and samples. 

 
Table l 
Description of the samples analyzed in the paprika classification study. 

Country Region Abbreviation Number of samples PDO Production year 
      

Hot (H) Sweet (S) Bittersweet (BS) 

Spain La Vera V 15a 15a 15a es 2017 
Murcia M 15 15 – es 2017 

Hungary Kalocsa H 18 + 5a 18 + 5a – No 2018 
Czech Republic – CR 5 5 + 5a – No 2017 

a Smoked paprika simples. 
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2 5  Data analysis 

 
Solo 8.6 chemometrics software from Eigenvector Research (Man- 

son, WA, USA) was used to perform data PCA and PLS–DA and employ 
the hierarchical model builder (HMB). 

PCA relies on the concentration of the dataset’s relevant information, 
originally contained in the compositional profiles of capsaicinoids and 
carotenoids, into a reduced number of principal components (PCs). Such 
concentration values are arranged in the X-matrix, which is mathe- 
matically decomposed into the submatrices of scores T (coordinates of 
the samples) and loadings PT (eigenvectors), providing information on 
the distribution of samples and variables, respectively. Moreover, the 
detection of potential outlier samples bases on the distance to the center 
of the model calculated from the Hoteling T2 and Q statistical parame- 
ters, being T2 the sum of the normalized squared scores and Q the sum of 
squares of residuals of a given sample. 

In this study, PLS–DA has been used as the classification method. The 
PLS–DA model is built from a training set composed of well-known 
paprika samples belonging to the different classes to be  assessed.  At 
this stage, PLS–DA assigns each sample into a class (numerically enco- 
ded depending on the origin and type), following rules based on the 
distance to the center of each class, calculated from T2 and Q. The 
classification  model  is  established  to  reach  the  minimum  prediction 
error in assigning these calibration samples into their actual classes. 

More details of the theoretical background of these chemometric 
techniques are addressed elsewhere (Massart, D. L., Vandeginste, B. G. 
M., Buydens, L. M. C., de Jong, S., Lewi, P.J., & Smeyers-Verbeke, 1997). 

PCA and PLS–DA X-data matrices consisted of the target compounds’ 
concentration levels as a function of the paprika samples under study, 
while PLS–DA -data matrices defined the membership of each sample 

in a class. Before building the chemometric model, data was autoscaled 
to provide the same weight to each variable by suppressing differences 
in their magnitude and amplitude scales. Moreover, the most suitable 
number of latent variables (LVs) in PLS–DA was established at the first 
significant minimum point of the cross-validation (CV) error. Venetian 
blinds were set by default as the CV method, except for small data 
matrices (less than twenty paprika samples), where the leave-one-out 
method were employed. Moreover, considering the complexity of the 
studied issue, where several sample origins and types  were presented, 
the classification has not been obtained from the segregation of all the 
classes at once but sequentially using HMB. Therefore, different PLS–DA 
models were consecutively combined, breaking down the classification 
aim into sub-groups. The applicability of the built chemometric method 
was evaluated through external validation 70 of a sample group was 
used as the training set (data set used for model generation and opti- 
mization), and the remaining 30 as the test set. 

A quality control (QC) sample, consisting of a mix prepared with 50 
µL of each paprika sample extract, was used to control the repeatability 
and robustness of the chemometric results as well as to detect systematic 
errors. In this line, samples were also randomly injected to minimize the 
influence of instrumental drifts in the models. 

 
 .  e ult and di cu ion 

 
3 1 HRMS and AIF (HRMS) characterization of targeted capsaicinoids 
and carotenoids 

In the present work, four capsaicinoids (nordihydrocapsaicin, NDC; 
capsaicin, CAP; dihydrocapsaicin, DC; nordihydrocapsiate, NDCT) and 
six carotenoids (capsanthin, CT; capsorubin,  CR; violaxanthin, VIO; 
lutein,  LUT;  β-cryptoxanthin,  β–CR PT;  β-carotene,  β–CAR)  were 
determined by UHPLC APCI HRMS in paprika samples. These com- 
pounds are commonly found in red pepper-derived products (Arimboor, 
Natarajan, Menon, Chandrasekhar, & Moorkoth, 2015; Schweiggert, 
Carle, & Schieber, 2006) and their structures are depicted in Fig. 1. 

The ions generated by APCI for targeted compounds were studied 

 
                      

 
using a hybrid high-resolution mass spectrometer  (quadrupole-Orbi- 
trap) equipped with a high-energy collision dissociation (HCD) cell. This 
instrument allows monitoring ions at HRMS and fragmenting them to 
provide more specific chemical structural information useful for 
confirmatory purposes. Thus, the mass spectral information of ions 
generated in APCI (positive-ion mode) are summarized in Table 2. The 
mass spectra of CAP, DC, and NDC showed the protonated molecule 
[M+H + as base peak, and they did not show any adduct ion. Never- 
theless, an intense signal at miz 137.0597 (Rel Ab. 20–70 ) always 
appeared due to the in-source CID fragmentation of the protonated 
molecule because of the β-cleavage at the N-R bond. (Reilly et al., 2003). 
In addition, ions at miz 170.1536 (CAP), miz 172.1693 (DC), and miz 
158.1537 (NDC), were assigned to a common loss (136.0518 Da) from 
the protonated molecule [M H–C8H8O2 +, which corresponded to the 
fraction of the acyl chain that results from removing the aromatic ring 
(Schweiggert et al., 2006). Instead, the mass spectrum of NDCT showed 
the in-source collision-induced dissociation (CID) fragment ion at miz 
137.0597 as base peak because, after the above mentioned β-cleavage, 
the charge remained in the common fragment [C8H9O2  +. Nevertheless, 
although most of the carotenoids also showed the [M  H + as the base 
peak, a significant in-source CID fragmentation where a water molecule 
is lost [M + H–H2O + was observed in some cases (CR, miz 583.4137; 
VIO, miz 583.4137; CT, miz 567.4186; β–CR PT, miz 535.4291; LUT, 
miz 551.4239). Moreover, this in-source CID fragment ion was the base 
peak of LUT and CR, as displayed in other studies (Arrizabalaga-Larra- 
ñaga, Rodríguez, Medina, Santos, & Moyano, 2020). 

The UHPLC-APCI-HRMS method was carried out using independent 
data analysis based on two scanning events - HRMS full scan and all ion 

fragmentation (AIF) - to improve detectability and obtain structural 
information of target analytes. Regardless of the compound fragmen- 
tation, to obtain a rich AIF mass spectrum within the whole miz range 
studied, the full scan of fragment ions was performed by employing 
stepped normalized collision energies (NCE 20, 30, 40 eV). In this way, 
it provided the average of AIF (HRMS) mass spectra at the different 
collision energies. Fig. 2 shows the HRMS spectrum and AIF (HRMS) 
spectrum of (A) DC and (B) CT. 

The AIF (HRMS) spectrum was obtained for all targeted compounds 
and the diagnostic fragment ions, the corresponding ion assignments, 
and the accurate mass errors are summarized in Table 2. Each family of 
compounds showed a distinctive fragmentation pathway. For instance, 
all capsaicinoids showed common fragment ions miz 137.0597, miz 
122.0362, miz 94.0413 and miz 66.0464 (Fig. 2). The fragment ion at 
miz 122.0362 [C7H6O2 +· was produced by the α-cleavage of the C–O 
bond, generating the dissociation of the methylene moiety from the 
fragment ion at miz 137.0597 [C8H9O2 + (Wolf, Huschka, Raith, 
Wohlrab,  &  Neubert,  1999).  Moreover,  the  ion  at  miz  122.0362 

[C7H6O2 +· can be further fragmented through neutral losses of CO 
(27.9943  Da)  to  form  both  fragment  ions  at  miz  94.0413 

[C7H6O2–CO +· and miz 66.0464 [C7H6O2–C2O2 +·. These fragmenta- 
tion steps may involve the opening of the aromatic ring, yielding into 
these linear polyunsaturated chain ions. On the other hand, carotenoids 
presented other characteristic common fragment ions such as [C11H13 + 

(miz  145.1012),  [C9H11 +  (miz  119.0855),  and  [C8H9 +  (miz 
105.0699), which were generated because of the fragmentation of the 
high polyene conjugation. In addition, CR and VIO isomers showed the 
same fragment ion [C15H21O2 + (miz 221.1536) corresponding to the 
oxo-cycle fused to the 3-hydroxy-β-ring and produced by the cleavage 
between carbons 10 and 11 (Wolf et al., 1999). Moreover, the fragment 
ion [C8H13 + (miz 109.1011) presented in both AIF (HRMS) spectrum of 
CR and CT (Fig. 2) corresponded to the dehydrated five-membered ring 
(Breemen, Dong, & Pajkovic, 2012). 

3 2  UHPLC-HRMS method development 

 
The chromatographic separation of all target compounds was per- 

formed in a reversed-phase UHPLC Accucore C18 column, under a 

4 



-123-  

Chapter 2. Metabolomic profiling approaches 
 
 
 
 

A  Arriza alaga-Larrañaga et al  

 
Table 2 
Retention time, ion assignment and accurate mass error of target compounds obtained from the UHPLC–HRMS and AIF (HRMS) data. 

Compound        LC HRMS MS/HRMS 
 

 

tR 

(min) 
Experimental miz (Rel. Ab. 
 ) 

Ion Assigment Accurate mass error 
(ppm) 

Fragment ion (mi 
z) 

Ion Assigment Accurate mass error 
(ppm) 

 

NDC 4.30 294.2060 (100) [M+H + −1.0 158.1536 [M + H–C8H8O2  +     −1.9 
158.1537 (85) [M + 

H–C8H8O2 + 
−1.3 137.0595 [C8H9O2 + −1.5 

137.0598 (25) [C8H9O2 + 0.7 122.0362 [C7H6O2 +· 0.0 
94.0417 [C7H6O2–CO +· 4.2 
66.0465 [C7H6O2–C2O2 +·      1.5 

CAP 4.33 306.2056 (100) [M+H + −2.3 137.0594 [C8H9O2 + −2.2 
170.1536 (15) [M + 

H–C8H8O2 + 
0.0 122.0362 [C7H6O2 +· 0.0 

137.0595 (75) [C8H9O2 + −1.4 94.0417 [C7H6O2–CO +· 4.2 
66.0465 [C7H6O2–C2O2 +·      3.0 

DC 4.50 308.2214 (100) [M+H + −1.9 172.1692 [M + H–C8H8O2  +     −2.3 
172.1693 (30) [M + 

H–C8H8O2 + 
−1.7 137.0595 [C8H9O2 + −1.4 

137.0596 (35) [C8H9O2 + −0.7 122.0362 [C7H6O2 +· 0.0 
94.0417 [C7H6O2–CO +· 4.2 
66.0465 [C7H6O2–C2O2 +·      1.5 

NDCT 5.32 137.0596 (100) [C8H9O2 + −0.7 137.0595 [C8H9O2  + −1.5 
122.0362 [C7H6O2 +· 0.8 
94.0417 [C7H6O2–CO +· 4.2 
66.0465 [C7H6O2–C2O2 +·      1.5 

CR 7.03 601.4241 (30) [M+H + −1.7 221.1531 [C14H21O2  + −2.3 

VIO 7.45 
583.4137 (100) [M + H–H2O + −1.4 109.1013 [C8H13 +

 1.8 
601.424 (100) [M+H + −1.8 583.4132 [M + H–H2O + −2.2 
583.4137 (45) [M + H–H2O + −1.4 221.153 [C14H21O2 + −2.7 

165.0907 [C10H13O2 + −1.9 
119.0853 [C9H11 + −1.9 

CT 7.28 585.4291 (100) [M+H + −1.9 567.4183 [M + H–H2O + −2.3 
567.4186 (45) [M + H–H2O + −1.8 119.0856 [C9H11 +

 0.6 
109.1013 [C8H13 +

 1.8 
LUT 8.23 569.4349 (20) [M+H + −0.7 145.101 [C11H13  + −1.2 

551.4239 (100) [M + H–H2O + −1.4 119.0856 [C9H11 +
 0.6 

105.0701 [C8H9 +
 2.2 

β-CR PT 11.60 553.4394 (100) [M+H + −1.8 535.4294 [M + H–H2O + −0.7 
535.4291 (25) [M + H–H2O + −1.3 145.101 [C11H13 + −1.2 

119.0856 [C9H11 +
 0.6 

105.0701 [C8H9 +
 2.2 

β-CAR 12.30 537.4445 (100) [M+H + −1.9 177.1634 [C13H21 + −1.7 
119.0856 [C9H11 +

 0.8 
105.0700 [C8H9 +

 1.2 

 
quaternary gradient elution with water, methanol, acetonitrile, and 
acetone as the mobile phase components. The gradient elution was 
based on a chromatographic method previously developed for the sep- 
aration    of    chlorophylls    and    carotenoids    (Arrizabalaga-Larrañaga, 
Rodríguez, Medina, Santos, & Moyano, 2019). However, some modifi- 
cations were required to deal with the simultaneous determination of 
capsaicinoids and carotenoids. Hence, given the differences in polarity 
among both families of compounds, the water content of the mobile 
phase at the beginning of the gradient elution was increased to ensure an 
effective separation of the most polar capsaicinoids (Daood et al., 2015). 
Thus, an isocratic step of water acetonitrile (60 40, viv) was included as 
starting elution conditions followed by a linear gradient up to 20 80 to 
retain capsaicinoids and allow their elution after four-fold the hold-up 
time (tM), which corresponded to 0.97 min, and before carotenoids. 
The inclusion of CR and CT among the carotenoid compounds made 
necessary to lengthen the isocratic step of methanol acetonitrile (10 90, 
viv). Moreover, the mobile phase eluotropic strength had to be increased 
at the end of the chromatographic run using acetonitrile acetone (50 50, 
viv) to allow the elution of β-CAR, the most hydrophobic carotenoid. 
Under the final gradient elution (see section 2 2.), a baseline separation 
of all target compounds was achieved in less than 15 min, except for CAP 
and NDC, which partially co-eluted. However, the isotope cluster of 
their ions did not overlap; thus, they could be isolated in individual 
extracted chromatograms according to miz. Besides, the study of ion 
suppression or ion enhancement for these co-eluting compounds was 
carried out by injecting individual standard solutions and a mixture of 

 
the co-eluting target compounds (1 mg L−1) in the UHPLC–APCI–HRMS. 
The difference of the obtained chromatographic peak areas was lower 
than 10 , similarly to the RSD observed between successive  in- 
jections, which indicated that the co-elution of these compounds did not 
affect their responses. 

The performance of the developed UHPLC-APCI-HRMS method was 
evaluated by determining the linearity, ILODs, ILOQs, precision, and 
trueness. The linearity within the concentration range, 0.001–10 mg 
kg−1 for most of the compounds and 0.1–10 mg kg−1 for β–CR PT and 
LUT, was satisfactory and showed correlation coefficients (R2) higher 
than 0.998. ILODs ranged from 0.001 to 0.025 mg kg−1 for most of the 
target compounds, although for β–CR PT and LUT values were slightly 
higher (0.1 and 0.25 mg kg−1, respectively). In terms of RSD and based 
on concentration values, run-to-run and day-to-day precision were al- 
ways lower than 15 and 10 , respectively. Moreover, the trueness, 
based on the same concentration values, showed relative errors below 
10 . These results demonstrated the good instrumental performance of 
the developed UHPLC-APCI-HRMS method for the determination of 
capsaicinoids and carotenoids. 

Besides, before the determination of  capsaicinoids and carotenoids 
by UHPLC–APCI–HRMS in paprika, samples were submitted to a solid- 
liquid extraction. Because of the differences in the physicochemical 
properties of both families of compounds, three commonly used sol- 
vents, methanol, acetonitrile, and acetone, as well as mixtures of them, 
were evaluated to achieve the most effective simultaneous extraction of 
target compounds. It was found that acetonitrile had less effectiveness in 
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Fig. 2. HRMS spectrum and AIF (HRMS) spectrum of (A) DC and (B) CT. 

 
extracting carotenoids than both pure acetone and the mixture meth- 
anol acetone. Moreover, pure methanol extracted more efficiently cap- 
saicinoids, than pure acetonitrile or acetone. Nevertheless, the 
combination of both methanol and acetone seemed to improve the sol- 
ubility of these compounds, and thus, as a compromise, a mixture 
methanol acetone (1 1, viv) was chosen as the most effective solvent for 
the simultaneous extraction of both capsaicinoids and carotenoids 
(section 2 3.) in agreement with Nagy et al. who proposed a similar 
solvent mixture (Nagy et al., 2017). Using the proposed extraction 
procedure, estimated MLODs ranged from 0.06 to 1.5 mg kg−1 for most 
of the analytes, except for β–CR PT and LUT, which were 6.1 and 15.3 
mg kg−1, respectively. While, MLOQs were comprised between 0.21 and 
51 mg kg−1. 

 
3 3  Analysis of paprika samples 

 
In this work, to test the potential of the UHPLC-APCI-HRMS method 

to determine capsaicinoids  and carotenoids for authentication purposes, 
a total of 136 paprika samples from different regions were analyzed. 
Samples from countries such as Spain (La Vera and Murcia), Hungary, 
and the Czech Republic, as well as distinct flavor types (hot, sweet, and 
bittersweet), were evaluated. 

Matrix-effect in the ionization of target compounds was evaluated as 
described in section 2.4 and the results showed ME values from 10 to 
50 . These results indicated that analytical correction strategies for 

 
accurate quantitative results should be performed. In this line, matrix- 
matched calibration cannot be applied to the determination of endog- 
enous bioactive compounds because of the lack of blank samples. 
Instead, although standard addition calibration and isotope dilution 
mass spectrometry (IDMS) allow the correction of the matrix effect, they 
are not suitable for this study since standard addition calibration is time- 
consuming for the analysis of large sample batches, and IDMS requires 
expensive internal labeled standards, which are not available for all the 
target compounds. Therefore, these drawbacks make it difficult to apply 
these strategies to obtain an accurate quantitative analysis of cap- 
saicinoids and carotenoids in paprika samples. Instead, some published 
studies have proposed to extract the targeted compounds from the food 
matrix to obtain blank samples that are proposed to be used in matrix- 
matched calibration. However, this strategy completely modifies the 
original food matrix, and thus, its application was not considered in this 
study. Therefore, external calibration methods are commonly proposed 
in most of the published studies dealing with the determination of these 
families of compounds in food and natural samples. For instance, cap- 
saicinoids and carotenoids in paprika have been determined by some 
authors using only one or two available standards because of the 
chemical   structural   similarities   (Barbero,   Liazid,   Ferreiro-González, 
Palma, & Barroso, 2016; Bijttebier et al., 2014; Stipcovich, Barbero, 
Ferreiro-González,  Palma,  &  Barroso,  2018).  Moreover,  since  the  pre- 
sent study aimed to determine capsaicinoids and  carotenoids for their 
use as chemical descriptors for paprika authentication, and the matrix 
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influence could contribute as a potential source of discrimination be- 
tween samples, external standard calibration method by employing ten 
standards was performed for the analysis of paprika samples. Thereby, 
the results obtained for the presence of both capsaicinoids and carot- 
enoids in the 136 paprika samples analyzed are summarized in Table S1 
(Supporting Material). 

The qualitative capsaicinoid and carotenoid patterns (UHPLC-APCI- 
HRMS chromatograms) observed for all paprika samples were similar in 
terms of compounds detected, but they showed differences in the cor- 
responding abundances. As an example, the diversity of the capsaicinoid 
and carotenoid profile is shown in Fig. 3, depicting the extracted 
UHPLC-APCI-HRMS chromatograms obtained from the analysis of a 
sweet paprika sample from (A) Murcia “MS9” and (B) Hungary “HS5”. 
To better study the relationship between their concentration and the 
type and production country of the samples, the total capsaicinoid and 
carotenoid contents, as well as the capsaicinoid/carotenoid ratio were 
evaluated. (Table S2 and Fig. S1). 

For instance, independently of the geographical origin, hot paprika 
showed a higher total capsaicinoid content, 656 ± 453 mg kg−1, and 
hence a higher capsaicinoid ratio (40–90 ), than sweet and bittersweet 
samples, 9     5 and 31     32 mg kg−1, respectively. This result was ex- 
pected since these target compounds are responsible for the character- 
istic  hot  taste  (de  Sá Mendes  &  Branco  de  Andrade  Goncalves,  2020). 
Besides, within a specific flavor type, the capsaicinoid/carotenoid ratios 
between non-smoked and smoked samples showed similar behavior 
(Table S1). Thus, they were jointly considered in the subsequent studies. 
Regarding individual target compounds, among capsaicinoids, DC and 
CAP were found in major concentrations within all hot, sweet, and 
bittersweet samples, whereas NDCT was not detected in any sample 
above its MLOD. 

 
                      

 
The carotenoid content usually did not significantly differ when 

comparing the different types (hot, sweet, and bittersweet) of samples 
from the same region (Table S2). Hungarian samples had the highest 
total content of carotenoids, independently of the flavor type. For 
instance, the total carotenoid amounts of hot La Vera, Murcia, and the 
Czech Republic paprika samples were 106    51, 118    69, and 75    24 
mg kg−1, respectively; whereas hot Hungary  samples  contained  719 
192 mg kg−1. Besides, in accordance to Giuffrida et al. (Giuffrida et al., 
2013), β–CAR was found to be the most predominant carotenoid (15–
510 mg kg−1) in all samples, followed by β–CR PT (25–360 mg kg−1), 
and CT (6–270 mg kg−1). Intead, VIO and CR occurred at lower 
concentrations (4.2–42 mg kg−1). Moreover, although it seemed that 
LUT was detected in samples from Hungary, this signal may be due to 
zeaxanthin (ZEA), which is a lutein isomer that cannot  be separated 
from LUT using a C18 column (Kim, Geon, Park, Pyo, & Kim, 2016) and 
whose presence has been reported previously in red paprika (Deli, 
Molnár, Matus, & Tóth, 2001; Hassan,  usof,  ahaya, Rozali, & Othman, 
2019). Because of the structural similarities between ZEA and LUT, 
which may lead to comparable ionization efficiency, ZEA was quantified 
using LUT standard. Furthermore, VIO could not be quantified in sam- 
ples from the Czech Republic and Murcia, since its concentration was 
below its MLOQ. Therefore, because of the observed differences in the 
presence of capsaicinoid and carotenoid, they were proposed as chem- 
ical descriptors to address paprika authentication based on 
chemometrics. 

 
3 4  Multivariate data analysis 

 
In views of the qualitative and quantitative differences between 

paprika samples of different geographical origins and types, the 

 

 
Fig. . UHPLC–APCI–HRMS capsaicinoid and carotenoid profile chromatograms of sweet paprika samples from (A) Murcia, sample MS9, and (B) Hungary, sam- 
ple HS5. 
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concentrations of carotenoids and capsaicinoids were proposed as 
chemical descriptors to address their authentication by multivariate 
data analysis. PCA was preliminarily applied to check the behavior of 
paprika and QC samples. Hence, the data matrix of 151     10 (samples 
variables) dimension, containing the calculated carotenoid and cap- 
saicinoid content for the analyzed paprika and QC samples (15), was 
studied. The scores plot of PC1 vs PC2 depicted in Fig. S2A (PC1 and 
PC2 explained variance of 50.23 and 31.18 , respectively) showed that 
QC samples appeared in the middle of the plot, meaning the absence of 
systematic errors in the data acquisition and validating the chemometric 
results. Moreover, high Hotelling T2 and Q residual values were not 
observed (Fig. S2B), suggesting the absence of outlier samples. 

PLS–DA was chosen as the chemometric technique to conduct the 
classificatory analysis. A first PLS–DA model was built, which included 
all the paprika samples under study, according to both origins, and type. 
Thus, a 136  10 X-data matrix and a  -data matrix, assigning samples 
to nine classes, were used. Fig. 4 shows the corresponding scores plot of 
LV1 vs LV2 (two LVs, explaining the 18.29 -variance, were chosen 
for constructing the PLS–DA model), where remarkable discrimination 
between types could be seen. In this line, sweet samples were located on 
the upper side of the plot, whereas the hot ones on the bottom. Variable 
importance in projection (VIP) values indicated that this separation was 
mainly because of CAP, NDC, and DC contents. However, bittersweet La 
Vera samples did not present significant differences with La Vera sweet 
ones, so they were considered both as sweet in the following chemo- 
metric studies. Regarding the production area, Hungary paprika samples 
were clearly distinguished in the right part of the plot (displaying pos- 
itive LV1 scores values) from the other samples, whose classification was 
not achieved with this PLS–DA model. 

Therefore, considering the complexity of the classification due to the 
wide range of classes, the design of a classification decision tree formed 
by smaller PLS–DA models was proposed. The followed path to achieve 
sample classification is shown in Fig. 5 and consisted of four main steps 
in the PLS–DA model firstly, hot vs sweet; secondly, Hungary vs others; 
thirdly, La Vera vs others; and finally, Murcia vs the Czech Republic. 
Calibration model details such as data matrices dimensions, CV 
approach, LVs for their construction, X and -variance explained, and 

 
                      

 
calibration sensitivity and specificity, are also given in Fig. 5. These 
PLS–DA calibration models, whose classification scores plots of some of 
them are depicted in Fig. S3, were built with 70 of the analyzed 
paprika samples as the training set (89 10, dimension data matrix), 
while the external validation was carried out with the remaining 30 
(47 10, dimension data matrix). Satisfactory results regarding the 
geographical origin classification of paprika samples by the determi- 
nation of carotenoid and capsaicinoid were obtained with a rate of 
80.9 . When evaluating the results by origins, 87.5, 60.0, 90.0, and 
100.0 rates were reached for Hungary, La Vera, Murcia, and the Czech 
Republic paprika samples, respectively. Most of La Vera misclassified 
samples were assigned as Murcia samples and backward, which could 
indicate that specific external conditions related to the country of origin 
(e.g., climate or farmland) are related to the capsaicinoid and carotenoid 
profile. 

4. Conclu ion  
 

In this work, the UHPLC-APCI-HRMS capsaicinoid and carotenoid 
profile have proved to be an adequate chemical descriptor to classify and 
authenticate paprika samples from different geographical origins (La 
Vera, Murcia, Hungary, and the Czech Republic) and types (hot, sweet 
and bittersweet). One of the main advantages of the proposed UHPLC- 

APCI-HRMS methods is the efficient ionization of both capsaicinoids 
and carotenoid under APCI conditions and the greater selectivity ach- 
ieved by HRMS. Besides, a total classification rate of 80.9 was led by 
building a classification decision tree based on consecutive PLS–DA 
models and performing an external validation. The breaking down of 
this result by origin reached 87.5, 60.0, 90.0, and 100.0 rates for 
Hungary, La Vera, Murcia, and the Czech Republic samples, respectively. 
The capsaicinoid content was strongly related to the flavor paprika type, 
while the carotenoid content could be associated with the country of 
origin by external conditions since most La Vera misclassified samples 
were assigned as Murcia samples and backward. 

In future estudies, other geographical origin paprika samples could 
be also tested to further demonstrate the wide applicability of the pro- 
posed UHPLC–APCI–HRMS method. Additionally, other carotenoids, 

 

 
Fig. 4. PLS-DA Scores plot of LV1 vs. LV2, using the UHPLC-HRMS capsaicinoid and carotenoid profiling for the classification of all the paprika samples tested. 
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Fig. 5. Classification decision tree built by HMB for paprika geographical origin authentication by means of PLS-DA models. Dimensions, CV used method, LVs, and 
sensitivity and specificity of the model are detailed. 

 
capsaicinoids or derivative compounds (e.g., antheraxanthin, crypto- 
capsin, or capsanthin-3,6-epoxide) could also be included as target 

compounds to provide UHPLC-APCI-HRMS profiles with richer infor- 
mation. Finally, the use of data fusion strategies combining the cap- 
saicinoid and carotenoid profile with the polyphenolic profile, as well as 
other supervised classificatory chemometric techniques such as 
orthogonal projections to latent structures-discriminant analysis 
(OPLS–DA) or soft independent modeling of class analogy (SIMCA) 
could also be explored in future works to further improve the classifi- 
cation of paprika samples. 
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Campmajó, G., Núñez, N., & Núñez, O. (2019). The role of liquid chromatography-mass 
spectrometry in food integrity and authenticity. In G. S. Kamble (Ed.), Mass 
spectrometry - future perceptions and applications (pp. 3–20). https //doi.org/10.5772/ 
57353 
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de Sá Mendes, N., & Branco de Andrade Goncalves, É. C. (2020). The role of bioactive 
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Supplementary Tables 
 

Table S1. Concentrations (mg·kg-1) of capsaicinoids and carotenoids determined in paprika samples. 
Sample NDC CAP DC NDCT CR VIO CT ZEA   CRYPT   CAR 
aVH1 17 180 242 nd 9.1 6.0 12 nd 64 70 
aVH2 31 288 373 nd <LOQ <LOQ 9.5 nd <LOQ 15 
aVH3 62 507 692 nd 11 7.5 16 <LOQ 68 59 
aVH4 52 409 594 nd <LOQ <LOQ 16 <LOQ 17 19 
aVH5 33 341 375 nd 7.4 <LOQ 6.4 nd 46 28 
aVH6 45 478 554 nd 10 7.0 12 nd 55 55 
aVH7 137 1020 1133 nd 9.0 5.4 <LOQ nd <LOQ 15 
aVH8 31 381 478 nd 7.1 6.0 7.7 nd <LOQ 33 
aVH9 11 78 104 nd <LOQ <LOQ <LOQ nd 28 37 
aVH10 57 510 644 nd 9.5 5.8 <LOQ nd <LOQ 18 
aVH11 34 279 373 nd 7.9 <LOQ 14 <LOQ 63 95 
aVH12 26 349 643 nd 8.7 8.5 13 nd 25 47 
aVH13 6.8 42.4 66.5 nd 7.2 <LOQ 8.3 nd 54 57 
aVH14 29.2 361.6 368.4 nd 6.0 <LOQ 7.5 nd 49 38 
aVH15 85.4 691.8 919.4 nd 14 6.6 15 nd 60 57 
aVS1 0.5 3.1 5.5 nd 8.6 <LOQ 9.8 nd 54 77 
aVS2 0.8 4.9 7.6 nd 13 6.9 <LOQ nd 79 119 
aVS3 0.5 1.1 3.1 nd 13 13 220 nd 126 119 
aVS4 1.4 6.3 12 nd 7.5 <LOQ 11 nd 69 82 
aVS5 0.3 1.4 2.6 nd 7.4 6.0 112 nd <LOQ 35 
aVS6 1.6 7.6 12 nd 11 6.3 35 <LOQ 82 57 
aVS7 0.2 1.2 3.1 nd 7.4 <LOQ 13 nd 43 83 
aVS8 <LOQ 0.8 1.7 nd 7.3 5.6 19 31 39 25 
aVS9 1.5 7.5 13 nd <LOQ <LOQ <LOQ nd 73 52 

asmoked paprika sample; nd: not detected (<MLOD) 
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Table S1. (Cont) Concentrations (mg·kg-1) of capsaicinoids and carotenoids determined in paprika samples. 
Sample NDC CAP DC NDCT CR VIO CT ZEA   CRYPT   CAR 
aVS10 0.7 2.7 5.7 nd 8.3 6.3 16 nd 62 55 
aVS11 1.1 5.2 8.0 nd 16 11 37 <LOQ 121 81 
aVS12 0.6 3.0 4.6 nd <LOQ <LOQ 11 nd 73 37 
aVS13 0.4 1.4 3.3 nd 6.5 <LOQ 7.4 nd <LOQ 50 
aVS14 <LOQ 0.8 1.7 nd 12 8.3 13 nd 64 70 
aVS15 0.4 1.0 2.5 nd 7.4 <LOQ 12 nd 25 49 
aVBS 4.6 36 47 nd 13.0 7.3 18 <LOQ 78 79 
aVBS 1.3 11 15 nd 12.5 <LOQ 15 nd 49 56 
aVBS 2.1 14 21 nd 6.1 <LOQ 5.5 nd 24 34 
aVBS 6.7 39 58 nd 9.1 6.9 24 <LOQ 48 22 
aVBS 4.4 26 41 nd 15 7.8 15 nd 69 93 
aVBS 0.8 4.8 6.3 nd 5.3 <LOQ 19 nd 64 48 
aVBS 0.6 3.7 6.2 nd 17 9.3 25 nd 52 40 
aVBS 0.4 1.6 2.6 nd 9.0 5.6 16 nd <LOQ 55 
aVBS 1.3 4.9 7.8 nd <LOQ <LOQ 6.7 nd 35 85 
aVBS 0.4 1.3 3.1 nd 8.2 <LOQ 12 nd 54 101 
aVBS 1.7 18 19 nd 17 8.9 19 nd 85 116 
aVBS 0.6 4.2 5.7 nd 11 5.7 16 nd 69 63 
aVBS 0.6 2.0 3.9 nd 14 7.2 14 nd 79 117 
aVBS 1.9 9.8 17 nd 13 7.8 16 nd 78 105 
aVBS 0.8 4.9 7.3 nd 9.4 5.5 11 nd 55 79 
MH1 25 272 257 nd <LOQ <LOQ <LOQ nd 17 68 
MH2 27 292 269 nd <LOQ <LOQ <LOQ nd 40 59 
MH3 25 251 271 nd <LOQ <LOQ 5.3 nd 25 61 
MH4 24 240 254 nd <LOQ <LOQ <LOQ nd 21 65 
MH5 20 238 244 nd <LOQ <LOQ <LOQ nd <LOQ 42 
MH6 22 270 278 nd <LOQ <LOQ <LOQ nd 20 57 

asmoked paprika sample; nd: not detected (<MLOD) 
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Table S1. (Cont) Concentrations (mg·kg-1) of capsaicinoids and carotenoids determined in paprika samples. 
Sample NDC CAP DC NDCT CR VIO CT ZEA   CRYPT   CAR 
MH7 22 235 240 nd <LOQ <LOQ <LOQ nd 41 56 
MH8 28 303 300 nd <LOQ <LOQ 261 nd 27 62 
MH9 25 257 252 nd <LOQ <LOQ <LOQ nd 53 73 
MH10 29 317 317 nd <LOQ <LOQ 6.1 <LOQ 33 64 
MH11 22 234 214 nd <LOQ <LOQ <LOQ nd 25 52 
MH12 24 302 266 nd <LOQ <LOQ <LOQ nd <LOQ 49 
MH13 24 258 247 nd <LOQ <LOQ <LOQ nd 44 64 
MH14 25 255 271 nd <LOQ <LOQ <LOQ nd 52 61 
MH15 24 234 232 nd <LOQ <LOQ <LOQ nd 48 32 
MS1 0.8 3.8 7.5 nd <LOQ <LOQ <LOQ nd <LOQ 18 
MS2 0.7 3.0 5.6 nd 5.6 <LOQ <LOQ nd <LOQ 64 
MS3 0.7 3.3 6.6 nd <LOQ <LOQ 5.5 nd 42 60 
MS4 0.8 3.4 5.7 nd 6.3 <LOQ 5.7 nd 47 60 
MS5 0.8 3.3 5.7 nd 6.5 <LOQ 7.7 nd 50 62 
MS6 0.8 3.3 6.5 nd 5.3 <LOQ 6.3 nd 26 69 
MS7 0.8 4.0 7.5 nd <LOQ <LOQ 73 nd 32 71 
MS8 0.6 3.0 5.2 nd <LOQ <LOQ 7.1 nd 46 48 
MS9 1.1 4.0 8.1 nd 5.3 <LOQ 384 nd 124 73 
MS10 0.8 3.1 5.9 nd 5.6 <LOQ <LOQ nd 27 72 
MS11 0.8 3.0 5.9 nd 5.9 <LOQ <LOQ nd 61 80 
MS12 0.7 3.6 6.0 nd 7.4 <LOQ 9.7 nd 50 68 
MS13 0.6 3.2 5.2 nd 5.9 <LOQ 6.2 nd 53 63 
MS14 0.6 3.1 6.0 nd 5.7 <LOQ 7.4 nd 62 80 
MS15 0.8 3.8 7.0 nd <LOQ <LOQ <LOQ nd 47 75 
CRH1 40 280 364 nd <LOQ <LOQ <LOQ nd <LOQ 49 
CRH2 41 244 331 nd <LOQ <LOQ <LOQ nd <LOQ 44 
CRH3 43 238 367 nd <LOQ <LOQ <LOQ nd 21 83 

asmoked paprika sample; nd: not detected (<MLOD) 
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Table S1. (Cont) Concentrations (mg·kg-1) of capsaicinoids and carotenoids determined in paprika samples. 
Sample NDC CAP DC NDCT CR VIO CT ZEA   CRYPT   CAR 
CRH4 36 259 323 nd <LOQ <LOQ <LOQ nd <LOQ 45 
CRH5 48 262 338 nd <LOQ <LOQ <LOQ nd <LOQ 28 
CRS1 1.0 3.6 6.6 nd <LOQ <LOQ 5.7 nd <LOQ 50 
CRS2 0.9 3.6 6.6 nd <LOQ <LOQ 5.7 nd <LOQ 46 
CRS3 1.0 4.0 8.7 nd <LOQ <LOQ 4.9 nd 26 47 
CRS4 0.8 3.3 6.0 nd <LOQ <LOQ 4.8 nd 24 41 
CRS5 1.1 4.2 9.0 nd <LOQ <LOQ 6.7 nd <LOQ 44 
aCRS1 1.0 3.1 6.9 nd <LOQ <LOQ <LOQ nd 30 116 
aCRS2 1.0 3.2 5.9 nd <LOQ <LOQ 31.7 nd 81 86 
aCRS3 1.0 3.1 8.7 nd <LOQ <LOQ <LOQ nd 31 78 
aCRS4 0.8 3.1 6.6 nd <LOQ <LOQ 5.7 nd 43 88 
aCRS5 1.0 3.1 7.8 nd <LOQ <LOQ <LOQ nd 24 123 
HH1 21 151 166 nd 17 9.3 109 155 177 212 
HH2 19 138 144 nd 18 9.1 103 155 188 230 
HH3 19 134 154 nd 16 9.0 104 150 194 283 
HH4 19 59 164 nd 24 10 123 187 123 353 
HH5 27 93 204 nd 29 12 63 343 104 97 
HH6 24 80 179 nd 22 16 5.3 284 321 388 
HH7 90 616 805 nd 7.8 6.6 34 47 160 255 
HH8 91 684 986 nd 8.5 10 10 97 189 293 
HH9 85 624 884 nd 10 5.6 34 <LOQ 115 263 
HH10 17 61 142 nd 21 12 236 240 207 260 
HH11 17 68 153 nd 24 9.1 <LOQ 89 104 237 
HH12 14 47 125 nd 21 10 71 83 167 282 
HH13 27 98 258 nd 24 15 135 143 140 269 
HH14 31 114 267 nd 24 12 127 158 195 313 
HH15 35 114 293 nd 27 19 45 242 221 362 

asmoked paprika sample; nd: not detected (<MLOD) 
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Table S1. (Cont) Concentrations (mg·kg-1) of capsaicinoids and carotenoids determined in paprika samples. 
Sample NDC CAP DC NDCT CR VIO CT ZEA   CRYPT   CAR 
HH16 16 74 133 nd 17 6.6 91 99 226 277 
HH17 15 64 133 nd 13 9.1 66 61 152 195 
HH18 17 72 141 nd 19 9.5 <LOQ 70 154 213 
HS1 0.3 1.6 3.2 nd 26 8.6 121 70 202 317 
HS2 0.4 1.2 3.0 nd 27 5.6 113 105 172 334 
HS3 0.5 1.7 3.5 nd 25 17 <LOQ 312 131 151 
HS4 0.2 1.1 2.1 nd 30 11 112 82 188 446 
HS5 0.3 1.1 2.2 nd 4.2 26 39 83 219 500 
HS6 0.2 1.1 2.4 nd 36 12 163 77 168 424 
HS7 0.5 1.4 3.1 nd 23 5.3 269 124 181 295 
HS8 0.4 1.2 2.6 nd 25 5.2 238 112 148 290 
HS9 0.5 1.4 2.8 nd 31 13 180 186 211 290 
HS10 1.3 4.3 7.9 nd 11 13 41 339 237 504 
HS11 1.2 4.1 7.6 nd 14 14 48 51 201 486 
HS12 1.3 4.2 7.2 nd 11 10 41 94 191 467 
HS13 0.4 1.7 3.2 nd 27 8.6 <LOQ 161 232 218 
HS14 0.4 1.2 2.4 nd 24 15 160 78 300 354 
HS15 0.4 1.7 3.6 nd 42 22 213 190 359 496 
HS16 0.4 1.4 2.6 nd 22 11 122 148 177 229 
HS17 0.5 1.6 3.9 nd 27 13 6.7 110 209 303 
HS18 0.3 1.3 2.7 nd 22 13 101 64 182 286 
aHH1 32 111 329 nd 33 22 143 140 233 432 
aHH2 33 107 298 nd 24 18 131 104 215 385 
aHH3 30 104 279 nd 27 16 130 169 206 365 
aHH4 40 142 376 nd 15 13 21 124 123 117 
aHH5 38 130 358 nd 28 10 101 108 146 509 

asmoked paprika sample; nd: not detected (<MLOD) 
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Table S1. (Cont) Concentrations (mg·kg-1) of capsaicinoids and carotenoids determined in paprika samples. 
Sample NDC CAP DC NDCT CR VIO CT ZEA   CRYPT   CAR 
aHS1 1.0 3.7 9.5 nd 26 18 118 101 155 310 
aHS2 1.4 4.2 11 nd 28 16 129 110 249 447 
aHS3 1.4 4.2 9.7 nd 23 15 129 165 261 382 
aHS4 1.5 4.6 10 nd 14 8.6 74 117 252 342 
aHS5 1.3 3.9 10 nd 29 13 6.3 95 233 435 

asmoked paprika sample; nd: not detected (<MLOD) 
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Table S2. Total capsaicinoid content (L CAPS), total carotenoid content (L CAR), and their respective sum (L CAPS + L CAR), expressed 
as mean ± standard deviation, obtained for the analyzed paprika samples according to their geographical origin and flavor variety. 

Hot Sweet Bittersweet 
 

La Vera 942 ± 554 106 ± 50 1048 ± 547 9 ± 6 185 ± 99 194 ± 100 31 ± 31 165 ± 49 196 ± 61 
Murcia 549 ± 53 118 ± 69 667 ± 107 10 ± 1 154 ± 125 164 ± 125 
Czech Republic 642 ± 27 75 ± 24 717 ± 38 12 ± 1 117 ± 47 128 ± 46 
Hungary 504 ± 455 719 ± 192 1224 ± 432 8 ± 4 844 ± 160 851 ± 161 
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Supplementary Figures 
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Figure S1: Capsaicinoid (blue) and carotenoid (orange) distribution of Paprika from 

different origins and varieties. 
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2.3. DISCUSSION 
 

This chapter’s results (Publication I and Publication II) present novel data on the 

metabolomic composition of paprika samples and the application of profiling 

LC−MS-based methods for their chemometric analysis. In this context, considering 

that the individual conclusions of each study are already detailed in the corresponding 

scientific article, this section discusses general findings and compares some of the 

obtained results. 

In both studies, the instrumental quality parameters —including the instrumental 

limit of detection (iLODs), the instrumental limit of quantification (iLOQs), the 

linearity, the precision (both run-to-run and day-to-day), and the trueness— were 

evaluated. In general, each method obtained satisfactory results for most of these 

parameters. Nevertheless, focusing on the sensitivity, it is noteworthy to point out 

that different approaches were used to estimate the iLODs because of the mass 

analysers’ characteristics. On the one hand, in Publication I, where a QqQ was used 

under the MRM mode, this parameter was calculated based on a signal-to-noise ratio 

of 3:1. Hence, the LC−MS/MS method developed for determining 36 phenolic 

compounds presented iLODs ranging from 0.01 µg·kg-1 to 1.4 mg·kg-1, with 28 of 

the studied compounds showing values below 0.3 mg·kg-1. In this line, the 

considerable differences within analytes’ detectability could be attributed to their 

chemical structural differences since several phenolic classes were encompassed (i.e., 

phenolic acids, flavonoids, stilbenes, other phenolic, and derivatives), leading to 

diverse ESI efficiencies. 

On the other hand, in Publication II, the iLODs were estimated as the smallest analyte 

concentration providing a detectable well-resolved chromatographic peak. This fact 

was due to the lack of baseline noise in the LC−HRMS extracted ion chromatograms 

because of the Q-Orbitrap’s high mass accuracy and resolving power. As a result, the 

LC−HRMS method for capsaicinoid and carotenoid profiling reached iLOD values 

from 0.001 to 0.25 mg·kg-1. Interestingly, although the applied APCI and MS 
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working conditions had been previously developed by Arrizabalaga-Larrañaga et al. 

for the carotenoid determination (alongside chlorophylls) [52], capsaicinoids were 

the ones reaching lower detection levels and, hence, presenting better APCI 

efficiencies. 

Hence, after the method development and the quality parameters’ evaluation, paprika 

samples were analysed by the optimised methodologies. In this context, the accurate 

quantification of secondary metabolites in food products is challenging as they are 

generally endogenous compounds and, therefore, no blank samples are available. In 

this line, the lack of blank samples prevents accurate quantification through matrix- 

matched calibration. Besides, other options, such as standard addition calibration or 

isotope dilution mass spectrometry (IDMS), cannot be effectively implemented for 

the proposed applications herein due to time and money requirements, respectively. 

In addition, in the case of IDMS, no internal labelled reference standards are available 

for all the targeted compounds. Under these circumstances, the semi-quantification 

through external calibration is currently the most extended practice for determining 

these compounds. 

In both studies, in an attempt to evaluate ion suppression or ion enhancement for 

those targeted analytes co-eluting, the LC−MS peak area signals resulting from the 

injection of the individual reference standard solution or the mixture of the co-eluting 

analytes were compared. As a result, none of these effects were significantly reported 

(variations below 10%). Nevertheless, in Publication II, the matrix effect was also 

estimated since, aside from the targeted co-eluting compounds, other matrix-related 

metabolites could alter the ionisation step (either with ESI or APCI). In this case, 

values ranging from 10 to 50% were obtained depending on the analyte. Therefore, 

although it is evident that the matrix effect influences the accuracy of the 

quantification, it can also be an indirect source of variation between the sample 

classes under study. 
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Furthermore, as reported in Publication I, 20 of the 36 targeted phenolic compounds 

were detected and semi-quantified in the paprika samples under study through the 

proposed LC−MS/MS method. Among these compounds, 16 were detected in all the 

analysed samples (i.e., La Vera, Murcia, and the Czech Republic). In contrast, 

betulinic acid was specific from La Vera samples, homogentisic acid from the Czech 

Republic samples, umbelliferone from the hot Czech Republic samples, and 

homovanillic acid from La Vera and the sweet-smoked Czech Republic samples. In 

this line, some of the detected phenolic compounds had been observed in previous 

studies. For instance, in the Mudrić et al. study [56], which contained the targeted 

and suspected determination of polyphenols by LC−HRMS in Serbian paprika, six 

phenolic compounds were also found in all the analysed samples (i.e., vanillin, rutin, 

and caffeic, p-coumaric, ferulic, and sinapic acids), two in most of them (i.e., gallic 

and chlorogenic acids), and two only in some (i.e., quercetin and umbelliferone). 

Moreover, interestingly, while Mudrić et al. reported concentration values for p- 

hydroxybenzoic and syringic acids in Serbian paprika samples, they were not 

detected in Spanish nor Czech paprika samples. 

Instead, capsaicinoid and carotenoid content in paprika is already compared with 

other studies in the literature in Publication II. However, Table 2.3 contains the 

pungency levels of the analysed paprika samples, expressed as Scoville heat units 

(SHU), obtained by multiplying the capsaicin and dihydrocapsaicin concentration 

(µg·kg-1) by 15. In this line, according to the Scoville scale [57], the obtained average 

SHU values classified the samples according to their pungency level. Thus, 

independently of the geographical origin of the sample, while sweet and bittersweet 

paprika were encompassed in the ‘non-pungent’ level (0 – 700 SHU), hot samples 

were included in the ‘moderately pungent’ one (3,000 – 25,000 SHU). Furthermore, 

considering that the SHU values depend on secondary metabolites naturally occurring 

in red pepper, the significant variations within sample types can be considered 

acceptable. 
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Table 2.3. Pungency of the analysed paprika samples expressed in SHU. 
 

La Vera Murcia The Czech 
Republic 

Hungary 

Hot Sweet Bittersweet Hot Sweet Hot Sweet Hot Sweet 

Pungency 
(SHU) 

13,477 
± 
7,837 

134 ± 442 ± 446 
95 

7,871 
± 773 

145 ± 
18 

9,014 
± 402 

161 ± 
21 

7,079 
± 
6,493 

111 ± 
68 

 

 
 

Regarding the chemometric analysis, given the results described in Publication I and 

II, the proposed phenolic compounds seemed better chemical descriptors for 

classifying paprika samples according to their geographical origin than the 

capsaicinoids and carotenoids profile. However, to compare both profiles under 

similar conditions, a PLS-DA model —encompassing La Vera, Murcia, and the 

Czech Republic samples— was built in each case (Hungary paprika samples were 

not considered for this comparison since they were not available when performing 

the analyses corresponding to Publication I). In this context, Figure 2.1 presents the 

results obtained after external validation of the PLS-DA models, using 70% of the 

samples as the calibration set and 30% as the prediction set. As reported in 

Publication I, the determined phenolic LC−MS/MS profile allowed excellent 

classification of paprika samples according to the three regions under study. Instead, 

the capsaicinoid and carotenoid profile showed worse discriminant ability through a 

unique multi-class PLS-DA model, even at the calibration set. 

Therefore, considering that, as introduced in Section 1.2.6, the number of studied 

classes highly influences a chemometric discriminant analysis model, Publication II 

proposed a classification decision tree strategy to improve the observed classification 

results. As a result, breaking down the classification into successive binary PLS-DA 

models improved the final performance in terms of class sensitivity and specificity, 

as well as classification accuracy. Nevertheless, according to the results, the targeted 

phenolic and polyphenolic compounds have proven to be better chemical descriptors 
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to assess the geographical origin of paprika than the determined capsaicinoids and 

carotenoids. 
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Figure 2.1. External validation results for the PLS-DA model built using the phenolic 

LC−MS/MS data 
 

Finally, this chapter has stated and demonstrated both the advantages and the 

disadvantages of metabolomic profiling-based LC−MS approaches for food 

authentication, specifically for paprika classification according to its geographical 

origin. In summary, targeted metabolites can successfully act as chemical markers of 

a particular class of samples (e.g., a geographical origin, production system, botanical 

origin, or cultivar). In this line, in contrast to non-targeted methods, targeted ones 

focusing on known and previously reported chemical markers can be easily 

transferred between laboratories and analytically validated following a harmonised 
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protocol [58]. However, guidelines for the validation of multivariate analysis still 

must be developed. Moreover, considering that many factors influence targeted 

markers’ content (e.g., cultivation, soil conditions, feeding, or climate), their 

specificity and universality are challenging. Therefore, the current knowledge of 

known and reported chemical markers for food authentication is scarce, and more 

research on that objective is required [6]. 
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3.1. INTRODUCTION 
 

Due to its non-targeted nature, the metabolomic fingerprinting approach involves the 

comprehensive detection of instrumental responses related to the sample composition 

in a non-selective way, aiming to detect as many metabolites as possible. In this 

context, as in the metabolomic profiling approach (introduced in Chapter 2), GC and 

LC play a crucial role and have been widely applied in the food authentication field. 

As described by Cuadros-Rodríguez et al. [1], different types of analytical data can 

be obtained by chromatographic techniques. Thus, first-order signals (two 

dimensions) consist of a data vector formed by signal intensities, each characterised 

by a particular retention time value. For instance, GC-FID or LC-UV (at a fixed 

absorption wavelength) provide first-order signals. Instead, in the case of second- 

order signals (three dimensions), the signal intensities are defined by two variables: 

the retention time and either the absorption wavelength (in LC-UV using a DAD) or 

the mass-to-charge ratio (in LC−MS). Furthermore, in recent years, direct MS-based 

analysis techniques —e.g., direct infusion mass spectrometry (DIMS), flow injection 

analysis coupled to mass spectrometry (FIA–MS), or ambient ionisation mass 

spectrometry (AIMS)— have gained significant relevance in this field and under this 

approach because of their short analysis time and high throughput [2]. These 

techniques generally produce first-order signals, although second-order signals can 

also be obtained when ion mobility spectrometry (IMS) is performed before MS. 

Thus, on the one hand, several methods based on GC have been developed to assess 

diverse food fraud cases. For instance, GC-FID first-order signals have been 

subjected to chemometrics, following a fingerprinting approach, to address food 

issues such as the effect of processing and ageing in Brandy de Jerez PGI [3], the 

geographical origin of Arbequina EVOO [4], or the adulteration of saffron with 

turmeric or marigold [5]. Moreover, as mentioned in Section 2.1, GC−MS presents 

excellent properties for the non-targeted analysis of VOCs, known as ‘volatilomics’. 

Thus, the main advantages of this technique are its high reproducibility of retention 

time and mass spectra, reached by calculating the compounds’ retention time indexes 
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(usually through a reference mix of n-alkenes) and by the well-established application 

of EI at 70 eV, respectively [6]. Thus, the possibility to compare reproducible mass 

spectra containing molecular fragmentation data with in-house or commercial 

libraries turns this technique into a unique tool for metabolite annotation. Moreover, 

low-resolution mass analysers are mostly used in metabolomics analysis. Therefore, 

for instance, a single quadrupole was used in the GC−MS analysis for the cultivar 

and geographical origin classification of Greek monovarietal EVOO, leading to the 

identification of 72 VOCs [7]. Similarly, GC−MS, with a QqQ and an IT as the mass 

spectrometers, was proposed to authenticate citrus monofloral honey [8] and the 

variety classification of Italian carrots [9], respectively. Nevertheless, some recent 

studies have also been developed using high-resolution mass spectrometers. For 

example, Yang et al. [10] proposed a non-targeted GC−HRMS method, using a Q- 

Orbitrap as the mass analyser, for discriminating five meat species. 

On the other hand, LC has also demonstrated excellent capabilities for non-targeted 

approaches. Hence, this introduction includes the following book chapter 

(Publication III) that examines the role of thin-layer chromatography (TLC) and LC 

fingerprinting methodologies in guaranteeing food authenticity. Particularly, the 

chapter distinguishes between LC with conventional detection systems, such as UV 

or FLD, and LC−HRMS. Therefore, it describes the most common practices and 

trends —in terms of sample treatment, chromatographic separation, detection system 

and conditions, and data handling— by discussing some of the most recent 

applications. 

 
 

Publication III: Book chapter 
 

Chromatographic fingerprinting approaches in food authentication. 
 

Campmajó, G.; Núñez, O. 
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In: Núñez, O., Campmajó, G. (Eds.), Chromatographic and related separation 

techniques in food integrity and authenticity. Volume A: Advances in 

chromatographic techniques. World Scientific Publishing Europe Ltd. 2021, 137 – 

166. 
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3.1.1. PUBLICATION III 
 
 

Chromatographic fingerprinting approaches in food authentication. 
 

Campmajó, G.; Núñez, O. 
 

In: Núñez, O., Campmajó, G. (Eds.), Chromatographic and related separation 

techniques in food integrity and authenticity. Volume A: Advances in 

chromatographic techniques. World Scientific Publishing Europe Ltd. 2021, 137 – 

166. 
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Abstract 

Food authentication has become an issue of great interest for consumers, the food 
industry, regulatory authorities, as well as the scientific community, because of 
the substantial grown of food fraud in the past years. Historically, the detection of 
fraudulent practices has been based on the use of targeted methods, focusing on 
the quantification of primary markers, directly linked to the authenticity problem- 
atic. Nevertheless, nowadays this strategy is in some cases insufficient because 
of the huge number of adulterant substances that can potentially be added in food 
as well as the increase of complex food authentication issues (e.g., deception on 
the geographical origin or production method). As an alternative, non-targeted 
methods, consisting of the analysis of instrumental responses without assuming 
any previous knowledge about the sample composition, have gained relevance 
when combined with chemometrics. The present chapter examines the role of 
thin-layer chromatography (TLC) and liquid chromatography (LC) fingerprint- 
ing methodologies, usually combined with chemometric techniques, to guarantee 
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food authenticity. In the case of LC, fingerprints obtained either by conventional 
detection systems or high-resolution mass spectrometry (HRMS) are discussed. 

 
 

6.1. Introduction 
Food authentication has emerged in the past decades as being of great interest for 
consumers, the food industry, regulatory authorities, and the scientific community, 
mainly due to the increase of food fraud practices. Food fraud, which can be 
defined as an intentional procedure that violates food laws and generally deceives 
the consumers, for an economic purpose, costs the global food industry approxi- 
mately 30 billion euros a year. Usually, illegal practices such as substitution, 
adulteration, dilution, deliberate mislabeling or counterfeiting, among many oth- 
ers, involve the modification of the organoleptic and sensorial properties of goods 
to get consumer attention, reduce the total production costs by using cheaper 
products than the original one, or ensure a longer expiration time. Besides, the 
complexity of the food chain has increased the opportunities to conduct fraud 
throughout it. For that reason, several national and international governmental 
organizations — i.e., European Food Safety Authority (EFSA), in the European 
Union (EU), the China Food and Drug Administration (CFDA), in China, or the 
Food and Drug Administration (FDA), in the United States of America (USA) — 
have established strict directives and regulations to protect the essence of original 
products, which is strongly related to their quality, geographical origin, and pro- 
duction method as well as processing technologies [1]. Moreover, the manipula- 
tion of foodstuff can sometimes imply not only an economic deception but also a 
threat to consumer’s health, especially when dealing with an allergen or toxic 
substance. 

Till date, most of the strategies proposed for the detection of fraudulent prac- 
tices are targeted methods, focusing on the determination and quantification of a 
specific analyte or group of analytes. Their concentrations or peak signals are then 
used as food features to address food authenticity. Depending on the relation 
between these compounds, which are so-called analytical markers, and the food 
authentication subject, they are defined as primary or secondary markers. In this 
line, the targeted analysis of primary markers directly links to solving the authen- 
ticity problem, since these markers are usually the known added illegal substances, 
complying with legal requirements regarding limits. For instance, Arrizabalaga- 
Larrañaga et al. [2] developed an ultra-high-performance liquid chromatography 
coupled to tandem mass spectrometry (UHPLC-MS/MS) method for the determi- 
nation of the adulteration of olive oils with natural pigments (e.g., carotenoids and 
chlorophylls) and the food additive E-141i (green copper chlorophyll complex), 
which are illegally added to enhance low-quality olive oil color. In contrast, sec- 
ondary marker profiling (multiple targeted analysis) indirectly allows the 
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certification of foodstuff, as a variation in their content is a consequence of the 
food authentication issue. As an example, Barbosa et al. [3] authenticated the 
geographical origin of paprika samples, profiling a total of 36 phenolic com- 
pounds by UHPLC-MS/MS. 

Nevertheless, the vast amount and diversity of food and beverage products 
supplied by food manufacturers, the wide range of particularities that each food- 
stuff can present, the great variety of frauds that can be committed, and the exis- 
tence of numerous potential adulterant substances (many of which are unknown) 
have made the detection of these illegal practices by traditional targeted methods 
more difficult. Therefore, in the past years, non-targeted methods, consisting of 
the analysis of instrumental responses without assuming any previous knowledge 
about the sample composition, have emerged as a reliable alternative [4]. It should 
be pointed out that the nomenclature used in this chapter for both targeted and 
non-targeted methodologies bases on Ballin et al. [5] proposition. 

Cifuentes first defined foodomics as a discipline that studies the food and 
nutrition domains through the application of omics technologies [6]. Among oth- 
ers, omics technologies encompass genomics, proteomics, isotopolomics, and 
metabolomics, which focus on the analysis of the entirety of the DNA, proteins, 
element or isotopic profiles, and metabolites, respectively [7]. Hence, metabolo- 
mics studies a massive number of small molecules (<1500 Da), corresponding to 
intermediate or end products of metabolic pathways, and with either endogenous 
or exogenous origins. Therefore, since it is the closest omics discipline to the phe- 
notype of biological systems, metabolomics fingerprinting approaches have been 
widely proposed to solve food authentication issues through chromatographic 
techniques. Nevertheless, because of the complexity and dynamic range of all 
these chemical compounds (e.g., different polarities and other chemical proper- 
ties), a single analytical technique cannot be used to perform the complete metab- 
olome analysis [8], and different analytical platforms are commonly proposed. In 
this context, the analytical technique, as well as the chosen working conditions, 
directly influence on the fingerprinting acquisition. Thus, in this chapter, the appli- 
cation of thin-layer chromatography (TLC) and liquid chromatography (LC) 
metabolomics fingerprinting is discussed. 

As in any other analytical chemistry approach, data accuracy, reproducibility, 
and reliability, highly depend on correct sample preparation. While in a targeted 
analysis it centers on the optimization of some concrete compound signals with 
tedious, time-consuming, and expensive procedures, to achieve high sensitivity 
and hence low limits of detection (LODs); in fingerprinting approaches, it usually 
focuses on detecting as many components of the food matrix as possible by using 
unspecific sample treatments to avoid losing information [9]. Therefore, they 
commonly use fast and straightforward sample treatments. However, due to the 
wide diversity of existing compounds in food samples, sometimes specific extrac- 
tion fractions (e.g., polar and non-polar fractions) are studied. 
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Moreover, non-targeted methodologies provide a multitude of data, making its 
interpretation a crucial and challenging step. In fact, in order to use these sample 
data sets to characterize, classify, and authenticate food products, as well as to 
extract chemical information from them, chemometrics is necessary. In this line, 
while non-supervised exploratory chemometric techniques — principal compo- 
nent analysis (PCA), cluster analysis (CA), and hierarchical cluster analysis 
(HCA) — provide trends and clusters between samples according to their similari- 
ties and dissimilarities, supervised classificatory techniques allow sample dis- 
crimination according to well-known classes. Even though supervised linear 
techniques — linear discriminant analysis (LDA), partial least squares regression- 
discriminant analysis (PLS-DA), orthogonal projections to latent structures- 
discriminant analysis (OPLS-DA), and soft independent modelling of class 
analogy (SIMCA) — are mainly proposed with classificatory purposes, in some 
cases supervised nonlinear techniques — support vector machine (SVM), artificial 
neuronal networks (ANN), k-nearest neighbor (kNN) — are also chosen. In some 
other applications, partial least squares (PLS) regression is employed to correlate 
food chromatographic fingerprints with a specific parameter, such as percentage 
of an adulterant. 

In the next sections, several examples dealing with metabolomics finger- 
printing chromatographic methodologies, in combination with chemometric 
techniques, to guarantee food authentication, are addressed. 

 

6.2. High-Performance Thin-Layer 
Chromatography 

High-performance thin-layer chromatography (HPTLC), also known as planar 
chromatography, has been an extensively used technique in food and natural prod- 
uct analysis for qualitative and quantitative results. For instance, despite the 
dynamic development of other chromatographic techniques, HPTLC is still 
employed in the phytochemical analysis [10]. Besides, it fits ideally with finger- 
printing approaches since it provides short chromatograms, and excellent repro- 
ducibility, with minimal sample preparation, high-throughput screening, and an 
inexpensive and environmentally friendly analysis. In this line, HPTLC finger- 
printing approaches have been applied not only in the natural product field but 
also in the food authentication one. As an example, Table 6.1 summarizes some of 
the applications of HPTLC in this field developed in the last five years. 

As can be seen in Table 6.1, HPTLC has been mainly used for the analysis of 
liquid and viscous samples, such as honey, wine, oil, tea, and fruit extracts. 
Although in some cases no sample treatment or just one stage of sample dissolu- 
tion was required, some authors performed liquid-liquid extraction (LLE), solid- 
liquid extraction (SLE), or even solid phase extraction (SPE) methods. The lack 



 

 
 

Table 6.1. Compilation of some HPTLC fingerprinting methodologies developed in the last five years to address food authentication. 
 

Sample Extraction HPTLCa Data analysis Ref. 

Adulteration 

Chamomile 
tea 

SLE with 96% ethanol Silica gel 60 NH2 plate F254s (20 ´ 10 cm) 
Ethyl acetate:formic acid:acetic acid:water (30:1.5:1.5:3, v/v/v/v) 
NP/PEG 400 
UV light (366 nm) 

VI, densitometric data 
analysis, PCA, and 
HCA 

[11] 

Wine — Silica gel 60 plate F254 (20 ´ 10 cm) 
Dichloromethane: methanol:formic acid (73:20:7, v/v/v) and 

0.14 M sodium dodecyl sulfate in n-butanol:water:heptane 
(13:4:83, v/v/v) 

1% 2-aminoethyl diphenylborinate (w/v) 
UV light (366 nm) 

Densitometric data 
analysis, PCA, 
HCA, and ANN 

[12] 

 
 

Cultivar/botanical origin 

Sandalwood 
oil 

Dissolution in hexane Silica gel 60 plate F254 (20 ´ 10 cm) 
Toluene:ethyl acetate (85:15, v/v) 
p-anisaldehyde sulfuric acid 
White and UV (254 and 366 nm) light 

VI and densitometric 
data analysis 

[13] 

Honey SPE with a glass column 
packed with amberlite 
XAD-2 

Silica gel 60 plate F254 (20 ´ 10 cm) 
Chloroform:ethyl acetate:formic acid (50:40:10, v/v/v) 
1% methanolic AlCl3, Ce-P-Mo, and 1% methanolic 

2- aminoethyl diphenylborate 
White and UV (254 and 366 nm) light 

VI and densitometric 
data analysis 

[14, 15] 

Honey UAE with dichloromethane 
SPE with styrene- 

divinylbenzene cartridges 

Silica gel 60 plate F254 (20 ́  10 cm) 
Toluene:ethyl acetate (80:20, v/v) 
Anisaldehyde 
White and UV (254 and 366 nm) light 

VI, PCA, and HCA [16, 17] 
 
 
 
 

(Continued ) 
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Table 6.1. (Continued ) 
 

Sample Extraction HPTLCa Data analysis Ref. 

Honey LLE with dichloromethane Silica gel 60 plate F254 (20 ´ 10 cm) 
Toluene:ethyl acetate:formic acid (6:5:1, v/v/v) 

VI and densitometric 
data analysis 

[18, 19] 

  Vanillin   
  White and UV (254 and 366 nm) light   

Wild fruits SLE with 70% ethanol Silica gel 60 plate F254 (20 ´ 10 cm) 
Ethyl acetate:toluene:formic acid:water (30:1.5:4:3, v/v/v/v) 

PCA and CA [20] 

  0.5% ethanolic 2-aminoethyl diphenylborate   
  UV light (365 nm)   

Cultivar/botanical origin, producer, and crop year 

White wine — Silica gel 60 plate F254 (20 ´ 10 cm) 
Ethyl acetate:formic acid:acetic acid:water (20:2:2:4, v/v/v/v) 
Silica gel 60 RP-18 plate F254s (20 ´ 10 cm) 
Methanol:water:formic acid (5:5:0.1, v/v/v) 
PEG 
UV light (254 and 366 nm) 

Notes: a From top to bottom: stationary phase, mobile phase, derivatization reagent, and detection system. 
Natural products (NP), polyethylene glycol (PEG), ultrasound-assisted extraction (UAE), ultraviolet (UV), visual inspection (VI). 

 
VI and CA [21] 
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of a tedious pre-treatment step, as well as the possibility to simultaneously analyze 
several amounts of samples on one plate, is one of the advantages of this chro- 
matographic technique when compared to other more complex ones. 

Moreover, the selection of the stationary and mobile phases — which directly 
affect the separation of the sample compounds, the use of a derivatization reagent, 
and the detection system — play a crucial role in the visualization of rich and 
selective HPTLC fingerprints. Although, commonly, HPTLC fingerprinting 
employs a normal phase system as the stationary phase, using a polar adsorbent 
such as silica gel, and a mix of aprotic organic solvents (dichloromethane, chlo- 
roform, ethyl acetate, and toluene) as the mobile phase, other chromatographic 
systems have also been employed. For instance, Guzelmeric et al. [11], who stud- 
ied the adulteration of chamomile tea with other species having similar flowers, 
used NH2 modified silica gel plates, and ethyl acetate:formic acid:acetic acid:water 
(30:1.5:1.5:3, v/v/v/v) solution as the mobile phase, to obtain characteristic chemi- 
cal fingerprints. Instead, Hosu et al. [21] developed two different HPTLC systems 
for the authentication of white wines according to their variety, vineyard, and crop 
year. Thus, the authors proposed both silica gel and C18-modified silica gel sta- 
tionary phases, with ethyl acetate:formic acid:acetic acid:water (20:2:2:4, v/v/v/v) 
and methanol:water:formic acid (5:5:0.1, v/v/v) as the mobile phases, respectively, 
for the separation of wine white compounds. Besides, the images of the plates 
were made under UV light at 254 and 366 nm. Several variations in terms of 
abundance and number of major compounds were observed by visual inspection 
(VI) between samples (except that the images of silica gel plates under 254 nm 
that presented similar fingerprints for all the studied samples). However, the indi- 
vidual evaluation of each chromatographic system (silica gel plates at 366 nm, 
and reversed-phase plates at 254 nm and 366 nm) by CA could not achieve the 
correct classification of white wines. Alternatively, when combining these finger- 
print data, samples were successfully clustered in three main groups — Sauvignon 
Blanc, Feteasca Alba, and Riesling wines — suggesting that wine variety has 
more influence on the HPTLC fingerprints than the vineyard and the crop year. 

Regarding the detection of the HPTLC fingerprints, it is usually conducted 
using UV light, particularly at 254 and 366 nm, and in some cases white light. 
Moreover, as it can be observed in Table 6.1, the use of silica gel plates coated 
with green or blue inorganic fluorescent indicators (F254 and F254s, respectively) 
allows the detection of colorless substances by fluorescence quenching. Besides, 
several derivatization reagents are usually sprayed to the plate in order to enhance 
the fluorescent signal. 

The application of HPTLC fingerprinting to address the classification and 
authentication of foodstuff can aid in three strategies: VI, processing of densito- 
metric data, and chemometrics [22]. VI is based on the subjective perception of 
the analyst and focuses on the visual detection of chemical patterns between 
samples (e.g., the detection of unique bands related to specific sample groups or 
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the presence of major and minor bands based on their intensity). Instead, quantita- 
tive comparison through the evaluation of densitometric measurements, consisting 
of the optical density obtained along the chromatogram and generally acquired 
with a device such as charge-coupled device (CCD), provides more reliable infor- 
mation as well as some advantages (i.e., fast and straightforward image process- 
ing), without implying more difficulty. Finally, multivariate analysis allows using 
all the information present at the acquired data for classification purposes. 
Generally, it requires pre-treatment steps involving baseline drift, peak alignment, 
normalization, and autoscaling. 

As an example, Agatonovic-Kustrin et al. [12], who aimed to determine the 
major variety grape used in a given wine, processed the obtained data by studying 
the corresponding densitograms as well as employing chemometric techniques. 
The evaluation of the obtained densitograms provided characteristic peaks for 
some of the varieties studied (e.g., four and five peaks were associated with Shiraz 
and Merlot wines, respectively). Instead, PCA, HCA, and ANN were carried out 
using the whole HPTLC fingerprint. In this last case, the method provided good 
discrimination of samples according to grape varieties, with a classification rate of 
96%, 100%, and 66%, for the training, testing, and external validation set. 

 

6.3. Liquid Chromatography (LC) 
The complexity and diversity of food matrices, as well as the significant variabil- 
ity of compounds present in them — differing in polarity, structure, and concentra- 
tion ranges (from g·kg-1 to trace level) — makes their analysis difficult. In this 
context, the versatility of LC, allowing the selection of different separation and 
detection choices (either for polar or non-polar compounds), can provide an enor- 
mous amount of information, especially when employing a fingerprinting 
approach. Besides, the recent use of sub-2-μm fully porous or sub-3-μm core-shell 
particles, shifting from high-performance liquid chromatography (HPLC) to ultra- 
high-performance liquid chromatography (UHPLC) has opened new possibilities 
to achieve high throughput chromatographic analytical separations, increasing 
chromatographic resolution and peak capacity. 

The LC metabolomics fingerprinting approach can be classified according to 
the detection system employed. On the one hand, LC in combination with conven- 
tional detection systems — such as UV, fluorescent detection (FLD), electro- 
chemical detector (ECD), or charged aerosol detector (CAD) — provides 2D 
fingerprints (retention time and peak intensity) based on the simultaneous detec- 
tion of instrumental data points. The potentiality of these fingerprints, when sub- 
jected to multivariant statistical analysis in the food authentication field, is shown 
in Section 6.3.1. On the other hand, as can be seen in Section 6.3.2, LC coupled 
to high-resolution mass spectrometry (HRMS) adds a third dimension (peak m/z) 
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and unspecified targets are simultaneously detected, obtaining characteristic fin- 
gerprints, which can be used not only for sample classificatory purposes through 
chemometrics but also as a further identification step of the most discriminant 
biomarkers. 

 

6.3.1. Conventional detection 

In this section, the applicability of LC combined with different conventional 
detection system fingerprinting techniques to characterize and classify food 
through chemometrics is evaluated. In this line, Table 6.2 summarizes some of the 
latest applications of this approach for different food authentication items, such as 
adulterations, identification of the cultivar or geographical origin, and confirma- 
tion of the processing method used. 

Thus, Table 6.2 shows a wide variety of goods that has been analyzed by this 
kind of fingerprints. Most of the examined food matrices derive from the plant 
kingdom. For instance, Cetóet al. [23] used HPLC-UV fingerprints to quantify by 
PLS both type and geographical origin adulterations of paprika, which is a red 
seasoning powder obtained from different varieties of red pepper (Capsicum 
annuum L.). Instead, some authors have also analyzed foodstuff of animal origin, 
such as Campmajóet al. [29], who studied the processing method for mislabeling 
of hen eggs by HPLC-UV fingerprinting. 

Similar to other fingerprinting methodologies, LLE and SLE are commonly 
used as the sample treatment choice, because of their simplicity, ease of use, and 
capacity to extract polar or non-polar chemical compounds directly from the food 
matrix. However, specific applications required a preceding step. For example, 
prior to an LLE with hexane, Jiménez-Carvelo et al. [26], who aimed to discrimi- 
nate olive oil from other types of edible oils, carried out a methyl-transesterifica- 
tion reaction to characterize the HPLC-CAD compositional fingerprint of an 
organic phase extract. This process allowed the liberation of sterols and, thus, their 
subsequent detection. Therefore, the organic extract contained compounds such 
as fatty acid methyl esters (FAME), sterols, and mono- and diglycerides, among 
others. 

Regarding the chromatographic separation, several stationary and mobile 
phases have been used depending on the polarity of the analyzed sample extract, 
although most of the works used a C18 column. Moreover, some authors have 
evaluated the authentication capability of fingerprints obtained with different 
chromatographic systems. For instance, Bikrani et al. [28] compared the results 
obtained with normal- and reversed-phase HPLC-UV fingerprinting — cyano and 
C30   columns were used, respectively — for the geographical origin certification 
of fat-spread products. Figure 6.1 shows the HPLC-UV fingerprints obtained 
for a Moroccan and a Spanish margarine/spread samples using normal- and 



 

 
 
 
 
 

Table 6.2. Compilation of some LC fingerprinting methodologies, using spectroscopic, electrochemical or charged aerosol detection systems, 
developed in the last five years to address food authentication. 

Sample Extraction LC and detection systema Data analysis Ref. 

Adulteration 

Paprika SLE with water:acetonitrile 
(20:80, v/v) 

 
 

Cultivar/botanical origin 

HPLC-UV (280 nm) 
Kinetex C18 column (100 ´ 4.6 mm, 2.6 μm) 
Gradient elution (1 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) methanol 

LDA and PLS [23] 

White wine — HPLC-ECD (1000 mV) 
SeQuant ZIC p-HILIC column (150 ´ 4.6 mm, 5 μm) 
Isocratic elution (1 mL·min-1): 0.05% (v/v) TFA:acetonitrile 

(19:81, v/v) 

PLS-DA [24] 

Avocado SLE with hexane:isopropanol 
(3:2, v/v) 

 
Olive oil Transesterification with sodium 

methoxide and LLE with hexane 
 

Olive oil LLE with methanol:water 
(60:40, v/v) and hexane to defat 

HPLC-CAD 
Lichrospher 100 CN column (250 ´ 4 mm, 5 μm) 
Isocratic elution (1.2 mL·min-1): n-hexane:isopropanol (96:4, v/v) 
HPLC-CAD 
Lichrospher 100 CN column (250 ´ 4 mm, 5 μm) 
Isocratic elution (1.2 mL·min-1): n-hexane:isopropanol (96:4, v/v) 

UHPLC-UV (280 nm) and UHPLC-FLD (lexc: 280 nm/ lem: 339 nm) 
Zorbax C18 column (150 ´ 4.6 mm, 1.8 μm) 
Gradient elution (0.8 mL·min-1): (A) water with 0.5% acetic acid 

(v/v) and (B) acetonitrile 

SIMCA and 
PLS-DA 

 
SIMCA, PLS-DA, 

kNN, and 
SVM-C 

PCA, SIMCA, 
PLS-DA, and 
kNN 

[25] 
 
 
[26] 

 
 
[27] 
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Geographical origin 
 

Fat-spread 
product 

Dilution with n-hexane HPLC-UV (210 and 254 nm) 
DevelosilTM C30-UG-5 column (250 ´ 4.6 mm, 5 μm) 
Isocratic elution (1.2 mL·min-1): acetonitrile:isopropanol 

(40:60, v/v) 

PCA, SIMCA, 
and PLS-DA 

[28] 

Processing     

Hen egg SLE with water:acetonitrile HPLC-UV (250 nm) PCA and PLS-DA [29] 
 (20:80, v/v) Kinetex C18 column (100 ´ 4.6 mm, 2.6 μm) 

Gradient elution (0.4 mL·min-1): (A) water with 0.1% formic 
  

 
Adulteration and cultivar/botanical origin 

Nuts SLE with acetone:water (70:30, v/v) 
and hexane to defat 

acid (v/v) and (B) methanol 
 
 

HPLC-FLD (lexc: 280 nm/lem: 350 nm) 
Kinetex C18 column (100 ´ 4.6 mm, 2.6 μm) 
Gradient elution (0.4 mL·min-1): (A) water with 0.1% formic 

acid (v/v) and (B) methanol 

 
 

PCA, PLS-DA, 
and PLS 

 
 

[30] 

Fruit-based 
product 

 
 

Cranberry-based 
product 

LLE with acetone:water:hydrochloric 
acid (70:29.9:0.1, v/v/v) 

 
 
LLE with acetone:water:hydrochloric 

acid (70:29.9:0.1, v/v/v) 

HPLC-UV (280 nm) 
Kinetex C18 column (100 ´ 4.6 mm, 2.6 μm) 
Gradient elution (1 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) methanol 
HPLC-UV (370 nm) 
Kinetex C18 column (100 ´ 4.6 mm, 2.6 μm) 
Gradient elution (1 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) methanol 

PCA and PLS [31] 
 
 
 

PCA and PLS [32] 

 
 

Notes: aFrom top to bottom: chromatographic technique and detection system, column, and elution mode and mobile phase. 
Hydrophilic interaction liquid chromatography (HILIC), support vector machine-classification (SVM-C). 
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Fig. 6.1. HPLC-UV fingerprints obtained for a Moroccan and a Spanish margarine/spread samples using normal- (a, b) and reversed-phase (c, d) 
HPLC-UV, respectively. 
Source: Reproduced from Open Access Ref. [28]. 
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reversed-phase HPLC-UV. In this case, better PLS-DA classification was obtained 
with reversed-phase HPLC-UV fingerprints, achieving a rate of 100%. 

Moreover, many and various conventional detectors are combined with 
HPLC, with UV being the most typically employed, in order to obtain distinctive 
fingerprints. Table 6.2 presents some other applications where FLD, ECD, or 
CAD have also been used. For instance, Campmajóet al. [30] used HPLC-FLD 
fingerprints for the classification of nuts and the detection of almond-based prod- 
ucts adulteration, as an alternative to the corresponding HPLC-UV ones. In com- 
parison, HPLC-FLD fingerprints contained a fewer number of peaks, since the 
selection of excitation and emission acquisition wavelengths provides more selec- 
tive data than HPLC-UV. However, in view of the better predictive figures 
obtained with HPLC-FLD, it seemed that this more selective detection was related 
to the acquisition of relevant chemical descriptors, such as flavanols (e.g., cate- 
chin, epicatechin, and related species). Alternatively, although they are not 
included in Table 6.2, refractive index (RI) and evaporative light scattering detec- 
tor (ELSD) can also be employed for the detection of chromatographic 
fingerprints. 

The use of the chromatographic fingerprints and the multivariate analysis 
strategy depend on the nature of the food authentication issue to be solved. 
In this line, Pardo-Mates et al. [31], who studied the authentication of fruit-based 
extracts — such as cranberry, raspberry, blueberry, and grape — by HPLC-UV 
fingerprints, proposed PCA for sample discrimination and PLS for the quantitation 
of adulterant levels in cranberry fruit extracts. Thus, subsequent to an LLE with 
acetone:water:hydrochloric acid (70:29.9:0.1, v/v/v) mix, HPLC-UV fingerprints 
were recorded by using a C18 column and a gradient elution with water, acidified 
with formic acid, and methanol. Then, the combination of different time segments 
of the chromatographic fingerprints (4.7–6.5, 8–14, 15–17, and 29–30 min) pro- 
vided the best sample discrimination by PCA, although cranberry- and grape- 
based extracts appeared quite close; 3 to 23 min HPLC-UV segments were 
subjected to PLS to successfully quantitate grape, blueberry, or raspberry percent- 
age of adulteration in the cranberry extracts, with prediction errors below 4.3%. 

Otherwise, Bajoub et al. [27] evaluated the varietal origin of extra-virgin olive 
oil (EVOO) by using different data fusion approaches consisting of the combina- 
tion of the obtained HPLC-UV and HPLC-FLD fingerprints. In order to obtain the 
sample extracts, the authors proposed an LLE with methanol:water (60:40, v/v), 
also adding hexane for defatting. Both HPLC-UV (with an excitation wavelength 
of 280 nm) and HPLC-FLD (with excitation and emission wavelengths of 280 
and 339 nm, respectively) were acquired using a C18 column. Regarding the data 
treatment, besides the individual employment of HPLC-UV and HPLC-FLD 
fingerprints as chemical descriptors, Bajoub et al. constructed “low-level” — 
HPLC-UV and HPLC-FLD data were concatenated — and “mid-level” — optimal 
segments of both HPLC-UV and HPLC-FLD were concatenated — data fusion 
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data matrices. In this line, “mid-level” data fusion matrix provided the best sample 
prediction ability when using PLS-DA as well as SIMCA. 

 

6.3.2. High-resolution mass spectrometry (HRMS) detection 

In the last few years, there has been a trend towards the application of non-targeted 
UHPLC-HRMS fingerprinting methodologies — containing not only chromato- 
graphic time and peak signals but also m/z values — in the food authentication 
field. In this context, time-of-flight (TOF) and Orbitrap instruments are the most 
employed mass analyzers for this purpose because of their high resolving power, 
which is the ability to distinguish two adjacent ions of equal intensity. While TOF 
instruments present a resolving power in the range of 12,000–50,000 full-width at 
half maximum (FWHM), Orbitrap mass analyzers reach values up to 500,000 
FWHM. Thus, both TOF and Orbitrap instruments provide accurate mass mea- 
surements with mass error values below 5 and 2 ppm, respectively [33]. Molecular 
formulae of specific ions can be determined, taking advantage of this high accu- 
racy, as well as isotopic abundance ratios; while structural information can also be 
obtained dissociating the compound by fragmentation. Hybrid configurations such 
as quadrupole-Orbitrap (Q-Orbitrap) and quadrupole-TOF (Q-TOF) allow the 
fragmentation of specific ions by tandem mass spectrometry (MS/MS), bringing 
more information for the identification of unknown compounds. 

Furthermore, given the excellent sensitivity and selectivity, high-throughput 
nature, and depth coverage of HRMS, UHPLC-HRMS perfectly fits with metabo- 
lomics fingerprinting approaches. Table 6.3 summarizes some of the latest appli- 
cations of UHPLC-HRMS in the food authenticity field. 

In accordance with the HPTLC and LC fingerprint applications seen in previ- 
ous sections (Section 6.2 and Section 6.3.1, respectively), most of the analyzed 
samples arise from the plant kingdom products. However, some authors also pro- 
pose this methodology for animal-derived matrices such as hen eggs [35, 36]. 
Moreover, although fingerprinting strategies do not require prior knowledge of the 
sample chemical composition to detect different compound classes, some authors 
focus the whole analytical strategy (i.e., sample treatment, chromatographic sepa- 
ration, and mass spectrometric acquisition) to obtain a fingerprint strongly related 
to a specific family. In this line, a UHPLC-HRMS fingerprinting method favoring 
the detection of phenolic and polyphenolic compounds, which are a family of 
secondary aromatic metabolites ubiquitously spread through the plant kingdom, 
was developed by Barbosa et al. for the authentication of paprika [46]. Thus, an 
SLE with water:acetonitrile (20:80, v/v) and a chromatographic separation based 
on a C18 column and water and acetonitrile (both acidified with 0.1% of formic 
acid), as the mobile phase components, were performed. Besides, heated-electro- 
spray ionization (H-ESI) in negative mode, which is by far the most generalized 
ionization source employed in the determination of polyphenols [48], was used. 



 

 
 

Table 6.3. Compilation of some UHPLC-HRMS fingerprinting methodologies developed in the last five years to address food authentication. 
 

Sample Extraction LC and HRMS conditionsa Data analysis Ref. 

Adulteration 

Cocoa 
product 

 
 
 
 
 
 
 
 

Aging period 

Polar extract: SLE with methanol:water 
(90:10, v/v) with 5 mM ammonium 
acetate 

Non-polar extract: SLE with 
isopropanol:chloroform (80:20, v/v) 
with 20 mM ammonium acetate 

Accucore RP-MS column (150 ´ 2.1 mm, 2.6 μm) 
Gradient elution (0.35 mL·min-1): (A) water with 10 mM 

ammonium formate and (B) isopropanol:acetonitrile 
(60:40, v/v) with 10 mM ammonium formate 

Cogent Diamond Hydride column (150 ´ 2.1 mm, 2.2 μm) 
Gradient elution (0.6 mL·min-1): (A) water with 0.1% acetic acid 

(v/v) and (B) acetonitrile with 0.1% acetic acid (v/v) 
H-ESI (±) 
Q-TOF (full-scan mode 60-1200 m/z) 

PCA and SPLS [34] 

Hen egg LLE with dichloromethane:methanol 
(75:25, v/v) 

Accucore RP-MS column (100 ´ 2.1 mm, 2.6 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and 5 mM ammonium acetate and (B) methanol with 
0.1% formic acid (v/v) and 5 mM ammonium acetate 

PCA [35] 

 
 
 
 
 

0.1% formic acid (v/v) and 5 mM ammonium formate 
H-ESI (±) 
Q-Orbitrap (full-scan mode 75-1000 m/z and DDA) 

 
 
 
 

(Continued ) 
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H-ESI (+)  

Q-TOF (full-scan mode 100-1000 m/z and MS/MS) 

Hen egg LLE with acetonitrile:water (80:20, v/v) Luna Omega C18 column (150 ´ 2.1 mm, 1.6 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.1% formic acid 

PCA and 
OPLS-DA 

[36] 

(v/v) and 5 mM ammonium formate and (B) methanol with   

 



 

 
 
 

Table 6.3. (Continued) 
 

Sample Extraction LC and HRMS conditionsa Data analysis Ref. 

Cultivar/botanical origin 

Vaccinum 
berries 

SLE with methanol HSS T3 column (100 ´ 2.1 mm, 1.8 μm) 
Gradient elution (0.4 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and 5 mM ammonium formate and (B) methanol:water 
(95:5, v/v) with 0.1% formic acid (v/v) and 5 mM ammonium 
formate 

H-ESI (±) 
Q-TOF (full-scan mode 100–1200 m/z and IDA) 

PLS-DA [37] 

Geographical origin 

Green tea SLE with dichloromethane:methanol 
(50:50, v/v) 

 
 
 
 
 

Coffee Polar extract: SLE with acetonitrile:water: 
formic acid (79:20:1, v/v/v) 

Semi-polar extract: SLE with acetone 

 
BEH C18 column (100 ´ 2.1 mm, 1.7 μm) 
Gradient elution (0.4 mL·min-1): (A) water:methanol (95:5, v/v) 

with 0.1% formic acid (v/v) and 5 mM ammonium formate and 
(B) isopropanol:methanol:water (65:30:5, v/v/v) with 0.1% 
formic acid (v/v) and 5 mM ammonium formate 

H-ESI (±) 
Q-TOF (full-scan mode 50–1200 m/z, MSE, and MS/MS) 

Cortecs C18 column (100 ´ 2.1 mm, 2.7 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.01% formic 

acid (v/v) and (B) methanol with 0.01% formic acid (v/v) 
BEH HILIC column (100 ´ 2.1 mm, 1.7 μm) 
Gradient elution (0.3 mL·min-1): (A) acetonitrile with 0.01% 

formic acid (v/v) and 10 mM ammonium acetate and (B) water 
with 0.01% formic acid (v/v) and 10 mM ammonium acetate 

BEH C18 column (100 ´ 2.1 mm, 2.7 μm) 

 
 

PCA, PLS-DA, 
and 
OPLS-DA 

 
 
 
 

PCA and 
PLS-DA 

 
 

[38] 
 
 
 
 
 
 

[39] 
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Gradient elution (0.3 mL·min-1): (A) acetonitrile with 0.1% 
formic acid (v/v) and 0.5 mM ammonium acetate and (B) 
butanol with 0.1% formic acid (v/v) and 0.5 mM ammonium 
acetate 

H-ESI (±) 
Q-TOF (full-scan mode 50–1200 m/z) 

Wine Dilution with water Hypersil GOLD aQ column (100 ´ 2.1 mm, 1.9 μm) 
Gradient elution (0.6 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) acetonitrile 
BEH C18 column (100 ´ 2.1 mm, 1.7 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.01% formic 

acid (v/v) and (B) methanol with 0.01% formic acid (v/v) 
H-ESI (-) 
Orbitrap (full-scan mode 50–1000 m/z and AIF) 
Q-TOF (full-scan mode 50–1000 m/z and MSE) 

 
 
 
 
 
 
 

PCA, PLS-DA 
and 
OPLS-DA 

 
 
 
 
 
 
 

[40] 

Processing 

Tomato LLE with methanol Luna C8 column (100 ´ 2 mm, 3 μ m) 
Gradient elution (0.35 mL·min-1): (A) water:methanol (98:2, v/v) 

with 0.1% formic acid (v/v) and 5 mM ammonium formate and 
(B) methanol:water (98:2, v/v) with 0.1% formic acid (v/v) and 
5 mM ammonium formate 

H-ESI (+) 
Q-Orbitrap (full-scan mode 74–1100 m/z and AIF) 

 

PCA [41] 
 
 
 
 
 
 
 

(Continued ) 
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Table 6.3. (Continued) 
 

Sample Extraction LC and HRMS conditionsa Data analysis Ref. 

Carrot Polar extract: SLE with water:methanol 
(60:40, v/v) 

BEH C18 column (100 ´ 2.1 mm, 1.7 μm) 
Gradient elution (0.27 mL·min-1): (A) water:methanol (95:5, v/v) 

PCA and 
OPLS-DA 

[42] 

 Non-polar extract: SLE with chloroform with 0.2% formic acid (v/v) and (B) methanol with 0.2%   
  formic acid (v/v)   
  H-ESI (±)   
  TOF (full-scan mode 50–1000 m/z)   

Adulteration and cultivar/botanical origin 

Berry fruit 
juice 

Dilution with water C18 column (100 ´ 2.1 mm, 2.6 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) methanol with 0.1% formic acid (v/v) 
H-ESI (±) 
Q-TOF (full-scan mode 50–1000 m/z and IDA) 

PCA-DA and 
OPLS-DA 

[43] 

Aging period and processing 

Wine Dilution with acetonitrile BEH amide column (150 ´ 2.1 mm, 1.7 μm) 
Gradient elution (0.25-0.4 mL·min-1): (A) acetonitrile:water 

(95:5, v/v) with 20 mM ammonium formate and (B) water: 
acetonitrile (98:2, v/v) with 20 mM ammonium formate 

H-ESI (+) 
Q-TOF (full-scan mode 30–1000 m/z) 

 
 

PCA and 
OPLS-DA 

 
 

[44] 
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Cultivar/botanical origin and geographical origin 

Honey LLE with water Hypersil GOLD C18 column (100 ´ 2.1 mm, 1.9 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) acetonitrile with 0.1% formic acid (v/v) 
H-ESI (±) 
Q-Orbitrap (full-scan mode 80–1200 m/z and DDA) 

 
PCA and 

PLS-DA 

 
[45] 

Geographical origin and variety 

Paprika SLE with water:acetonitrile (20:80, v/v) Ascentis Express C18 column (100 ´ 2.1 mm, 2.7 μm) 
Gradient elution (0.3 mL·min-1): (A) water with 0.1% formic acid 

(v/v) and (B) acetonitrile with 0.1% formic acid (v/v) 
H-ESI (-) 
Q-Orbitrap (full-scan mode 100–1500 m/z) 

 
 

PCA and 
PLS-DA 

 
 

[46] 

Aging period, geographical origin, and processing 

Golden rum   Dilution with water Hypersil ODS C18 column (250 ´ 4.6 mm, 5 μm) 
Gradient elution (0.2 mL·min-1): (A) water with 30 mM 

ammonium acetate (pH 5) and (B) methanol 
H-ESI (±) 
Orbitrap (full-scan mode 50–1000 m/z and AIF) 

Notes: aFrom top to bottom: column, elution mode and mobile phase, and mass spectrometry conditions. 

 
 

PCA, HCA, and 
PLS-DA 

 
 

[47] 

All-ion fragmentation (AIF), data-dependent acquisition (DDA), information dependent acquisition (IDA), principal component analysis-discriminant analysis (PCA-
DA), sparse partial least squares (SPLS) regression. 
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As can be seen in Table 6.3, sample dilution avoiding its treatment is exten- 
sively used in liquid matrices, such as alcoholic beverages or fruit juices, as it 
ensures minimal sample handling, and hence, it maintains almost the whole com- 
ponents of the original matrix. Instead, solid or viscous matrices generally require 
fast and straightforward sample treatment, which usually consists of a SLE or 
LLE, respectively. Therefore, since the sample preparation strategy for finger- 
printing analysis needs to be capable of extracting a broad range of compounds, 
minimizing potential interferents, and providing a good reproducibility for com- 
pounds with different chemical properties (i.e., size, charge, acidity, and polarity), 
the chosen extracting solvent must be optimized. In this line, different optimiza- 
tion strategies have been proposed. On the one hand, Cain et al. [34], who aimed 
to determine the cocoa shell content (Theobroma cacao L.) in cocoa products, 
evaluated the extraction process by studying its effect on the detection and signal 
intensity of 30 targeted polar and non-polar potential key metabolites, covering the 
entire retention and mass range characteristics. As a result, the most efficient 
extraction was obtained with methanol:water (90:10, v/v) with 5 mM ammonium 
acetate for polar compounds, and with isopropanol:chloroform (80:20, v/v) with 
20 mM ammonium acetate for non-polar substances. Similarly, Cubero-Leon 
et al. [42], aiming to assess the performance of an SLE extraction method in a 
study for the identification of the agronomic production system of carrots, used 
different standards encompassing compounds already reported to be present in 
carrots, such as vitamins, flavonoids, and phenolic acids. Thus, the authors pro- 
vided values of repeatability of the extraction method, expressed as the relative 
standard deviation (RSD, %) of the peak intensity of the spiked samples with the 
standard compounds from six independent extractions. 

Alternatively, in order to obtain the most comprehensive information for 
sample authentication, Navratilova et al. [38] evaluated the extraction efficiency 
of several solvents employed in an SLE method by comparing the number of 
detected molecular features. Since the authors aimed to authenticate green tea 
according to their geographical origin by UHPLC-HRMS fingerprinting, a pool of 
samples representing three geographical regions was subjected to SLE using 
water, methanol, and dichloromethane:methanol (50:50, v/v). Lately, the extracts 
were analyzed by UHPLC-HRMS using H-ESI in both positive and negative 
modes. For peak detection, the use of appropriate software, as well as the estab- 
lishment of specific parameters (i.e., m/z range, intensity threshold, mass and 
retention time window, and data deisotoping), was required. As a result, 
dichloromethane:methanol (50:50, v/v) was chosen as the extracting solvent since 
it significantly increased the number of detected molecular features, especially in 
the H-ESI-positive ionization mode. 

Regarding the chromatographic separation, as can be observed in Table 6.3, 
reversed-phase columns are by far the most selected ones, especially those based 
on C18 chemistry. This fact is mainly due to the great performance of these 
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columns to separate semi-polar metabolites (e.g., polyphenols, carotenoids, and 
capsaicinoids), which encompass a wide number of compounds that have been 
demonstrated to be excellent secondary markers for food authentication issues. 
Moreover, instead of traditional trimethyl silane (TMS) end capping, some authors 
proposed polar end-capped C18 columns, such as T3, since they enhance the reten- 
tion of polar metabolites, allowing a broader compound coverage [37, 40]. Instead, 
metabolomics fingerprints based on polar compounds have been obtained by 
several authors using normal-phase [34], HILIC [39], or amide [44] columns. 

Another step that influences in the selectivity of the non-targeted UHPLC- 
HRMS methods is the ionization source used. Almost all the methodologies 
available in literature employ H-ESI as the selected interface between the liquid 
and the gas phase, because of its more remarkable universality in terms of the 
number of ionizing compounds when compared to other atmospheric pressure 
ionization (API) sources, such as atmospheric pressure chemical ionization 
(APCI) or atmospheric pressure photoionization (APPI). In this line, both H-ESI- 
positive and -negative modes are run (in two different chromatographic runs) to 
obtain the widest range of detectable compounds, although in some cases only 
one of them is used. Nevertheless, APCI, APPI, or even multimode ionization 
source — combining ESI-APCI, ESI-APPI, or APCI-APPI — could reach a 
broader analysis of compounds with different hydrophobicity, polarity, and vola- 
tility, and therefore their application in metabolomics fingerprinting could be of 
high interest. 

Non-targeted UHPLC-HRMS analysis generate massive datasets, requiring 
dedicated software programs to handle the obtained data, with this being a critical 
step since inappropriate data-processing may compromise the whole analytical 
method. These software programs aim to convert raw data into a matrix consisting 
of the retention time, m/z values, and the area or signal of each peak detected. 
Thus, noise filtering, peak picking, peak deconvolution, retention time alignment, 
and removal of isotopic peaks are carried out by establishing certain parameters 
such as the peak width, signal-to-noise (S/N) ratio, or mass tolerance. At this 
point, although the generated matrix can already be subjected to statistical analy- 
sis, reduction of data dimensionality is recommended. For instance, Hurkova et al. 
[37], who aimed to find differences between the phytochemical content of lingon- 
berries and cranberries, reduced a matrix containing 7046 molecular features in 
positive and 1833 in negative ionization mode to only 935 and 307, respectively, 
by removing isotopic and background peaks as well as using univariate data analy- 
sis. Instead, in a UHPLC-HRMS fingerprinting study to find chemical composi- 
tion differences in chicken eggs stored for different lengths of time, Johnson et al. 
[35] removed all those molecular features with a RSD bigger than 30% in the 
quality control (QC) samples (sample constructed by pooling equal aliquots of 
each sample), as well as those with a significance of P > 0.01 in a one-way analy- 
sis of variance (ANOVA). 
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As can be observed in Table 6.3, both unsupervised and supervised chemomet- 
ric techniques are widely used with UHPLC-HRMS fingerprinting data. In the case 
of unsupervised chemometric techniques, PCA is by far the most used one, allow- 
ing an initial interrogation of data. However, since most of the methods reported in 
this section aim to discover significant differences in terms of molecular features 
(or unspecified targets), supervised chemometric techniques such as PLS-DA or 
OPLS-DA perfectly fit with them, not only for classificatory purposes but also to 
identify the most discriminant biomarkers when required. For instance, on the one 
hand, Barbosa et al. [46] proposed PLS-DA models in order to authenticate paprika 
samples according to geographical origin through UHPLC-HRMS fingerprinting, 
reaching a classification rate of 100% for each of the origins studied as shown in 
Fig. 6.2. In this case, as the fingerprint was enough to discriminate the agricultural 
origin of paprika, the authors did not carry out further steps of identification. 

On the other hand, Hoyos Ossa et al. [39], aiming the assessment of protected 
designation of origin (PDO) for Colombian coffees, used PLS-DA models not 
only to achieve the best sample classification but also to identify the most 
discriminant molecular features. In this case, the authors tested three different 
chromatographic separation modes to select the best one to perform faster 
analysis. Therefore, for a polar fraction extracted with a mix consisting of 
acetonitrile:water:formic acid (79:20:1, v/v/v), reversed-phase liquid chromatogra- 
phy (RPLC) and HILIC were proposed for the separation of polar and highly polar 
compounds, respectively; whereas for a semi-polar extract obtained using acetone, 
RPLC was employed. Then, since the RPLC analysis of the semi-polar extract 
showed the worst sample classification performance, it was no longer used. 
Instead, both RPLC and HILIC analysis of the polar extract provided similar clas- 
sificatory results, but RPLC was chosen because of its advantages over HILIC 
(e.g., less stabilization time needed, fewer additives for the injection, and more 
stability against variations). 

Moreover, in order to select the most discriminant variables of the built PLS-
DA models — each model corresponding to positive or negative ionization mode 
— the variable importance in projection (VIP) score, which summarizes the 
overall contribution of the variables in the supervised chemometric models, was 
chosen. In this line, the variables were listed according to their VIP value, and 
reduced PLS-DA models were built using the minimum number of variables with 
higher VIP score that could allow a classification rate above 90%. As a result, only 
13 molecular features were required to obtain a satisfactory PLS-DA model for the 
negative ionization mode, while 30 molecular features could not achieve a correct 
classification for the positive ionization mode. Therefore, only the markers 
obtained by the RPLC analysis of the polar extract and in the negative ionization 
mode were subjected to further identification steps, consisting of the study of the 
exact mass and the isotopic pattern to propose a candidate molecular formula fol- 
lowed by MS/MS spectra comparison with databases or in silico fragmentation 
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(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.2.  PLS-DA classification plots, obtained by processing UHPLC-HRMS fingerprints, accord- 
ing to sample geographical origin: (a) La Vera vs. Murcia and the Czech Republic, (b) Murcia vs. 
La Vera and the Czech Republic, and (c) the Czech Republic vs. La Vera and Murcia. 
Source: Reproduced from Open Access Ref. [46]. 



-182-  

Chapter 3. Metabolomic fingerprinting approaches 
 

160 Chromatographic and Related Separation Techniques: Volume A 
 

software. For instance, from the 13 biomarkers proposed, eight could be tenta- 
tively identified following the explained elucidation process. 

As previously mentioned, metabolomics fingerprinting approaches are strongly 
influenced by the global experimental strategy proposed, comprising sample treat- 
ment, separation, detection system, data processing, and instrumentation. This fact 
was evidenced by the study carried out by Díaz et al. [40], where two different 
platforms were compared in the annotation of discriminant metabolites in a finger- 
printing approach for the classification of wine samples according to three Spanish 
PDOs. In this line, although both platforms could correctly distinguish the samples 
employing the whole fingerprint, a strong divergence among the annotated dis- 
criminant metabolites was observed (a total of eight and nine molecular features 
were identified for each platform, although none of them was common), showing 
the difficulties of obtaining robust results in terms of identified biomarkers at the 
end of the workflow. 

 
6.4. Summary and Conclusions 
This chapter has presented the role of chromatographic fingerprinting to address 
the authentication of food through some selected applications published in the last 
years. In this line, different TLC and LC fingerprinting approaches, mostly in 
combination with chemometrics, have been discussed. 

Food fraud, consisting of an intentional procedure that violates food laws, 
deceives the consumers, and in some cases poses a risk to human health (e.g., 
use of toxic or allergenic substances), has grown substantially in the last years. 
Thus, food authentication has become an issue of great interest for consumers, 
the food industry, regulatory authorities, as well as the scientific community. 
Historically, the detection of fraudulent practices has been based on the use of 
targeted methods, focusing on the quantification of primary markers, directly 
linked to the authenticity problematic. Despite the great utility of this strategy, 
when a specific adulterant is suspected, in some cases is insufficient because of 
the huge number of adulterant substances that can potentially be added in food 
as well as the increase of complex food authentication issues, such as the iden- 
tification of the geographical origin or the production method employed. For that 
reason, profiling strategies based on the qualitative or quantitative determination 
of secondary markers (indirectly provide information about the food authentica- 
tion issue) have been widely exploited for authenticity purposes in combination 
with chemometrics. Nevertheless, when neither primary nor secondary markers 
are available, non-targeted methods, consisting of the analysis of instrumental 
responses without assuming any previous knowledge about the sample composi- 
tion, have emerged as a reliable alternative when combined with chemometrics, 
especially in the case of metabolomics fingerprinting approaches, since metabo- 
lomics is the closest omics discipline to the phenotype of biological systems. 
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This chapter has focused on the application of HPTLC and LC (with conven- 
tional or MS-based detection) fingerprinting in order to address food authentication 
issues. On the one hand, HPTLC fits ideally with fingerprinting approaches since it 
provides short chromatograms and excellent reproducibility, with minimal sample 
preparation, high-throughput screening, and an inexpensive and environmentally 
friendly analysis. Its use centers on the analysis of liquid or viscous samples coming 
from the plant kingdom (e.g., honey, wine, and tea). Besides, the selection of sta- 
tionary and mobile phases, derivatization reagent, and the detection system directly 
influences on the HPTLC fingerprints selectivity. Regarding data processing, three 
different strategies can be employed: VI, processing of densitometric data, and 
chemometrics. However, lower sensitivity and separation performance are the main 
drawbacks of HPTLC when compared with other chromatographic techniques. 

On the other hand, LC fingerprinting has been demonstrated to be a reliable 
alternative for the authentication of more complex food matrices. For instance, in 
addition to plant-derived matrices, some authors have analyzed animal-derived 
products, such as hen eggs. Moreover, as happens in any other chromatographic 
technique, the obtained LC fingerprints are strongly influenced by the global 
experimental strategy proposed, comprising sample treatment, separation, detec- 
tion system, data processing, and instrumentation. 

In this chapter, the LC metabolomics fingerprinting approach has been classi- 
fied according to the detection system employed. On the one hand, LC in combi- 
nation with conventional detection systems — such as UV, FLD, ECD, or 
CAD — is based on the simultaneous detection of instrumental data points. On the 
other hand, LC coupled to HRMS adds a third dimension (fingerprints build not 
only with the retention time and peak signal but also with peak m/z) and aids in 
the detection of unspecified targets. In both cases, chemometrics has been shown 
to play a crucial role for classificatory purposes, for instance using PLS-DA, for 
the detection and quantitation of adulteration levels, employing PLS, or in the case 
of LC-HRMS fingerprinting, for the determination of the most discriminant vari- 
ables through VIP score for further identification. 

In conclusion, both HPTLC and LC metabolomics fingerprinting techniques, 
especially when combined with chemometrics, are powerful tools to address food 
authentication in terms of quality, geographical indication, and production system. 
Moreover, the application of a metabolomics fingerprinting approach is already 
being used with other chromatographic or related techniques such as gas chroma- 
tography (GC), either multidimensional liquid or gas chromatography (MDLC, 
MDGC), or even ion mobility (IM), proving its potentiality. 
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Furthermore, as previously mentioned, aside from chromatographic-based non- 

targeted methods, direct MS-based techniques have gained relevance in food 

authentication through a fingerprinting approach. DIMS, FIA–MS, and AIMS are the 

most employed among these techniques. However, only DIMS and FIA–MS are 

herein introduced since the direct MS-based methods developed in this thesis are 

based on them. 

In this context, both are the main analytical techniques used to directly introduce 

liquid samples (i.e., raw samples or sample extracts) into the MS system. On the one 

hand, DIMS directly introduces the sample through a syringe pump, leading to its 

continuous ionisation. On the other hand, in FIA–MS, a small volume of sample is 

injected into a continuous stream that carries the sample bolus up to the mass 

spectrometer ion source [2]. Thus, the major advantages of these techniques over 

conventional chromatographic ones are the greater method simplicity and the lower 

analysis time, increasing the analytical throughput and allowing the analysis of many 

more samples. Moreover, the lack of chromatographic separation reduces solvent 

consumption and improves the method’s repeatability since no retention time drifts 

can affect the analysis. Instead, their main limitations are the impossibility of 

distinguishing isomeric compounds and the ion suppression that can lead to a loss of 

detection sensitivity [11,12]. Nevertheless, it is noteworthy that in the case of 

fingerprinting approaches, which do not focus on specific markers, ion suppression 

due to competition between matrix ions may not be a drawback but another source of 

discrimination between samples. 

Table 3.1 compiles recent DIMS and FIA–MS fingerprinting methods to address 

different food fraud issues. In this line, different methods based on LRMS have been 

developed. For instance, Gamboa-Becerra et al. [13] used the mass spectra acquired 

with a single quadrupole by DIMS to classify coffee products by Random Forest 

models according to their cultivar origin, geographical origin, and processing. 

Similarly, FIA–MS methods, employing IT technologies, were developed to assess 
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the cultivar and botanical origin authentication of pumpkin seed oil, cinnamon, and 

tea samples [14–16]. 

Instead, some other authors have chosen HRMS instruments, which because of their 

higher resolution can efficiently resolve near-isobaric compounds, enhancing the 

selectivity and increasing the total amount of molecular features detected. For 

example, the geographical origin of garlic samples was addressed through FIA– 

HRMS (Q-Orbitrap) and OPLS-DA [17]. Besides, Nikou et al. [18] proposed a 

magnetic resonance mass spectrometer (MRMS) to detect the direct infusion high- 

resolution mass spectrometry (DIHRMS) fingerprints of olive oil, which were 

subsequently subjected to chemometrics for the geographical origin and production 

system classification. 

Moreover, IMS has become another alternative to increase the selectivity of direct 

MS-based methodologies. This technique separates the ions in a neutral gas phase 

based on their mobility, which is strongly related to their charge, size, and shape. In 

this context, IMS technologies are commonly classified into three categories 

according to their ion separation mechanism: time-dispersive, space-dispersive, and 

ion-trapping with selective release techniques [19]. Thus, IMS provides an additional 

separation dimension to direct MS-based methods, enhancing their selectivity. 

Besides, it usually improves the method sensitivity due to reducing background noise. 

Finally, in some cases, it can provide collision cross-section (CCS) values, a 

complementary parameter for compound identification [20]. 

Only Masike et al. [21] have developed a fingerprinting method combining IMS with 

a direct MS-based technique. Thus, in this study, non-targeted flow injection 

analysis–ion mobility spectrometry coupled to high-resolution mass spectrometry 

(FIA–HRMS), using travelling-wave ion mobility spectrometry (TWIMS), was 

employed to observe honeybush and rooibos tea sample trends, regarding their 

botanical origin. 



 

 
 

Table 3.1. Compilation of some DIMS and FIA–MS fingerprinting methodologies to address different food authentication issues. 
 

Sample Extraction Injection approach Ion 
mobility 

Mass 
spectrometry 

Data 
analysis 

Ref. 

Cultivar/botanical origin 
Pumkin seed oil Dilution with n-propanol:methanol DI   - LRMS (IT) LDA  [14] 

 (85:15, v/v) with 40 mM ammonia    Full-scan (m/z 100    
     – 800)    
     H-ESI (-)    

Cinnamon SLE with methanol:water (60:40, FIA   - LRMS (IT) PCA  [15] 
 v/v) Water:acetonitrile 60:40 (v/v) Full-scan (m/z 100    
  with 0.1% formic acid (v/v)  – 2000)    
     H-ESI (+)    

Tea SLE with water FIA   - LRMS (LIT) PCA, PLS- [16] 
 
 
 

Honeybush and 
rooibos tea 

 
 
 

SLE with methanol:water (51:49, 
v/v) with 0.2% formic acid (v/v) 

Water:methanol 50:50 (v/v) 
with 0.1% formic acid (v/v) 

 
FIA 
Water:acetonitrile 50:50 (v/v) 
with 0.1% formic acid (v/v) 

Full-scan (m/z 100 
– 550) 
H-ESI (±) 

TWIMS HRMS (Q-TOF) 
Full-scan (m/z 100 
– 1500) 
H-ESI (-) 

DA, and PLS 
 
 

PCA [21] 

 
 

Geographical origin 
Garlic SLE with methanol:water (80:20, FIA - HRMS (TOF) PCA and [17] 

 v/v) Water and methanol Full-scan (m/z 50 – OPLS-DA   
   1200)    
   H-ESI (±)    
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Processing  
Lettuce SLE with methanol:water (60:40, v/v) FIA - HRMS (LTQ- PCA and ANOVA- [22] 

  Water:acetonitrile 60:40 (v/v) with Orbitrap) PCA  
  0.1% formic acid (v/v) Full-scan (m/z   
   100 – 1000)   
   H-ESI (-)   

Daylily flowers SLE with methanol:water (70:30, v/v) FIA - HRMS (LTQ- PCA [23] 
  Water:acetonitrile 50:50 (v/v) with Orbitrap)   
  0.1% formic acid (v/v) Full-scan (m/z   
   100 – 1500)   
   ESI (-)   

Production system      

Tomato SLE with methanol:water (50:50, v/v) DI - HRMS (Q- Algorithm adaptive [24] 
 with 0.1% formic acid (v/v)  Orbitrap) boosting  
   Full-scan (m/z   
   150 – 1700)   
   ESI (+)   

Cultivar/botanical origin and geographical origin     
Maca (Lepidium SLE with methanol:water (70:30, v/v) FIA - HRMS (LTQ- PCA and [25] 
meyenii)  Water:acetonitrile 20:80 (v/v) with Orbitrap) MANOVA-PCA  

  0.1% formic acid (v/v) Full-scan (m/z   
   100 – 1000)   
   H-ESI (±)   

Wolfberry SLE with ethanol:water (80:20, v/v) FIA - HRMS (Q-TOF) PLS-DA [26] 
  Water:acetonitrile 50:50 (v/v) with Full-scan (m/z   
  0.1% formic acid (v/v) 100 – 1000)   
   H-ESI (-)   
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Geographical origin and production system 
Olive 
oil 

aDilution in dichloromethane:methanol (50:50, v/v) with 10 mM ammonium 
acetate 
bLLE with methanol:water (80:20, v/v), evaporation, and dissolution in 
methanol:water (50:50, v/v) with 10 mM ammonium acetate 

DI - HRMS (MRMS) 
Full-scan (am/z 147 – 3000 
and bm/z 107 – 3000) 
H-ESI (-) 

PCA and 
OPLS-DA 

[18] 

Cultivar/botanical origin, geographical origin, and processing 
Coffee SLE with methanol DI - LRMS (quadrupole) 

Full-scan (m/z 15 – 2000) 
H-ESI (+) 

 
HCA and 
Random Forest 

 
[13] 

 
 

Analysis of variance-principal component analysis (ANOVA-PCA), linear ion trap (LIT), magnetic resonance mass spectrometer (MRMS), 

multivariate analysis of variance-principal component analysis (MANOVA-PCA), travelling-wave ion mobility spectrometry (TWIMS) 
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3.2. RESULTS 
 

This section comprises seven scientific publications in which metabolomic 

fingerprinting approaches and chemometrics were applied to assess different food 

fraud cases. 

First, several methods based on LC with spectroscopic detection systems (i.e., LC- 

UV and LC-FLD) are described. In this line, Publication IV and Publication V 

describe the application of LC-UV fingerprinting to classify nut samples —according 

to their type— and hen egg samples —concerning their production system—, 

respectively. Then, in Publication VI, LC-FLD fingerprints were used as chemical 

markers to assess the nut type classification and the adulteration of almond-based 

products with hazelnut or peanut. Instead, Publication VII deals with the geographical 

origin classification of paprika samples by LC-FLD fingerprinting, as well as the 

quantitation of their adulterant blends. 

Then, in contrast, Publication VIII contains the development of an exhaustive non- 

targeted LC−HRMS method, aiming for nut-type classification and the tentative 

annotation/identification of the most discriminant metabolites. Moreover, as a case 

study, the adulteration of almond-based products with hazelnut or peanut was 

addressed through a targeted LC−HRMS method based on the previously identified 

chemical markers. 

Finally, direct MS-based fingerprinting approaches were also tested for food 

authentication purposes. For instance, Publication IX reports the application of FIA– 

HRMS fingerprinting to several food authentication issues: the geographical origin 

of Spanish red wines, the geographical origin of three European paprikas, and the 

botanical origin authentication and quality assessment of olive oils. Instead, in 

Publication X, fingerprints obtained through differential mobility spectrometry 

coupled to mass spectrometry (DMS−MS), which is a space-dispersive IMS 

technology, were evaluated as markers for classifying Spanish paprika. 

In summary, this chapter’s results are presented in the subsequent publications. 
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Publication IV: Scientific article 
 

Non-targeted HPLC-UV fingerprinting as chemical descriptors for the classification 

and authentication of nuts by multivariate chemometric methods. 

Campmajó, G.; Navarro, G. J.; Núñez, N.; Puignou, L.; Saurina, J.; Núñez, O. 
 

Sensors. 2019, 19, 1388. 
 
 
 

Publication V: Scientific article 
 

Classification of hen eggs by HPLC-UV fingerprinting and chemometric methods. 
 

Campmajó, G.; Cayero, L.; Saurina, J.; Núñez, O. 
 

Foods. 2019, 8, 310. 
 
 
 

Publication VI: Scientific article 
 

High-performance liquid chromatography with fluorescence detection fingerprinting 

combined with chemometrics for nut classification and the detection and quantitation 

of almond-based product adulterations. 

Campmajó, G.; Saez-Vigo, R.; Saurina, J.; Núñez, O. 
 

Food Control. 2020, 114, 107265. 
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Publication VII: Scientific article 
 

Assessment of paprika geographical origin fraud by high-performance liquid 

chromatography with fluorescence detection (HPLC-FLD) fingerprinting. 

Campmajó, G.; Rodríguez-Javier, L. R.; Saurina, J.; Núñez, O. 
 

Food Chemistry. 2021, 352, 129397. 
 
 
 

Publication VIII: Scientific article 
 

Liquid chromatography coupled to high-resolution mass spectrometry for nut 

classification and marker identification. 

Campmajó, G.; Saurina, J.; Núñez, O. 
 

Food Control. 2023, 152, 109834. 
 
 
 

Publication IX: Scientific article 
 

FIA–HRMS fingerprinting subjected to chemometrics as a valuable tool to address 

food classification and authentication: Application to red wine, paprika, and 

vegetable oil samples. 

Campmajó, G.; Saurina, J.; Núñez, O. 
 

Food Chemistry. 2022, 373, 131491. 
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Publication X: Scientific article 
 

Differential mobility spectrometry coupled to mass spectrometry (DMS–MS) for the 

classification of Spanish PDO paprika. 

Campmajó, G.; Saurina, J.; Núñez, O.; Sentellas, S. 
 

Food Chemistry. 2022, 390, 133141. 
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3.2.1. PUBLICATION IV 
 
 

Non-targeted HPLC-UV fingerprinting as chemical descriptors for the classification 

and authentication of nuts by multivariate chemometric methods. 

Campmajó, G.; Navarro, G. J.; Núñez, N.; Puignou, L.; Saurina, J.; Núñez, O. 
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Abstract: Recently, the authenticity of food products has become a great social concern. Considering 
the complexity of the food chain and that many players are involved between production and 
consumption; food adulteration practices are rising as it is easy to conduct fraud without being 
detected. This is the case for nut fruit processed products, such as almond flours, that can be 
adulterated with cheaper nuts (hazelnuts or peanuts), giving rise to not only economic fraud but 
also important effects on human health. Non-targeted HPLC-UV chromatographic fingerprints were 
evaluated as chemical descriptors to achieve nut sample characterization and classification using 
multivariate chemometric methods. Nut samples were extracted by sonication and centrifugation, and 
defatted with hexane; extracting procedure and conditions were optimized to maximize the generation 
of enough discriminant features. The obtained HPLC-UV chromatographic fingerprints were then 
analyzed by means of principal component analysis (PCA) and partial least squares-discriminant 
analysis (PLS-DA) to carry out the classification of nut samples. The proposed methodology allowed 
the classification of samples not only according to the type of nut but also based on the nut thermal 
treatment employed (natural, fried or toasted products). 

 
Keywords: HPLC-UV; fingerprinting; food authentication; nuts; principal component analysis; 
partial least squares-discriminant analysis 

 

 
1. Introduction 

Nowadays, food manufacturers, researchers, and society, in general, have become very interested 
in the quality of food products, not only from the nutritional point of view but also in relation to food 
safety issues or regarding the presence of bioactive substances with beneficial properties for consumers 
(functional foods, nutraceuticals, etc.). Within this context and considering the complexity of the food 
chain in a globalized world where many players are involved between production and consumption, 
food manipulation and adulteration practices are rising because of the ease of perpetrating fraud 
that may remain undetected. In general, food adulteration is carried out to increase volume, to mask 
the presence of inferior quality components, and to replace the authentic substances for the seller’s 
economic gain. For instance, a common fraud is the employment of a cheaper similar ingredient, 
which the consumer has difficulty recognizing and which is difficult to detect by current analytical 
methodologies.  However, it must be considered that the deliberate adulteration of food and its 
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misrepresentation to deceive final consumers is illegal worldwide [1]. In addition, depending on 
the nature of the adulterants, the fraudulent food product can also represent a health risk for the 
consumer when prohibited substances are added to deceive its organoleptic properties or when the 
adulterant can produce allergy episodes. Sixty-eight percent of food fraud violations are perpetrated 
in animal and vegetable products with high-fat content becoming a crucial issue for food processing 
industries [2]. Therefore, the ability to guarantee food integrity and authenticity is a major concern in 
the food industry for both economic and safety reasons, requiring new analytical methodologies. 

Nuts are food products with important health benefits to humans. Even though approximately 
70% of their weight is attributed to fat, the amount of saturated fatty acids is very low. Thus, their 
high unsaturated fatty acid content induces the reduction of both total and low-density lipoprotein 
cholesterols [3], correlating their consumption to the decrease of ischemic heart disease [4]. They have 
also been shown to be important sources of antioxidant compounds, such as polyphenols [5–8], which 
are secondary metabolites and the largest group of phytochemicals in plants. In fact, the main dietary 
sources of total polyphenols are nuts, followed by tea and coffee, rich in flavanols and hydroxycinnamic 
acids, respectively [9]. Walnuts, almonds, and hazelnuts are the most commonly consumed nuts in the 
European countries (either raw, fried or toasted) where tree nuts are more consumed than peanuts or 
seeds. Furthermore, walnuts and almonds contain high levels of total polyphenols in comparison to 
other polyphenol-rich foods, such as apple juice or red wine [8]. 

Nuts should be considered as highly exposed to fraud practices since they can be relabeled 
with old or expired stock samples or replaced with cheaper ones, representing serious problems to 
consumers with allergies and intolerances [10]. Of the 177 cases of fraudulent practices reported in the 
European Union in 2016, 4% were related to nuts and seeds [2]. Several analytical methodologies in 
combination with chemometrics have been described in the literature to address nut authentication 
and to detect its fraud. For example, the determination of fatty acids by gas chromatography-flame 
ionization detector (GC-FID) in combination with principal component analysis (PCA) was proposed 
for the authentication of almond cultivars [11], for the classification and authentication of Iranian 
walnuts according to their geographical origin [12], and to authenticate several almond genotypes 
grown in Serbia [13]. In this last work, fatty acid content was combined with the determination of some 
phenolic compounds by ultra-high performance liquid chromatography-tandem mass spectrometry 
(UHPLC-MS/MS). The fatty acid profile obtained by GC-FID and analyzed by PCA, linear discriminant 
analysis (LDA), and partial least squares (PLS) regression was also proposed to detect and quantify the 
fraudulent addition of apricot kernel in almonds [14]. However, time-consuming sample treatments 
are typically needed for fatty acid determination by GC techniques, which require derivatization steps 
to obtain volatile fatty acid methyl esters. Thus, spectroscopic techniques, such as near-infrared (NIR), 
have been employed for the classification of hazelnuts according to protected designations of origin 
(PDO) [15] or to address the discrimination of peanuts from bulk cereals and nuts [16]. Multi-elemental 
analysis fingerprinting based on inductively coupled plasma optical emission measurements (ICP-OES) 
by determining 10 metallic elements and their analysis by PCA, LDA, and PLS were also described in 
adulteration studies of almond powder samples with peanut [10]. 

Most of the previously described methods are based on targeted approaches in which a specific 
group of known selected chemicals or belonging to the same family is determined. Generally, as 
the concentration (or peak signal) of these targeted compounds is used as a food feature (marker) to 
address food integrity and authenticity, this approach requires a previous quantification step using 
standards for each one. However, when dealing with food products, which are very complex matrices, 
the quantification of some of these chemicals may be a difficult task, especially due to the possibility of 
unknown interfering compounds. Hence, nowadays the use of non-targeted fingerprinting approaches, 
in which analytical signals related to the composition of foodstuffs are employed in a non-selective way 
(i.e., spectrum or chromatogram), are gaining popularity in food authentication [17–21]. Mathematical 
processing of the information in such fingerprints may allow the characterization and/or authentication 
of foodstuffs. 



-203-  

Chapter 3. Metabolomic fingerprinting approaches 
 
 

Sensors 2019, 19, 1388 3 of 12 
 
 

In this work, a non-targeted high-performance liquid chromatography with ultraviolet detection 
(HPLC-UV) fingerprinting method has been evaluated for the classification and authentication of 
different types of nuts. For that purpose, a total of 149 nut samples belonging to different classes 
(almonds, cashew nuts, hazelnuts, macadamia nuts, peanuts, pinions, pistachios, pumpkin seeds, 
sunflower seeds, and walnuts), some of them in different presentation formats according to the thermal 
treatment applied (natural, fried or toasted), were analyzed. Samples were extracted by a simple 
solid–liquid extraction method and the extracting solvent composition was optimized to maximize the 
total amount of non-targeted components extracted. Data corresponding to the non-targeted HPLC-UV 
fingerprints recorded at 280 nm were considered as a source of potential descriptors to be exploited for 
the characterization and classification of the analyzed nut samples by exploratory PCA and supervised 
partial least squares-discriminant analysis (PLS-DA). 

2. Materials and Methods 
 

2.1. Chemicals and Standard Solutions 

All the reagents employed, unless otherwise stated, were of analytical grade. Methanol and 
acetonitrile (both UHPLC-gradient grade) were purchased from Panreac (Barcelona, Spain). Acetone, 
hexane, and formic acid (96%) were obtained from Sigma-Aldrich (St. Louis, MO, USA) and absolute 
ethanol from VWR International Eurolab S.L. (Barcelona, Spain). Water was purified using an Elix 
3 coupled to a Milli-Q system (Millipore, Bedford, MA, USA) and filtered through a 0.22 μm nylon 
membrane integrated into the Milli-Q system. 

2.2. Instrumentation 

An Agilent 1100 Series HPLC instrument was used to obtain the HPLC-UV chromatograms 
employed as the data in the chemometric methods. The instrument was equipped with a quaternary 
pump (G1311A), a degasser (G1322A), an autosampler (G1329A), a diode-array detector (G1315B) and 
a computer with the Agilent Chemstation software, all of them from Agilent Technologies (Waldbronn, 
Germany). HPLC-UV runs were obtained in reversed-phase mode by employing a porous-shell 
Kinetex C18 column (1000 mm × 4.6 mm I.D., 2.6 μm particle size) from Phenomenex (Torrance, CA, 
USA) at room temperature. Gradient elution mode using 0.1% (v/v) formic acid aqueous solution 
(solvent A) and methanol (solvent B) as mobile phase components was applied as follows: 0–30 min, 
linear gradient from 5 to 75% B; 30–32.5 min, linear gradient from 75 to 95% B; 32.5–35 min, isocratic 
step at 95% B; 35–35.1 min, back to initial conditions at 5% B; and from 35.1–40 min, at 5% B for column 
re-equilibration. A mobile phase flow rate of 0.4 mL/min and an injection volume of 5 μL were applied. 
HPLC-UV chromatographic fingerprints registered at 280 nm were employed. 

2.3. Samples and Sample Treatment 

A total of 149 nut samples, obtained from Barcelona markets, were analyzed. Table 1 shows the 
description, including the abbreviation used in this manuscript, the number of samples regarding the 
sample treatment applied (natural, fried or toasted products) and the sample origin. 

Sample extraction was performed as follows: 0.125 g of crushed and homogenized nut sample 
were weighed into a 15 mL polypropylene tube and extracted with 3 mL of acetone:water (70:30 v/v) 
solution by stirring in a Vortex (Stuart, Stone, United Kingdom) for 1 min and by sonication for 15 min 
(5510 Branson ultrasonic bath, Hampton, NH, USA). The solutions were then centrifuged for 30 min at 
3400 rpm (Rotanta 460 RS Centrifuge, Hettich, Germany). The supernatant extract was transferred 
to a new 15 mL polypropylene tube, defatted with 3 mL hexane by stirring in a Vortex for 1 min and 
centrifuged again for 15 min at 3400 rpm. Finally, the sample extract was filtered through 0.22 μm 
nylon filter (Scharlab, Sentmenat, Barcelona, Spain) and stored at −18 ◦C in 2 mL glass injection vial 
until HPLC-UV analysis. 
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Table 1. Description of the nut samples analyzed. 
 

Nut Type Abbreviation 
Number of Samples Origin 

 
 
 
 
 
 
 

In addition, a quality control (QC) was prepared by mixing 50 μL of each nut sample extract. This QC 
was employed to evaluate the repeatability of the method and the robustness of the chemometric results. 

Samples were randomly analyzed with the proposed HPLC-UV method. A QC and a blank of 
water were injected at the beginning of the sequence and every 10 sample injections. 

2.4. Data Analysis 

SOLO chemometric software from Eigenvector Research was used for calculations with PCA 
and PLS-DA [22]. A detailed description of the theoretical background of these methods is given 
elsewhere [23]. 

The X-data matrices to be treated by PCA and PLS-DA consisted of the HPLC-UV chromatographic 
fingerprints obtained at 280 nm (absorbance intensities at different retention times). HPLC-UV 
chromatograms were pretreated to improve the data quality while minimizing solvent and matrix 
interferences, peak shifting, and baseline drifts. For additional details see reference [24]. The Y-data 
matrix in PLS-DA consisted of the sample class. Scatter plots of scores and loadings of the principal 
components (PCs), in PCA, and latent variables (LVs), in PLS-DA, were used to investigate the structure 
of maps of samples and variables, respectively. The plots of scores show the distribution of the samples 
revealing patterns that can be correlated to sample characteristics. The plots of loadings provide 
information on the most descriptive features contributing to sample discrimination. 

3. Results and Discussion 
 

3.1. Sample Treatment: Optimization of the Extracting Solvent Composition 

In the present work, a simple solid–liquid extraction procedure by stirring and sonication, followed 
by a defatting step with hexane, was proposed for the extraction of non-targeted phytochemicals from 
nut samples. An optimization of the extracting solvent composition was performed to maximize the 
total amount of extracted compounds. Thus, seventeen sample extraction conditions were evaluated 
for three nut samples (almond, hazelnut, and walnut), as they were extracted with different solvent 
mixtures including pure water, ethanol, methanol, acetonitrile, and acetone, as well as with organic 
solvent:water mixtures in 50:50,  70:30,  and 80:20 (v/v) ratios.   Considering the high polyphenolic 
content of nuts, a reversed-phase HPLC-UV method, previously developed for the determination of 
polyphenols in wine samples [25], was employed with some modifications by using a porous-shell C18 
column and a gradient elution with 0.1% formic acid aqueous solution and methanol as mobile phase 
components (conditions described in Section 2.2). As an example, Figure 1 shows the non-targeted 
HPLC-UV chromatographic fingerprint obtained for a walnut sample extracted with acetone:water 
70:30 (v/v). 

As seen in the figure, a high signal caused by the absorption of the acetone present in the extracting 
solvent was detected close to the dead volume (4–5 min). Moreover, a significant number of peak signals 
related to the non-targeted extracted compounds were obtained. In fact, to select the best extracting 
solvent, the total peak area (sum of each detected compound peak area without considering the one 

 Natural Fried Toasted  
Almonds AL 10 10 10 Spain-USA 

Cashew nuts CN - 10 - Brazil 
Hazelnuts HN 10 - 10 Spain-Turkey 

Macadamia nuts MN 10 - - South Africa 
Peanuts PN - 10 10 Spain-Brazil-China-USA 
Pinions PI 10 - - Spain-China 

Pistachios PT - - 9 Spain-Germany-Iran 
Pumpkin seeds PS - 10 10 Austria-China 
Sunflower seeds SS - - 9 Spain 

Walnuts WN 10 - - Chile-USA 
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related to the organic solvent) was employed as a chemical parameter and the obtained non-targeted 
HPLC-UV chromatographic fingerprints were evaluated. Thus, Figure 2 shows the resulting bar plot 
representing the total peak area of the extracted components for the three nut samples under the different 
extraction conditions. Consistent with the fact that walnut is the nut with higher total polyphenolic 
content (3733 ± 1190 mg/100 g dry mass expressed as gallic acid equivalent, GAE) [26], it presents a 
larger quantity of extracted chemicals than almond and hazelnut. Regarding the extracting solvent 
composition, it was observed that the extraction capacity of pure organic solvents was not as effective as 
that achieved by pure water, except for the walnut sample. In contrast, mixtures of water with different 
amounts of organic solvents were quite effective, although a high percentage of it seemed to keep the 
extraction capacity constant or decrease it. Among the different extracting conditions evaluated, a 
great variety in extraction capacities was observed depending on both the extracting solvent employed 
and the nut sample matrix studied.  For instance, acetone:water (50:50 and 70:30 v/v) provided the 
best extraction efficiencies for the walnut matrix; pure water and with mixtures of acetonitrile:water 
and acetone:water (both at 50:50 and 70:30 v/v) for hazelnut matrix; whereas for the almond matrix, 
the best extraction results were achieved when employing pure water and acetonitrile:water (80:20 
v/v). Therefore, taking into consideration that the aim of the present work is to study the viability of a 
non-targeted HPLC-UV fingerprinting strategy to address nut sample classification, as a compromise, 
acetone:water (70:30 v/v) was chosen as the optimal extraction solvent for future experiments because 
of its satisfactory extraction efficiencies for the hazelnut and walnut samples. 

 

1800 

 
1200 

 
600 

 
0 

0 7 14 21 28 35 
Retention time (min) 

Figure 1. Non-targeted high-performance liquid chromatography with ultraviolet detection (HPLC-UV) 
chromatographic fingerprint at 280 nm of a walnut sample extracted with acetone:water 70:30 (v/v). 
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Figure 2. Total area of extracted phytochemical components (represented in logarithmic scale) obtained 
from HPLC-UV chromatographic fingerprints of a hazelnut (HN), walnut (WN) and almond (AL) 
sample extracted using different extraction solvent compositions. Ratios indicated correspond to 
organic solvent:water (v/v). 
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3.2. Non-Targeted HPLC-UV Chromatographic Fingerprints 

Once the extracting solvent was selected, the studied samples described in Table 1 were extracted, 
and their respective extracts were randomly analyzed, along with a QC and a water blank every ten 
sample injections, with the proposed reversed-phase HPLC-UV method. 

As an example, Figure 3 shows the chromatograms acquired at 280 nm for a selected sample 
within the ten types of nut samples under study. As can be seen, remarkable differences were obtained 
depending on the nut sample matrix analyzed, such as the number and distribution of extracted 
compounds or their signal intensity, with walnut and sunflower seed samples showing the highest 
ones. Therefore, due to these differences, the obtained fingerprints were proposed as possible chemical 
descriptors to achieve sample classification through the employment of chemometric methods. 
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Figure 3. Non-targeted HPLC-UV chromatographic fingerprint acquired at 280 nm for a selected 
sample within each nut sample type. Chromatograms displayed only from minute 7 to 35 to remove 
absorption of the extracting solvent and column pre-conditioning step. 
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3.3. Chemometric Data Analysis 
 

3.3.1. Characterization of Samples according to Nut Type: Non-Supervised PCA Study 

The capability of the obtained non-targeted HPLC-UV chromatographic fingerprints to be used as 
discriminant chemical descriptors for sample classification and authentication depending on the nut 
fruit involved, independently of the presentation format (natural, fried or toasted), was evaluated by 
PCA. For that purpose, a 163 × 6001 dimension data matrix, which consisted of the absorbance signals 
recorded as a function of retention time for the 149 analyzed samples, as well as the QCs, was built. 
Moreover, autoscaling pretreatment was chosen to provide similar weight to all the variables (overall 
bioactive compound signals) as it suppresses differences in the magnitude and amplitude scale. 

As a first result, Figure S1 (supplementary material) shows the obtained scores plot of PC1 vs. PC2, 
which does not present a compact group of the QCs as should be expected. In fact, when labelling them, 
a distribution based on their injection order is observed from the top-right section of the scores plot to 
the bottom-left section, which reveals a trend associated to the HPLC-UV sample sequence employed. 
Thus, this chromatographic behavior along the sequence affects systematically the fingerprinting signal 
registered for each sample, and therefore, the chemometric results displayed in this figure cannot be 
used, and a correction is required. 

As QCs are injections of the same extract, they not only allow the detection of any possible 
instrumental or chromatographic issue but also to correct them. In this case, the fingerprints obtained 
for each sample were normalized by dividing their absorbance signal variables by those of the closest 
QC in the sequence, whereas each QC was divided by itself. After performing this correction, QC 
samples appear in the same position in the PCA scores plot (see Figure 4A), and chemometric results 
can be discussed. As can be seen, walnut samples are clearly separated at the left part of the plot from 
the other nut samples (displaying negative PC1 score values). This difference could be related to the 
fact that they are among the matrices with higher polyphenolic content, as previously mentioned. 

 

Figure 4. (A) PCA Score plot of PC1 vs. PC2 when using non-targeted HPLC-UV chromatographic 
fingerprints registered at 280 nm as chemical descriptors for all the analyzed samples. (B) Same PCA 
plot without including walnut samples. 

To better observe the distribution of the other samples, Figure 4B shows an extension of the PCA 
scores plot without including walnut samples. A trend along the PC1 can be seen that slightly groups 
the samples according to their nut type. Moreover, PC1 could be related to the total polyphenolic 
content as it seems to be a decrease in the level of extracted compounds in samples from the left to 
right part of the scores plot. For instance, sunflower seeds, showing the highest polyphenol content 
in dry mass (1400 ± 90 mg GAE/100 g) after walnut samples [26], are the group of samples located 
more to the left of the plot. Then, being distributed consecutively to the right of the plot following PC1, 
hazelnuts (550 ± 130 mg GAE/100 g dry mass) and pistachios (642 ± 5 0 mg/100 g dry mass), peanuts 
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(460 ± 90 mg GAE/100 g dry mass), pumpkin seeds (140 ± 20 mg/100 g dry mass) [26], cashew nuts 
(133 mg GAE/100 g peeled dry mass) [27], macadamia nuts, almonds (58–159 mg GAE/100 g dry 
mass) [28,29], and pinions, can be found. Thus, even though there is not a clear separation between 
groups, those of higher polyphenolic content are distinguished from lower ones. 

3.3.2. Classification of Samples According to Nut Type: Supervised PLS-DA Study 

HPLC-UV chromatographic fingerprints were also used as chemical descriptors to address nut 
classification by using a supervised PLS-DA method, obtaining the plot of scores of LV1 vs. LV2 
depicted in Figure 5A. Similar to the reported results by PCA, the observed discrimination between 
samples could be associated to the total amount of extracted compounds, even though in this case 
both LV1 and LV2 are contributing to it. In fact, PLS-DA maximized the classification of the two nuts 
with the highest polyphenolic content (walnuts and sunflower seeds), whereas the other samples 
are more concentrated in the center of the graph. To focus on this distribution, in Figure 5B, walnut 
and sunflower seed samples are excluded. Again, some samples, such as hazelnuts, pistachios, and 
peanuts, in which a higher number of extracted phytochemicals is expected according to the literature, 
can be distinguished from the other samples mainly due to LV1. 
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Figure 5. (A) Partial least squares-discriminant analysis (PLS-DA) Score plot of LV1 vs. LV2 when using 
non-targeted HPLC-UV chromatographic fingerprints registered at 280 nm as chemical descriptors 
for all the analyzed samples. (B) Same PLS-DA score plot without including walnuts and sunflower 
seeds samples. 

The fact that the analyzed nut samples are not distributed randomly but more or less grouped 
according to the type of nut fruit, independently of the format of presentation, shows that non-targeted 
HPLC-UV fingerprints can be employed as adequate chemical descriptors to address nut sample 
classification and authentication. 

As previously commented in the introduction section, the adulteration of high quality or expensive 
nut products by substituting them with a lower quality or cheaper nut is a common practice nowadays. 
For this reason, in the present work, PLS-DA models were built to study some nuts in pairs, i.e., 
almonds vs. hazelnuts, almonds vs. peanuts or pumpkin seeds vs. sunflower seeds.  As can be 
seen in Figure S2 (supplementary material), the number of latent variables employed to generate 
each PLS-DA model was selected depending on the cross-validation classification error average, 
being approximately the first minimum point the most appropriate one. As a good classification was 
obtained for the studied pairs, the models were validated by using a 70% of each group of samples 
as the calibration set, while the remaining 30% of samples constituted the validation set. Figure 6 
shows the obtained PLS-DA score plots projected on LV1 vs. LV2 as well as Samples vs. Y predicted 
1 for (A) almonds vs. hazelnuts, (B) almonds vs. peanuts, and (C) pumpkin seeds vs. sunflower 
seeds, obtaining a perfect classification and discrimination between these nut samples and reaching a 
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prediction rate of 100% in each case. Therefore, the proposed strategy based on the use of non-targeted 
HPLC-UV chromatographic fingerprints registered at 280 nm is a very promising method to achieve 
the characterization, classification, and authentication of nut samples, as well as to address the future 
identification of some nut frauds by means of adulteration with cheaper nut products. 
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Figure 6. On the left, PLS-DA score plot projected in LV1 vs. LV2 and on the right, Sample vs. Y 
predicted 1 for (A) almonds ♦ vs. hazelnuts ■, (B) almonds ♦ vs. peanuts • and (C) pumpkin 
seeds .._ vs. sunflower seeds *. Filled and empty symbols correspond to calibration and validation 
sets, respectively. 

3.3.3. Classification of Samples According to Their Processing Thermal Treatment: Supervised 
PLS-DA Study 

The applicability of non-targeted HPLC-UV chromatographic fingerprints as chemical descriptors 
to achieve nut sample classification regarding other nut food features, such as the nut format 
presentation according to the thermal processing treatment (natural and thermally processed, fried 
or toasted), was also evaluated. For that purpose, the chromatographic fingerprints of those nuts 
with different types of presentation (see Table 1) were used to create the data matrices, which were 
later subjected to supervised PLS-DA study. Thus, PLS-DA models were built for almonds, hazelnuts, 
peanuts, and pumpkin seeds following the same criterion for the number of latent variables selection 
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as established in previous PLS-DA models, as can be seen in Figure S3 (supplementary material). 
A very acceptable discrimination of the analyzed samples according to the thermal processing method 
was achieved. Hence, 30% of the samples for each group were removed from the model and used as a 
validation set. As can be seen in Figure 7, where the PLS-DA score plots projected on LV1 vs. LV2, 
as well as Samples vs. Y predicted 1 for (A) almonds, (B) hazelnuts, (C) peanuts, and (D) pumpkin 
seeds, are represented, while for almonds the model showed a 78% classification rate between natural 
and thermally processed samples (toasted and fried), the other studied nut samples presented a value 
equal to 100%. 
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Figure 7. On the left, PLS-DA score plot projected in LV1 vs. LV2 and on the right, Sample vs. Y 
predicted 1 for (A) natural ♦ vs. thermally treated (fried or toasted) almonds ■, (B) natural ♦ vs. 
toasted hazelnuts ■, (C) fried ♦ vs. toasted peanuts ■, and (D) toasted ■ vs. natural pumpkin seeds ♦. 
Filled and empty symbols correspond to calibration and validation sets, respectively. 
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4. Conclusions 

In this work, non-targeted HPLC-UV chromatographic fingerprints recorded at 280 nm have 
proved to be a useful and dependable tool for the classification and authentication of nuts, according 
to their nut type as well as their thermal treatment, when combined with chemometrics. In fact, the 
built PLS-DA models for the distinction of a determinate type of nut in front of another have reached 
a classification rate equal to 100%, independently of their thermal treatment. Moreover, supervised 
models have also allowed a discrimination capacity over 78% regarding the thermal processing 
treatment in each nut type. Therefore, this strategy could be proposed to detect frauds involving any 
of the nut samples studied. 

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/6/1388/ 
s1, Figure S1: PCA Score plot of PC1 vs. PC2 employing non-targeted HPLC-UV chromatographic fingerprints 
registered at 280 nm, without QC correction, for all the nut samples and QCs analyzed, Figure S2: Latent variable 
number vs. CV classification error average plots for the built PLS-DA models of: (A) almonds vs. hazelnuts, (B) 
almonds vs. peanuts, and (C) pumpkin seeds vs. sunflower seeds, Figure S3: Latent variable number vs. CV 
classification error average plots for the built PLS-DA models of (A) almonds, (B) hazelnuts, (C) peanuts, and (D) 
pumpkin seeds. 
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Fig. S1. PCA Score plot of PC1 vs PC2 employing non-targeted HPLC-UV chromatographic 
fingerprints registered at 280 nm, without QC correction, for all the nut samples and QCs 
analyzed. 
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Fig. S2. Latent variable number vs CV classification error average plots for the built PLS-DA 
models of: (a) almonds vs hazelnuts, (b) almonds vs peanuts and (c) pumpkin seeds vs sunflower 
seeds. 
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Fig. S3. Latent variable number vs CV classification error average plots for the built PLS-DA 
models of: (a) almonds, (b) hazelnuts, (c) peanuts and (d) pumpkin seeds. 
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Abstract: Hen eggs are classified into four groups according to their production method: Organic, 
free-range, barn, or caged. It is known that a fraudulent practice is the misrepresentation of 
a high-quality egg with a lower one. In this work, high-performance liquid chromatography with 
ultraviolet detection (HPLC-UV) fingerprints were proposed as a source of potential chemical 
descriptors to achieve the classification of hen eggs according to their labelled type. A reversed-phase 
separation was optimized to obtain discriminant enough chromatographic fingerprints, which were 
subsequently processed by means of principal component analysis (PCA) and partial least 
squares-discriminant analysis (PLS-DA). Particular trends were observed for organic and caged 
hen eggs by PCA and, as expected, these groupings were improved by PLS-DA. The applicability 
of the method to distinguish egg manufacturer and size was also studied by PLS-DA, observing 
variations in the HPLC-UV fingerprints in both cases. Moreover, the classification of higher class eggs, 
in front of any other with one lower, and hence cheaper, was studied by building paired PLS-DA 
models, reaching a classification rate of at least 82.6% (100% for organic vs. non-organic hen eggs) 
and demonstrating the suitability of the proposed method. 

 
Keywords: HPLC-UV; fingerprinting; food classification; hen eggs; principal component analysis; 
partial least square-discriminant analysis 

 

 
1. Introduction 

In the last years, the interest of society in the food they purchase and consume has been raised. 
In this line, products with value-added due to specific particularities such as organic production, 
protected designation of origin (PDO), protected geographical indication (PGI), or those with fair-trade 
certification, are now receiving special attention. These labels not only ensure and guarantee food quality 
and traceability, but also mean an increment in its price in comparison with conventional products. 

Hen eggs are among the most commonly eaten foods worldwide, as they have a high nutritional 
value, cheap costs, and are widely employed in international cuisines. They consist of two parts: The egg 
white, which mainly consists of 85% water and 10% proteins (ovalbumin being the most abundant one) 
approximately, and the egg yolk, which is composed of almost 22% lipids [1,2]. Moreover, their intake 
provides all the essential amino acids, many vitamins (vitamin A, riboflavin, choline,  vitamin B12, 
and vitamin B9), and minerals (phosphorus, potassium, iron, and zinc). 

In Europe, where almost 8 million tons of hen eggs were produced in 2017 [3], rules on their 
trade regarding production, hygiene, labelling, and marketing are laid down by the European Union 
(EU) [4–6]. Thereby, according to the European labelling eggs rule, each A quality category egg, 
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which are those destined for human consumption, has to contain an identifier number code in its 
shell. Among other information that can be found on it, such as the country of origin (two-letter ISO - 
International Organization for Standardization- abbreviation code), the province, the municipality, 
and the producer establishment, the kind of hens and the breeding method employed are indicated by 
the first number digit: 

Digit 0 is related to organic eggs (O), which means that they come from authorized and certified 
organic production farms.  Thus, hens are fed with grown pasture and organic farming products, 
without employing transgenic substances nor antibiotics. The animals have a minimum space of 4 and 
6 hens/m2 outdoors and indoors, respectively. These are the most expensive eggs. 

Digit 1 corresponds to free-range hen eggs (FR). In this case, their diet is mainly based on prepared 
cereal pellets, although grass can also be eaten. Antibiotics are mixed with food if needed. Moreover, 
similar space conditions to organic eggs are established. 

Digit 2 indicates barn hen eggs (B). Hens do not have outdoor access, as they live in densely 
populated vessels and therefore, their diet consists of the prepared pellets and there is no entrance of 
natural light. Further, antibiotics are systematically provided with feed. 

Digit 3 for eggs from caged hens (C), which are the cheapest ones. In these cages, hens can barely 
move (the minimum space allowed is of 12 hens/m2) and there is no access to natural light either. 
Medical additives are provided with feed. 

Due to the huge amount of produced eggs, two different frauds can be practiced. On one hand, 

in accordance with the European legislation, hen eggs have to reach the consumers within the 21 days 
of being laid [7], and their expiration date has to be fixed not more than 28 days after laying [6]. 
As there is no way to confirm whether those that are for sale are within the stipulated periods, 
some producers label them with erroneous dates, therefore giving a longer time before reaching their 

expiration date [8]. On the other hand, it is also difficult to distinguish hen eggs regarding their type. 

Although organic bodies may ensure the compliance of the established regulations, due to the high 
cost of the evaluation systems, some producers and distributors regulate themselves without adopting 
any national certification standard, leaving then the opportunity for food fraud [9]. 

The egg price increase from category 3 to 0 makes them susceptible to fraud, since a low category 
egg could be labelled as a superior one. Several methodologies have been previously developed in order 
to address egg authentication. For instance, profiling fatty acid composition by gas chromatography 
(GC), fitted with flame ionization detector (FID), in combination with chemometric techniques 
was proposed for the verification of organic against conventional eggs [1,10]. However, relatively 
time-consuming methodologies are usually required in order to determine the total lipid and fatty acid 
composition from the samples, also involving derivatization steps before GC separation. In another 
study, the carotenoid profile acquired by high-performance liquid chromatography and ultraviolet 
detection (HPLC-UV) was performed to classify both organic and conventional eggs [11].  Besides, 
in some cases, the authenticity of organic eggs and the assurance on their origin, was also approached 
by evaluating the level of several elements, including rare earth elements [12–14]. 

As can be seen, most of the methods described in the literature for egg authentication are based 
on targeted profiling approaches, which are focused on the specific determination of a given group of 
known selected chemicals. However, up to now, no specific biomarkers have been found in order to 

address hen eggs classification regarding their labelled class. Since many factors will affect the chemical 

composition of these products, non-targeted fingerprinting strategies that involve the determination 
of non-selective signals related to a range of potential discriminating compounds (i.e., spectrum or 
chromatogram), are promising approaches to address food authenticity issues [15–19]. As an example, 
a spectroscopic technique such as near infrared (NIR), in combination with principal component 

analysis (PCA), was proposed to achieve the classification of different type of eggs found in Chinese 

markets [20]. In the present work, HPLC-UV fingerprints recorded at 250 nm were proposed as a source 
of discriminant signals for hen eggs classification according to their production method by PCA and 
partial least squares-discriminant analysis (PLS-DA). 
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2. Materials and Methods 
 

2.1. Chemicals and Standard Solutions 

All the employed chemicals were of analytical grade. In the sample treatment, the acetonitrile and 
water (LC-MS Chromasolv® quality) used were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Methanol (UHPLC-gradient grade) was obtained from PanReac AppliChem (Barcelona, Spain) and 
formic acid (≥98%) from Sigma-Aldrich. For the mobile phase, water was purified using an Elix 3 
coupled to a Milli-Q system from Millipore Corporation (Burlington, MA, USA) and filtered through 
a 0.22 μm nylon membrane integrated into the Milli-Q system. 

 
2.2. Instrumentation 

An Agilent 1100 Series HPLC instrument equipped with a quaternary pump (G1311A), a degasser 
(G1322A), an autosampler (G1329A), a diode array detector (G1315B), and a PC with the Agilent 
Chemstation software, all of them from Agilent Technologies (Waldbronn, Germany), was employed. 
HPLC-UV fingerprints were obtained by reversed-phase mode using a Kinetex C18 porous-shell 
column (100 mm × 4.6 mm I.D., 2.6 μm particle size) from Phenomenex (Torrance, CA, USA) at room 
temperature. Chromatographic separation was performed under gradient elution mode, using 0.1% 

(v/v) formic acid aqueous solution (solvent A) and methanol (solvent B) as mobile phase components, 

following the next elution program: 0–20 min, linear gradient from 15% to 95% solvent B; 20–30 min, 
isocratic elution at 95% solvent B; 30–30.1 min, back to initial conditions; and from 30.1–35 min, at 15% 

solvent B for column re-equilibration. The mobile phase flow rate was 0.4 mL/min, and the injection 

volume was 5 μL. The HPLC-UV fingerprints were registered at 250 nm. 

2.3. Samples and Sample Treatment 

Characterization and classification studies were carried out by analyzing 173 hen egg samples 
purchased from local markets (Barcelona, Spain). Table 1 classifies them according to their typology 
and manufacturer and defines their specified size as well as the number of samples. 

 
Table 1. Description of the egg samples analyzed. 

 

Egg Type Manufacturer Egg Size Number of Samples 

Organic hen eggs (O) ViuBi M/L 23 

Free-range hen eggs (FR) Vall de Mestral - 23 
 Ous Roig (Ebre) - 23 
 Ous Roig L/XL 22 

Barn hen eggs (B) Liderou M 24 
 Eroski L 24 
 Ous Roig L 11 

Caged hen eggs (C) Eroski M 12 
 Eroski L 11 

 
Sample extraction was performed following a previously described method [21], with some 

modifications. Briefly, 0.3 g of homogenized egg sample were weighed in an Eppendorf tube (Deltalab, 
Rubí, Spain), mixed with 1 mL of an acetonitrile:water 80:20 (v/v) solution by stirring in a Vortex (Stuart, 
Stone, United Kingdom) for 30 s, and then, centrifuged (AllegraTM 64R Centrifugue, Beckman Coulter, 
L’Hospitalet de Llobregat, Spain) for 10 min at 14,000 rpm and 4 ◦C. The supernatant extract was then 
filtered through 0.22 μm filter (Scharlab, Sentmenat, Spain) and stored at −18 ◦C in 2 mL glass injection 
vials until HPLC-UV analysis. 
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Moreover, a quality control (QC), which aimed to evaluate the repeatability of the method and the 
robustness of the chemometric results, was prepared by mixing 50 μL of each sample extract. A QC 
and a blank of acetonitrile were injected every 10 randomly injected samples. 

2.4. Data Analysis 

PCA and PLS-DA calculations were made by using SOLO 8.6 chemometric software (Eigenvector 
Research [22], Manson, WA, USA). Theoretical background of these methods in a detailed way is 
addressed elsewhere [23]. 

X-data matrices in both PCA and PLS-DA analysis consisted of the HPLC-UV chromatographic 
fingerprints obtained at 250 nm (absorbance intensities vs. retention time), whereas the Y-data matrix 
in PLS-DA defined each sample class. In order to improve the data quality, HPLC-UV chromatograms 
were smoothed, baseline-corrected, aligned, and autoscaled. Scatter plots of scores from principal 
components (PCs), in PCA, and latent variables (LVs), in PLS-DA, were used to study the distribution 
of samples, revealing patterns that could be correlated to their characteristics. In order to build 
both PCA and PLS-DA models, the first significant minimum point of the cross validation (CV) 
error from a Venetian blind approach was considered to be the most appropriate number of PCs or 
LVs, respectively. 

3. Results and Discussion 
 

3.1. HPLC-UV Chromatographic Separation 

This work aimed to develop a HPLC-UV fingerprinting approach for the classification and 
discrimination of hen eggs according to their labelled typology. Thus, in order to obtain the richest 
chromatographic fingerprints, after a slightly modified simple liquid–liquid extraction procedure [19], 
the obtained extract of a B egg sample was employed for the optimization of the chromatographic 
separation by reversed-phase mode using 0.1% aqueous formic acid and methanol as mobile phase 
components. In a first separation consisting of a universal gradient, where methanol increased from 
10% to 90% in 30 min, several compounds with different peak intensities were detected, although most 
of them elute close to the column dead volume. Thereby, different initial methanol percentages as well 
as the combination of gradient and isocratic steps were tested. As a compromise between the number 
of detected peaks, resolution, and analysis time, a final gradient consisting of an increase of methanol 
from 15% to 95% in 20 min followed by an isocratic step at 95% methanol for 10 min was selected. 
Figure 1 shows the obtained HPLC-UV chromatographic fingerprint registered at 250 nm for a B egg 
sample with the proposed gradient program. 
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Figure 1. High performance liquid chromatography with ultraviolet detection (HPLC-UV) chromatogram 
at 250 nm obtained for a selected barn hen egg sample under the proposed gradient elution program 
(Section 2.2). 

3.2. HPLC-UV Fingerprints 

A total of 173 egg samples were analyzed by the proposed HPLC-UV method for classification 
purposes. For instance, Figure 2 shows the chromatograms at 250 nm for each one of the egg sample 
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groups (O, FR, B, and C) analyzed. At a first glance, similar chromatographic fingerprints were obtained 
independently of the egg type. In fact, according to the retention times, the detected compounds 
seemed to be the same in each of them. However, variations associated to peak intensities, as well as 

their abundance within the different peak signals detected in a same sample, can be easily remarked. 

Therefore, these chromatographic fingerprints were evaluated and proposed as chemical descriptors to 
achieve sample classification. 
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Figure 2. High performance liquid chromatography with ultraviolet detection (HPLC-UV) chromatographic 
fingerprints acquired at 250 nm for a selected sample within each egg type. 

3.3. Classification of Samples According to Egg Type: PCA Study 

As a first approach, a non-supervised PCA study was performed to evaluate the usefulness of 
HPLC-UV fingerprints for eggs classification according to their type. For that purpose, a data matrix 
(189 × 4506, samples × variables), which consisted of the recorded absorbance signals at 250 nm as 
a function of time for the analyzed egg samples and the QCs, was built. Moreover, data were pretreated 
as mentioned in Section 2.4, not only to reduce noise interferences, peak shifting, and baseline drifts, 

but also to provide the same weight to each variable by suppressing differences in their magnitude 

and amplitude scales. As a first result, the plot of scores of PC1 vs. PC2 (seven PCs were chosen 
for the PCA analysis), which is displayed in Figure 3A, shows that QC samples form a clear group 
(without any trend associated to a systematic error) in the upper side of the diagram, allowing the 
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consideration of the obtained chemometric results. As can be seen in the plot of scores PC1 vs. PC3 
shown in Figure 3B (seven PCs were also chosen for the supervised analysis), when excluding QC 
samples, even though there is not an evident discrimination among the samples, both the highest (O 
eggs) and lowest (C eggs) quality eggs predominate above and on the left of the plot, respectively. Up to 
this point, the proposed HPLC-UV fingerprints appeared to be adequate chemical descriptors at least 
for the distinction of O and C eggs, although PCA is only a non-supervised exploratory chemometric 
method. Therefore, in order to better exploit the obtained data and to improve the results on sample 
distribution, a supervised PLS-DA chemometric classification method was evaluated. 
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Figure 3. (A) Scores plot of PC1 vs. PC2 when using HPLC-UV fingerprints registered at 250 nm as 
chemical descriptors, showing a correct behavior of quality control (QC) samples. (B) Scores plot of 
PC1 vs. PC3, without including QC samples, showing a slight trend of organic hen (O) and caged hen 
(C) eggs. 

 
3.4. Classification of Samples According to Egg Type: PLS-DA Study 

The supervised chemometric study of all the analyzed egg samples was carried out by PLS-DA. 
For this reason, in addition to the X-data matrix previously described in the PCA study, a Y-matrix 
indicating the membership of each sample (O, FR, B, and C eggs) was used. The obtained scores plot 
of LV1 vs. LV2 (six LVs were chosen as optimum for the PLS-DA model, as detailed in Section 2.4), 
which is shown in Figure 4, improves non-supervised chemometric results as expected, and the 
obtained distribution seem to be directly related to the hens breeding method employed. In fact, 
eggs of hens with organic diet (O eggs) follow a particular trend mainly due to LV1, whereas LV2 

affects those obtained from hens fed with a cereal-based diet and reared in cages (C eggs). On the 

other hand, in between these two group samples, both FR and B eggs, which as C eggs, are also 
collected from hens with a cereal-based diet but with better breeding conditions, apparently appeared 
randomly distributed. 
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Figure 4. Partial least square-discriminant analysis (PLS-DA) scores plots of LV1 vs. LV2 when using 
HPLC-UV fingerprints registered at 250 nm as chemical descriptors. 

A fact that should be taken into consideration is the number of manufacturers involved within 
the employed samples for each typology. While for O and C eggs all samples belonged only to one 
manufacturer, FR and B groups came from three. Thus, although according to the EU, same rules 
on the breeding process are established for a given quality egg class, additional sources of variance, 

such as the cereals employed in hens diet or the available grass and plants, could suppose a differential 

factor. Therefore, the applicability of HPLC-UV fingerprints as chemical descriptors to distinguish 
between the egg manufacturers was also evaluated by means of PLS-DA. For instance, Figure 5 shows 
the obtained scores plot of LV1 vs. LV2 when a 4 LVs PLS-DA model was built only for B egg samples. 
As can be observed, B eggs are clearly grouped according to their manufacturer, and thus, the proposed 

chromatographic fingerprints seem to be capable to remark these differences between different origins 

of production. 
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Figure 5. PLS-DA scores plots of LV1 vs. LV2 for B hen egg when using HPLC-UV chromatographic 
fingerprints registered at 250 nm as chemical descriptors. 
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Moreover, the size of the studied eggs was also evaluated by this methodology, as reported in 
Figure S1 (Supplementary Material). For that purpose, a matrix containing B and C egg samples, 
which were the only available classes labelled by size, was constructed. A clear distinction between 
M and L size eggs was achieved, independently of their class (B or C), denoting changes in the 
phytochemical fingerprint related to this morphological characteristic. 

3.5. Supervised PLS-DA Method Validation 

As the main goal of the present work was the discrimination of hen eggs according to their 
labelled class, and in order to demonstrate the applicability of the proposed method, the classification 
of higher class eggs in front of any other with one lower, and hence cheaper, was studied by building 
paired PLS-DA models (i.e., O vs. FR, B and C eggs; FR vs. B and C eggs; and B vs. C eggs). As can 
be observed in Figure S2 (Supplementary Material), the number of LVs employed to generate each 
classificatory model was selected considering the first significant minimum point of the CV error 
average as the most appropriate one. 

For predicting the egg classes, the chemometric model was established using 70% of samples of 
each group as calibration set, while the remaining 30% was employed as “unknown” set for validation 
purposes. As can be seen in Figure 6A, O eggs, which are the most expensive ones, were clearly 
discriminated from those with lower prizes, reaching a classification rate of 100%. Further, while for 
the PLS-DA model of FR in front of B and C eggs (Figure 6B) a discrimination capacity of 82.6% was 
accomplished, B in front of C eggs (Figure 6C) resulted to be of 88%. 
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Figure 6. Sample vs. Y predicted 1 Scores plot for (A) O vs. FR, B and C eggs, (B) FR vs. B and C, 
and (C) B vs. C. 

4. Conclusions 

In this work, HPLC-UV chromatograms acquired at 250 nm have proved to be useful discriminant 
fingerprints for the classification of hen eggs according to their labelled typology. The PLS-DA models 
built for each egg category in front of those with lower one have reached at least a classification rate 
of 82.6%, showing satisfactory results of prediction. The distinction among organic and non-organic 
eggs has been especially satisfactory, in which 100% of sensitivity and selectivity has been reached. 
Moreover, the chromatographic fingerprints have also shown differences in egg phytochemical content 
among samples with different size independently of their type, as well as different manufacturers 
between samples from the same class. 

Even though HPLC-UV fingerprints provided satisfactory results, the perfect classification of 
the four labelled hen egg groups was not achieved. At this point and in order to improve them, 
the evaluation of a new matrix, such as the egg yolk, rather than using the whole egg, could be 
an improvement to solve this problematic. Besides, fluorescence detection, which is characterized to 
be more selective than UV detection, could be proposed as an alternative detection technique for better 
descriptive models. 
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Finally, compared with biomarker-based strategies, the principal advantage of fingerprinting 
approaches is that the identification and quantification of selective species of each class are not essential 
for a successful sample classification. Here, in this regard, despite that specific markers have not been 

found, subtle differences in the content of components up- or down-expressed among classes have 

been exploited as the basis of the classification models. However, future work should also be directed 
towards biomarkers identification in order to address hen eggs authentication. 

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/8/8/310/s1, 
Figure S1: PLS-DA scores plots of LV1 vs. LV2 for M and L size eggs when using HPLC-UV chromatographic 
fingerprints registered at 250 nm as chemical descriptors. Figure S2: Latent variable number vs. CV classification 
error average plots for the built PLS-DA models of: (A) O vs. FR, B and C eggs, (B) FR vs. B and C, and (C) B vs. C. 
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A  B  S  T  R  A  C T 

 

Economically motivated food fraud has increased in recent years, with adulterations and substitutions of high- 
quality products being common practice. Moreover, this issue can affect food safety and pose a risk to human 
health by causing allergies through nut product adulterations. Therefore, in this study, high-performance liquid 
chromatography with fluorescence detection (HPLC-FLD) fingerprints were used for classification of ten types of 
nuts, using partial least squares regression-discriminant analysis (PLS-DA), as well as for the detection and 
quantitation of almond-based product (almond flour and almond custard cream) adulterations with hazelnut and 
peanut, using partial least squares regression (PLS). A satisfactory global nut classification was achieved with 
PLS-DA. Paired PLS-DA models of almonds in front of their adulterants were also evaluated, producing a clas- 
sification rate of 100%. Moreover, PLS regression produced low prediction errors (below 6.1%) for the studied 
adulterant levels, with no significant matrix effect observed. 

 
 

 
1. Introduction 

 
Food fraud, which costs the global food industry approximately 30 

billion euros a year, has increased because of the complex nature of the 
globalised world, where many individuals participate in the food chain 
between production and consumption. In the European Union (EU), the 
number of requests concerning fraud suspicions sent to the EU 
Administrative Assistance and Cooperation (AAC) system had increased 
by 49% from 2016 to 2018 (European Comission, 2018). There are 
different ways of perpetuating food fraud, such as deception during 
manufacturing, use of illicit supply chains, duplication, mis- 
representation, and manipulation of the food product (e.g., adultera- 
tion, addition, substitution, etc.) (Manning & Soon, 2019). Although it 
is generally economically motivated, the addition or replacement of 
certain substances can be extremely dangerous for human health, for 
example, by causing allergies, thereby turning a food authentication 
issue into a food safety one (Fritsche, 2018). 

Nuts and seeds, which are widely consumed mainly due to their 
beneficial effects on human health (De Souza, Schincaglia, Pimente, & 
Mota,  2017),  encompass  a  wide  range  of  food  products  such  as 

almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, peanuts, 
pecans, pine nuts, pistachios, pumpkin seeds, sunflower seeds, and 
walnuts. Some of them are at medium or high risk for food fraud (Food 
Fraud Risk Information Database, 2019), being susceptible to adul- 
terations, replacements or substitutions with cheaper and lower-quality 
products, as well as to their characteristics being misrepresented (e.g., 
origin, year of the stock or organic production). For instance, almonds, 
which are one of the most expensive internationally produced nuts 
(more than 2 million tonnes produced in 2017, with USA the main 
producer (Food and Agriculture Organization of the United Nations, 
2019)), as well as their byproducts (snacks, baked goods and pastry), 
can be partly or totally replaced with peanut or hazelnut, constituting 
not only an economic deception, but also a threat to human health by 
causing allergies (Mustafa et al., 2019). Therefore, there is an in- 
creasing need to develop new analytical methodologies to guarantee 
the authenticity and safety of almond and almond-based products. 

To date, most of the analytical methods described in the literature 
for almond authentication deal with its agricultural origin, with only a 
few focusing on its adulteration. For instance, several analytical plat- 
forms  based  on  thermal  analysis  (Beltrán-Sanahuja,  Grané-Teruel, 
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Martín-Carratalá, & Garrigós-Selva, 2011), gas chromatography cou- 
pled to mass spectrometry for the determination of 12 targeted volatile 
compounds (Beltrán-Sanahuja, Ramos-Santonja, Grané-Teruel, Martín- 
Carratalá, & Garrigós-Selva, 2011), high-performance liquid chroma- 
tography with an evaporative light-scattering detector (HPLC-ELSD) for 
triacylglycerol profiling (Barreira et al., 2012), and approaches com- 
bining more than one technique (García, Beltrán Sanahuja, & Garrigós 
Selva, 2013; Čolić et al., 2017), have been successfully employed when 
combined with chemometric techniques for origin classification. How- 
ever, to the best of our knowledge, there are very few studies in- 
vestigating the adulteration of almond-based products. Multi-elemental 
profiling by inductively coupled plasma-optical emission spectrometry 
(ICP-OES) has been used to detect and quantitate the adulteration of 
almond powder with peanut (Esteki, Vander Heyden, Farajmand, & 
Kolahderazi, 2017), while fatty acid profiles obtained with gas chro- 
matography with flame-ionisation detection (GC-FID) have been em- 
ployed to study apricot kernel as an adulterant (Esteki, Farajmand, 
Kolahderazi, & Simal-Gandara, 2017). In both cases, multivariate data 
analysis was also used to quantify the adulterant level in the studied 
samples. 

While most of the methods described in the literature for almond 
authentication are based on targeted profiling (a given group of known 
chemical compounds are determined), chromatographic fingerprinting 
involving non-targeted instrumental signals has emerged as a promising 
strategy in the food authentication field since it does not need specific 
biomarkers. This approach has already been proven in some studies on 
complex food matrices (Cuadros-Rodríguez, Ruiz-Samblás, Valverde- 
Som, Pérez-Castaño, & González-Casado, 2016). In fact, high-perfor- 
mance liquid chromatography with ultraviolet detection (HPLC-UV) 
fingerprinting has been demonstrated to be able to completely distin- 
guish almond samples from peanut and hazelnut ones, although it could 
not discriminate the whole types of the studied nuts (Campmajó et al., 
2019). 

Therefore, this study aimed to classify nuts according to their ty- 
pology, independently of their processing thermal treatment (natural, 
toasted or fried), by high-performance liquid chromatography with 
fluorescence detection (HPLC-FLD) fingerprinting, which is a more se- 
lective technique than HPLC-UV, and partial least squares regression- 
discriminant analysis (PLS-DA). Moreover, the chromatographic fin- 
gerprints were also used to detect and quantitate hazelnut and peanut 
adulterations of almond and almond-based products by partial least 
squares (PLS) regression. 

 
2. Materials and methods 

 
2.1. Reagents and solutions 

 
Unless otherwise stated, all the reagents were of analytical grade. 

Purified water was obtained using an Elix® 3 coupled to a Milli-Q® 
system (Millipore Corporation, Bedford, MA, USA) and filtered through 
a 0.22-μm nylon membrane. Acetone, hexane and formic acid (96%) 
were obtained from Sigma-Aldrich (St. Louis, MO, USA), whereas 
UHPLC-gradient grade methanol was from Panreac (Barcelona, Spain). 

 
2.2. Instrumentation 

 
The chromatographic system consisted of an Agilent 1100 Series 

HPLC instrument equipped with a binary pump (G1312A), a degasser 
(G1379A), an automatic injection system (G1329B), a fluorescence 
detector (G1321A) and a computer with the Agilent ChemStation 
software, all from Agilent Technologies (Waldbronn, Germany). The 
HPLC-FLD fingerprints were obtained by employing a Kinetex C18 
column (100 mm × 4.6 mm id., 2.6 μm particle size), which was 
purchased from Phenomenex (Torrance, CA, USA), and a previously 
developed gradient elution mode with 0.1% (v/v) formic acid aqueous 
solution (solvent A) and methanol (solvent B) constituting the 

 
Table 1 
Description of the samples analysed in the nut classification study. 

 
 

Nut type Abbreviation Number of samples 
 

 Natural Fried Toasted 

Almonds AL 10 10 10 
Cashew Nuts CN – 10 – 
Hazelnuts HN 10 – 10 
Macadamia Nuts MN 10 – – 
Peanuts PN – 10 10 
Pine Nuts PI 10 – – 
Pistachios PT – – 9 
Pumpkin seeds PS – 10 10 
Sunflower seeds SS – – 9 
Walnuts WN 10 – – 

 

components of the mobile phase (Campmajó et al., 2019). The flow rate 
was 0.4 mL min−1 and the injection volume 5 μL. For fluorescence 
acquisition, 280 nm and 350 nm were chosen as the excitation and 
emission wavelengths, respectively. 

 
 

2.3. Samples and sample treatment 
 

For nut classification, 149 nut samples obtained from Barcelona 
markets, belonging to various classes and some of them processed with 
different thermal treatments, were analysed (sample details are de- 
scribed in Table 1). Method repeatability and the robustness of the 
chemometric results were controlled by using a quality control (QC) 
sample, which was a mix prepared with 50 μL of each nut sample ex- 
tract. 

Hazelnuts and peanuts were studied as potential adulterants of al- 
monds and almond-based products. Thus, they were added in propor- 
tions from 0 to 100%, as shown in Table 2, to two different almond 
matrices: natural almond flour and almond custard cream. The cream 
was made from hen eggs, milk, sugar, and corn flour. Afterwards, the 
almond custard cream and its adulterated samples were obtained by 
adding the adulterants as described above. Five replicates of each 
percentage of adulteration were prepared, giving a total of 105 samples 
for each studied almond-based product. In this study, an additional 50% 
adulterated sample was prepared for use as the QC sample. 

A simple two-step sample treatment was performed following a 
previously described method (Campmajó et al., 2019) based on an ex- 
traction with acetone:water (70:30 v/v) followed by a defatting step 
with hexane. Briefly, 0.125 g of the nut product were extracted by 
stirring in a Vortex (Stuart, Stone, United Kingdom) and sonication 
(5510 Branson ultrasonic bath, Hampton, NH, USA) in 3 mL of the 
extracting solvent. Then, centrifugation was performed for 30 min at 
3400 rpm (ROTANTA 460 RS Centrifuge, Hettich, Germany). the 

 
Table 2 
Samples used in the PLS adulteration studies as calibration or validation set. 
Hazelnut and peanut were proposed as adulterants of a natural almond flour 
and an almond custard cream. 

 

Almond, % Adulterant, % 
 

Calibration set 100 0 
80 20 
60 40 
40 60 
20 80 
0 100 

 

Validation set 85 15 
75 25 
50 50 
25 75 
15 85 
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Fig. 1. (A) PLS-DA scores plot of LV1 vs. LV2, using the HPLC-FLD fingerprints acquired for all the nut samples tested. (B) PLS-DA scores plot of LV1 vs. LV2, using 
only the almond, cashew nut, hazelnut, pistachio, and pumpkin seed HPLC-FLD fingerprints. 

 
resulting supernatant extract was defatted with 3 mL of hexane, also by 
stirring in a Vortex followed by centrifugation for 15 min. After filtering 
the sample extract with a 0.22-μm nylon filter (Scharlab, Sentmenat, 
Spain), it was stored at −18 °C in a 2-mL glass injection vial until 
HPLC-FLD analysis. 

To avoid and control for systematic errors and cross-contamination 
during sample sequences, a QC sample and an extracting solvent blank 
were injected at the beginning and after every ten sample injections. 

 
2.4. Data analysis 

 
Depending on the aim of the multivariate data analysis, principal 

component analysis (PCA), PLS-DA or PLS regression was carried out by 
using the Solo 8.6 chemometrics software from Eigenvector Research 
(Manson, WA, USA) (Eigenvector Research Incorporated, 2019). Details 
of the theoretical background of these statistical methodologies are 
addressed elsewhere (Massart et al., 1997). 

For the chemometric study, the construction of different data ma- 
trices was required. Thus, indistinctly of the chemometric method used, 
the X-data matrices of responses consisted of the HPLC-FLD chroma- 
tographic fingerprints acquired. Furthermore, PLS-DA Y-data matrices 
defined each sample class, whereas PLS ones defined each percentage of 
adulteration. 

HPLC-FLD fingerprints were smoothed, baseline-corrected, aligned, 
and autoscaled before building the chemometric model to improve data 
quality by reducing noise interferences, baseline drifts  and  peak 
shifting. Afterwards, the most appropriate number of principal com- 
ponents (PCs) in PCA, and latent variables (LVs) in the PLS-DA and PLS 
was established at the first significant minimum point of the venetian 
blind cross validation (CV) error. 

Moreover, the applicability of the built chemometric models was 
tested through their validation. For instance, the PLS-DA models were 
validated by using 70% of a sample group as the calibration set, and the 
remaining 30% as the validation set. In the case of the PLS models, 
Table 2 shows the percentages of adulteration used in the calibration 
and validation sets. 

 
3. Results and discussion 

 
3.1. Nut classification 

 
Several types of nuts are vulnerable to food fraud practices such as 

 
being substituted with cheaper adulterants. Therefore, analytical 
methodologies capable of classifying nut samples  according  to their 
type are required. Although a previous study demonstrated that HPLC- 
UV fingerprints were good chemical descriptors for classifying certain 
types of nuts, they could not achieve complete nut classification 
(Campmajó et al., 2019). Thus, in this work, HPLC-FLD fingerprints 
were used as an alternative to obtain better descriptors. 

 
3.1.1. HPLC-FLD fingerprints 

As previously mentioned in Section 2.3, a wide variety of nut 
samples were assessed by HPLC-FLD for classification. As can be seen in 
Fig. S1 (Supplementary Material) showing the chromatographic fin- 
gerprints acquired for a selected sample, there were noteworthy dif- 
ferences in the abundance of the compounds detected (considering the 
retention time), as well as in the peak intensity. Moreover, since these 
features were reproducible among samples belonging to the same type 
of nut, these chemical descriptors were evaluated to classify nut types 
through a multivariate chemometric approach. 

 
3.1.2. Chemometrics for classification 

First, a preliminary exploratory chemometric PCA was performed to 
study  QC  sample  behaviour.  Therefore,  a  164  ×  4863  (sam- 
ples × variables) dimension data matrix, with the emitted fluorescence 
intensity at 350 nm a function of time for the analysed nut and QC 
samples, was examined. As shown in Fig. S2, QC samples formed a 
compact group in the central part of the scores plot of PC1 vs. PC2 (two 
PCs were chosen for the PCA), indicating the absence of systematic 
errors during the sample injection sequence and demonstrating the 
validity of the chemometric results. 

The supervised chemometric analysis for classification was con- 
ducted with PLS-DA. While the X-data matrix (149 × 4863) consisted 
of the same information as that used in the PCA without the QC sam- 
ples, the Y-data matrix (149 × 2) indicated the membership of each nut 
sample. Due to the large number of nut classes under study, a total of 
ten LVs were required for the construction of the PLS-DA model, which 
clearly enabled the discrimination of some of them. For instance, the 
scores plot of LV1 vs. LV2 (Fig. 1A) shows a clear separation of walnuts 
and macadamia nuts, which are on the right side of the plot displaying 
positive LV1  values, whereas pine nuts are at the bottom of  the plot 
with negative LV2 values. Although the combination of other LVs and 
the use of 3D plots also enabled the classification of peanuts (Fig. S3A) 
and sunflower seeds (Fig. S3B), LV construction was mainly influenced 
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Fig. 2. Classification plot depicting Sample vs. Y predicted 1 score plot for (A) almond vs. hazelnut samples and (B) almond vs. peanut samples. Solid symbols, 
calibration samples; empty symbols, validation samples. 

 
by these classes of nuts, with the scores plots not visually discriminating 
between the remaining five classes. For that reason, a new PLS-DA 
model for almond, cashew nut, hazelnut, pistachio, and pumpkin seed 
samples was built with four LVs. This resulted in better classification, 
especially for sunflower seeds, as can be seen in the corresponding 
scores plot of LV1 vs. LV2 in Fig. 1B. 

As this work focused on the study of almond adulterations, which 
commonly constitute its substitution with cheaper nuts such as hazel- 
nuts or peanuts, paired PLS-DA models with almond in front of hazelnut 
and peanut samples were constructed. As previously detailed in Section 
2.4, 70% of the samples were used in the calibration set, whereas the 
remaining 30% were used in the validation set. Fig. 2 presents these 
classification plots, the red dashed line indicating the classification 
boundary. The calibration and validation samples are located on the left 
and right side of the plot, respectively. A classification rate of 100% was 
obtained when studying almonds in front of their most common adul- 
terating nuts, [9, 0; 0, 6] being the confusion matrix for both almond vs. 
hazelnut and almond vs. peanut validations. 

Although UV fingerprints at 280 nm are much richer in peak fea- 
tures than the FLD counterparts, results presented in this paper de- 
monstrate the better descriptive performance of HPLC-FLD data com- 
pared with HPLC-UV (Campmajó et al., 2019), with higher 
classification rates and lower prediction errors for some of the systems 
under study. The selectivity of UV spectroscopy at 280 nm is poor and a 
wide range of compounds are detected, mainly consisting of phenolic 
acids (and flavonoids with lower sensitivity), which are components 
occurring in all kinds of samples. As a result, the nut discrimination is 
then based on cross selectivities (i.e., differences in concentration levels 
among classes), while more specific markers have not been en- 
countered. In contrast, FLD fingerprints generally contain a fewer 
number of peaks since the selection of excitation and emission condi- 
tions provides more selective data (Bakhytkyzy, Nuñez, & Saurina, 
2018). Moreover, signals from hydroxycinnamic acids, stilbenoids and 
various types of flavonoids are negligible; only hydroxybenzoic acids 
and flavanols are reasonably detectable under these conditions. In 
particular, the detection of flavanols is especially favored, thus 
achieving a great sensitivity for catechin, epicatechin, and related 
species. Therefore, despite having simpler chromatograms from FLD in 
terms of the number of features, the more selective detection of highly 
relevant descriptors may lead to better predictive figures. 

 
3.2. Almond-based product adulterations 

 
Following the satisfactory classification obtained with the PLS-DA 

models, HPLC-FLD fingerprints were also used for the detection and 
quantitation of adulterations in two types of almond-based matrices: 
natural almond flour and almond custard cream. PLS was applied as the 
most suitable chemometric approach to study them. 

 
3.2.1. HPLC-FLD fingerprints 

A set of almond-based product (natural almond flour and almond 
custard cream) samples, which were obtained by adding different 
percentages of the adulterant as specified in Section 2.3 and detailed in 
Table 2, were analysed with HPLC-FLD. 

As shown in Fig. S1, both the pure hazelnut and peanut fingerprints 
showed significant differences compared to the almond ones in terms of 
the number of compounds detected, abundance, and intensity. For in- 
stance, the peanut and hazelnut samples presented a higher number of 
chromatographic peaks than the almond samples. In fact, an increase in 
the number of peaks could be seen when transitioning from pure al- 
mond to adulterated samples. Therefore, as the HPLC-FLD fingerprints 
seemed to vary according to the adulterant percentage, they were 
proposed as chemical descriptors to detect and quantitate adulterations, 
using PLS. 

 
3.2.2. Chemometric detection and quantitation of adulterations 

The ability of the HPLC-FLD fingerprints to detect and quantify al- 
mond adulterations with peanut or hazelnut was evaluated by PLS. 
Table 3 summarises the LVs used in each calibration PLS model, as well 
as the calibration and prediction error obtained in all the adulteration 
cases studied. The calibration models built were good, as indicated by 

 
Table 3 
Overall results for the evaluation of the adulteration of almond flour and al- 
mond custard cream with hazelnut and peanut by PLS. LVs, number to build 
each PLS mode; Cal. Error, error in the calibration step; Pred. Error, error in the 
prediction step. 

 

Almond flour Almond custard cream 
 

 LVs   Cal. Error 
(%) 

Pred. error 
(%) 

LVs Cal. Error 
(%) 

Pred. error 
(%) 

HAZELNUT 5 2.6 5.6 4 3.5 6.1 
PEANUT 3 4.7 5.0 4 3.1 6.1 
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Fig. 3. Scatter plot of measured vs. predicted percentages of adulteration, using PLS. Results are shown for (A) almond flour and (B) almond custard cream 
adulterated with peanut. 

 
the low calibration errors (≤4.7%), bias values tending towards zero 
and good linearity with R2 ≥ 0.982. When focusing on a specific ma- 
trix, similar prediction errors were obtained independently of the 
adulterant used. As can be seen in Fig. 3, the results achieved when 
predicting peanut levels in almond flour (Fig. 3A) and almond custard 
cream (Fig. 3B) were excellent, with no significant differences between 
the matrices (PLS results for the adulteration with hazelnut are shown 
in Fig. S4). Hence, although almond custard cream is a fatter matrix 
than almond flour, no interfering matrix effect was observed in the 
results. 

 
4. Conclusions 

 
HPLC-FLD chromatographic fingerprints, using an excitation wa- 

velength of 280 nm and an emission wavelength of 350 nm, were sui- 
table chemical descriptors for nut classification and authentication. 
Satisfactory discrimination of nut samples according to their type was 
achieved by PLS-DA. Moreover, when focusing on the specific adul- 
teration of almond-based products with peanut or hazelnut, paired PLS- 
DA models showed complete sample distinction (classification rate of 
100%), while PLS models produced low prediction errors below 6.1% 
for both matrices when predicting the percentages of adulteration. 
Thus, the HPLC-FLD fingerprinting method described in this study can 
classify nut samples according to their type, as well as detect and 
quantitate the levels of peanut or hazelnut adulteration of almond- 
based products. Therefore, it can be used as a simple and reliable 
method to prevent food fraud and guarantee food product safety. 
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Figure S1. HPLC-FLD fingerprints (acquired with an excitation and emission wavelength 
of 280 and 350 nm, respectively) for a selected sample for each nut type under study. 
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Figure S2. PCA scores plot of PC1 vs. PC2 showing the correct behaviour of QC samples. 

QC 
 
Sample 

Sc
or

es
 o

n 
PC

 2
 (1

4.
16

%
)  



-242-  

A  

Sc
or

es
 o

n  
L

V
 4

 (X
:  

5.
42

%
 / 

Y
: 9

.4
6%

)  

Chapter 3. Metabolomic fingerprinting approaches 
 
 
 

60 60 
 

40 40 
 

20 20 
 

0 0 
 

-20 -20 
 

-40 -40 
 

-60 -60 
 

-100 -50 0 50 100 
Scores on LV 1 (X: 15.90% / Y: 9.76%) 

-100 -50 0 50 100 
Scores on LV 1 (X: 15.90% / Y: 9.76%) 

 
AL CN HN 

 
MN PN PI PS 

 
PT SS WN 

 

Figure S3. PLS-DA scores plot of (A) LV1 vs. LV3 and (B) LV1 vs. LV4, using the 
HPLC-FLD fingerprints acquired for all the nut samples assessed. 
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Figure S4. PLS results of (A) almond flour and (B) almond custard cream adulterated with 
hazelnut. 
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A  B  S  T  R  A  C  T   
 

Paprika production under the protected designation of origin (PDO) standardi ed procedures leads to more 
quality products. However, it is also related to higher retail prices, making them susceptible to adulteration with 
low-quality paprika or its agricultural origin’s mislabeling. Therefore, in this study, high-performance liquid 
chromatography with fluorescence detection (HPLC-FLD) fingerprints, strongly related to phenolic acid and 
polyphenolic compounds, were proposed as chemical markers to assess the classification of paprika from five 
European regions (three Spanish PDO, Hungary, and the C ech Republic), through a classification decision tree 
constructed by partial least squares regression-discriminant analysis (PLS-DA) models. After external validation, 
an excellent classification accuracy of 97.9% was achieved. Moreover, the chromatographic fingerprints were 
also proposed to detect and quantitate two different paprika geographical origin blend scenarios by partial least 
squares (PLS) regression. Low external validation and prediction errors —with values below 1.6 and 10.7%, 
respectively— were obtained. 

 
 

 
l. Introduction 

 
In the last decades, society has been increasingly interested not only 

in food safety but also in its quality, encompassing attributes such as the 
presence of specific ingredients, the production system (e.g., organic 
products), or the region of origin. In the case of geographical indication, 
the European nion (E ) has established three labels —protected 
designation of origin (PDO), protected geographical indication (PGI), 
and geographical indication (GI)— that protect the intellectual property 
rights, as well as the inherent characteristics and reputation, of a food or 
beverage product directly linked to its production area (The European 
Parliament and the Council of the European nion, 2012). Among them, 
PDO distinction demands the strictest requirements since all the steps 
involved in the agricultural foodstuff production have to be carried out 
in a specific area through well-described methodologies. 

Several spices, which are widely employed as a food seasoning in the 
main European cuisines because of their organoleptic properties, are 
currently registered with the PDO status: one cumin, five saffron, and 

seven paprika products (European Comission, 2020). Focusing on the 
latter, a valued red powdered spice is obtained from the drying and 
grinding of red pepper fruits of the genus Capsicum (Solanaceae family), 
with  three  PDO  products  coming  from  Spain  (Pimentón  de  La  Vera, 
Pimentón  de  Murcia,  and  Pebre  bord  de  Mallorca),  two  from  Hungary 
( alocsai fűszerpaprika-őrlemény and Szegedi fűszerpaprika-őrlemény), and 
one  from  Slovakia  ( ̌itavská  paprika)  and  France  (Piment  d’Espelette  - 
Ezpeletako Biperra). Moreover, besides its particular intense red color, 
taste, and flavor, paprika is also well-known to be an essential source of 
antioxidant compounds such as capsaicinoids, carotenoids, tocopherols, 
ascorbic acid, and phenolic and polyphenolic compounds, which pro- 
vide important health benefits and have a crucial impact on the fruit 
quality (Hassan,  usof,  ahaya, Ro ali,   Othman, 2019  Škrovánková, 
Mlček,   Orsavová,    ur ková,       Dř malová,   2017    Topu ,   Dincer, 
Ö  demir,  Feng,     Kushad,  2011).  Nevertheless,  herbs  and  spices  are 
among the goods most vulnerable to fraudulent practices in the E 
(European Comission, 2019). In this line, paprika production under the 
PDO standardi ed procedures leads to more quality products with 
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higher retail prices (Dane is, Tsagkaris, Camin, Brusic,  Georgiou, 
2016), making them susceptible to adulteration and mislabeling prac- 
tices. Therefore, the development of analytical methodologies to 
authenticate paprika origin is necessary. 

Because of the lack of specific markers directly related to food origin 
(primary markers), classic targeted analysis can not solve geographical 
origin authentication issues. For that reason, according to its agricul- 
tural origin, the paprika classification has been assessed through 
profiling or fingerprinting strategies (Ballin Laursen, 2019) in com- 
bination with chemometrics. On the one hand, both multi-elemental or 
bioactive substance (i.e., carbohydrates, capsaicinoids, carotenoids, and 
phenolic and polyphenolic compounds) profiles have been commonly 
proposed as chemical descriptors to achieve paprika authenticity. While 
the former has been determined by energy-dispersive X-ray fluorescence 
(ED-XRF) (Fiamegos, Dumitrascu, Papoci, de la Calle, 2021), or 
inductively coupled plasma with optical emission spectroscopy (ICP- 
OES)  (Palacios-Morillo,   urado,  Alcá ar,     De  Pablos,  2014)  or  mass 
spectrometry  (ICP-MS)  (Ö rdög  et  al.,  2018),  liquid  chromatography 
coupled  to  low-  (LC-MS)  (Barbosa,  Campmajó,  Saurina,  Puignou,    
N ñe ,  2020)  or  high-resolution  mass  spectrometry  (LC-HRMS)  (Arri- 
 abalaga-Larrañaga  et  al.,  2020   Barbosa,  Saurina,  Puignou,    N ñe , 
2020b  Mudrić et al., 2017) have been used to record the latter. On the 
other hand, several fingerprinting approaches  (Cuadros-Rodr gue , 
Rui -Samblás, Valverde-Som, Pére -Castaño,   Gon ále -Casado, 2016) 
with an analytical strategy favoring phenolic and polyphenolic detection 
have also been applied. For that purpose, liquid chromatography with 
different detection systems, such as ultraviolet (LC- V) (Cetó, Sánche , 
Serrano, D a -Cru ,   N ñe , 2020  Cetó et al., 2018), electrochemical 
detection (LC-ECD) (Serrano et al., 2018), or LC-HRMS (Barbosa, Sau- 
rina, Puignou,   N ñe , 2020a), has been evaluated. 

This study aimed to prove the applicability of high-performance 
liquid chromatography with fluorescence detection (HPLC-FLD) fin- 
gerprints, strongly related to phenolic acid and polyphenolic com- 
pounds, as a chemical marker to authenticate the geographical origin of 
paprika by chemometrics. Therefore, the classification of samples 
belonging to the three Spanish PDO and two eastern European countries 
(the C ech Republic and Hungary) was evaluated by partial least squares 
regression-discriminant analysis (PLS-DA). Instead, partial least squares 
(PLS) regression was used to detect and quantitate paprika 
adulterations. 

2. Material and Methods 
 

2.1. Reagents and solutions 
 

An Elix® 3 coupled to a Milli-Q® system (Millipore Corporation, 
Bedford, MA, SA) was used to obtain purified water, correspondingly 
filtered with a 0.22-µm nylon membrane. Moreover, HPLC- 
supergradient methanol and acetonitrile were purchased from Panreac 
(Castellar  del  Vallès,  Spain),  while  formic  acid  (96%)  from  Merck 
(Darmstadt, Germany). 

 
2.2. Instrumentation 

 
The HPLC-FLD fingerprints were obtained using a chromatographic 

system consisting of an Agilent 1100 Series HPLC instrument from 
Agilent Technologies (Waldbronn, Germany), equipped with a binary 
pump (G1312A), a degasser (G1379A), an autosampler (G1329B), and a 
fluorescence detector (G1321A). Besides, the ChemStation software 
(Agilent Technologies) allowed the HPLC-FLD system control and data 
acquisition and processing. 

For the LC separation, core–shell technology Kinetex C18 column 
(100 mm × 4.6 mm id., 2.6 µm particle si e) and guard column (2 mm × 
4.6 mm id, 2.6 µm particle si e), both from Phenomenex (Torrance, CA, 
 SA), as well as 0.1% (v/v) formic acid aqueous solution (solvent A) and 
acetonitrile (solvent B) as the mobile phase components, were used. This 

 
                                 

 
study’s gradient elution program started with a 2 min-isocratic step at 
40% solvent B, followed by a linear gradient elution up to 80% in 1 min, 
and an isocratic step at this last condition for 5 min. Subsequently, after 
a 2 min-lineal increase up to 100% solvent B, the mobile phase’s 
composition was isocratically kept for 2 min. Afterward, 1 min-lineal 
decrease back to the initial conditions, and 5 min of isocratic elution for 
column re-equilibration, were set. The mobile phase flow rate was 500 
µL⋅min−1, and the injection volume 5 µL. Moreover, for FLD acquisition, 
310 and 380 nm were chosen as the excitation and emission wave- 
lengths, respectively. 

 
2.3. Samples 

 
2.3.1. Paprika samples for the qualitative classification study 

A total of 122 paprika samples from different countries —Spain, 
Hungary, and the C ech Republic— and types —hot, bittersweet, and 
sweet— were analy ed in this study for classificatory purposes. Among 
the Spanish paprika samples, 45 were distinguished with La Vera PDO, 
18 with Murcia PDO, and 16 with Mallorca PDO. Instead, the 28 Hun- 
garian samples came from the alocsa region, while the 15 C ech 
paprika samples’ region was not labeled. La Vera samples were directly 
purchased from paprika production companies, whereas the others were 
bought in C ech, Hungarian, and Spanish commercial supermarkets and 
markets. Moreover, a quality control (QC) sample, constituted by 
pooling 50 µL of each analy ed paprika sample extract, was also 
prepared. 

2.3.2. Adulterated paprika samples for the quantitative study 
Two different geographical origin adulteration cases —La Vera vs. 

Murcia and the C ech Republic vs. Murcia— were under study. In each 
case, calibration and external validation blends were prepared (five and 
three replicates of each set, respectively), mixing sweet samples (sweet 
smoked in the case of the C ech Republic) from the corresponding ori- 
gins in proportions from 0 to 100% as shown in Table S1, and giving a 
total of 45 samples. Besides, for testing purposes, three replicates at 25, 
50, and 75%, using different sweet samples to those previously 
employed, were also prepared in both cases. For these sets of samples, 
QC samples consisted of additional 50% adulterated samples. 

2.4. Sample treatment and analysis 
 

A straightforward sample treatment, previously developed for 
polyphenolic  compound  extraction  from  Spanish  paprika  (Cetó  et  al., 
2018), based on solid–liquid extraction (SLE) with water:acetonitrile 
(20:80 v/v) was carried out. Briefly, 0.3 g of the sample were extracted 
with 3 mL of the extracting mix, stirred in a Vortex (Stuart, Stone, nited 
Kingdom) for 1 min, sonicated (5510 Branson ultrasonic bath, Hampton, 
NH, SA) for 15 min, and centrifuged (ROTANTA 460 RS Centrifuge, 
Hettich, Germany) for 30 min at 4500 rpm. Finally, the resulting poly- 
phenolic extract was filtered with a 0.22-µm nylon filter and preserved 
at 4 ◦C in a glass injection vial until its analysis by HPLC-FLD. 

In each sample sequence, samples were randomly injected to mini- 
mi e instrumental drifts’ influence in the chemometric models. More- 
over, at the beginning and after every ten sample injections, an 
extracting solvent blank and a QC sample were also injected to control 
cross-contamination and metabolite behavior in the analytical system, 
respectively. 

2.5. Data analysis 
 

The obtained HPLC-FLD raw data were exported to Microsoft Excel 
(Microsoft, Inc., Redmond, WA,  SA) spreadsheet for preprocessing, 
and then, the constructed matrices were subjected to principal compo- 
nent analysis (PCA), PLS-DA, or PLS regression, using the Solo 8.6 
chemometrics software from Eigenvector Research (Manson, WA, SA). 
Details of the theoretical background of these statistical methodologies 
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Fig. l. HPLC-FLD fingerprints, acquired at an excitation wavelength of 310 nm and an emission wavelength of 380 nm, for a selected sample within each paprika 
region and type. Black and light grey indicate the hot and sweet type, respectively, while medium gray corresponds to bittersweet in La Vera samples or smoked sweet 
in the C ech Republic ones. 

 
are addressed elsewhere (Massart et al., 1997). 

While PCA was used to evaluate QC sample behavior, PLS-DA was 
employed for sample classificatory purposes and PLS regression to 
detect and quantitate paprika geographical origin fraud. Indistinctly of 
the chemometric method used, the construction of different data 

 
matrices was required: the X-data matrix, consisting of the HPLC-FLD 
fingerprints obtained, and the -data matrix for PLS-DA and PLS 
regression, defining each sample class or the corresponding percentage 
of adulteration, respectively. Moreover, before chemometric analysis, 
chromatographic fingerprints were pretreated by smoothing, baseline- 
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Fig. 2. (A) PLS-DA scores plot of LV1 vs. LV2, using the HPLC-FLD fingerprints acquired for all the paprika samples analy ed. (B) PLS-DA scores plot of LV1 vs. LV2, 
using only Murcia, Hungary, and the C ech Republic HPLC-FLD fingerprints. 

 
correcting, aligning, and autoscaling to improve data quality. The most 
appropriate number of latent variables (LVs) in PLS-DA and PLS 
regression models was established at the first significant minimum point 
of the venetian blinds cross-validation (CV) error. 

Both PLS-DA models’ classification performance and PLS regression 
models’ prediction ability were evaluated through external validation. 
On the one hand, because of the complexity of the classification issue, 
where many sample particularities (e.g., geographical origin and type) 
were involved, a classification decision tree constituted by consecutive 
PLS-DA models was built using the hierarchical model builder (HMB). 
While 60% of paprika samples (stratified random chosen) constructed 
the calibration PLS-DA models, the remaining 40% were used as the 
validation set. On the other hand, Table S1 shows the adulteration 
percentages used in the calibration and validation sets employed in the 
PLS regression analysis. 

3. Results and discussion 
 

3.1. HPLC-FLD chromatographic separation 
 

In the last decades, FLD has emerged as an alternative and also as a 
complement to V and MS detection of phenolic and polyphenolic 
molecules  (Monasterio,  Olmo-Garc a,  Bajoub,  Fernánde -Gutiérre ,   
Carrasco-Pancorbo, 2016), since many of them —hydroxyben oic, 
hydroxyphenylacetic, and hydroxycinnamic acids, tyrosols (Godoy-Ca- 
ballero, Acedo-Valen uela,  Galeano-D a , 2012), lignans (Selvaggini 
et al., 2006), and flavanols (Bakhytky y, Nuñe ,   Saurina, 2018)— are 
susceptible to be detected by this detection system. In this context, and 
because of the high potential of polyphenols to address food authenti- 
cation issues (Barbosa, Pardo-Mates, Puignou,   N ñe , 2017), HPLC- 
FLD fingerprinting has recently gained interest in this field. Its appli- 
cation has already proven excellent descriptive performance when 
analy ing phenolic/polyphenolic food extracts. For instance, HPLC-FLD 
fingerprints were successfully proposed as chemical descriptors to 
address the origin, variety, and roasting degree of coffee (N ñe , Mar- 
t ne , Saurina,   N ñe , 2021), as well as to assess the varietal origin of 
extra-virgin olive oil (Bajoub et al., 2017). Besides, in some applications, 

 
such as the nuts classification, they provided better discrimination 
ability than HPLC- V (Campmajó, Sae -Vigo, Saurina,   N ñe , 2020). 

This study aimed to develop an HPLC-FLD fingerprinting approach, 
strongly related to phenolic acid and polyphenolic composition, for 
paprika classification according to its geographical origin, as well as its 

fraud quantitation. Thus, characteristic and representative sample 
chromatograms were required for each given class. Because of the non- 
targeted nature of the proposed method, the optimi ation of the chro- 
matographic gradient elution relied on obtaining chromatographic fin- 
gerprints with enough discriminant information in a suitable time 
(below 20 min) rather than looking for baseline resolved peaks. For that 
purpose, different binary gradient elution modes, using a C18 column 
and 0.1% (v/v) formic acid aqueous solution and an organic solvent 
(methanol or acetonitrile), which are the most common chromato- 
graphic separation conditions for the analysis of phenolic compounds in 
food samples (Lucci, Saurina,   N ñe , 2017), were tested in a sweet La 
Vera paprika sample. Methanol as the organic solvent of the mobile 
phase was discarded since many compounds were not eluted until 
reaching 95%. Therefore, different initial acetonitrile percentages and 
the combination of gradient and isocratic steps were applied. As a 
compromise between the number of detected peaks and  the analysis 
time, Fig. 1 shows the chosen HPLC-FLD fingerprints (excitation and 
emission wavelengths of 310 and 380 nm, respectively), which follow 
the gradient elution program detailed in Section 2.2, for the different 
varieties of studied samples. For the subsequent chemometric analysis, 
only the range from 0 to 12 min was considered, avoiding the column re- 
equilibration step. 

 
3.2. Geographical origin classification 

 
The visual inspection of the obtained HPLC-FLD fingerprints, 

depicted in Fig. 1, allowed the detection of considerable qualitative 
variations in chromatographic peak distribution and intensity among 
the different geographical origin paprika samples under study. For 
instance, La Vera and Mallorca samples were characteri ed by distinctive 
chromatographic fingerprints comparing to the remaining regions, 
which at first glance showed more similarities. In addition, these 
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Table l 

 
 

Table 2 
Calibration, cross-validation, and external validation statistical parameters ob- 
tained for each of the PLS-DA models used to build the classification decision 
tree. 

 

Number of LVs and calibration, cross-validation, external validation, and pre- 
diction statistical parameters obtained for each of the PLS regression models 
used to determine the paprika blend percentage. 

 

1) La Vera vs. 
others 

2) Mallorca vs. 
others 

3) C ech R. vs. 
others 

4) Murcia vs. 
Hungary 

1) La Vera vs. Murcia 2) C ech R. vs. Murcia 

LVs 4 4 
RMSEC 0.166 0.126 0.121 0.152 
RMSECV    0.179 0.135 0.154 0.211 
RMSEEV    0.135 0.133 0.141 0.260 
R2 (C) 0.882 0.905 0.920 0.906 
R2 (CV) 0.863 0.892 0.871 0.818 
R2 (EV) 0.925 0.889 0.898 0.730 

 
 

 
features were reproducible among samples belonging to the same 
geographical origin since, in general, the paprika type slightly modified 
the HPLC-FLD fingerprint shape, allowing their use as a chemical marker 
to address paprika geographical origin authentication through 
chemometrics. 

First, an exploratory chemometric analysis through PCA was per- 
formed to assess the results’ validity and ensure the lack of systematic 
errors during the sample sequence by studying QC sample behavior. 
Thus, a 135 1667 (samples variables) dimension data matrix, 
constructed with the chromatographic fingerprints registered for each 
paprika and QC samples, was subjected to PCA. As a result, Fig. S1 
presents the scatter plot for scores on the PC2-PC1 (explaining 85.78% 
of the variance), showing a clear group of QC samples in the middle of 
the plot, and therefore, the absence of a trend associated with the 
analytical system and the suitability of data pretreatment. Moreover, 
according to geographical origin, several sample groups and trends can 
be observed in the PCA scores plot, indicating the suitability of HPLC- 
FLD fingerprints when used as sample chemical descriptors. 

Then, after excluding QC samples, the resulting X-data matrix (122 
1667) and the  -data matrix (122    1), giving the geographical origin, 

were exploited in a preliminary supervised approach by PLS-DA. Three 
LVs were selected to build the PLS-DA model that remarkably allowed 
the discrimination of some paprika regions. In this line, Fig. 2A shows 
the scores plot of LV1 vs. LV2, where La Vera —in the right side of the 
plot displaying positive LV1 values— and Mallorca samples —on the 
bottom of the diagram displaying negative LV2 values— are distin- 
guished. Besides, the remaining samples seem to follow a trend along the 
LV2 according to their geographical origin. Since in this PLS-DA model, 
LV construction was mainly influenced by La Vera and Mallorca classes, 
complete visual discrimination between the remaining three regions was 
not achieved. Therefore, a new supervised model for Murcia, Hungarian, 
and C ech paprika samples was built with six LVs, explaining a   vari- 
ance of 94.48%. The corresponding scatter plot for scores on the LV2- 
LV1 is depicted in Fig. 2B, providing a great classification for the stud- 
ied classes, although sweet smoked C ech paprika appears separated 
from the other C ech samples. This may indicate that the smoking 
procedure affects the phenolic profile, which agrees with Barbosa et al. 
that reported variations in the content of several phenolic compounds 
—such as syringaldehyde, ferulic acid, nepetin 7-glucoside, and 
hesperidin— found in sweet smoked and non-smoked C ech paprika 
(Barbosa, Campmajó, et al., 2020). 

Because of the arduousness of the classification under study, which 
involved a wide number of classes, a single PLS-DA model was inade- 
quate to solve the authentication issue and, therefore, a classification 
decision tree, constituted by smaller two-input class PLS-DA calibration 
models —acting as the rule nodes—, was proposed. In this line, Fig. S2 
depicts the flow-chart of the designed classification decision tree and 
details data matrices dimensions and LVs used in the four rule nodes: 1) 
La Vera vs. others, 2) Mallorca vs. others (without including La Vera 
samples), 3) the C ech Republic vs. others (without including La Vera 
and Mallorca samples), and 4) Murcia vs. Hungary. As previously 
mentioned in Section 2.5, PLS-DA calibration models were built using 
60% of the analy ed paprika samples, while the remaining 40% were 

RMSEC 0.732 0.933 
RMSECV 1.440 1.343 
RMSEEV 1.543 0.974 
RMSEP 10.701 3.730 
R2 (C) 1.000 0.999 
R2 (CV) 0.998 0.998 
R2 (EV) 0.997 0.999 
R2 (P) 0.996 0.995 

 
 

 
used to carry out external validation. Table 1 summarises some statis- 
tical parameters such as the root-mean-square error of calibration 
(RMSEC), cross-validation (RMSECV), or external validation (RMSEEV), 
and the corresponding values of R2. The low values of RMSECV and their 
similarity to RMSEC ones ensured good internal consistency and pre- 
vented overfitting. Besides, the high values of R2 for the prediction and 
the low RMSEEV values, suggested a satisfactory predictive capability of 
the developed PLS-DA models. In this line, after performing external 
validation, an excellent classification accuracy of 97.9% was achieved. 
Moreover, all sample classes showed a sensitivity (capability to detect 
true positives) and specificity (capability to detect true negatives) of 
100%, except for Hungary that presented a sensitivity of 91.7%, and 
Murcia that provided a specificity of 97.6%. 

 
3.3. Detection and quantitation of geographical origin fraud 

 
Because of the excellent classification results obtained with the 

proposed methodology, HPLC-FLD fingerprints were also used to detect 
and quantitate paprika geographical origin fraud. Thus, as previously 
mentioned in Section 2.3.2, two different paprika adulteration scenarios 
were evaluated (La Vera vs. Murcia and the C ech Republic vs. Murcia) by 
analy ing a set of mixed sweet samples (sweet smoked in the case of the 
C ech Republic) as detailed in Table S1. 

Since the obtained chromatographic fingerprints varied according to 
blend percentage, they were subjected to PLS regression to predict the 
blending degree. However, before PLS regression analysis and aiming to 
check the correct behavior of the QC samples, which corresponded to a 
50% adulterated sample, PCA was performed for both data matrices (61 

1667). When observing the corresponding scores plots, QCs are 
located in the center in La Vera vs. Murcia set (Fig. S3A), while they are 
grouped displaying negative values of PC2 in the C ech Republic vs. 
Murcia set (Fig. S3B), proving the reliability of the subsequent chemo- 
metric results. Besides, in both PCA scores plots, PC1 could be related to 
the blending percentage as it seems to increase in samples from the left 
to the right. 

As previously indicated in the Material and Methods Section, PLS 
regression models were established from the calibration data set of 
standard samples. In this line, for both of the adulteration scenarios 
under study, an X-data matrix (30 × 1667) —containing the HPLC-FLD 
fingerprints of calibration samples— and a  -data matrix (30 × 1) 
—specifying the percentage of adulteration— were exploited by this 
multivariate regression technique. Afterward, external validation was 
performed to evaluate the prediction ability of the build PLS regression 
models. Table 2 sums up the number of LVs used in each calibration PLS 
regression model, as well as some statistical parameters related to cali- 
bration,  cross-validation,  and  external  validation  performance.  Good 
calibration models were constructed, as indicated by the low RMSEC 
values, bias values tending towards 0 and determination coefficients R2 

(C) 0.999. Besides, excellent results were obtained for the external 
validation (see scatter plots of measured vs. predicted percentages of 
adulteration in Fig S4), with overall RMSEEV values below 1.6%. 
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Fig. 3. Prediction test PLS results: La Vera vs Murcia (on the left side) and the C ech Republic vs Murcia (on the right side) scatter plot of measured vs predicted 
percentages of paprika blend level. Red and black symbols indicate prediction and calibration samples, respectively. Black dashed line corresponds to the theoretical 
diagonal line, while the red line to the experimental adjusted one. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

 
Given these results, the built models’  applicability was tested by 

analy ing new independent mixtures at 25, 50, and 75% (expected 
adulteration percentages in real fraud) not used for building the calibra- 
tion models. As reported in Table 2, satisfactory root-mean-square error of 
prediction (RMSEP) values of 10.7 and 3.7% were obtained for La Vera vs. 
Murcia and the C ech Republic vs. Murcia cases, respectively. Moreover, 
as shown in Fig. 3, where the obtained scatter plots of measured vs. 
predicted percentages of adulteration are depicted, prediction ability 
slightly decreased when increasing the percentage of La Vera sample in 
the test mix of La Vera vs. Murcia case (Fig. 3A). Instead, a similar pre- 
dictive performance was observed between the studied percentages in the 
C ech Republic vs. Murcia one (Fig. 3B). 

It should be pointed out that each PLS model is exclusively valid for 
the specific problem for which it has been designed. For instance, a 
model to predict La Vera paprika’s adulteration with Murcia samples has 
provided suitable results for that given problem. On the contrary, the 
model prediction performance may be poor when the adulteration 
comes from another region. In a more general context, if La Vera samples 
were adulterated with paprika from any (known or unknown) region, 
the calibration matrix should reflect this variability, including samples 
from different geographical areas at various blending percentages. This 
situation represents a higher experimental and chemometric challenge 
since it requires the preparation of a wide range of standards to cover all 
the experimental variance. 

4. Conclusions 
 

This study suggests the suitability of phenolic and polyphenolic 
extract HPLC-FLD fingerprints (using an excitation wavelength of 310 
nm and an emission wavelength of 380 nm), when combined with 
chemometrics, as chemical markers to classify European paprika sam- 
ples according to their geographical origin and detect and quantitate 
their blend percentage. In this line, an excellent classification accuracy 
of 97.9%, as well as prediction errors below 10.7% have been reached, 
respectively. Therefore, the proposed HPLC-FLD fingerprinting method 
can be used as a reliable and straightforward complementary method to 
prevent geographical origin fraud of paprika of European origin. 
Moreover, although the phenolic HPLC-FLD fingerprints could be 
slightly modified  by the harvesting year,  mainly because of  climate 

 
conditions, differences related to geographical origin may prevail. In 
this context, the maintenance of the analysis’s representativeness will 
require the inclusion of further paprika samples in the calibration che- 
mometric models. 

 
Declaration of Competing Interest 

 
The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

 
Acknowledgement 
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Table S1. Description of the samples analyzed in the PLS regression adulteration studies 
as calibration or validation set. La Vera vs. Murcia and the Czech Republic vs. Murcia 
cases were under study. 

 
 La Vera / the Czech R., % Murcia, % 

Calibration set 0 100 

 20 80 

 40 60 

 60 40 

 80 20 

 100 0 

Validation set 15 85 

 25 75 

 50 50 

 75 25 

 85 15 
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Figure S1. PCA scores plot showing the QC samples’ correct behavior in the 
classification study and some trends associated to sample geographical origin. 
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Figure S2. Flow-chart of the designed classification decision tree build using PLS-DA models as the rule nodes. Data matrices dimensions and 
LVs used to construct the calibration models are detailed. 
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Figure S3. PCA scores plot showing the QC samples’ correct behavior in the study to 
detect and quantitate paprika geographical origin fraud: (A) La Vera vs. Murcia PLS case 
and (B) the Czech Republic vs. Murcia case. 
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Figure S4. External validation PLS results: La Vera vs. Murcia (on the left side) and the 
Czech Republic vs. Murcia (on the right side) scatter plot of measured vs predicted 
percentages of paprika blend level. Red and black symbols indicate external validation 
and calibration samples, respectively. Black dashed line corresponds to the theoretical 
diagonal line, while the red line to the experimental adjusted one. 
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Guillem Campmajó a,b,*, Javier Saurina a, b, Oscar Núñez a, b, c 
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A  B  S  T  R  A  C  T   
 

Fraud in nut and seed products poses an economic deception and a threat to human health because of their 
allergens. This study comprehensively evaluated the metabolomic diversity of ten different nut types through 
non-targeted liquid chromatography coupled to high-resolution mass spectrometry (LC−HRMS). First, 
LC−HRMS fingerprints were subjected to partial least squares regression-discriminant analysis (PLS-DA), and the 
developed multi-class model reached a classification accuracy of 100% after external validation. Then, variable 
importance in projection ( IP) scores obtained from two-input class PLS-DA models (i.e., a specific nut type 
against all the other samples) allowed the selection of 136 discriminant compounds that were tentatively an- 
notated/identified through HRMS data. Finally, as a case of study, successful detection and quantitation of 
almond-based products adulteration (with hazelnut or peanut) was achieved through a targeted LC−HRMS 
study, using some of the found markers and partial least squares (PLS) regression. In this context, new profiling 
approaches could be further implemented based on the reported markers using cheaper techniques. 

 
 

 

                  
 

Analytical strategies based on omics approaches —genomics, prote- 
omics, metabolomics, and metallomics/isotopolomics— have been widely 
proposed to solve food authenticity control. In particular, metabolomics, 
which is the closest omics discipline to the phenotype of biological 
systems, focuses on the analysis of small molecules (<1500 Da) (Creydt 
& Fischer, 2018). In this context, the use of metabolomics non-targeted 
methods, where instrumental responses (i.e., mainly analytical signals 
obtained through chromatography and related techniques, spectros- 
copy, mass spectrometry, or electronic sensors) are analysed without 
assuming any previous knowledge, has proved its potential in this field 
(Medina, Perestrelo, Silva, Pereira, & Câmara, 2019). 

Liquid chromatography coupled to high-resolution mass spectrom- 
etry (LC HRMS) is a reliable instrumental platform to perform non- 
targeted analysis with high molecular coverage of the non-volatile 
metabolome. Using time-of- ight (TOF) or Orbitrap instruments, 
HRMS provides high resolving power, allowing accurate miz measure- 
ments. Furthermore, structural information can be obtained through 
fragmentation data when using hybrid configurations like quadrupole- 

Orbitrap ( -Orbitrap) or quadrupole-time-of- ight ( -TOF). Besides, 
the hyphenation of LC with HRMS enhances both the selectivity and 
sensitivity of the analytical approach. Therefore, because of these 
instrumental capabilities and despite its higher cost and longer analysis 
time, it is usually preferred over spectroscopic techniques for tentative 
compound identification. In this line, LC HRMS has been widely pro- 
posed in diverse applications such as the screening of chemical con- 
taminants in food (Fu, Zhao, Lu, & Xu, 2017) or human biomonitoring 
(Caballero-Casero et al., 2021), the characterisation of natural plants 
(Alvarez-Rivera, Ballesteros- ivas, Parada-Alfonso, Ibañez, & Cifuentes, 
2019), or clinical research (Rochat, 2016). Particularly in the food fraud 
field, it has also been used to investigate markers related to specific 
authentication issues (Lacalle-Bergeron et al., 2021; Zhong et al., 2022). 

Nuts and seeds are usually consumed as a snack, although they can 
also be added to salads, sausages, stews, or bakery products. It is well- 
known that their regular intake promotes beneficial health effects on 
humans (Bitok & Sabaté, 2018). However, according to the Food Fraud 
Risk Information database (Food Fraud Advisors, 2017), some nut-based 
products are at medium or high risk for fraud practices, such as adul- 
terations or replacements with cheaper and lower-quality ingredients. In 
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https://doi.org/10.1016/j.foodcont.2023.109834 
Received 10 March 2023; Received in revised form 21 April 2023; Accepted 29 April 2023 
Available online 29 April 2023 
0956-7135/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- 
nc-nd/4.0/). 

 

 
 

 



-264-  

− 
− 

− 

− − 

× 

× 

× 
× 

− 

Chapter 3. Metabolomic fingerprinting approaches 
 
 
 
 

G. Campma ó et al. 

 
this context, while fraud in raw nuts is unusual due to evident visual 
differences, it is more common in processed nut products such as ours 
or pastes, where its detection is more complicated. Moreover, fraud in 
these products implies an economic deception and a threat to human 
health because of their allergens (Luparelli et al., 2022), being a food 
authentication and safety issue. Thus, developing analytical methodol- 
ogies to detect these practices is required. 

Several approaches and analytical techniques have been proposed to 
detect nut species adulteration. Although some of the methods described 
in the literature rely on genomics, proteomics, or metallomics (Ding et al., 
2020; Esteki, ander Heyden, Farajmand, & Kolahderazi, 2017; Monaci, 
De Angelis, Bavaro, & Pilolli, 2015), most focus has been on metab- 
olomics. In this line, spectroscopic fingerprinting approaches are 
commonly used for this aim. For instance, Taylan et al. employed Raman 
spectroscopy to detect green-pea adulteration in pistachio (Taylan et al., 
2021), while Rovira et al. evaluated two infrared spectroscopic tech- 
niques —near-infrared (NIR) and attenuated total re ection-Fourier 
transform infrared (ATR-FTIR)— to assess cashew nut authenticity in 
front of four different adulterants (Rovira et al., 2022). 

Instead, to date, most of the targeted and non-targeted methods 
based on chromatographic and related techniques have focused on the 
authentication of the cultivar or geographical origin of nut samples 
(Campmajó & Núñez, 2021; Suman, Cavanna, Sammarco, Lambertini, & 
Loffi, 2021). Indeed, to our knowledge, few studies using these tech- 
niques have dealt with nut species adulteration and classification. For 
instance, almond powder adulteration with apricot kernel was evaluated 
using the fatty acid profile obtained with gas chromatography with 
 ame ionisation detection (GC-FID) (Esteki, Farajmand, Kolahderazi, & 
Simal-Gandara, 2017), while liquid chromatography with ultraviolet 
(LC-U ) and uorescent detection (LC-FLD) fingerprinting assessed nut 
type classification (Campmajó et al., 2019; Campmajó, Saez- igo, Sau- 
rina,  &  Núñez,  2020).  In  the  latter  case,  almond-based  product  adul- 
teration was also studied. Moreover, only the adulteration of pistachio 
nut  powder  with  green-pea  has  been  evaluated  by  non-targeted 
LC   HRMS (<avus, , Us, & Güzelsoy, 2018). 

Therefore, in this study, non-targeted LC HRMS was used to address 
the classification of ten nut-type samples (almonds, cashew nuts, 
hazelnuts, macadamia nuts, peanuts, pine nuts, pistachios, pumpkin 
seeds, sun ower seeds, and walnuts) through partial least squares 
regression-discriminant analysis (PLS-DA). Moreover, two-input class 
PLS-DA models (i.e., a specific nut type in front of others) were built, and 
the evaluation of the corresponding variable importance in projection 
( IP) scores allowed finding the most discriminant molecular features 
for each nut. After tentatively identifying these markers, targeted 
LC HRMS (focusing on the found discriminant molecules) was pro- 
posed to detect and quantitate hazelnut and peanut adulterations of 
almond-based products by partial least squares (PLS) regression. 

2  Ma e als a   me h  s 
 

2.1. Reagents and solutions 
 

Purified water obtained with Elix® 3 coupled to a Milli- ® system 
(Millipore Corporation, Bedford, MA, USA) and filtered through a 0.22- 
µm nylon membrane, and acetone and hexane purchased from Merck 
(Darmstadt, Germany), were used for the sample treatment. Regarding 
the LC HRMS analysis, LC MS grade water and methanol, as well as 
formic acid (96%), were provided by Merck. 

The analytical reagent grade compound standards used for confir- 
mation were: (−)-epicatechin and citric, malic, quinic, and tartaric acids 
from Merck, and (+)-catechin from Fluka (Steinheim, Germany). 

2.2. Instrumentation 
 

The chromatographic system consisted of an ultra-high-performance 
liquid chromatography (UHPLC) system equipped with an Accela 1250 

 
                               

 
quaternary pump and an Accela autosampler (Thermo Fisher Scientific, 
San Jose, CA, USA). The chromatographic separation was performed 
using a core-shell technology Kinetex C18 column (100 mm × 4.6 mm 
id., 2.6 µm particle size) and guard column (2 mm 4.6 mm id., 2.6 µm 
particle size), from Phenomenex (Torrance, CA, USA), and using 0.1% 
(viv) formic acid aqueous solution (solvent A) and methanol (solvent B) 
as the constituents of the mobile phase. Hence, the developed chro- 
matographic method started with linear gradient elution from 5 to 75% 
solvent B in 30 min, continued with a 2.5 min-lineal increase up to 95%, 
and ended with an isocratic step at 95% for 2.5 min. Finally, 0.1 min- 
lineal decrease back to the initial conditions and 4.9 min of isocratic 
elution for column re-equilibration were set. The mobile phase ow rate 

was 400 µL min−1, and the injection volume 10 µL (partial loop mode). 
The UHPLC system was coupled to a hybrid -Orbitrap mass spec- 

trometer ( -Exactive Orbitrap, Thermo Fisher Scientific) equipped with 
a heated electrospray ionisation (H-ESI II) source operating in the 
negative ion mode. Nitrogen with a purity of 99.98%, purchased from 
Linde (Barcelona, Spain), was used for the ESI sheath, sweep, and 
auxiliary gas at ow rates of 60, 0, and 10 a.u. (arbitrary units), 
respectively. Other H-ESI parameters were established as follows: spray 
voltage, - 2.5 k ; probe heater temperature, 350 ◦C; capillary temper- 
ature, 320 ◦C; and S-lens RF level at 50 . Full-scan HRMS data were 
acquired over an miz range of 100–1500 at a mass resolution of 70,000 
full width at half maximum (FWHM) at miz 200. In addition, an auto- 
matic gain control (AGC) of 1.0 106 and a maximum injection time 
(IT) of 200 ms were established. 

For the MS/HRMS experiments, targeted data-dependent scan mode, 
requiring accurate mass inclusion lists, was used to obtain the product 
ion scans of specific ions of interest. The acquisition was performed at a 
mass resolution of 17,500 FWHM at miz 200. Precursor ions, isolated by 
the quadrupole with an isolation window of 0.5 miz, were fragmented in 
the higher-energy collisional dissociation (HCD) cell using three-stepped 
normalised collision energies (NCE) ranging from 10 to 50%. Moreover, 
the targeted data-dependent acquisition was subordinated to an in- 
tensity threshold fixed at 1.0 105, and the AGC and IT values were 
established at 2.0 105 and 200 ms, respectively. 

The -Orbitrap system was tuned and calibrated every three days, 
using commercially available calibration solutions for both negative and 
positive ion modes (Thermo Fisher Scientific). Moreover, the Xcalibur 
software v 4.1 (Thermo Fisher Scientific) was used to control the 
LC−HRMS system and acquire and process data. 

2.3. Samples 
 

2.3.1. Nut samples for the classification study 
A set of 149 raw nut samples bought in Spanish commercial super- 

markets were analysed for classification purposes. Samples encom- 
passed various nut classes 30 almonds, 10 cashew nuts, 20 hazelnuts, 
10 macadamia nuts, 20 peanuts, 10 pine nuts, 10 pistachios, 20 pumpkin 
seeds, 9 sun ower seeds, and 10 walnuts—, some of them processed 
with different thermal treatments —natural, fried, and toasted— (see 
Table S1 for nut sample details). Before the sample treatment, samples 
were crushed  and homogenised.  Moreover, a  quality control ( C) 
sample consisting of a mix prepared by pooling 50 µL of each sample 
extract was employed. 

2.3.2. Adulterated almond samples for the quantitative study 
Two different almond adulteration scenarios (almond vs. hazelnut 

and almond vs. peanut) were considered to evaluate the suitability of the 
identified biomarkers to address its authentication in two matrices: 
natural almond our and homemade almond custard cream. Both 
matrices were obtained from a random almond sample previously used 
in the classificatory study. Thus, the sample was crushed and homoge- 
nised to obtain the almond our (as done in Section 2.3.1), whereas the 
custard cream was made from hen eggs, milk, sugar, and corn our. 

Thus, the adulterants were added in different proportions −0, 20, 40, 

2 
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60, 80, and 100% for calibration; and 15, 25, 50, 75, and 85% for 
external validation— to both almond-based products. Five replicates of 
each blend were prepared, giving 55 samples for each case (adulteration 
scenario and matrix). Besides, a 50% adulterated sample was used in this 
case as the corresponding C sample. 

2.4. Sample treatment and analysis 
 

A previously developed two-step sample treatment for phytochem- 
ical  extraction  from  nut  samples  was  carried  out  (Campmajó  et  al., 
2019), consisting of ultrasound-assisted solid-liquid extraction (USLE) 
with acetone:water (70:30, viv) followed by a defatting step with 
hexane. 

Regarding the analysis procedure, samples were randomly injected 
along each sequence to minimise the in uence of any instrumental drift 
in the chemometric results. Moreover, an extracting solvent blank and a 
 C sample were injected at the beginning and after every ten sample 
injections to control cross-contamination and avoid systematic errors. 

2.5. Data treatment 
 

LC HRMS generates massive datasets, requiring software programs 
to properly reduce and handle the obtained data. Thus, aiming to obtain 
a matrix consisting of ion peak area values as a function of miz and 
retention times, the application of MSConvertGUI from the ProteoWi- 
zard Toolkit (Chambers et al., 2012) and mzMine 2.53 (Pluskal, Castillo, 
 illar-Briones, & Orešič, 2010) software was required. 

 
2.5.1. Non-targeted approach 

A non-targeted approach was proposed for nut classification. First, 
raw data were reduced by establishing an absolute intensity threshold 
peak filter of 5.0 105 and transformed to mzXML format through 
MSConvertGUI. Then, the resulting LC HRMS data were submitted to 
the mzMine 2.53 software for peak detection (exact mass detection, 
chromatogram detection, and chromatogram deconvolution), isotopic 
peak grouper, and retention time alignment. Brie y, exact mass lists for 
each scan in a sample were generated, establishing a noise level of 5.0 
105. Afterwards, the ADAP chromatogram builder allowed the joining of 
the exact masses found in contiguous scans in a sample that fulfilled the 
following conditions: peak time range of 0–35 min, 15 minimum scans 
above an intensity threshold set at 1.0 106, and an miz tolerance of 5 
ppm. Next, individual chromatographic peaks were achieved through 
chromatogram deconvolution. Thus, for this purpose, the baseline cut- 
off algorithm was selected for peak recognition with a baseline level 
of 5.0 × 105, a minimum peak height of 1.0 × 106, and a peak duration 
range of 0.1–1 min. Subsequently, isotope removal was carried out 
considering that the most representative isotope was the most intense 
and setting an miz and retention time tolerance of 5 ppm and 0.3 min, 

 
                               

 
adulteration in almond-based products, focusing on the discriminant 
markers identified for almond, hazelnut, and peanut samples encoun- 
tered in the classificatory study. 

First, raw data were processed with MSConvertGUI, applying an 
absolute intensity threshold peak filter of 1.0     105. Then, targeted peak 
detection was performed with mzMine 2.53 software using a list of 
targeted molecular features (an exact miz value at a specific retention 
time) for each almond adulteration scenario: 28 for almond vs. hazelnut 
and 35 for almond vs. peanut. Besides, a noise level of 1.0 105, an 
intensity tolerance of 10% (maximum allowed deviation from the ex- 
pected shape of a chromatographic peak), an miz tolerance of 5 ppm, 
and a retention time tolerance of 0.5 min were established. Finally, in 
this case, the join aligner allowed matching of the detected molecular 
features across samples, setting a mass tolerance of 5 ppm, a retention 
time tolerance of 0.5 min, 80% of weight for miz, and 20% of weight for 
retention time. Again, at the end of the work ow, a data matrix was 
exported to an Excel File containing the obtained LC−HRMS profiles. 

2.6. Chemometric and statistical analysis 
 

The chemometric analysis by principal component analysis (PCA), 
PLS-DA, and PLS regression was carried out using Solo 8.6 chemometric 
software from Eigenvector Research (Manson, WA, USA). Details of their 
theoretical background are addressed elsewhere (Massart et al., 1997). 

LC HRMS data matrices (normalised and autoscaled) were used as 
X-data matrices indistinctly of the chemometric method used, which 
depended on the aim of the study. In this line, PCA assessed a first 
exploratory analysis to check the absence of systematic errors through 
 C sample behaviour and allowed visualising sample trends. PLS-DA, 
particularly PLS1-DA (Brereton & Lloyd, 2014), was used in the classi- 
ficatory study, requiring a Y-data matrix that defined the nut type  of 
each sample. PLS was employed in the quantitation of almond-based 
product adulteration, demanding a Y-data matrix that expounded sam- 
ple adulteration percentages. Moreover, the proper number of latent 
variables (L s) for building PLS-DA and PLS models was selected, after 
 enetian blinds cross-validation (C ), at the first minimum of the 
cross-validation classification error (C CE) and the root-mean-square 
error of cross-validation (RMSEC ), respectively. 

PLS-DA and PLS models’ performance was checked by external 
validation. On the one hand, for the classificatory study, samples were 
stratified and randomly chosen: 60% were used as the calibration set, 
whereas the remaining 40% as the external validation set. Then, overall 
accuracy and each class sensitivity (capability to detect true positives) 
and specificity (capability to detect true negatives) were used to eval- 
uate the classification models. While the former is calculated by dividing 
the number of well-classified samples by the total number of samples, 
class sensitivity (Eq. (1)) and specificity (Eq. (2)) are calculated as fol- 
lows (Riedl, Esslinger, & Fauhl-Hassek, 2015): 

respectively. Finally, retention time alignment was carried out using the 
random sample consensus (RANSAC) peak list aligner method, following 
the following requisites: retention time tolerance before and after 

Sensitivity =
     TP 

 (1) 

correction of 2.2 and 1.2 min, miz tolerance of 5 ppm, 105 maximum 
RANSAC iterations to find the suitable model, and 80% as the minimum 
value to consider the model valid. 

Specificity 
     TN (2) 
TN + FP 

At the end of this work ow, a data matrix was exported to an Excel 
File containing the obtained LC−HRMS fingerprints: samples × vari- 
ables. The samples’ column included the 149 nut samples and the 16 C 
samples, whereas the variables’ row comprised all the detected mo- 
lecular features (an exact miz value at a specific retention time). Only 
the molecular features detected at least in 80% of the samples belonging 
to a nut class were selected to reduce the matrix dimensions. As a result, 
a 165 278 dimension data matrix was obtained, containing the 
chromatographic peak areas for each molecular feature in all samples. 

2.5.2. Targeted approach 
A  targeted  approach  was  applied  to  detect  and  quantify  the 

where TP is true positive samples, TN is true negative samples, FP is false 
positive samples, and FN is false negative samples. 

On the other hand, PLS regression was done using some adulteration 
percentages for calibration and others for external validation, as 
detailed in Section 2.3.2. The model performance was evaluated through 
the root-mean-square error of calibration (RMSEC), RMSEC , and pre- 
diction (RMSEP), as well as the corresponding R2 (determination coef- 
ficient) values. Eq. (3) shows how RMSEs are calculated. Moreover, 
relative error in each external validation to estimate the adulterant 
percentage was also assessed. 
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et al. HRMS identification levels (Schymanski et al., 2014). The estab- 

RMSE =  
 

i=1 n 
(3) lished parameters to assess this identification step were: 5 ppm of exact 

mass tolerance, >85% of isotopic pattern fit, MS2 data similarity, and 
retention time agreement. For the MS2 comparison, public databases 

where ŷi  is the predicted value, yi  is the actual value, n is the number of 
samples, and N is the number of predictions. 

Finally, to find the most discriminant molecular features for each nut 
class, individual PLS-DA models of a specific nut class against all the 
others were built. Then, after external validation of the models, vari- 
ables with the highest IP scores were selected for further annotation 
and identification steps. Regression vector coefficients were also eval- 
uated, with positive values indicating that variable contribution is 
related to the target class. Moreover, the significance of the differences 
in their peak area values between nut classes was evaluated statistically. 
Thus, after a Fisher test of variances, the student t-test for comparing the 
means of two classes was carried out. A confidence level of 0.99 was 
assumed, so when p (probability) values were lower than 0.01, differ- 
ences in the molecular feature peak areas between the classes were 
considered significant. 

 
2.7. Annotation and identification of the most discriminant compounds 

 
The most discriminant molecular features for each nut class, selected 

through IP scores, were putatively identified following Schymanski 

such as mzCloud (HighChem LLC, Bratislava, Slovakia), The Human 
Metabolome Database (Wishart et al., 2018), and LIPID MAPS Structure 
Database (Sud et al., 2006) were employed. Besides, Phenol-Explorer 
(Rothwell et al., 2013), a database including polyphenolic content in 
food, was also consulted. Finally, in some specific cases, MetFrag soft- 
ware (Wolf, Schmidt, Müller-Hannemann, & Neumann, 2010) was also 
used for tentative in-silico elucidation. 

3  Res l s a     s  ss    
 

3.1. Non-targeted LC−HRMS nut classification 

As previously mentioned, the present study aimed to develop a non- 
targeted LC HRMS method to classify nut samples according to their 
type and identify the most discriminant molecular features. Despite the 
non-targeted nature of the developed method, instrumental conditions 
were oriented to favour phenolic and polyphenolic compound detection 
since they have already been successfully proposed as potential markers 
in  several  food  authentication  issues  (Lucci,  Saurina,  &  Núñez,  2017; 
Proestos & Pesic, 2022). Thus, a total of 149 nut samples belonging to 10 

 

  
 

  
 

 

F g       PCA scores plot obtained for the analysed nut samples according to their type, using the non-targeted LC−HRMS data, of (A) PC1 vs. PC2, (B) PC3 vs. PC4, (C) 
PC5 vs. PC6, and (D) PC7 vs. PC8. 
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different nut classes were analysed following the proposed method. As 
an example, Fig. S1 depicts the total ion current (TIC) LC HRMS 
chromatogram for a selected sample within each nut type. In this 
context, remarkable qualitative differences regarding peak distribution 
and signal intensity can be visually detected. 

LC HRMS data were subjected to PCA to appraise their discrimi- 
nating capability. However, PCA was first employed to select the most 
appropriate data treatment, which is crucial for subsequent unequivocal 
results. In this case, normalisation (scaling each sample to the sum of the 
corresponding peak areas) and autoscaling (mean centring and variable 

 
                               

 
scaling to unit standard deviation) were assessed to try to improve the 
data quality. As a result, it was found that performing a normalisation 
step before autoscaling provided a better sample grouping, reducing the 
effect of the HRMS detection variance. 

In this context, Fig. 1 shows the PCA scores plot obtained after 
applying this data pretreatment and using the 165 278 dimension data 
matrix containing both nut and C samples. A total of eight principal 
components (PCs), describing 68.37% of the variance, were chosen for 
the PCA analysis. As a result, the non-supervised chemometric plots 
showed C samples grouped in the centre, indicating the lack of 

 

  
 

   
 

 

F g 2  Sample vs. Y Predicted plot for the two-input class PLS-DA models after external validation. 
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systematic errors affecting the reliability of the results. Moreover, the 
complexity of the studied issue —encompassing a significant number of 
sample classes (nut type) and factors (different geographical origins and 
thermal treatments)— was re ected in  the  low  variance  explained by 
the PCs (e.g., 17.62% for PC1). Nevertheless, good sample distinction 
was achieved for almost all nut types. For instance, in Fig. 1A, where the 
plot of scores of PC1 vs. PC2 is depicted, sun ower seed and walnut 
samples were visibly separated through PC1 and PC2, respectively. PC3 
and PC4 were highly related to peanut and macadamia nut samples, 
respectively (see Fig. 1B). Besides, the plot of scores of PC5 vs. PC6 
(Fig. 1C) allowed the discrimination of cashew nut (displaying positive 
PC5 and negative PC6 values), hazelnut (displaying negative PC5 and 
PC6 values), and pistachio (displaying positive PC5 and PC6 values) 
samples. Finally, the scatter plot for scores of PC7 and PC8 (Fig. 1D) 
allowed a slight discrimination of pine nut and almond samples along 
the PC8, presenting negative PC7 values. 

Given the excellent results observed in the PCA, with a remarkable 
separation of samples according to nut classes (except for pumpkin seed 
samples), PLS-DA was applied to the non-targeted LC HRMS data. For 
this, C samples were removed from the dataset, and a 149 278 
dimension data matrix was subjected to the supervised classificatory 
analysis. In this case, nine L s were selected to build the PLS-DA model, 
which described 71.35% and 95.53% of X-variance and Y-variance, 
respectively. As a result, visual sample classification was reached for all 
nut types investigated. 

Therefore, to evaluate the classificatory ability of the  non-targeted 
LC HRMS data through PLS-DA, external validation was performed as 
described in Section 2.6. In this line, a PLS-DA calibration model, built 
with 60% of the analysed samples, was composed of nine L s explaining 
73.53% of X-variance and 95.62% of Y-variance. C results 
—sensitivities of 100%, specificities above 97.6%, and classification 
accuracies above 98.8%, for each nut class under study— anticipated the 
excellent results obtained in the external validation —sensitivities, 
specificities, and classification accuracies of 100%, for each nut class 
under study—, proving the excellent discriminant capacity of the non- 
targeted LC HRMS data. The external validation graphical results 
(Sample vs. Y predicted score plot) for each analysed nut type are shown 
in Fig. S2. 

3.2. Annotation and identification of nut type markers 
 

As previously mentioned, one of this study’s main goals was to 
identify characteristic discriminant molecular features for each studied 
nut type. Thus, with this purpose, two-input class PLS-DA models were 
built: the first input corresponded to a specific nut class, while the sec- 
ond encompassed all the others. In this context, as shown in Fig. 2, the 
performance of each binary PLS-DA model was assessed through 
external validation, obtaining complete sample classification in all the 
cases, except for the Pumpkin seed vs. Others model, where 99.3% 
classification accuracy, 87.5% sensitivity, and 100% specificity were 
obtained. 

Then, in each PLS-DA model, IP loadings scores allowed the se- 
lection of the most discriminant molecular features for each nut under 
study. For instance, Fig. S3 presents the results obtained for the PLS-DA 
model of Walnut vs. Others: the classification plot depicting Sample vs. Y 
Predicted Walnut and the corresponding IP scores plot. To obtain MS/ 
HRMS data of the selected discriminant molecular features, an arbitrary 
sample of each nut type was analysed by LC HRMS using a targeted 
data-dependent acquisition method, built with an inclusion list con- 
taining them. 

Table S2 summarises the tentative annotation and identification of 
the discriminant markers found for each nut type. Most of the com- 
pounds were detected in their deprotonated form [M-H]-, as expected 
considering that the HRMS acquisition was performed in the negative 
mode, although in some cases, their adduct with formic acid [M+FA-H]- 

or chlorine [M+Cl]-, or even their deprotonated dimeric form [2M-H]- 

 
                               

 
corresponded to the base peak. Some of the annotated/identified com- 
pounds are discussed below since some of them had been previously 
reported in the literature. 

In the case of almond discriminant compounds, amygdalin —a 
cyanogenic diglucoside responsible for the bitterness of almonds— and 
amygdaloside were found (Lee, Zhang, Wood, Rogel Castillo, & Mitchell, 
2013; Sang et al., 2003). Furthermore, sugars and derivatives such as 
miz 341.1083 and 683.2243, annotated as disaccharide and tetra- 
saccharide H2O, respectively, were also detected (Gil Solsona, Boix, 
Ibáñez,  &  Sancho,  2018;  Huang,  Robinson,  Dias,  de  Moura  Bell,  & 
Barile, 2022). Besides, Gil-Solsona et al. previously identified the first, 
annotating it as inulobiose, as a discriminant marker related to the 
Spanish almond variety. 

Among the molecular features presenting high IP scores in the 
cashew nut PLS-DA classification, the isomers with the molecular for- 
mula C15H14O6, observed at the retention times of 12.80 and 15.50 min, 
were identified as the avanols ( )-catechin and ( )-epicatechin that 
have been previously seen in cashew nut testa (Trox et al., 2011). 

Several indoleacetic acid glycoside isomers were found to be 
discriminant markers for hazelnut classification. In this line, miz 
541.1458 (at a retention time of 20.91 min) and 540.1719 (at a retention 
time of 21.05 min) were assigned as isomers of 2-(3-hydroxy-2-oxoin- 
dolin-3-yl) acetic acid 3-O-6′-galactopyranosyl-2’’-(2′′oxoindolin-3′′yl) 
and hazelnutin D, respectively, which have been previously detected in 
hazelnut kernel (Shataer et al., 2021). Besides, two other indoleacetic 
acid glycoside chiral isomers with miz 368.0984 —named 3-(O-
β-D-glycosyl)dioxindole-3-acetic acid and hazelnutin E by Singl- dinger 
et al. (Singldinger et al., 2018) and Shataer et al. (Shataer et al., 
2021), respectively— were found to be discriminant. These compounds 
presented chromatographic peaks at 7.31 and 8.39 min, although their 
retention time assignment was not possible. 

Regarding macadamia nut markers, among others, various phenolic 
and polyphenolic compounds such as phenolic acid derivatives 
(hydroxybenzoic acid glucoside and apiosylglucosyl 4-hydroxybenzoate 
isomers), guaiacol hexose-pentose isomers, and oleoside dimethyl ester 
were tentatively identified. 

In the case of peanut, several hydroxycinnamic acids (i.e., cis- and 
trans-p-coumaroyl tartaric acids, feruloyl tartaric acid isomer, p-cou- 
maric acid, coumaroyl-O-pentoside isomer, di-p-coumaroyl tartaric acid 
isomer, and p-coumaroylferuloyl tartaric acid isomer) and a derivative 
(such as p-coumaroylnicotinoyl tartaric acid), as well as an hydrox- 
ybenzoic acid isomer, were detected agreeing with literature and 
considered as discriminant (Ma et al., 2014). 

In relation to pine nut molecular features, ascorbalamic acid isomer 
(C9H13NO8) and vanillic acid glucoside isomers (C14H18O9) were an- 
notated as relevant for pine nut classification. 

Moreover, accordingly to previous studies (Ers, an, Güclü-Üstündag, 
Carle, & Schweiggert, 2016), protocatechuic acid and quercetin 3-O-
glucoside were observed in their deprotonated form at 10.44 and 
23.03 min, respectively, providing high IP scores for pistachio classi- 
fication. Organic acids, such as malic and isocitric acid, and nucleotides, 
as uridine monophosphate and adenosine 5′-monophosphate, also 
appeared to be discriminant for pistachio. 

In the case of pumpkin seed, sugars —a trisaccharide in its [M+Cl]- 

form and sedoheptulose—, guanosine, and tyrosol diglycoside isomer, 
were tentatively identified, among others. 

Finally, regarding sun ower seed discriminant compounds, as re- 
ported by Romani et al. (Romani, Pinelli, Moschini, & Heimler, 2017), 
several hydroxycinnamic acids were found and related to sun ower seed 
classification: 4-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaf- 
feoylquinic acid, and 4,5-dicaffeoylquinic acid. Besides, other phenolic 
compounds, such as avonoid O-glycoside isomers and  phenylacetic 
acid, were also annotated. 

Instead, among the discriminant compounds presenting high IP 
scores for walnut classification, several hydroxybenzoic acids and de- 
rivatives —galloyl-hexahydroxydiphenoyl-glucose isomer, digalloyl- 
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Table   
Calibration, cross-validation, and external validation results obtained for each of the PLS regression models used to determine the almond products adulteration 
percentage. 

Adulteration case Matrix      Data matrix 
(samples × 

CALIBRATION CROSS- 
 ALIDATION 

EXTERNAL   ALIDATION 

 
 

percentage (%) 

 
 

 lm        ea    
Cream       55 × 28 

 
L : latent variable; R2: determination coefficient; RMSEC: root-mean-square error of calibration; RMSEC : root-mean-square error of cross-validation; RMSEP: root- 
mean-square error of prediction. 

 
hexahydroxydiphenoyl-glucose isomer, ellagic acid, and ellagic acid 
pentoside— and a saccharolipid as glansreginin A were found, in 
accordance to Regueiro et al. (Regueiro et al., 2014). 

It should be mentioned that for a molecular feature to be discrimi- 
nant, it is not necessary to be detected or not detected in an exclusive nut 
type. Sometimes it presents a higher or lower content compared to other 
matrices. Moreover, considering the complexity of the studied issue, 
where ten nut types were studied, some markers were discriminant just 
in front of some others. Therefore, to better understand the significance 
of the differences of each discriminant marker content in their corre- 
sponding nut type compared to each other, student t-tests (preceded by a 
Fisher test of variances) were performed. Thus, Table S3 summarises the 
obtained results. As an example, focusing on hazelnut markers, miz 
131.0462 (at a retention time of 2.27 min), tentatively identified as 
asparagine, showed lower content in hazelnut than in almond, cashew 
nut, macadamia nut, and peanut, whereas no differences were observed 
with the remaining types. Instead, miz 368.0984 (at a retention time of 
7.31 min), tentatively identified as a 3-(O-β-D-glycosyl)dioxindole-3- 
acetic acid isomer, presented higher values in hazelnut than in any other 
nut. 

In addition, since some of the analysed nut types presented different 
processing treatments —natural, fried, and toasted for almond; natural 
and toasted for hazelnut and pumpkin seed; and fried and toasted for 
peanut—, differences in the identified markers because of the processing 
were studied. In this context, Table S4 presents the results obtained after 
performing univariate statistical analysis to evaluate the significance of 
differences. In general, differences were not significant except for some 
given cases (e.g., quinic acid content was significantly higher in toasted 

 
almonds than natural and fried ones). Besides, differences between nut 
matrices prevailed over processing treatment ones. 

 
3.3. Detection and quantitation of almond-based product adulterations 
through targeted LC−HRMS 

To validate the applicability of the identified molecular features as a 
discriminant profile for nut authentication, the adulteration of almond- 
based products (natural almond our and homemade almond custard 
cream) was evaluated through PLS regression. These products are at 
medium risk of adulteration with cheaper nuts (Food Fraud Advisors, 
2017). Therefore, hazelnut and peanut were chosen as adulterants due 
to the difficulty of visually detecting them (i.e., mainly due to physical 
similarities such as granulometry or colour) in the studied matrices and 
their lower price. Furthermore, peanut was especially selected because 
of their serious threat to food safety (i.e., they can cause severe allergy 
episodes). 

Hence, as detailed in Section 2.3.2, different blend percentages were 
prepared and analysed following the developed LC HRMS method. 
Afterwards, LC  HRMS data were processed using the targeted approach 
described in Section 2.5.2, focusing on the discriminant markers iden- 
tified in the supervised study (Table S2): 12, 16, and 23 molecular fea- 
tures for almond, hazelnut, and peanut, respectively. Therefore, 28 
molecular features were monitored for the almond vs. hazelnut adul- 
teration scenario, while 35 were for the almond vs. peanut one (the 
corresponding feature lists file is provided in the Supplementary Mate- 
rial as a CS file). 

Before PLS  regression  analysis,  PCA  was  performed  using  the 

 

  
 

F g 3 External validation PLS results for the prediction of the percentage of adulteration of almond our (on the left side) and almond custard cream (on the right 
side) with hazelnut. The blue line corresponds to the theoretical diagonal line, while the red line to the experimental adjusted one. 

 
7 

variables) L s RMSEC 
(%) 

R2  RMSEC 
(%) 

R2  RMSEP 
(%) 

R2 Relative error in each adulterant  

          15% 25%      50%      75% 85% 

 lm         A EL       Flour 55 × 28 1 5.994 0.969  6.304 0.966  5.037 0.977 6.06 4.93      2.70      3.54 1.88  
 2 7.773 0.946  10.154 0.909  8.887 0.933 6.07 7.14      9.24      7.77 7.55  

Flour 55 × 35 2 3.865 0.986  6.665 0.960  8.202 0.950 4.30 0.97      8.62      10.86      5.86  

Cream       55 × 35 3 5.237 0.977  8.648 0.937  9.852 0.893 12.89      8.54      8.15      8.20 5.61  
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obtained targeted LC HRMS data to observe non-supervised sample 
clustering and trends, as well as to check C sample behaviour. For 
instance, Fig. S4 illustrates the scatter plot for scores of PC1 and PC2 
(describing 70.8% of the variance) for the  almond  our adulteration 
with peanut case. As observed, C samples, which corresponded to a 
50% adulterated sample, appeared in the centre of the plot, ensuring a 
good instrumental performance. Moreover, pure almond and peanut 
samples were distributed on opposite sides of the plot, displaying 
negative and positive PC1 scores, respectively. Intuitively, adulterated 
samples were ordered according to their adulterant percentage from the 
left (low adulterant percentages) to the right (high adulterant percent- 
ages) of the plot. 

Then, PLS regression was applied to quantitate the adulteration level 
in each case under study. Thus, complementary to the X-data matrix, a 
Y-data matrix specifying the blend degree was required. Table 1 sum- 
marises the original data matrices used, the number of L s employed to 
build each calibration PLS regression model, and the results obtained for 
the calibration, C , and external validation. Good calibration models 
were built with low RMSEC ( 7.773%) and R2 0.946. Moreover, the 
similarity between calibration and C  parameter values indicated good 
internal consistency, preventing overfitting in the subsequent external 
validation. Regarding the external validation results, RMSEP and R2 

values (   9.852% and    0.893, respectively) indicated that the built PLS 
regression models showed a satisfactory ability to detect and quantitate 
almond adulterations. As an example, Fig. 3 shows the external vali- 
dation PLS results for adulterating almond-based products with hazelnut 
(see Fig. S5 for the PLS results when adulterating with peanut). Results 
indicated that although more accurate quantitation was obtained of the 
almond our matrix, no significant differences were observed between 
the studied matrices. 

     C  l s  s 
 

This study applied LC HRMS, combined with chemometrics, to 
analyse nut product samples. In this line, 149 samples belonging to 10 
nut types were analysed through non-targeted LC HRMS aiming to find 
markers to prevent nut fraud (e.g., adulteration, substitution, or 
replacement). PLS-DA allowed complete sample classification by the 
developed multi-class model (classification accuracy of 100% after 
external validation) and the identification of the most discriminant 
markers for each type of nut. In this regard, 136 molecular features were 
tentatively annotated/identified, taking benefit of the power of the MS/ 
HRMS detection (i.e., high sensitivity and selectivity, leading to good 
molecular coverage). For instance, organic acids, phenolic compounds, 
sugars, amino acids, and some derivatives were found among the com- 
pounds identified. Besides, although some of these markers’ content 
varied due to thermal processing (i.e., natural, toasted, or fried), dif- 
ferences between nut matrices prevailed. Moreover, to validate the use 
of the found markers for nut authentication, the adulteration of almond- 
based products (almond   our and homemade custard cream) with 
hazelnut or peanut was addressed. Thus, after targeted LC HRMS 
analysis focusing on the corresponding markers, the obtained PLS results 
demonstrated their applicability to detect and quantitate the blend 
percentage. 

Therefore, this study provides a set of nut and seed markers that 
could be further used in developing profiling approaches (for instance, 
using low-resolution mass spectrometers), which are more established in 
routine analysis, to detect adulteration in processed products. 

F     g 
 

This research was supported by the project PID2020-114401RB-C22 
financed   by   the   Agencia   Estatal   de   Investigación   (AEI/10.13039/ 
501100011033) and by the Agency for Administration of University and 
Research Grants (Generalitat de Catalunya, Spain) under the project 
2021SGR-00365. 

 
                               

 
CRe T a  h  sh p         b      s a eme   

 
G llem Campmaj ´: Conceptualization, Methodology, alidation, 

Formal analysis, Investigation, Writing – original draft, Writing – review 
& editing. Jav e Sa a: Conceptualization, Writing – review  & 
editing, Supervision, Funding acquisition. Os a Nú ˜E : Conceptuali- 
zation, Writing – review & editing, Supervision, Funding acquisition. 

 
De la a      f   mpe   g    e es  

 
The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to in uence 
the work reported in this paper. 

Da a ava lab l y 
 

Data will be made available on request. 

 
  k  wle geme  s 
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Portolés, T. (2021). Chromatography hyphenated to high resolution mass 
spectrometry in untargeted metabolomics for investigation of food (bio)markers. 
TrACJ Trends in Analytical ChemistryJ 135, Article 116161. https://doi.org/10.1016/j. 
trac.2020.116161 

Lee, J., Zhang, G., Wood, E., Rogel Castillo, C., & Mitchell, A. E. (2013). uantification of 
amygdalin in nonbitter, semibitter, and bitter almonds (prunus dulcis) by UHPLC- 
(ESI) q MS/MS. Journal of Agricultural and Food ChemistryJ 61, 7754–7759. 
https://doi.org/10.1021/jf402295u 
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Fig. S1. Total ion current (TIC) LC-HRMS chromatogram for a selected sample within 
each nut type. 
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Fig. S2. External validation classification plot depicting Sample vs. Y predicted score 
plot for each nut type analysed. 
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Fig. S3. On the left side, Sample vs. Y Predicted plot for the two-input class Walnut vs. 
Others PLS-DA model. On the right side, the corresponding VIP scores plot. 
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Fig. S4. PCA scores plot of PC1 vs. PC2 obtained for the samples analysed in the study 
of almond flour adulteration with peanut. 
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red line to the experimental adjusted one. 
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NUT THERMAL TREATMENT ORIGIN SAMPLES 
Almond Natural USA AL1 – AL5 

  USA AL6 – AL10 
 Toasted Spain AL11 – AL12 
  Spain AL13 – AL14 
  Spain AL15 – AL16 
  - AL17 – AL18 
  - AL19 – AL20 
 Fried - AL21 – AL23 
  Spain AL24 – AL26 
  - AL27 – AL30 

Cashew nut Fried Brazil CN1 – CN5 
  - CN6 – CN10 

Hazelnut Natural Turkey HN1 – HN5 
  - HN6 – HN10 
 Toasted Spain HN11 – HN13 
  Turkey HN14 – HN16 
  Spain HN17 – HN18 
  - HN19 – HN20 

Macadamia nut Natural South Africa MN1 – MN10 
Peanut Fried Brazil PN1 – PN3 

  China PN4 – PN6 
  USA PN7 – PN10 
 Toasted Spain PN11 – PN13 
  - PN14 – PN16 
  - PN17 – PN20 

Pine nut Natural Spain PI1 – PI3 
  Spain PI4 – PI6 
  Spain PI7 – PI8 
  China PI9 – PI10 

Pistachio Toasted Germany PT1 – PT2 
  Spain PT3 – PT4 
  Iran PT5 – PT6 
  Spain PT7 
  Iran PT8 
  Iran PT9 
  - PT10 

Pumpkin seed Natural Austria PS1 – PS10 
 Toasted China PS11 – PS20 

Sunflower seed Toasted Spain SS1 
  Spain SS2 
  Spain SS3 
  Spain SS4 
  Spain SS5 
  Spain SS6 
  Spain SS7 
  Spain SS8 
  Spain SS9 

Walnut Natural USA WN1 – WN2 
  USA WN3 – WN4 
  USA WN5 – WN6 
  Chile WN7 
  - WN8 
  USA WN9 – WN10 

Table S1. Description of the nut samples analysed in the classification study. 



 

 
 

ALMOND  

Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

386.9390 2.03 2.93 0.038 - - - - - 158.9781 / 272.9588 Unknown V 
165.0403 2.35 2.20 0.029 [M-H]- C5H10O6 1.5 -1.038 99.48 75.0087 / 85.0294 / 99.0085 / 129.0192 / 147.0297 2-(2- 

hydroperoxyethoxymethoxy)acetic 
acid 

II 

209.0300 2.38 2.72 0.035 [M-H]- C6H10O8 2.5 -1.150 99.98 85.0293 / 111.0085 / 129.0192 / 133.0141 / 147.0298 / Glucaric acid II 
         173.0090 / 191.0196   

341.1083 2.48 2.02 0.026 [M-H]- C12H22O11 2.5 -1.743 99.45 101.0242 / 113.0242 / 119.0347 / 125.0241 / 131.0347 / Disaccharide III 
387.1139  2.17 0.028 [M+FA-H]-  2.5 -1.327 99.25 143.0347 / 149.0453 / 161.0453 / 179.0559 / 281.0873   

683.2243 2.48 2.13 0.028 [M-H]- C24H44O22 3.5 -1.311 94.90 341.1084 / 647.2046 Tetrasaccharide + H2O III 
729.2304  2.08 0.027 [M+FA-H]-  3.5 -0.350 96.32    

191.0564 2.51 2.05 0.027 [M-H]- C7H12O6 2.5 -1.263 99.49 85.0293 / 93.0344 / 109.0293 / 111.0449 / 127.0398 / Quinic acid I 
         171.0298 / 173.0453   

533.1718 2.51 4.10 0.053 [M-H]- C19H34O17 3.5 -0.905 98.50 191.0559 Quinic acid derivative III 
133.0143 2.91 3.28 0.043 [M-H]- C4H6O5 2.5 0.101 99.96 71.0138 / 115.0036 Malic acid II 
191.0196 3.39 3.26 0.042 [M-H]- C6H8O7 3.5 -0.554 99.41 85.0294 / 87.0087 / 111.0088 / 129.0192 / 173.0091 Citric acid I 
413.1658 3.46 - - [M-H]- C16H30O12 2.5 -1.693 98.74 161.0453 / 251.1132 Unknown IV 
459.1716  4.50 0.058 [M+FA-H]-  2.5 -0.803 97.38    

456.1506 13.52 - - [M-H]- C20H27NO11 8.5 -1.126 99.38 A 323.0978 / 339.1192 / 340.1230 / 456.1509 Amygdalin II 
502.1564  2.17 0.028 [M+FA-H]-  8.5 -0.424 97.91    

511.2538 25.10 - - [M-H]- C26H40O10 7.5 -2.192 88.43 A 349.2013 / 511.2548 Amygdaloside II 
557.2602  4.73 0.061 [M+FA-H]-  7.5 -0.323 96.06    

CASHEW NUT           

Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

289.0719 12.80 2.54 0.033 [M-H]- C15H14O6 9.5 0.445 98.39 125.0242 / 137.0242 / 165.0192 / 179.0348 / 203.0713 / (+)-catechin I 
579.1511  2.88 0.038 [2M-H]-  17.5 0.554 97.80 205.0504 / 231.0297 / 245.0818 / 271.0610   

457.1357 13.17 3.51 0.046 [M-H]- C20H26O12 8.5 1.270 96.43 163.0398 / 205.0502 / 325.0923 7-hydroxy-4-methylphthalide O- 
[arabinosyl-(1->6)-glucoside] 

II 

289.0718 15.50 3.60 0.047 [M-H]- C15H14O6 9.5 0.722 98.56 125.0242 / 137.0242 / 165.0192 / 179.0348 / 203.0713 / (-)-epicatechin I 
         205.0504 / 231.0297 / 245.0818 / 271.0610   

401.1456 15.61 3.17 0.041 [M-H]- C18H26O10 6.5 0.598 99.09 161.0453 / 269.1027 Benzyl dihexoside isomer III 
241.1084 17.15 3.21 0.042 [M-H]- C12H18O5 4.5 1.174 98.89 153.1283 / 179.1077 / 197.1183 / 223.0974 Unknown IV 
241.1084 20.59 3.09 0.040 [M-H]- C12H18O5 4.5 1.174 99.09 153.1283 / 179.1076 / 197.1182 / 223.0973 Unknown IV 
529.2659 22.54 3.79 0.049 [M-H]- C26H42O11 6.5 0.821 99.11 285.1856 / 303.1961 / 305.2119 / 331.1911 / 347.1861 / Unknown IV 
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         349.2017 / 365.1967 / 367.2122 / 511.2550   

463.2190 25.96 3.67 0.048 [M-H]- C21H36O11 4.5 1.155 98.54 161.0453 / 221.0663 / 331.1757 / 353.1084 / 445.2075 Unknown IV 
463.2189 26.21 3.97 0.052 [M-H]- C21H36O11 4.5 0.961 98.07 161.0454 / 221.0665 / 331.1760 / 353.1086 / 445.2080 Unknown IV 
463.2190 26.83 3.76 0.049 [M-H]- C21H36O11 4.5 1.198 99.10 161.0453 / 221.0664 / 331.1758 / 353.1085 / 445.2079 Unknown IV 
507.2449 29.09 4.03 0.053 [M-H]- C23H40O12 4.5 0.493 97.99 149.0452 / 161.0452 / 179.0557 / 191.0557 / 233.0663 / Unknown IV 
1015.4972  3.49 0.046 [2M-H]-  7.5 0.467 89.33 253.4846 / 331.2120 / 357.1939 / 375.2018 / 463.2546 /   

         489.2334   

507.2448 31.14 3.69 0.048 [M-H]- C23H40O12 4.5 0.198 98.24 B 149.0452 / 161.0450 / 191.0557 / 233.0663 / 293.0873 Unknown IV 
543.2220  3.74 0.049 [M+Cl]-  3.5 1.091 99.19 / 311.0980 / 507.2441   

553.2506  3.46 0.045 [M+FA-H]-  4.5 0.652 94.83    
HAZELNUT 
Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate (min)   assignment formula eq. mass error pattern   confidence 
mass       (ppm) score (%)   level 
131.0462 2.27 3.64 0.049 [M-H]- C4H8N2O3 2.5 -0.118 99.54 87.0449 / 95.0249 / 113.0354 / 114.0195 Asparagine II 
223.0459 2.44 3.25 0.044 [M-H]- C7H12O8 2.5 -1.168 99.85 125.0242 / 143.0347 / 147.0297 / 205.0351 Unknown IV 
262.0565 2.48 3.59 0.049 [M-H]- C9H13NO8 4.5 -1.601 99.76 142.0142 / 244.0458 Ascorbalamic acid isomer III 
205.0351 2.57 2.47 0.033 [M-H]- C7H10O7 3.5 -1.297 99.64 81.0345 / 125.0243 / 143.0348 Unknown IV 
203.0197 3.49 3.73 0.050 [M-H]- C7H8O7 4.5 0.119 99.48 69.0344 / 97.0293 / 115.0034 / 141.0191 Unknown IV 
368.0984 7.31 4.11 0.056 [M-H]- C16H19NO9 8.5 -0.718 97.64 101.0241 / 113.0241 / 119.0347 / 143.0347 / 144.0452 / 3-(O- -D-glycosyl)dioxindole-3-acetic III 

         161.0453 / 179.0558 / 188.0350 acid isomer  

368.0985 8.39 4.04 0.055 [M-H]- C16H19NO9 8.5 -0.555 99.53 101.0241 / 113.0242 / 119.0347 / 143.0348 / 144.0453 / 3-(O- -D-glycosyl)dioxindole-3-acetic III 
         161.0453 / 179.0559 / 188.0351 acid isomer  

443.1920 12.39 2.56 0.035 [M-H]- C21H32O10 6.5 -0.633 97.02 143.0346 / 161.0452 / 189.1282 / 201.1282 / 219.1387 / Cynaroside A isomer III 
         237.1491 / 263.1285 / 281.1391 / 425.1815   

679.1813 12.62 3.42 0.046 - - - - - 232.0612 / 252.0696 / 274.0717 / 282.0801 / 334.0929 / Unknown V 
         344.0805 / 506.1338 / 543.1985 / 574.1389 / 617.1813 /   
         661.1709   

443.1920 13.04 2.42 0.033 [M-H]- C21H32O10 6.5 -0.633 96.97 143.0347 / 161.0452 / 189.1282 / 201.1279 / 219.1388 / Cynaroside A isomer III 
         237.1493 / 263.1287 / 281.1394 / 425.1818   

679.1809 13.25 2.94 0.040 - - - - - 232.0612 / 252.0696 / 274.0717 / 282.0801 / 334.0928 / Unknown V 
         344.0804 / 506.1335 / 543.1983 / 574.1387 / 617.1809 /   
         661.1706   

514.1561 13.99 3.15 0.043 [M-H]- C22H29NO13 9.5 -1.017 96.57 146.0608 / 172.0402 / 190.0507 / 232.0611 / 262.0718 / 2-[2-[3,4-Dihydroxy-6- III 
         292.0821 / 334.0929 / 341.1085 (hydroxymethyl)-5-[3,4,5-trihydroxy-  
          6-(hydroxymethyl)oxan-2-yl]oxyoxan-  
          2-yl]oxyethyl]isoindole-1,3-dione  
          isomer  

679.1810 14.22 2.89 0.039 - - - - - 232.0613 / 252.0696 / 274.0718 / 282.0802 / 334.0929 / Unknown V 
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         344.0805 / 506.1337 / 543.1984 / 574.1391 / 617.1813 /   

         661.1710   

541.1458 20.91 3.79 0.051 [M-H]- C26H26N2O11 15.5 -1.151 95.49 190.0509 / 232.0613 / 262.0720 / 292.0824 / 352.1037 2-(3-hydroxy-2-oxoindolin-3-yl) acetic 
acid 3-O-6'-galactopyranosyl-2''- 
(2''oxoindolin-3''yl) isomer 

III 

540.1719 21.05 3.99 0.054 [M-H]- C24H31NO13 10.5 -0.765 97.05 157.0504 / 171.0660 / 188.0350 / 189.0766 / 466.1353 Hazelnutin D isomer III 
259.1911 34.26 3.53 0.048 [M-H]- C14H28O4 1.5 -1.515 99.15 141.1283 / 171.1389 / 185.1545 / 195.1752 / 213.1858 / Ipurolic acid II 

         241.1807   

MACADAMIA NUT 
Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

439.0757 2.62 2.62 0.033 [M-H]- C14H21N2O12P 6.5 -0.487 94.71 259.0221 / 277.0325 / 341.1070 / 377.0758 / 387.1011 Unknown IV 
261.0731 3.20 3.18 0.040 [M-H]- C9H14N2O7 4.5 1.172 99.95 74.0246 / 104.0350 / 115.0034 / 115.0511 / 116.0351 / Unknown IV 

         132.0299 / 145.0617 / 146.0457 / 187.0722 / 199.0720 /   
         217.0827 / 231.0620 / 243.0619   

417.1409 6.28 - - [M-H]- C18H26O11 6.5 1.547 97.58 293.0873 Guaiacol hexose-pentose isomer III 
463.1465  2.91 0.036 [M+FA-H]-  6.5 1.762 96.27    

251.0677 6.32 3.46 0.043 [M-H]- C11H12N2O5 7.5 1.734 99.52 92.0504 / 114.0194 / 115.0034 / 135.0562 / 136.0402 / Unknown IV 
         189.0668 / 207.0773 / 233.0565   

299.0777 6.82 3.54 0.044 [M-H]- C13H16O8 6.5 1.402 98.92 137.0247 Hydroxybenzoic acid glucoside isomer III 
345.0832  2.63 0.033 [M+FA-H]-  6.5 1.246 98.32    

299.0776 7.89 3.58 0.045 [M-H]- C13H16O8 6.5 1.235 99.04 137.0247 Hydroxybenzoic acid glucoside isomer III 
417.1408 7.90 - - [M-H]- C18H26O11 6.5 1.355 97.22 293.0875 Guaiacol hexose-pentose isomer III 
463.1464  2.84 0.035 [M+FA-H]-  6.5 1.568 96.18    

431.1202 8.38 3.33 0.042 [M-H]- C18H24O12 7.5 1.649 98.35 137.0242 / 191.0559 / 233.0664 / 293.0875 Apiosylglucosyl 4-hydroxybenzoate 
isomer 

III 

431.1202 9.29 3.35 0.042 [M-H]- C18H24O12 7.5 1.533 96.76 137.0241 / 191.0557 / 233.0663 / 293.0874 Apiosylglucosyl 4-hydroxybenzoate 
isomer 

III 

266.0673 10.01 3.52 0.044 [M-H]- C12H13NO6 7.5 1.013 98.74 88.0401 / 107.0500 / 114.0194 / 115.0034 / 132.0300 / (2S)-3-(2-acetyloxybenzoyl)oxy-2- III 
         150.0559 / 151.0398 / 222.0768 / 248.0561 aminopropanoic acid isomer  

252.0517 10.16 3.18 0.040 [M-H]- C11H11NO6 7.5 1.229 99.95 93.0343 / 114.0194 / 115.0034 / 132.0300 / 136.0402 / Unknown IV 
         137.0242 / 190.0508 / 208.0614 / 234.0404 / 252.0456   

417.1410 11.00 2.68 0.033 [M-H]- C18H26O11 6.5 1.930 95.95 255.0505 / 357.0820 Oleoside dimethyl ester II 
239.0565 15.20 3.11 0.039 [M-H]- C11H12O6 6.5 1.626 99.90 91.0551 / 131.0500 / 133.0656 / 149.0606 / 159.0449 / 2-benzyl-3-carboxyoxy-2-hydroxy- III 

         163.0398 / 177.0554 / 193.0503 / 195.0660 propanoic acid isomer  

415.1617 18.28 - - [M-H]- C19H28O10 6.5 1.637 97.46 131.0351 / 149.0449 / 191.0565 / 251.0771 Phenylethyl diglycoside III 
461.1666  3.54 0.044 [M+FA-H]-  6.5 0.240 96.44    

527.1417 20.31 3.03 0.038 [M-H]- C23H28O14 10.5 1.938 94.76 157.0292 / 158.0370 / 159.0449 / 171.0448 / 173.0605 / Unknown IV 
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         185.0604 / 195.0448 / 201.0190 / 201.0553 / 202.0268 /   

         203.0346 / 213.0553 / 215.0345 / 225.0553 / 227.0346 /   
         231.0658 / 243.0659 / 245.0450 / 269.0451 / 275.0556 /   
         365.0873 / 509.1296   

PEANUT            

Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

149.0090 2.54 2.82 0.030 [M-H]- C4H6O6 2.5 -0.880 99.98 87.0086 / 103.0035 / 130.9984 Tartaric acid I 
295.0455 12.50 2.86 0.031 [M-H]- C13H12O8 8.5 -1.663 99.66 149.0087 / 163.0399 cis-p-coumaroyl tartaric acid II 
431.1553 12.95 2.03 0.022 [M-H]- C19H28O11 6.5 -1.426 98.20 131.0346 / 143.0346 / 149.0452 / 161.0452 / 179.0558 / Darendoside A isomer III 
477.1609  2.13 0.023 [M+FA-H]-  6.5 -0.994 97.02 191.0557 / 233.0662 / 269.1026 / 293.0873 / 299.1132   

293.1142 13.60 2.81 0.030 [M-H]- C14H18N2O5 7.5 -0.358 97.50 128.0352 / 131.0712 / 164.0716 / 257.0930 / 275.1036 Unknown IV 
295.0454 13.63 2.22 0.024 [M-H]- C13H12O8 8.5 -1.832 99.57 112.9881 / 119.0502 / 163.0398 trans-p-coumaroyl tartaric acid II 
325.0563 14.42 2.66 0.028 [M-H]- C14H14O9 8.5 -0.539 99.38 112.9878 / 193.0505 Feruloyl tartaric acid isomer III 
250.0719 14.90 2.65 0.028 [M-H]- C12H13NO5 7.5 -0.943 99.71 132.0301 / 135.0449 / 206.0820 / 232.0613 N-phenylacetylaspartate II 
400.0672 15.55 2.25 0.024 [M-H]- C19H15NO9 13.5 -0.435 97.98 112.9879 / 119.0501 / 163.0398 / 203.0351 / 215.0349 / p-coumaroylnicotinoyl tartaric acid II 

         277.0355   

295.0455 16.22 2.22 0.024 [M-H]- C13H12O8 8.5 -1.425 99.56 103.0037 / 119.0502 / 130.9987 / 163.0398 Coumaroyl-O-pentoside isomer III 
575.1975 17.70 2.88 0.031 [M-H]- C25H36O15 8.5 -1.171 95.84 413.1454 / 431.1561 / 473.1668 / 513.1982 Unknown IV 
1151.4023  2.62 0.028 [2M-H]-  15.5 -1.123 88.78    

501.1513 17.83 2.60 0.028 [M-H]- C24H26N2O10 13.5 -0.415 98.43 58.0297 / 91.0553 / 147.0446 / 164.0715 / 206.0822 / Unknown IV 
         250.0720   

473.1658 18.09 2.47 0.026 [M-H]- C21H30O12 7.5 -1.457 98.97 59.0138 / 71.0138 / 73.0294 / 89.0244 / 99.0087 / Unknown IV 
         101.0243 / 113.0243 / 119.0502 / 191.0563   

579.1729 18.89 2.56 0.027 [M-H]- C28H28N4O10 17.5 -0.563 94.53 203.0823 / 245.0928 / 289.0825 Unknown IV 
163.0400 18.92 2.93 0.031 [M-H]- C9H8O3 6.5 -0.352 99.84 119.0501 p-coumaric acid II 
245.0929 19.31 2.72 0.029 [M-H]- C13H14N2O3 8.5 -1.043 99.87 74.0246 / 98.0245 / 116.0351 / 201.1032 / 203.0824 N-acetyltryptophan II 
279.0507 19.33 2.50 0.027 [M-H]- C13H12O7 8.5 -1.347 99.77 71.0138 / 115.0036 / 119.0501 / 163.0397 p-coumaroyl malic acid II 
248.0926 19.46 2.76 0.030 [M-H]- C13H15NO4 7.5 -0.851 98.87 82.0297 / 100.0402 / 147.0450 / 164.0717 / 186.0923 Unknown IV 
501.1038 21.97 2.35 0.025 [M-H]- C24H22O12 14.5 -0.198 98.85 119.0501 / 145.0289 / 149.0239 / 163.0395 / 164.0477 / Malonyldaidzin isomer III 

         203.0348 / 263.0558 / 277.0349 / 337.0559   

441.0824 22.19 2.67 0.029 [M-H]- C22H18O10 14.5 -0.816 96.11 119.0502 / 145.0291 / 147.0048 / 163.0399 / 175.0400 / di-p-coumaroyl tartaric acid isomer III 
         203.0352 / 277.0355 / 295.0460   

471.0927 22.27 2.29 0.025 [M-H]- C23H20O11 14.5 -1.198 96.28 119.0501 / 134.0373 / 175.0399 / 203.0350 / 233.0453 / p-coumaroylferuloyl tartaric acid III 
         277.0352 / 307.0460 isomer  

803.3337 22.54 2.66 0.028 [M-H]- C37H56O19 10.5 -0.688 93.43 365.1966 / 641.2813 / 659.2920 / 701.3026 Unknown IV 
501.1036 22.62 2.39 0.026 [M-H]- C24H22O12 14.5 -0.398 95.62 119.0501 / 145.0291 / 149.0238 / 163.0398 / 164.0477 / Malonyldaidzin isomer III 

         203.0346 / 263.0559 / 277.0349 / 337.0567   
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137.0244 22.73 2.47 0.026 [M-H]- C7H6O3 5.5 -0.127 99.39 65.0397 / 93.0345 / 94.0378 / 108.0216 Hydroxybenzoic acid isomer III 
PINE NUT            

Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

262.0571 2.62 5.45 0.090 [M-H]- C9H13NO8 4.5 0.879 99.66 96.0453 / 128.0351 / 140.0351 / 158.0457 / 172.0250 / Ascorbalamic acid isomer III 
525.1216  4.70 0.078 [2M-H]-  7.5 1.265 97.46 200.0563 / 202.0356 / 218.0669 / 219.0509 / 244.0462   

329.0884 8.89 4.59 0.076 [M-H]- C14H18O9 6.5 1.837 98.72 167.0347 / 209.0450 Vanillic acid glucoside isomer III 
329.0884 9.90 4.67 0.077 [M-H]- C14H18O9 6.5 1.655 98.72 167.0348 / 181.0504 / 209.0452 / 239.0559 / 269.0664 Vanillic acid glucoside isomer III 
451.1366 12.74 2.56 0.042 [M-H]- C20H24N2O10 10.5 1.822 96.80 173.0718 / 292.1187 / 335.1246 / 336.1084 / 407.1457 / Unknown IV 

         433.1249   

347.1717 13.15 - - [M-H]- C16H28O8 3.5 1.668 95.88 A 179.0557 / 347.1705 Unknown IV 
393.1771  4.51 0.074 [M+FA-H]-  3.5 2.110 89.42    

361.1513 13.62 3.87 0.064 [M-H]- C17H22N4O5 9.5 -1.254 96.47 101.0241 / 113.0241 / 161.0452 / 317.1600 Unknown IV 
477.2346 24.83 - - [M-H]- C22H38O11 4.5 1.016 98.35 A 163.0609 / 307.1028 / 325.1136 / 331.1758 / 477.2344 Unknown IV 
523.2406  4.28 0.071 [M+FA-H]-  4.5 1.884 97.77    

PISTACHIO 
Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

179.0561 2.37 - - [M-H]- C6H12O6 1.5 -0.119 99.24 B 89.0242 / 119.0348 / 143.0347 / 161.0454 / 179.0559 Monosaccharide III 
215.0328  2.13 0.028 [M+Cl]-  0.5 -0.135 89.66    

323.0284 2.71 3.18 0.042 [M-H]- C9H13N2O9P 5.5 -0.742 99.66 96.9694 / 138.9799 / 150.9799 / 192.9904 / 211.0010 / Uridine monophosphate II 
         280.0224   

133.0143 2.91 2.36 0.031 [M-H]- C4H6O5 2.5 0.778 98.48 71.0138 / 115.0034 Malic acid I 
191.0198 2.92 3.19 0.042 [M-H]- C6H8O7 3.5 0.388 99.95 111.0085 / 129.0191 / 154.9983 / 173.0089 Isocitric acid II 
346.0557 3.09 2.85 0.038 [M-H]- C10H14N5O7P 7.5 -0.253 99.25 150.9798 / 192.9903 / 211.0009 Adenosine 5’-monophosphate II 
153.0194 10.44 2.98 0.040 [M-H]- C7H6O4 5.5 0.771 99.87 109.0293 Protocatechuic acid II 
431.1557 12.23 3.54 0.047 [M-H]- C19H28O11 6.5 -0.521 99.58 131.0346 / 143.0345 / 149.0452 / 161.0453 / 179.0554 / Darendoside A isomer III 

         191.0557 / 233.0664 / 251.0768 / 293.0877 / 299.1132   

451.1357 12.40 - - [M-H]- C20H24N2O10 10.5 -0.240 98.40 173.0719 / 292.1188 / 335.1248 / 336.1085 / 407.1459 / Unknown IV 
903.2790  3.24 0.043 [2M-H]-  19.5 0.074 89.47 433.1251   

451.1357 12.82 3.35 0.045 [M-H]- C20H24N2O10 10.5 -0.195 98.39 173.0719 / 292.1188 / 335.1248 / 336.1085 / 407.1459 / Unknown IV 
903.2790  2.74 0.036 [2M-H]-  19.5 0.085 88.27 433.1251   

395.1558 13.19 3.84 0.051 [M-H]- C16H28O11 3.5 -0.088 98.37 125.0241 / 233.1025 / 251.1130 / 293.1237 / 333.1551 / Unknown IV 
         351.1655   

395.1558 13.74 3.53 0.047 [M-H]- C16H28O11 3.5 -0.189 99.01 125.0241 / 233.1026 / 251.1132 / 293.1238 / 333.1550 / Unknown IV 
         351.1654   
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323.1347 14.02 3.60 0.048 [M-H]- C13H24O9 2.5 -0.011 99.39 89.0242 / 95.0136 / 101.0241 / 113.0241 / 119.0347 / Unknown IV 
         125.0241 / 131.0347 / 143.0347 / 149.0452 / 161.0453 /   
         161.0816 / 179.0558   

323.1346 14.51 3.98 0.053 [M-H]- C13H24O9 2.5 -0.419 99.17 89.0242 / 95.0136 / 101.0241 / 113.0241 / 119.0347 / Unknown IV 
         125.0241 / 131.0346 / 143.0347 / 149.0452 / 161.0453 /   
         161.0816 / 179.0558   

463.0881 23.03 3.22 0.043 [M-H]- C21H20O12 12.5 -0.106 98.04 301.0351 / 343.0454 Quercetin 3-O-glucoside II 
507.2439 24.26 - - [M-H]- C23H40O12 4.5 -1.616 97.31 375.2022 Unknown IV 
553.2500  3.61 0.048 [M+FA-H]-  4.5 -0.414 96.28    

PUMPKIN SEED           

Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

503.1623 2.52 - - [M-H]- C18H32O16 3.5 1.117 98.70 B 179.0557 / 323.0977 / 341.1083 / 377.0852 / 503.1617 Trisaccharide III 
539.1379  2.02 0.034 [M+Cl]-  2.5 -0.556 95.07    

209.0670 2.54 3.28 0.062 [M-H]- C7H14O7 1.5 1.645 99.63 85.0293 / 87.0085 / 99.0084 / 111.0084 / 129.0190 / Sedoheptulose II 
         141.0190 / 159.0295   

337.0784 3.06 2.90 0.057 [M-H]- C12H18O11 4.5 2.360 87.14 277.0563 Unknown IV 
213.0885 3.40 4.58 0.088 [M-H]- C9H14N2O4 4.5 1.829 99.68 98.0608 / 110.0608 / 169.0980 / 171.0772 Unknown IV 
282.0848 3.49 3.92 0.076 [M-H]- C10H13N5O5 7.5 1.305 98.53 133.0154 / 150.0420 Guanosine II 
431.1566 10.32 2.81 0.055 [M-H]- C19H28O11 6.5 1.682 97.86 137.0604 / 161.0452 / 221.0814 / 299.1131 / 413.1447 Tyrosol diglycoside isomer III 
673.3090 22.22 4.76 0.092 [M-H]- C32H50O15 8.5 1.999 94.80 205.0714 / 317.1754 / 347.1860 / 365.1966 / 465.2490 / 3-[2-[5,8a-dimethyl-2-methylene-6- III 

         527.2498 / 611.3067 / 643.2967 / 645.3123 / 655.2980 [3,4,5-trihydroxy-6- 
(hydroxymethyl)tetrahydropyran-2- 
yl]oxy-5-[[3,4,5-trihydroxy-6- 
(hydroxymethyl)tetrahydropyran-2- 
yl]oxymethyl]decalin-1-yl]ethylidene]- 
4-hydroxytetrahydrofuran-2-one 
isomer 

 

SUNFLOWER SEED 
 

Measured RT VIP RV Ion Molecular RDB    Accurate Isotopic     MS/HRMS Putative Identification Identification 
accurate 
mass 

(min)   assignment formula eq. mass error 
(ppm) 

pattern 
score (%) 

  confidence 
level 

209.0567 3.41 2.34 0.020 [M-H]- C9H10N2O4 6.5 -0.574 99.93 121.0404 / 122.0244 / 163.0510 / 191.0459 Unknown IV 
575.2607 8.48 2.33 0.020 [M-H]- C29H40N2O10 11.5 -0.554 97.77 250.1080 / 310.1290 / 367.2119 / 515.2394 Unknown IV 
575.2614 9.32 2.28 0.019 [M-H]- C29H40N2O10 11.5 -0.675 96.47 250.1080 / 310.1293 / 515.2397 Unknown IV 
353.0875 14.22 - - [M-H]- C16H18O9 8.5 -1.006 99.55 135.0448 / 173.0453 / 179.0348 / 191.0559 5-caffeoylquinic acid II 
1061.2780  2.37 0.020 [3M-H]-  22.5 0.029 89.99    

353.0875 15.79 2.28 0.019 [M-H]- C16H18O9 8.5 -0.751 99.44 135.0449 / 173.0453 / 179.0348 / 191.0560 4-caffeoylquinic acid II 
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491.1192 16.74 2.31 0.019 [M-H]- C23H24O12 12.5 -0.589 99.90 161.0242 / 179.0348 / 323.0768 / 447.1296 / 473.1090 Flavonoid O-glycoside isomer III 
641.1510 18.47 2.29 0.019 [M-H]- C31H30O15 17.5 -0.348 97.34 191.0558 / 287.0557 / 297.0401 / 353.0872 / 423.1080 / 5,7-dihydroxy-2-[3-(4-hydroxy-3- II 
1283.3071  2.34 0.020 [2M-H]-  33.5 -1.982 83.40 449.0874 methoxyphenyl)-2-(hydroxymethyl)- 

2,3-dihydro-1,4-benzodioxin-6-yl]-3- 
 

          [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-  
          (hydroxymethyl)oxan-2-  
          yl]oxychromen-4-one  

542.1299 18.55 2.31 0.019 [M-H]- C26H25NO12 15.5 -0.901 96.44 173.0453 / 206.0455 / 233.0663 / 335.0767 / 380.0984 / Unknown IV 
1085.2668  2.36 0.020 [2M-H]-  29.5 -1.146 87.52 395.0979   

491.1190 18.64 2.32 0.019 [M-H]- C23H24O12 12.5 -0.976 98.54 161.0245 / 323.0768 / 329.0875 / 447.1297 / 473.1091 Flavonoid O-glycoside isomer III 
542.1300 19.95 2.29 0.019 [M-H]- C26H25NO12 15.5 -0.735 96.04 173.0453 / 206.0456 / 233.0663 / 335.0768 / 380.0984 / Unknown IV 
1085.2671  2.35 0.020 [2M-H]-  29.5 -0.869 83.99 395.0979   

135.0452 20.49 2.30 0.019 [M-H]- C8H8O2 5.5 0.646 99.99 91.0553 / 107.0503 Phenylacetic acid II 
515.1190 21.04 - - [M-H]- C25H24O12 14.5 -0.911 97.27 191.0556 / 353.0873 3,4-dicaffeoylquinic acid II 
1031.2466  2.31 0.019 [2M-H]-  27.5 -0.664 89.37    

563.1766 21.43 2.29 0.019 [M-H]- C27H32O13 12.5 -0.682 98.78 161.0242 / 179.0347 / 269.1026 / 401.1449 / 431.1341 Naringenin 5,7-dimethyl ether 4'-O- III 
          xylosyl-(1->4)-arabinoside isomer  

563.1765 23.33 2.37 0.020 [M-H]- C27H32O13 12.5 -0.842 96.58 161.0241 / 179.0347 / 269.1026 / 401.1447 / 431.1347 Naringenin 5,7-dimethyl ether 4'-O- III 
          xylosyl-(1->4)-arabinoside isomer  

515.1190 23.53 - - [M-H]- C25H24O12 14.5 -0.872 96.94 173.0453 / 179.0347 / 191.0558 / 203.0346 / 255.0659 / 4,5-dicaffeoylquinic acid II 
1031.2457  2.32 0.019 [2M-H]-  27.5 -0.567 89.62 299.0557 / 317.0662 / 353.0874   

WALNUT            

Measured RT VIP RV Ion Molecular RDB Accurate Isotopic MS/HRMS Putative Identification Identification 
accurate (min)   assignment formula eq. mass error pattern   confidence 
mass       (ppm) score (%)   level 
785.0854 10.35 2.65 0.027 [M-H]- C34H26O22 22.5 1.331 91.68 249.0399 / 275.0191 / 300.9984 / 331.0663 / 419.0612 / Digalloyl-hexahydroxydiphenoyl- III 

         483.0774 / 589.0827 / 615.0620 / 633.0723 glucose isomer  

633.0744 11.82 2.54 0.026 [M-H]- C27H22O18 17.5 1.648 95.82 275.0193 / 300.9987 / 331.0666 / 463.0515 Galloyl-hexahydroxydiphenoyl- III 
          glucose isomer  

305.0783 13.78 2.57 0.026 [M-H]- C14H14N2O6 9.5 1.313 97.85 115.0034 / 132.0299 / 146.0608 / 171.0561 / 189.0667 / N-[4-(2,5-dioxopyrrolidin-1- III 
         190.0506 / 243.0771 / 261.0877 / 269.0564 / 287.0670 yl)phenyl]-L-aspartic acid isomer  

259.1191 16.11 2.59 0.026 [M-H]- C12H20O6 3.5 1.306 99.06 159.0660 / 197.1180 / 215.1285 / 241.1078 Dicarboxylic acid derivative isomer III 
259.1191 17.04 2.61 0.026 [M-H]- C12H20O6 3.5 1.345 99.25 197.1183 / 199.0974 / 241.1079 Dicarboxylic acid derivative isomer III 
289.0834 17.30 2.67 0.027 [M-H]- C14H14N2O5 9.5 1.333 99.93 88.0402 / 114.0194 / 115.0034 / 130.0660 / 132.0300 / Indole-3-acetyl-L-aspartic acid II 

         156.0453 / 173.0719 / 174.0558 / 227.0823 / 245.0929 /   
         271.0720   

261.1346 19.64 2.72 0.027 [M-H]- C12H22O6 2.5 1.028 99.78 125.0969 / 169.0868 / 181.1232 / 187.0975 / 199.1338 / Dicarboxylic acid derivative isomer III 
         201.1130 / 225.1130 / 243.1236   

433.0415 22.20 2.80 0.028 [M-H]- C19H14O12 13.5 0.464 98.50 299.9910 / 300.9986 Ellagic acid pentoside III 
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867.0909  2.75 0.028 [2M-H]-  25.5 1.332 93.43  

403.1613 22.59 2.76 0.028 [M-H]- C18H28O10 5.5 0.868 98.75 161.0452 / 179.1074 / 223.0972 / 359.1705 2,7-dimethyl-2,4-diene-deca- , - 
diacid 8-O- -glucoside 

II 

592.2042 23.05 2.66 0.027 [M-H]- C28H35NO13 12.5 0.991 95.42 197.1180 / 241.1078 / 283.1182 / 313.1288 / 343.1394 / Glansreginin A II 
        403.1605   

371.2076 23.67 - - [M-H]- C19H32O7 4.5 0.171 90.6 A 161.0451 / 300.9985 / 371.2069 Unknown IV 
417.2133  2.67 0.027 [M+FA-H]-  4.5 0.705 98.83    
300.9991 23.81 2.65 0.027 [M-H]- C14H6O8 12.5 0.265 99.52 185.0240 / 201.0189 / 213.0189 / 229.0138 / 257.0086 / Ellagic acid II 

        273.0041 / 283.9957   

413.2183 25.10 2.67 0.027 [M-H]- C21H34O8 5.5 0.433 98.91 353.1964 / 371.2064 Methyl epidioxy dihydroperoxy 
eicosatrienoate isomer 

III 

 
413.2184    25.67 - - [M-H]- C21H34O8 5.5 0.699 99.07 353.1962 / 371.2070 Methyl epidioxy dihydroperoxy III 
459.2240 2.61 0.026   [M+FA-H]- 5.5 0.979 98.65 eicosatrienoate isomer 

A MS/HRMS data corresponding to the formic acid adduct; B MS/HRMS data corresponding to the chlorine adduct; FA: formic acid; RDB: rings and double 
bounds; RT: retention time; RV: regression vector 

Table S2. Tentative annotation/identification by LC-HRMS of the most discriminant molecular features found in the nut matrices under study. 
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ALMOND  

Molecular feature Significantly higher than Significantly lower than No significant differences 
386.9390 (2.03 min) PN** / HN, PI, PS, WN*** - CN, MN, PT, SS 
165.0403 (2.35 min) SS* / PI** / CN, HN, PN, PS, PT, WN*** - MN 
209.0300 (2.38 min) PS** / CN, MN, PI, PN, PT, SS, WN*** - HN 
341.1083 (2.48 min) PS*** - CN, HN, MN, PI, PN, PT, SS, WN 
683.2243 (2.48 min) PS, SS ** - CN, HN, MN, PI, PN, PT, WN 
191.0564 (2.51 min) CN, HN, MN, PI, PN, PS, PT, WN*** SS*** - 
533.1718 (2.51 min) CN, HN, MN, PI, PN, PS, PT, WN*** SS*** - 
133.0143 (2.91 min) MN, PN** / CN, PI, PS*** PT*** HN, SS, WN 
191.0196 (3.39 min) HN, PI, PS, SS, WN*** PT*** CN, MN, PN 
413.1658 (3.46 min) CN** / HN, MN, PI, PN, PS, PT, SS, WN*** - - 
456.1506 (13.52 min) CN, MN, PI, PN, PS, PT, SS, WN* - HN 
511.2538 (25.10 min) CN, HN, MN, PI, PN, PS, PT, WN*** - SS 
CASHEW NUT    

Molecular feature Significantly higher than Significantly lower than No significant differences 
289.0719 (12.80 min) AL, HN, MN, PI, PN, PS, SS** - PT, WN 
457.1357 (13.17 min) AL, HN, MN, PI, PN, PS, PT, SS, WN** - - 
289.0718 (15.50 min) AL, HN, MN, PI, PN, PS, PT, SS, WN** - - 
401.1456 (15.61 min) AL, HN, MN, PI, PN, PS, PT, WN** - SS 
241.1084 (17.15 min) AL, HN, MN, PI, PN, PS, PT, SS, WN*** - - 
241.1084 (20.59 min) AL, HN, MN, PI, PN, PS, PT, SS, WN*** - - 
529.2659 (22.54 min) AL, HN, MN, PI, PN, PS, PT, SS, WN** - - 
463.2190 (25.96 min) AL, HN, MN, PI, PN, PS, PT, SS, WN* - - 
463.2189 (26.21 min) AL, HN, MN, PI, PN, PS, PT, SS, WN** - - 
463.2190 (26.83 min) AL, HN, MN, PI, PN, PS, PT, SS, WN** - - 
507.2449 (29.09 min) AL, HN, MN, PI, PN, PS, PT, SS, WN** - - 
507.2448 (31.14 min) PT* / AL, HN, MN, PI, PN, PS, SS, WN** - - 
HAZELNUT    

Molecular feature Significantly higher than Significantly lower than No significant differences 
131.0462 (2.27 min) - CN, MN, PN** / AL*** PI, PS, PT, SS, WN 
223.0459 (2.44 min) AL, CN, MN, PI, PN, PS, SS, WN *** - PT 
262.0565 (2.48 min) PI* / AL, CN, MN, PN, PS, SS** - PT, WN 
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205.0351 (2.57 min) CN, PN, WN* / AL, MN, PI, PS, SS** PT** - 
203.0197 (3.49 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
368.0984 (7.31 min) WN* / AL, CN, MN, PI, PN, PS, PT, SS*** - - 
368.0985 (8.39 min) WN* / AL, CN, MN, PI, PN, PS, PT, SS*** - - 
443.1920 (12.39 min) MN, PN, PS, WN** / AL, PI*** - CN, PT, SS 
679.1813 (12.62 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
443.1920 (13.04 min) MN, PN, WN**/ AL, PI, PS*** - CN, PT, SS 
679.1809 (13.25 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
514.1561 (13.99 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
679.1810 (14.22 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
541.1458 (20.91 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
540.1719 (21.05 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
259.1911 (34.26 min) AL, CN, MN, PI, PN, PS, PT, SS, WN*** - - 
MACADAMIA NUT    

Molecular feature Significantly higher than Significantly lower than No significant differences 
439.0757 (2.62 min) CN, PI, PN, PS, SS, WN* - AL, HN, PT 
261.0731 (3.20 min) AL, CN, HN, PI, PN, PS, PT, SS, WN*** - - 
417.1409 (6.28 min) AL, CN, HN, PI, PN, PT, SS, WN** - PS 
251.0677 (6.32 min) AL, CN, HN, PI, PN, PS, PT, SS, WN*** - - 
299.0776 (6.82 min) AL, CN, HN, PI, PN, PS, PT, SS, WN*** - - 
299.0776 (7.89 min) AL, CN, HN, PI, PN, PS, PT, SS, WN*** - - 
417.1408 (7.90 min) AL, CN, HN, PI, PN, PT, SS, WN** - PS 
431.1202 (8.38 min) AL, HN, PI, PN, PS, PT, SS, WN* - CN 
431.1202 (9.29 min) AL, HN, PI, PN, PS, PT, SS, WN* - CN 
266.0673 (10.01 min) HN, PN, WN** / AL, CN, PI, PS, PT, SS*** - - 
252.0517 (10.16 min) AL, CN, HN, PI, PN, PS, PT, SS, WN** - - 
417.1410 (11.00 min) AL, CN, HN, PI, PN, PS, PT, SS, WN* - - 
239.0565 (15.20 min) AL, CN, HN, PI, PN, PS, PT, SS, WN*** - - 
415.1617 (18.28 min) AL, WN* / CN, HN, PI, PN, PS** - PT, SS 
527.1417 (20.31 min) AL, CN, HN, PI, PN, PS, PT, SS, WN* - - 
PEANUT    

Molecular feature Significantly higher than Significantly lower than No significant differences 
149.0090 (2.54 min) HN ** / AL, CN, MN, PI, PS, PT, SS, WN*** - - 
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295.0455 (12.50 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
431.1553 (12.95 min) AL, CN, HN, MN, PI, PS, PT, SS, WN** - - 
293.1142 (13.60 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
295.0454 (13.63 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
325.0563 (14.42 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
250.0719 (14.90 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
400.0672 (15.55 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
295.0455 (16.22 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
575.1975 (17.70 min) AL, CN, HN, MN, PI, PS, PT, SS, WN** - - 
501.1513 (17.83 min) AL, CN, HN, MN, PI, PS, PT, SS, WN** - - 
473.1658 (18.09 min) AL, CN, HN, MN, PI, PS, PT, SS, WN** - - 
579.1729 (18.89 min) AL, CN, HN, MN, PI, PS, PT, SS, WN** - - 
163.0400 (18.92 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
245.0929 (19.31 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
279.0507 (19.33 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
248.0926 (19.46 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
501.1038 (21.97 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
441.0824 (22.19 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
471.0927 (22.27 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
803.3337 (22.54 min) AL, CN, HN, MN, PI, PS, PT, SS, WN** - - 
501.1036 (22.62 min) AL, CN, HN, MN, PI, PS, PT, SS, WN*** - - 
137.0244 (22.73 min) PS** / AL, CN, HN, MN, PI, PT, SS, WN*** - - 
PINE NUT    

Molecular feature Significantly higher than Significantly lower than No significant differences 
262.0571 (2.62 min) PT* / AL, CN, HN, MN, PN, PS, SS, WN** - - 
329.0884 (8.89 min) MN* / AL, CN, HN, PN, PS, PT, SS, WN** - - 
329.0884 (9.90 min) MN* / AL, CN, HN, PN, PS, PT, SS, WN** - - 
451.1366 (12.74 min) AL, CN, HN, MN, PN, PS, PT, SS, WN* - - 
347.1717 (13.15 min) AL, CN, HN, MN, PN, PS, PT, SS, WN* - - 
361.1513 (13.62 min) AL, CN, HN, MN, PN, PS, PT, SS, WN** - - 
477.2346 (24.83 min) AL, CN, HN, MN, PN, PS, PT, SS, WN* - - 
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PISTACHIO    

Molecular feature Significantly higher than Significantly lower than No significant differences 
179.0561 (2.37 min) AL, CN, HN, MN, PN, SS* - PI, PS, WN 
323.0284 (2.71 min) AL, CN, MN, PI, PN, PS, SS, WN** / HN*** - - 
133.0143 (2.91 min) AL, CN, HN, MN, PI, PN, PS, SS, WN** - - 
191.0198 (2.92 min) AL, HN, MN, PI, PN, PS, SS, WN** - CN 
346.0557 (3.09 min) AL, CN, HN, MN, PI, PN, PS, SS, WN** - - 
153.0194 (10.44 min) HN* / CN, SS** / AL, MN, PI, PN, PS, WN*** - - 
431.1557 (12.23 min) AL, CN, HN, PI, PN, PS, SS, WN** - MN 
451.1357 (12.40 min) AL, CN, HN, MN, PI, PN, PS, SS, WN** - - 
451.1357 (12.82 min) PI* / AL, CN, HN, MN, PN, PS, SS, WN** - - 
395.1558 (13.19 min) AL, CN, HN, MN, PI, PN, PS, SS, WN** - - 
395.1558 (13.74 min) AL, CN, HN, MN, PI, PN, PS, SS, WN** - - 
323.1347 (14.02 min) AL, CN, HN, MN, PI, PN, PS, SS, WN*** - - 
323.1346 (14.51 min) SS** / AL, CN, HN, MN, PI, PN, PS, WN*** - - 
463.0881 (23.03 min) CN* / AL, HN, MN, PI, PN, PS, SS, WN** - - 
507.2439 (24.26 min) AL, CN, HN, MN, PI, PN, PS, SS, WN** - - 
PUMPKIN SEED    

Molecular feature Significantly higher than Significantly lower than No significant differences 
503.1623 (2.52 min) MN* CN, SS** / PT*** AL, HN, PI, PN, WN 
209.0670 (2.54 min) SS* / AL, CN, HN, MN, PI, PN, WN*** PT** - 
337.0784 (3.06 min) AL, CN, HN, MN, PI, SS** - PN, PT, WN 
213.0885 (3.40 min) AL, CN, HN, MN, PI, PN, PT, SS, WN*** - - 
282.0848 (3.49 min) CN, PN** / AL, HN, MN, PI, WN*** SS** PT 
431.1566 (10.32 min) MN* / AL, CN, HN, PI, PN, PT, SS, WN*** - - 
673.3090 (22.22 min) AL, CN, HN, MN, PI, PN, PT, SS, WN*** - - 
SUNFLOWER SEED    

Molecular feature Significantly higher than Significantly lower than No significant differences 
209.0567 (3.41 min) AL, CN, HN, MN, PI, PN, PS, PT, WN*** - - 
575.2607 (8.48 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
575.2614 (9.32 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
353.0875 (14.22 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
353.0875 (15.79 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
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491.1192 (16.74 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
641.1510 (18.47 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
542.1299 (18.55 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
491.1190 (18.64 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
542.1300 (19.95 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
135.0452 (20.49 min) AL, CN, HN, MN, PI, PN, PS, PT, WN*** - - 
515.1190 (21.04 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
563.1766 (21.43 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
563.1765 (23.33 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
515.1190 (23.53 min) AL, CN, HN, MN, PI, PN, PS, PT, WN** - - 
WALNUT    

Molecular feature Significantly higher than Significantly lower than No significant differences 
785.0854 (10.35 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
633.0744 (11.82 min) AL, CN, HN, MN, PI, PN, PS, PT, SS* - - 
305.0783 (13.78 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
259.1191 (16.11 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
259.1191 (17.04 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
289.0834 (17.30 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
261.1346 (19.64 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
433.0415 (22.20 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
403.1613 (22.59 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
592.2042 (23.05 min) AL, CN, HN, MN, PI, PN, PS, PT, SS* - - 
371.2076 (23.67 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
300.9991 (23.81 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
413.2183 (25.10 min) AL, CN, HN, MN, PI, PN, PS, PT, SS** - - 
413.2184 (25.67 min) AL, CN, HN, MN, PI, PN, PS, PT, SS* - - 

AL: almond; CN: cashew nut; HN: hazelnut; MN: macadamia nut; PI: pine nut; PN: peanut; PS: pumpkin seed; PT: pistachio; SS: sunflower seed; WN: 
walnut 
* p < 1·10-2; ** p < 1·10-3; *** p < 1·10-5 

Table S3. Summary of the significance of the differences in the discriminant molecular features content between nut types. 
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ALMOND  

Molecular feature Natural vs. Toasted Natural vs. Fried Fried vs. Toasted 
386.9390 (2.03 min) - - - 
165.0403 (2.35 min) Higher in natural** - - 
209.0300 (2.38 min) - - - 
341.1083 (2.48 min) Higher in natural* - - 
683.2243 (2.48 min) Higher in natural* - - 
191.0564 (2.51 min) Higher in toasted* - Higher in toasted* 
533.1718 (2.51 min) - - - 
133.0143 (2.91 min) - - - 
191.0196 (3.39 min) - - - 
413.1658 (3.46 min) - - - 
456.1506 (13.52 min) - - - 
511.2538 (25.10 min) - - - 
HAZELNUT    

Molecular feature Natural vs. Toasted   

131.0462 (2.27 min) -   

223.0459 (2.44 min) Higher in natural*   

262.0565 (2.48 min) Higher in natural*   

205.0351 (2.57 min) Higher in toasted**   

203.0197 (3.49 min) -   

368.0984 (7.31 min) -   

368.0985 (8.39 min) -   

443.1920 (12.39 min) -   

679.1813 (12.62 min) -   

443.1920 (13.04 min) -   

679.1809 (13.25 min) -   

514.1561 (13.99 min) -   

679.1810 (14.22 min) -   

541.1458 (20.91 min) -   

540.1719 (21.05 min) -   

259.1911 (34.26 min) -   

PEANUT    

Molecular feature Fried vs. Toasted   

149.0090 (2.54 min) -   

295.0455 (12.50 min) -   

431.1553 (12.95 min) -   

293.1142 (13.60 min) -   

295.0454 (13.63 min) -   

325.0563 (14.42 min) -   

250.0719 (14.90 min) -   

400.0672 (15.55 min) -   

295.0455 (16.22 min) -   

575.1975 (17.70 min) -   

501.1513 (17.83 min) -   

473.1658 (18.09 min) -   

579.1729 (18.89 min) -   

163.0400 (18.92 min) -   

245.0929 (19.31 min) -   

279.0507 (19.33 min) -   

248.0926 (19.46 min) -   

501.1038 (21.97 min) -   

441.0824 (22.19 min) -   

471.0927 (22.27 min) -   

803.3337 (22.54 min) -   
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501.1036 (22.62 min)   - 
137.0244 (22.73 min)   - 

 

PUMPKIN SEED 
Molecular feature Natural vs. Toasted 

 

503.1623 (2.52 min) Higher in natural* 
209.0670 (2.54 min) Higher in natural*** 
337.0784 (3.06 min) - 
213.0885 (3.40 min) - 
282.0848 (3.49 min) - 
431.1566 (10.32 min)   - 
673.3090 (22.22 min)   - 

 

* p < 1·10-2; ** p < 1·10-3; *** p < 1·10-4 

Table S4. Summary of the significance of the differences in the discriminant molecular 
features content between the different thermal treatments of almond, hazelnut, peanut, 
and pumpkin seed samples. 
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A  B  S  T  R  A  C  T   
 

The rise of food fraud practices, affecting a wide variety of goods and their specific characteristics (e.g., quality or 
geographical origin), demands rapid high-throughput analytical approaches to ensure consumers protection. In 
this context, this study assesses flow injection analysis coupled to  high-resolution  mass  spectrometry 
(FIA– RMS), using a fingerprinting approach and combined with chemometrics, to address four food authen- 
tication issues: (i) the geographical origin of three Spanish red wines, (ii) the geographical origin of three Eu- 
ropean paprikas, (iii) the distinction of olive oil from other vegetable oils and (iv) the assessment of its quality 
category. In each case, negative and positive ionisation FIA– RMS fingerprints, and two different data fusion 
strategies, were evaluated. After external validation, excellent classification accuracies were reached. Moreover, 
high-resolution mass spectrometry ( RMS) allowed sample matrices characterisation by the putative identifi- 
cation of the most common ions. 

 
 

 
l. Introduction 

 
Globalisation has notoriously expanded international trade, 

increasing the number of participants between the production and 
consumption in the food chain. In this context, food fraud, which en- 
compasses a sort of intentional manipulation practices in food products 
(i.e., adulteration, mislabelling, grey market, and counterfeit) aiming an 
economic gain (Morin & Lees, 2018), has become of great concern 
among consumers, food businesses, the scientific community, and gov- 
ernment administrations. Because of the economic purpose behind food 
fraud, its likelihood is generally estimated  using supply-and-demand 
and financial indicators influenced by macroeconomic trends  and 
directly affected by unexpected situations such as the Suez Canal 
blockage or the CO ID-19 pandemic (Points, Manning, & Group, 2020). 
Moreover, goods well-valued for specific labelled particularities (e.g., 
geographical origin or production system), which enhance their repu- 
tation and increase their price, are likely to be affected by fraudulent 
practices since the difference between authentic and non-authentic 
products is difficult to measure. 

Chromatographic and related techniques —such as capillary elec- 
trophoresis (CE), gas chromatography (GC), and liquid chromatography 
(LC)— with spectroscopic detection or coupled to mass spectrometry 
(MS), and combined with chemometrics, have proven excellent capacity 
to address complex food authentication issues through fingerprinting 
strategies   (Cuadros-Rodríguez,   Ruiz-Samblás,    alverde-Som,   Pérez- 
Castaño, & González-Casado, 2016; Medina, Perestrelo, Silva, Pereira, & 
Câmara,  2019).   owever,  the  need  for  more  rapid  high-throughput 
analytical approaches, minimising sample  analysis  time  and  even 
costs, has focused the attention on direct MS techniques (Ibáñez, Simó, 
García-Cañas,  Acunha,  &  Cifuentes,  2015).  In  this  line,  both  ambient 
mass spectrometry (AMS) and flow injection analysis coupled to mass 
spectrometry (FIA–MS) seem to be potential alternatives to non-targeted 
chromatographic methods. 

AMS comprises several techniques, mainly spray- or plasma-based 
—such as desorption electrospray ionisation (DESI) (Takáts,  iseman, 
Gologan, & Cooks, 2004) and direct analysis in real-time (DART) (Cody, 
Laramée, & Durst, 2005), respectively—, that provide direct desorption/ 
ionisation of analytes from the native sample or with minimal sample 
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treatment. Despite the significant number of advances that have been 
made in this field in the last decade and its advantages (such as real- 
time, in situ, and in vivo analysis), AMS techniques still lack three 
crucial aspects in fingerprinting approaches: good reproducibility, 
sensitivity, and wide molecular coverage (Kuo, Dutkiewicz, Pei, & su, 
2020). Instead, FIA–MS, which is based on injecting a small volume of a 
liquid sample or a sample extract into an organic phase continuous 
stream that carries the sample bolus up to the mass spectrometer ion 
source, provides satisfactory reproducibility because of modern auto- 
matic autosamplers and injectors precision and repeatability (Gachumi, 
Purves, opf, & El-Aneed, 2020) and allows better ionisation efficiency 
through any atmospheric pressure ionisation (API) source —mostly 
electrospray ionisation (ESI)— than AMS. Therefore, FIA–MS offers a 
balance between chromatographic-MS and AMS techniques regarding 
analytical capability and sample analysis throughput (Nanita & Kaldon, 
2016). 

Several analytical methods aiming to solve food authentication is- 
sues by FIA–MS fingerprinting, combined with chemometrics, have been 
developed in the last years. In this line, nominal mass fingerprints ac- 
quired by flow injection analysis coupled to low-resolution mass spec- 
trometry (FIA–LRMS), mainly based on ion trap technology MS 
instruments —i.e., ion trap (IT) and linear ion trap (LIT)— due to their 
higher sensitivity in full-scan MS mode than quadrupole mass analysers, 
have proved their potential in particular applications, such  as  the 
organic and conventional sage sample differentiation (Gao, Lu, Sheng, 
Chen, & u, 2013) or cinnamon species classification (Chen, Sun, & 
Ford, 2014). In contrast, exact mass fingerprints are obtained by flow 
injection analysis coupled to high-resolution mass spectrometry 
(FIA– RMS), using time-of-flight- (TOF) or Orbitrap-based mass ana- 
lysers, which present a maximum resolving power up to 50,000 and 
500,000 full-width at half maximum (F M), respectively (Rubert, 
Zachariasova, &  ajslova, 2015). Thus, FIA– RMS leads to richer fin- 
gerprints, where near-isobaric compound signals are well-resolved, 
enhancing selectivity and providing better molecular coverage than 
FIA–LRMS. For instance, it has been already successfully applied to 
address oregano (Gao et al., 2014) and lettuce (Sun et al., 2018) pro- 
duction system or milk adulteration detection (Du et al., 2018). More- 
over, taking advantage of its accurate mass measurements and isotopic 
abundance ratios, molecular formulae of specific ions can be determined 
and compared to publicly accessible databases for putative compound 
identification. 

This study aimed to demonstrate FIA– RMS suitability to address 
certain food authenticity issues through a  fingerprinting  approach and 
its combination to principal component analysis (PCA), partial least 
squares regression-discriminant analysis (PLS-DA), and soft independent 
modelling of class analogy (SIMCA). Thus, the geographical origin of 
three  Spanish  red  wines  (Catalunya,  La  Rioja,  and  Castilla  y  León)  and 
three European paprikas (La Vera, Murcia, and the Czech Republic), as 
well as the distinction of olive oil from other vegetable oils and the 
assessment of its quality category, were evaluated. 

2. Materials and methods 
 

2.1. Reagents and solutions 
 

For the sample treatment, purified water was obtained using an 
Elix® 3 coupled to a Milli-Q® system (Millipore Corporation, Bedford, 
MA, USA) and filtered through a 0.22-µm nylon membrane; hexane and 
formic acid (96%) were provided from Merck (Darmstadt, Germany); 
U PLC-supergradient  acetonitrile  was  from  Panreac  (Castellar  del 
 allès,  Spain);  and  ethanol  was  purchased  from    R  International 
Eurolab S. L. (Barcelona, Spain). Instead, for the FIA– RMS, LC–MS 
grade water and acetonitrile were from Merck. 

 
 

2.2. Instrumentation 
 

FIA was performed using an ultra-high-performance liquid chroma- 
tography (U PLC) system equipped with an Accela 1250 quaternary 
pump and an Accela autosampler (Thermo Fisher Scientific, San Jose, 
CA, USA). The sample injection volume was 10 µL. The carrier consisted 
of a 50:50 (v/v) mix, composed of water acidified with 0.1% formic acid 
(v/v) and acetonitrile, and was pumped isocratically at 150 µL⋅min−1 for 
1.5 min. 

The U PLC system was coupled to a hybrid quadrupole-Orbitrap (Q- 
Orbitrap) mass spectrometer (Q-Exactive Orbitrap, Thermo Fisher Sci- 
entific) equipped with a heated electrospray ionisation source ( -ESI II) 
operating in both negative and positive ionisation modes. The -ESI 
source was set in an off-axis position to prevent and minimise mass 
spectrometer contamination. Nitrogen with a purity of 99.98%, pur- 
chased from Linde (Barcelona, Spain), was used for the ESI sheath, 
sweep, and auxiliary gas at flow rates of 40, 0, and 12 a.u. (arbitrary 
units), respectively. Moreover, the vaporiser temperature was set at 
250 ◦C, the capillary temperature at 350 ◦C, the spray voltage at  3.0 
k (depending on the ionisation mode), and the S-lens RF level at 50 . 
The Q-Orbitrap mass analyser worked in full-scan MS mode, with an m/z 
range from 100 to 1500, at a mass resolution of 70,000 F  M at m/z 
200. Besides, an automatic gain control (AGC) target of 3.0    106, which 
is the number of ions to fill the C-Trap, and a maximum injection time of 
100 ms, were established. Simultaneously to the full-scan MS mode, 
data-dependent scan mode (ddMS2) was also performed with an in- 
tensity threshold of 1.0    105, a fixed first m/z of 50 for the registered 
product ion scan range, a quadrupole isolation window of 0.5 m/z, and 
applying stepped normalised collision energies (NCE) of 17.5, 35.0, and 
52.5 e   for ion fragmentation. Besides, in this event acquisition mode, a 
mass resolution of 17,500 F M at m/z 200, an AGC target value of 5.0 

105, and a maximum injection time of 100 ms were also set. 
The Q-Orbitrap system was tuned and calibrated every three days, 

using commercially available calibration solutions for both negative and 
positive ion modes (Thermo Fisher Scientific). Moreover, the calibur 
software v 4.1 (Thermo Fisher Scientific) was used to control the LC–MS 
system and acquire and process data. 

2.3. Samples and sample treatment 
 

In this study, three different sample sets (red wine, paprika, and olive 
and other vegetable oils), detailed in the present Section, were under 
evaluation by the proposed FIA– RMS method. In all their corre- 
sponding sample sequences, in order to ensure the quality of the results 
avoiding and controlling systematic errors and cross-contamination, a 
quality control (QC) sample —constructed by pooling equal aliquots of 
each sample of the set— and an extracting solvent blank were injected at 
the beginning and after every ten sample injections. Besides, samples 
were also randomly injected to minimise the effect of instrumental drifts 
on the chemometric models. 

2.3.1. Red wine 
A set of 94 red wine samples from three Spanish areas —50 from 

Catalunya, 25 from La Rioja, and 19 from Castilla y León— encompassing 
15 different Protected Designation of Origin (PDO) labels (Bierzo, Cat- 
alunya, Conca de Barberà, Costers del Segre, Empordà, Montsant, Penedès, 
Pla de Bages, Priorat, Ribera del Duero, Rioja, Tarragona, Terra Alta, Tierra 
de Castilla, and Toro) and ten production years (1996, 2002, 2006, 2007, 
2009, 2010, 2011, 2012, 2013, and 2014), and made from various grape 
varieties, were analysed. Prior to FIA– RMS analysis, samples were 
filtered with a 0.22-µm nylon filter (Scharlab, Sentmenat, Spain). 

2.3.2. Paprika 
One hundred eleven paprika samples, including different 

geographical origins —72 with La Vera PDO (Spain), 24 with Murcia 
PDO (Spain), and 15 from the Czech Republic (their specific region was 
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not labelled)— and types (hot, bittersweet, and sweet), were directly 
purchased from their production companies or bought in Spanish or 
Czech commercial supermarkets. 

Regarding the sample treatment, a previously developed procedure 
was followed (Cetó et al., 2018). Briefly, 0.3 g of the sample were sub- 
jected to solid–liquid extraction (SLE) with 3 mL of water:acetonitrile 
(20:80, v/v) mix. After stirring in a ortex (Stuart, Stone, United 
Kingdom) for 1 min, sonicating (5510 Branson ultrasonic bath, amp- 
ton, N , USA) for 15 min, and centrifuging (ROTANTA 460 RS Centri- 
fuge, ettich, Germany) for 30 min at 4500 rpm, the resulting 
supernatant extract was filtered, using a 0.22-µm nylon filter and kept at 
4 ◦C in a glass injection vial until its analysis. 

2.3.3. Olive and other vegetable oil 
In this study, a total of 85 vegetable oil samples —46 olive oils, 15 

sunflower oils, 6 corn oils, 6 soy oils, and 12 oils produced from mixtures 
of seeds (6 sunflower/corn oils and 6 sunflower/soy oils)— from various 
trademarks and purchased from Barcelona markets were analysed. 
Moreover, among the olive oil sample set, 12 were refined olive oils 
(OO), 4 virgin olive oils ( OO), and 30 extra-virgin olive oils (E OO). 

The employed sample treatment was based on a previously described 
method (Gosetti, Bolfi, Manfredi, Calabrese, & Marengo, 2015) with 
slight modifications. First, liquid–liquid extraction with low- 
temperature partition (LLE-LTP), using ethanol:water (70:30, v/v) as 
the extracting solvent, was carried out. Thus, in a 15 mL-polytetra- 
fluoroethylene (PTFE) tube (Serviquimia, Barcelona, Spain), 2.00 g of 
oil sample were extracted by stirring for 2 min in a ortex in 2 mL of the 
extracting solvent. After centrifugation for 5 min at 3500 rpm, the 
mixture was frozen for 24 h at 18 ◦C. Then, the resulting supernatant 
extract was transferred into another PTFE tube for a defatting step with 
2 mL of hexane, also by stirring in a ortex followed by centrifugation 
for 5 min at 3500 rpm. Finally, the aqueous ethanolic sample extract was 
filtered with a 0.22-µm nylon filter and stored at −18 ◦C in a 2-mL glass 
injection vial until FIA– RMS analysis. 

2.4. Data analysis 
 

2.4.1. Data matri construction 

 
                                 

 
PCA relies on the concentration of the dataset’s relevant information, 

originally arranged in the -matrix containing sample FIA– RMS fin- 
gerprints, into a reduced number of principal components (PCs). In this 
study, it allowed an exploratory chemometric analysis to evaluate QC 
sample behaviour (i.e., QC samples forming a compact group in the PCA 
scores plot indicates the absence of systematic errors during the sample 
injection and validates the chemometric results) and sample trends and 
groups. 

Instead, PLS-DA, which uses the same -matrix as PCA, assigns each 
given sample into a numerically encoded class in the -matrix, 
depending on predefined sample characteristics (e.g., geographical or 
botanical origin). In this case, a reduced number of latent variables (L s) 
contain the most relevant information that links both matrices. The most 
appropriate number of L s to build the PLS-DA models was established 
at the first significant minimum point of the enetian blinds cross- 
validation (C ) error. Besides, considering the complexity of the stud- 
ied issues, where various sample classes were assessed, the hierarchical 
model builder ( MB) was used, segregating the complete classification 
in a consecutive combination of two-input class PLS-DA models (clas- 
sification decision tree). To evaluate and validate the predictive ability 
of the whole classificatory chemometric model, 60% of samples were 
randomly stratified as the calibration set and the remaining 40% as the 
external validation set. In this line, the performance of the developed 
classificatory method was checked through each class sensitivity 
(capability to detect true positives, i.e., samples belonging to a given 
class that have been correctly assigned) and specificity (capability to 
detect true negatives, i.e., samples that do not belong to a given class 
correctly assigned as negative), as well as the overall accuracy of the 
model (well-classified and misclassified sample ratio). 

Finally, SIMCA is based on the definition of a target class by a PCs 
subspace. In this study, one-class SIMCA was applied to sample 
authentication, and therefore, each SIMCA model was composed of a 
unique PCA submodel corresponding to a specific sample class. Then, 
since it consists of a distance-based method of class modelling, when a 
new sample is projected into the model, its class membership is assessed 
according to its distance from the PCA submodel —calculated from the 
reduced Q residuals and otelling T2 values (normalised to 95% confi- 

dence  limit)  and  combined  using  di   =  
√(̅̅̅

T
̅̅̅
2

̅̅̅̅̅̅̅)̅̅̅2
̅̅̅
+
̅̅̅̅̅
 
̅̅̅
2
̅̅̅̅̅̅̅
,  being  i  the 

matogram builder, isotopic peak grouper, and join aligner, using the 
mzMine 2.53 software (Pluskal, Castillo,  illar-Briones, & Orešič, 2010). 
First, the exact mass detection step generated mass lists for each scan 
acquired in a sample, considering a noise level of 1.0     105. Then, the 
chromatogram builder allowed the joining of exact mass signals found in 
contiguous scans in a sample, establishing a peak time range of 0.05 – 
0.40 min, an m/z tolerance of 5 ppm, and an intensity threshold of 1.0 
105. After this, isotopes were removed, considering that the most 
representative isotope was the most intense and setting an m/z tolerance 
of 5 ppm. Finally, the join aligner allowed matching of exact masses 
detected across samples, establishing a mass tolerance of 5 ppm, a peak 
time tolerance of 0.35 min (the whole time range under evaluation), 
95% of weight for m/z, and a 0% of weight for time. At the end of this 
workflow, a data matrix was constructed containing FIA– RMS finger- 
prints of the studied samples: samples variables, where variables 
consisted of ion signal intensity values as a function of m/z. Moreover, to 
reduce the matrix dimensions, molecular features were filtered and only 
were selected those with a relative standard deviation (RSD, %) lower 
than 20% in the signals of the QC samples injected during the sample 
sequence. 

2.4.2. Chemometric analysis 
The obtained FIA– RMS fingerprints were then subjected to PCA, 

PLS-DA, and SIMCA, which were performed using Solo 8.6 chemo- 
metrics software from Eigenvector Research (Manson, A, USA). De- 
tails of the theoretical background of these chemometric methods are 
addressed elsewhere (Massart et al., 1997; old, 1976). 

index of each given unknown sample to be classified— and a previously 
established decision threshold. The latter was optimised in each case, 
maximising the performance of SIMCA in the calibration step by 
reaching the minimum error. Moreover, same external validation as in 
the PLS-DA study was carried out. 

It should be pointed out that for each sample set, four different - 
matrices were used as chemical descriptors in the PLS-DA and SIMCA 
models: FIA– RMS fingerprints obtained with negative ionisation, with 
positive ionisation, and using a low-level (LLDF) or a mid-level data 
fusion   (MLDF)   strategy   (Borràs   et   al.,   2015).   The   LLDF    -matrix 
concatenated both negative and positive ionisation FIA– RMS data. 
Instead, the MLDF only contained ten variables per each PLS-DA model 
involved in the classification decision tree. These variables corre- 
sponded to those presenting the highest selectivity ratio among the 50 
with the highest variable importance in projection ( IP) values obtained 
in the LLDF loadings of each PLS-DA model involved in the classifica- 
tion. In all cases, data was autoscaled to provide the same weight to each 
variable by suppressing differences in their magnitude and amplitude 
scales. 

3. Results and discussion 
 

3.1. FIA–HRMS fingerprint characterisation 
 

Before the chemometric analysis, the obtained FIA– RMS finger- 
prints were visually inspected, and some of the most intense ions were 
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putatively identified to assess sample matrix characterisation, taking 
advantage of high-resolution mass spectrometry ( RMS) capabilities. In 
this line, Table S1 summarises the putative identification of some of the 
most  characteristic  ions  found  in  the  food  matrices  under  study, 
following Schymanski et al.  RMS identification levels (Schymanski 
et al., 2014). Public databases, containing MS2 data —mzCloud ( igh- 
Chem LLC, Bratislava, Slovakia), Metlin (Smith et al., 2005), and The 
 uman Metabolome Database ( ishart et al., 2018)— and polyphenolic 
content in food, such as Phenol-Explorer (Rothwell et al., 2013), were 
consulted. Criteria followed in this process were established as follows: 
5 ppm of exact mass tolerance, >90% of isotopic pattern fit, and MS2 

data agreement. 
The negative and positive ionisation FIA– RMS spectra of a Cata- 

lunya, La Rioja, and Castilla y León red wine sample are shown in Fig. S1. 
A priori, no noticeable interregional differences could be highlighted 
since the most intense ions were commonly found in all samples without 

 
                                 

 
following a characteristic pattern due to geographical origin. Among the 
putatively identified compounds, negative ionisation FIA– RMS fin- 
gerprints contained certain molecules known to be found in wine, such 
as several organic acids (being tartaric acid the base peak) (Ivanova- 
Petropulos et al., 2018), hydroxybenzoic (e.g., gallic acid) and hydrox- 
ycinnamic  acids  (e.g.,  caffeic  and  caffeoyl  tartaric  acid)  (Gutiérrez- 
Escobar, Aliaño-González, & Cantos- illar, 2021), and monosaccharide 
and sugar-related compounds. Instead, amino acids and choline and 
furan compounds were found in positive ionisation spectra. Several 
anthocyanins, which influence the wine colour (Garrido & Borges, 
2013), were also found. Moreover, some coumarins, released from wood 
into  the  wine  during  the  maturation  stage  ( roboňová  &  Sádecká, 
2020), were detected in their [M   Na]+ form. 

Regarding paprika samples, as an example, Fig. 1 depicts typical 
negative and positive ionisation FIA– RMS fingerprints for hot La Vera, 
Murcia, and the Czech Republic samples. At first glance, La Vera samples 

 

 

  
 

 

Fig. l. Negative and positive ionisation FIA– RMS fingerprints obtained for a La Vera, Murcia, and the Czech Republic paprika sample. 
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presented distinctive fingerprints in the negative mode comparing to the 
remaining samples. For instance, the m/z 279.2329, corresponding to 
the deprotonated molecule of linoleic acid, one of the major fatty acids 
found in Jaranda and Jariza Capsicum annuum L. varieties (Pérez-Gálvez, 
Garrido-Fernández,  Mínguez-Mosquera,  Lozano-Ruiz,  &  Montero-de- 
Espinosa, 1999) that are used in La Vera paprika production, was 
particularly intense in their negative ionisation spectra. In addition, 
these paprika fingerprints, reproducible among samples belonging to the 
same geographical origin, contained common compounds such as 
organic acids or certain mono- and polyunsaturated fatty acids. La Vera 
samples particularity was also highlighted in  positive  ionisation 
FIA– RMS fingerprints that included many signals in the m/z range 
from 100 to 800. owever, in this case, spectra were slightly altered in 
Murcia and the Czech Republic samples according to the paprika type, 
while significantly modified in La Vera ones. In this line, compounds 
such as capsaicinoids may be related to these differences (Arrizabalaga- 
Larrañaga et al., 2021). Moreover, several amino acids and other com- 
pounds, including choline, 6-(hydroxymethyl)pyridin-3-ol, tropine, and 
4-hydroxy-1-methyl-2-pyrrolidine carboxylic acid, were also detected in 
the positive ionisation FIA– RMS spectra as reported in Table S1. 

Finally, both negative and positive ionisation olive oil FIA– RMS 
fingerprints were noticeably different from the remaining vegetable oil 

 
                                 

 
ones. Instead, as shown in Fig. S2, more similarities were found in olive 
oil spectra depending on their quality grade. Besides, while  OO and 
E OO showed comparable fingerprints among samples belonging to the 
same group, more variability was observed in OO samples, which may 
be due to the different percentages of OO added to them for taste 
improvement. As shown in Table S1, among other compounds, several 
polyphenolic compounds well-known to be found in olive oil were 
identified in the analysed ethanolic sample extract. In this line, tyrosols 
predominated the negative ionisation spectra, although other poly- 
phenols such as luteolin or dihydro-p-coumaric acid were also detected 
(Farré, Picó, & Barceló, 2019). In the positive ionisation mode, tyrosols 
were detected, forming an adduct with Na. 

 
3.2. Red wine geographical origin classification and authentication 

 
In this study, FIA– RMS fingerprints were proposed as chemical 

markers to address the geographical origin classification of three 
Spanish  red  wines:  Catalunya,  La  Rioja,  and  Castilla  y  León.  Thus,  in  a 
first attempt to evaluate their discriminating ability, an exploratory PCA 
was performed to both negative and positive ionisation data —104 × 
440 and 104 × 972 (samples × variables) dimension data matrices, 
respectively—, aiming to observe QC sample behaviour as well as 

 
Fig. 2. PLS-DA scores plot of L 1 vs. L 2 
obtained for: (A) the red wine samples ana- 
lysed according to their geographical origin, 
using positive ionisation FIA– RMS finger- 
prints; (B) the paprika samples analysed ac- 
cording to their geographical origin, using 
negative ionisation FIA– RMS fingerprints; 
(C) the olive and vegetable oil samples ana- 
lysed according to their botanical origin, 
using negative ionisation FIA– RMS finger- 
prints; and (D) the olive oil samples analysed 
according to their quality grade, using 
negative ionisation FIA– RMS fingerprints. 
(For interpretation of the references to colour 
in this figure legend, the reader is referred to 
the web version of this article.) 
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sample groups and trends. Similar results were found in both cases. For 
instance, Fig. S3 shows the PCA scatter plot of scores on the PC2-PC1 
(explaining 28.49% of the variance) obtained using positive ionisation 
data. hile QC samples were jointly located in the centre of the plot, 
indicating the lack of systematic errors, Catalunya samples were clearly 
distinguished at the bottom of the plot displaying negative PC2 values. 
Instead,  La  Rioja  and  Castilla  y  León  samples  shared  more  similarities 
since there was no evident discrimination between them (Fig. S3A). In 
this line, the representation of samples in the PCA scores plot according 
to non-Tempranillo and Tempranillo-based red wines (all La Rioja and 
most  Castilla  y  León  samples  were  mainly  produced  from  Tempranillo 
grapes, while most Catalunya samples did not) allowed to prove its in- 
fluence on sample distribution. A trend in the PC2 from non-Tempranillo, 
displaying negative values, to Tempranillo-based red wines, displaying 
positive values, was observed (Fig. S3B). 

After the exploratory chemometric analysis, QC samples were 
excluded from -data matrices (resulting in 94 440 and 94 972 data 
matrices for negative and positive ionisation, respectively), which were 
then subjected to PLS-DA using the corresponding -data matrices, 
indicating sample geographical origin. As expected, the obtained PLS- 
DA scores plots improved non-supervised chemometric results for both 
negative and positive ionisation data. For instance, Fig. 2A depicts the 
scores plot of L 1 vs. L 2 obtained when using positive ionisation 
FIA– RMS data. In this case, six L s explaining the 87.98% -variance 
were required to build the PLS-DA model, allowing a good sample dis- 
tribution according to their geographical origin. 

 
                                 

 
In view of these results, a classification decision tree consisting of 

two consecutive rule nodes —1) Catalunya vs. Others and 2) La Rioja vs. 
Castilla y León— was proposed to address red wine geographical origin 
classification. As previously mentioned in Section 2.4.2, negative ion- 
isation, positive ionisation, LLDF, and MLDF FIA– RMS data were 
tested. In this line, the data matrix dimensions and the number of L s 
used in each PLS-DA calibration model involved, as well as the resulting 
external validation classification parameters (class sensitivity, class 
specificity, and global accuracy), can be found in Table 1. In this context, 
LLDF FIA– RMS fingerprints provided the best external validation 
classificatory results with 86.8% accuracy. Contrarily, MLDF data, 
which contained much less sample information, only reached a 60.5% 
classification rate. 

Instead, considering the suitability of class-modelling chemometric 
methods in the authentication field (Rodionova, Titova, & Pomerantsev, 
2016), SIMCA was proposed to test the capacity of FIA– RMS to 
generate a characteristic fingerprint for each red wine class. Table 2 
summarises the data matrix dimensions, the number of PCs  established 
in each SIMCA model, and the assignation performance after the 
external validation. Satisfactory overall accuracy results were obtained 
for the four data matrices used (above 75.4%), although these values 
were generally slightly below those obtained in the classificatory study 
with PLS-DA. In fact, only in MLDF, SIMCA provided a better accuracy 
result than the obtained with the PLS-DA classification decision tree, 
mainly because of a substantial increase in La Rioja sensitivity and 
Castilla y León specificity. 

 

Table l 
Calibration model parameters —data matrix dimensions (samples × variables) and number of L s— for each of the PLS-DA models built in the classificatory studies 
and corresponding obtained external validation classification results —class sensitivity (%), class specificity (%), and global accuracy (%)—. 

RED WINE GE0GRAPHICAL 0RIGIN 

 
 

Data matrix LVs  Data matrix      LVs  Sensitivity Specificity  Sensitivity Specificity  Sensitivity Specificity  

FIA− RMS (-) 56 × 440 2 26 × 440 4 80.0 94.4 70.0 89.3 87.5 90.0 78.9 
FIA− RMS (+)      56 × 972 5 26 × 972 1 94.4 100.0 90.0 92.9 62.5 100.0 84.2 
LLDF 56 × 1412 3 26 × 1412 1 90.0 100.0 100.0 89.3 62.5 100.0 86.8 
MLDF 56 × 20 2 26 × 20 3 75.0 100.0 20.0 82.1 75.0 76.7 60.5 

PAPRIKA GE0GRAPHICAL 0RIGIN 

Calibration: model parameters External validation: classification performance 

   V r  v . 0thers M rc  v . The Czech 
Republic 

 
 

   V r M rc The Czech Republic Accuracy 

 

 Data matrix LVs  Data matrix LVs  Sensitivity Specificity  Sensitivity Specificity  Sensitivity Specificity  

FIA− RMS (-) 
FIA− RMS (+) 
LLDF 
MLDF 

66 × 553 
66 × 601 
66 × 1154 
66 × 20 

1 
2 
1 
1 

 23 × 553 
23 × 601 
23 × 1154 
23 × 20 

2 
2 
2 
1 

 100.0 
96.6 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

 100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

 100.0 
83.3 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

100.0 
95.6 
100.0 
100.0 

0LIVE 0IL 

Botanical origin 

 
 

Calibration: model parameters External validation: classification performance 
 

  

0live oil v . 0thers 0live 0il Accuracy 
 

  

Data matrix LVs Sensitivity Specificity 
FIA− RMS (-) 53 × 368 1 100.0 100.0 100.0 
FIA− RMS (+)      53 × 739 1 100.0 100.0 100.0 
LLDF 53 × 1107 1 100.0 100.0 100.0 
MLDF 53 × 10 1 94.4 100.0 96.9 

Quality 

Calibration: model parameters External validation: classification performance 
  

EV00 and V00 v . 00 EV00 and V00 00 Accuracy 

Data matrix LVs Sensitivity      Specificity      Sensitivity      Specificity 
FIA− RMS (-) 27 × 368 1 92.9 100.0 100.0 100.0 94.7 
FIA− RMS (+)      27 × 739 3 85.7 100.0 100.0 92.9 89.5 
LLDF 27 × 1107 1 92.9 100.0 100.0 92.9 94.7 
MLDF 27 × 10 2 92.9 100.0 80.0 92.9 89.5 
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Table 2 
Calibration model parameters —data matrix dimensions (samples × variables) and number of PCs— for each of the SIMCA models built in the class assignation studies 
and corresponding obtained external validation assignation results —class sensitivity (%), class specificity (%), and global accuracy (%)—. 

RED WINE GE0GRAPHICAL 0RIGIN 
 

Calibration: model parameters External validation: assignation performance 

Data PCs                                  ́ Accuracy 
matrix 

 
    

              ́       Sensitivity      Specificity      Sensitivity      Specificity      Sensitivity      Specificity 
 

FIA− RMS 
(-) 

FIA− RMS 
(+) 

56 × 440       6 3 4 65.0 72.2 70.0 89.3 25.0 86.7 75.4 

56 × 972       4 3 3 75.0 61.1 80.0 92.9 50.0 80.0 77.2 

LLDF 56 × 
1412 

6 3 4 55.0 72.2 70.0 96.4 25.0 90.0 76.3 

MLDF 56 × 20 2 4 2 80.0 88.9 50.0 89.3 75.0 93.3 84.2 

PAPRIKA GE0GRAPHICAL 0RIGIN 

Calibration: model parameters External validation: assignation performance 

Data PCs V r M rc The Czech Republic Accuracy 
matrix 

   V r M rc        The Czech 
Republic 

Sensitivity      Specificity      Sensitivity      Specificity      Sensitivity      Specificity 

FIA− RMS 
(-) 

FIA− RMS 
(+) 

66 × 553       1 2 2 96.6 100.0 100.0 100.0 100.0 100.0 99.3 

66 × 601       1 2 1 93.1 100.0 70.0 100.0 66.7 100.0 94.8 

LLDF 66 × 
1154 

1 2 1 96.6 100.0 80.0 100.0 83.3 100.0 97.0 

MLDF 66 × 20 3 3 2 89.7 100.0 80.0 100.0 50.0 100.0 94.1 

0LIVE 0IL 

Botanical origin 

FIA− RMS 
(-) 

FIA− RMS 
(+) 

Calibration: model parameters External validation: assignation performance 
 

  

Data matrix PCs 0live 0il Accuracy 
 

  

0live 0il Sensitivity Specificity 
53 × 368 2 83.3 100.0 90.6 

53 × 739 4 77.8 100.0 87.5 

LLDF 53 × 1107 1 94.4 100.0 96.9 
MLDF 53 × 10 1 94.4 100.0 96.9 

Quality 

(-) 

(+) 

Calibration: model parameters External validation: assignation performance 

Data matrix PCs EV00 and V00  Accuracy 

EV00 and V00 Sensitivity Specificity 

 
 

3.3. Paprika geographical origin classification and authentication 
 

The geographical origin authentication of paprika was also assessed 
through FIA– RMS fingerprinting. In this line, three different European 
paprika samples —La Vera, Murcia, and the Czech Republic— were 
analysed in negative and positive ESI modes, providing 123   553 and 
123 601 (samples variables) dimension data matrices, respectively. 
The obtained plots of scores of PC1 vs. PC2 are presented in Fig. S4. At 
first glance, QC samples appeared compactly in the centre of the plot, 
guaranteeing the validity of the obtained chemometric results. As ex- 
pected after visual inspection of paprika FIA– RMS fingerprints in 
Section 3.1, La Vera samples were manifestly differentiated from the 
other samples, standing on the right side of both PCA plots. Moreover, in 
the negative ionisation data PCA scores plot (Fig. S4A), Murcia samples 
were separated according to their type (hot and sweet), being hot 
samples nearly located to the Czech Republic ones. Instead, Murcia and 
Czech samples slightly overlapped in the positive ionisation data PCA 

 
 

scores plot (Fig. S4B), independently of their type. 
After QC exclusion, PLS-DA was applied to both matrices. Excellent 

geographical origin sample classification was achieved either in nega- 
tive or positive ionisation modes. For example, the negative ionisation 
FIA– RMS data scores plot of L 1 vs. L 2 (three L s, describing 90.32% 
of -variance, were used to build the PLS-DA model) is depicted in 
Fig. 2B. To test and validate the classification ability of the acquired 
FIA– RMS fingerprints, the following nodes were proposed to build a 
classification decision tree: 1) La Vera vs. Others and 2) Murcia vs. the 
Czech Republic. In this line, the predictive capability of the built PLS-DA 
models was excellent, as shown in Table 1. The lowest classification rate 
was 95.6%, obtained with the positive ionisation data matrix, while 
negative ionisation and data fusion matrices allowed the complete cor- 
rect classification of the test set samples. Moreover, as shown in Table 2, 
similar results were obtained when subjecting FIA– RMS fingerprints to 
SIMCA, proving the ability of the proposed model to authenticate the 
studied samples. Besides, in both PLS-DA and SIMCA studies, MLDF 
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FIA− RMS 27 × 368 3 85.7 100.0 89.5 

FIA− RMS 27 × 739 3 78.6 100.0 84.2 

LLDF 
MLDF 

27 × 1107 
27 × 10 

3 
1 

78.6 
85.7 

100.0 
100.0 

84.2 
89.5 
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provided excellent results as LLDF, indicating that a profiling approach 
focusing on the adequate specific markers could achieve similar results 
to a fingerprinting approach, which is in agreement with previous 
studies (Barbosa, Campmajó, Saurina, Puignou, & Núñez, 2020). 

 
3.4. Olive oil botanical origin and quality classification and 
authentication 

Finally, several vegetable oils described in Section 2.3.3, including 
olive oil, were analysed through the FIA– RMS fingerprinting method, 
aiming at both botanical origin and quality olive oil authenticity. Firstly, 
94 368 and 94 739 (samples variables) matrices corresponding to 
negative and positive ionisation data, respectively, were subjected to 
PCA. After checking QC sample correct behaviour, excellent discrimi- 
nation of olive oil in front of the other vegetable oil samples was 
observed in both cases. Besides, a trend among olive oil samples ac- 
cording to their quality category was also found. For instance, Fig. S5 
depicts the PCA scores plot of PC1 vs. PC2 (describing 57.24% of the 
variance) obtained with the negative ionisation FIA– RMS data matrix. 
In this case, olive oil samples were isolated from the other samples on 
the right side of the plot, displaying positive PC1 values. Moreover, PC1 
also allowed a visual separation of E OO and OO samples, while most of 
the OO samples were jointly located to E OO. 

After the exploratory analysis, supervised classificatory PLS-DA was 
performed to address olive oil authentication. On the one hand, focusing 
on the botanical origin authentication issue, negative and positive ion- 
isation data matrices were subjected to PLS-DA, providing similar re- 
sults. For instance, Fig. 2C contains the PLS-DA scatter plot of scores on 
the L 2-L 1 —corresponding to the three L s built model— obtained 
with the negative ionisation FIA– RMS data matrix, where olive oil 
samples were discriminated on the left side of the plot, displaying 
negative L 1 values. Besides, among the other vegetable oil samples, 
located on the right side of the plot, soy oil and its mix with sunflower oil 
samples displayed positive L 2 values, whereas the remaining samples 
presented negative L 2 values. 

Since this study aimed to classify and authenticate olive oil in front of 
other vegetable oils, independently of their botanical origin, a two-input 
class PLS-DA single step —Olive oil vs. Others— was proposed. Table 1 
shows the most relevant parameters of the PLS-DA calibration models 
and the classification performance after the external validation. As a 
result, except for the MLDF fingerprints that allowed a 96.9% classifi- 
cation accuracy, the constructed chemometric models provided the 
correct classification of all the test samples. Moreover, as shown in 
Table 2, excellent results were obtained when using SIMCA, particularly 
for LLDF and MLDF FIA– RMS fingerprints, which allowed an overall 
accuracy result of 96.9%. 

Therefore, considering the great discrimination ability achieved with 
the MLDF FIA– RMS fingerprints, which suggested the suitability of a 
profiling strategy to address this food authentication issue, the m/z 
signals that formed the matrix were studied, and some of them were 
putatively identified. In this line, the m/z 123.0451, 137.0243, and 
137.0606, found in negative ionisation FIA– RMS spectra, were 
assigned as the deprotonated molecule of 4-methylcatechol, hydrox- 
ybenzoic acid, and tyrosol, respectively; while in the positive ionisation, 
the m/z 415.1360 was identified as the [M Na]+ form of methyl 
oleuropein aglycone. Instead, the remaining discriminating ions (m/z 
263.0534, 277.0329, 281.0644, 309.0595, and 735.4107 in the negative 
ionisation fingerprints, and 805.5800 in the positive ionisation ones) 
could not be identified. The fact that the identified compounds corre- 
sponded to substances well-known for their presence in olive oil proved 
the correct variable selection strategy, detailed in Section 2.4.2, through 
 IP and selectivity ratio values (see Fig. S6). Moreover, when comparing 
the corresponding PCA scores plot with its loadings plot (Fig. S7), the 
selected ten variables were found on the right side of the plot, showing a 
direct correlation with olive oil samples. 

On  the  other  hand,  olive  oil  quality  authentication  was  also 

 
                                 

 
evaluated by subjecting the acquired FIA– RMS data —46 × 368 and 
46 × 739 (samples × variables), negative and positive ionisation data 
matrices— to PLS-DA. In this context, Fig. 2D represents the scatter plot 
of scores of L 1 vs. L 2, describing 56.11% of -variance, attained using 
negative ionisation fingerprints. Similarly to the previous exploratory 
analysis results, good discrimination along the L 1 between E OO and 
OO samples was observed. Concerning  OO samples, they seemed to be 
nearly positioned to E OO ones. Thus, considering the E OO and OO 
similarities found in both exploratory PCA and supervised PLS-DA and 
the scarcity of OO samples in the sample set, they were conjointly 
considered in the following classification and authentication study. 
Again, as performed in the botanical origin classification, a two-input 
class PLS-DA model, consisting of E OO and OO vs. OO, was pro- 
posed. As shown in Table 1, while positive ionisation and MLDF fin- 
gerprints reached an 89.5% classification accuracy, the corresponding 
negative ionisation and LLDF ones achieved a 94.7%. Regarding the 
SIMCA study, as shown in Table 2, negative ionisation and LLDF 
FIA– RMS fingerprints provided again the best results, reaching an 
accuracy of 89.5%. 

4. Conclusions 
 

The three representative cases under study (red wine, paprika, and 
olive oil) differed in the complexity of the samples as follows: (i) red 
wines presented similar FIA– RMS fingerprints without following a 
clear characteristic pattern due to geographical origin and lacking spe- 
cific markers for the different classes. Besides, the interregional diversity 
due to varietal, climatic and geographical features made sample classi- 
fication a complex issue. (ii) Instead, for paprika samples, distinctive 
FIA– RMS fingerprints were observed according to sample geograph- 
ical origin. These differences could be related to the manufacturing 
processes and peculiarities of each origin. (iii) Finally, in the case of oils, 
a similar situation was faced since compositional FIA– RMS finger- 
prints of olive oils differed considerably from those of other vegetable 
sources (specific biomarkers could be encountered). 

Therefore, FIA– RMS fingerprinting, combined with chemometrics, 
has proved to be a suitable high-throughput analytical approach to 
address the food classification and authentication issues under study 
since remarkable classification accuracies were obtained after external 
validation. Moreover, RMS conferred great selectivity and molecular 
coverage, leading to rich fingerprints, resulting in satisfactory results 
when using either negative ionisation, positive ionisation, or LLDF data. 
Furthermore, the successful application of the MLDF strategy to some of 
the studied food authentication cases also suggested the eligibility of 
targeted profiling approaches, focusing on specific compounds, to assess 
them. 
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Fig S Negative and positive ionisation FIA-HRMS fingerprints obtained for a Catalunya, La Rioja, and Castilla y León red wine sample. 
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Fig S Negative and positive ionisation FIA-HRMS fingerprints obtained for an OO, VOO, and EVOO sample. 

 

 
 

 

 

 

 

 
 

 

 

 

 

HRMS 
 

 

 

 

 

 

 
 

:  

 

 
               

 

 

 
 

 

 
 

 

 

 

 
 

:   

 

 

 

 

HRMS 
:  

 

  

 

 

 

 
:   4  

 

 

 

 

Chapter 3. M
etabolom

ic fingerprinting approaches 

-309 -  

R
el

at
iv

e  
A

bu
nd

an
ce

 
R

el
at

iv
e 

A
bu

nd
an

ce
 



-310-  

 

 

Sc
or

es
 o

n  
PC

 2
 (1

2.
56

%
)  

Sc
or

es
 o

n 
PC

 2
 (1

1.
14

%
)  

Chapter 3. Metabolomic fingerprinting approaches 
 
 

40 30 

 
 
 
 
 

0 0 

 
 
 
 
 

-40 
-50 0 50 

Scores on PC 1 (15.94%) 

-30 
-50 0 50 

Scores on PC 1 (15.94%) 
 

Catalunya La Rioja Castilla y León C e    anillo-based Mi Non  e     anillo C 
 

Fig S3 PCA scores plot of PC1 vs. PC2, using positive ionisation FIA-HRMS 

fingerprints, for the analysed red wine samples according to (A) their geographical origin 

and (B) grape variety. 
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Fig S4 PCA scores plot of PC1 vs. PC2, using (A) negative and (B) positive ionisation 

FIA-HRMS fingerprints, for the analysed paprika samples according to their 

geographical origin. 
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Table S Putative identification by FIA-HRMS of some of the most characteristic ions found in the food matrices under study. 
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  ppm   %   

117.0193 Negative [M-H]- C4H6O4 2.5 -0.017 99.98 73.0295; 82.3092; 92.8401; 
99.0089; 106.2155 

Succinic acid Dicarbo ylic acid II 

129.0195 Negative [M-H]- C5H6O4 3.5 0.992 99.94 57.0345; 85.0296; 101.0245 Glutaconic acid Dicarbo ylic acid II 
133.0143 Negative [M-H]- C4H6O5 2.5 0.627 99.81 71.0138; 72.9931; 87.0452; 

89.0245; 115.0036 
Malic acid Dicarbo ylic acid II 

135.0299 Negative [M-H]- C4H8O5 1.5 0.247 99.69 59.0139; 71.0139; 75.0087; 
89.0245; 117.0195 

L-threonic acid Carbo ylic acid (sugar 
acid) 

II 

145.0140 Negative [M-H]- C5H6O5 3.5 -1.769 99.39 57.0346; 73.0294; 83.0139; 
99.0087; 101.0244; 121.2956; 

2-o oglutaric acid Dicarbo ylic acid II 

       127.0400    

147.0299 Negative [M-H]- C5H8O5 2.5 -0.181 99.61 57.0345; 85.0295; 87.0082; 
101.0244; 103.0400; 129.0194 

Citramalic acid Dicarbo ylic acid II 

149.0090 Negative [M-H]- C4H6O6 2.5 -1.014 99.91 59.0139; 72.9930; 75.0087; 
87.0087; 103.0037; 130.9986 

Tartaric acid Dicarbo ylic acid (sugar 
acid) 

II 

161.0455 Negative [M-H]- C6H10O5 2.5 -0.476 99.30 57.0346; 59.0139; 99.0452; 
101.0244; 117.0558; 143.0348 

3-hydro y-3- 
methylglutaric acid 

Dicarbo ylic acid II 

169.0143 Negative [M-H]- C7H6O5 5.5 0.198 99.54 69.0346; 81.0346; 97.0296; 
107.0139; 125.0244 

Gallic acid Polyphenol (phenolic 
acid - hydro ybenzoic 
acid) 

II 

173.0092 Negative [M-H]- C6H6O6 4.5 0.340 99.25 67.0190; 85.0295; 111.0088; 
129.0196; 154.9986 

t ans-aconitic acid Tricarbo ylic acid II 

175.0612 Negative [M-H]- C7H12O5 2.5 0.133 99.93 85.0659; 113.0609; 131.0715; 
157.0504 

Isopropylmalic acid Dicarbo ylic acid III 

177.0405 Negative [M-H]- C6H10O6 2.5 0.388 99.87 57.0346; 59.0139; 71.0139; 
75.0088; 85.0295; 87.0088; 
89.0245; 99.0088; 129.0193; 

Gluconolactone Polyhydro y acid II 

       141.0194; 159.0297    

 



 

 
179.0352 Negative [M-H]- C9H8O4 6.5 1.162 99.94 107.0504; 135.0453 Caffeic acid Polyphenol (phenolic 

acid - hydro ycinnamic 
acid) 

II 

179.0563 Negative [M-H]- C6H12O6 1.5 0.774 99.26 59.0139; 71.0138; 75.0087; 
85.0296; 89.0245; 95.0139; 

 Monosaccharide III 

       101.0244; 113.0245; 135.0452;    

       161.0455    

181.0720 Negative [M-H]- C6H14O6 0.5 1.097 99.58 59.0139; 71.0139; 73.0295; 
83.0139; 85.0296; 89.0245; 

 Sugar alcohol III 

       101.0244; 113.0244; 115.0401; 
119.0349; 131.0348; 163.0611 

   

191.0201 Negative [M-H]- C6H8O7 3.5 1.854 96.75 57.0346; 85.0296; 87.0088; 
111.0088; 129.0195; 154.9985; 

Citric acid Tricarbo ylic acid II 

       173.0093    

193.0357 Negative [M-H]- C6H10O7 2.5 1.420 99.93 59.0139; 71.0139; 72.9931; 
85.0296; 89.0245; 101.0245; 
113.0245; 131.0352; 157.0141 

Glucuronic and 
galacturonic acid 

Carbo ylic acid (sugar 
acid) 

II 

195.0512 Negative [M-H]- C6H12O7 1.5 1.046 99.66 59.0139; 71.0138; 75.0087; 
85.0296; 87.0088; 89.0243; 

Gluconic acid Dicarbo ylic acid (sugar 
acid) 

I 

       99.0090; 101.0244; 111.0089; 
129.0196; 159.0297; 177.0399 

   

197.0458 Negative [M-H]- C9H10O5 5.5 1.438 99.07 95.0137; 123.0092; 138.0324; 
153.0564; 166.9983; 182.0223 

Syringic acid Polyphenol (phenolic 
acid - hydro ybenzoic 

II 

         acid)  
       124.0166; 169.0144 Ethyl gallate Polyphenol (phenolic II 
         acid - hydro ybenzoic 

acid) derivative 
 

209.0302 Negative [M-H]- C6H10O8 2.5 -0.241 99.58 71.0139; 85.0295; 111.0088; 
129.0194; 133.0144; 147.0297; 

D-glucaric acid Dicarbo ylic acid (sugar 
acid) 

II 

       191.0203    

295.0462 Negative [M-H]- C13H12O8 8.5 0.947 99.12 149.0088; 163.0400  -coumaroyl tartaric acid Polyphenol (phenolic 
acid - hydro ycinnamic 
acid) 

II 

311.0414 Negative [M-H]- C13H12O9 8.5 1.655 98.63 149.0088; 179.0352 Caffeoyl tartaric acid Polyphenol (phenolic 
acid - hydro ycinnamic 

II 

         acid)  

104.1068 Positive [M]+ C5H14ON -0.5 -2.311 71.73 58.0654; 60.0811 Choline Choline II 
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116.0703 Positive [M+H]+ C5H9O2N 1.5 -2.715 80.38 70.0651 Proline Amino acid II 
118.0859 Positive [M+H]+ C5H11O2N 0.5 -3.092 55.16 55.0546; 72.0808 Valine Amino acid II 

       100.0757; 101.0596 5-aminovaleric acid Amino acid II 
       59.0495; 70.0652; 72.0808; 2- Amino acid II 
       87.0439 (methylamino)isobutyric   

        acid   

  [M]+ C5H12O2N    58.0654; 59.0733 Betaine Amino acid II 
127.0387 Positive [M+H]+ C6H6O3 3.5 -2.051 99.65 53.0389; 71.0492; 81.0335; 

99.0441; 109.0285 
Pyrogallol and 
phloroglucinol 

Polyphenol 
(trihydro ybenzene) 

III 

       51.0232; 53.0389; 55.0182; Maltol Pyranone II 
       57.0339; 65.0384; 67.0178; 

68.9975; 71.0128; 81.0335; 
83.0126; 97.0284; 109.0285 

   

       51.0232; 53.0389; 55.0182; 5-hydro ymethyl-2- Furan II 
       57.0339; 69.0336; 81.0335; furaldehyde   

       97.0284; 109.0285    

129.0544 Positive [M+H]+ C6H8O3 2.5 -1.477 99.22 55.0182; 73.0284; 83.0604; 
91.0390; 101.0233 

Furaneol Furan II 

132.1017 Positive [M+H]+ C6H13O2N 0.5 -1.932 99.98 69.0700; 86.0964 Leucine and isoleucine Amino acid II 
136.0616 Positive [M+H]+ C5H5N5 5.5 -1.336 99.71 94.0401; 109.0508; 119.0353 Adenine Nucleobase II 
138.0547 Positive [M]+ C7H8O2N 4.5 -1.847 94.25 65.0388; 67.0542; 78.0339; 

79.0416; 92.0494; 94.0652; 
110.0600; 121.0649 

Trigonelline Alkaloid II 

146.1173 Positive [M]+ C7H16O2N 0.5 -2.021 96.68 60.0811; 87.0441 Acetylcholine Choline derivative II 
158.0814 Positive [M+H]+ C7H11O3N 2.5 1.203 99.15 70.0652; 84.0444; 98.0601; 

112.0757; 116.0706; 140.0705 
Acetylproline Amino acid II 

162.1121 Positive [M]+ C7H16O3N 0.5 -2.035 84.37 60.0811; 85.0285; 102.0914; 
103.0390 

Carnitine Amino acid II 

175.1186 Positive [M+H]+ C6H14O2N4 1.5 -1.840 90.52 60.0560; 70.0652; 112.0868; 
116.0706; 130.0974; 157.1080; 

Arginine Amino acid II 

       158.0926    

185.0208 Positive [M+Na]+ C9H6O3 6.5 -0.893 98.03  4-hydro ycoumarin Coumarin IV 
201.0156 Positive [M+Na]+ C9H6O4 6.5 -1.144 88.70  Esculetin Coumarin IV 
215.0312 Positive [M+Na]+ C10H8O4 6.5 -1.348 97.70  Scopoletin Coumarin IV 
219.0261 Positive [M+K]+ C6H12O6 0.5 -1.856 99.22   Monosaccharide IV 
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229.1541 Positive [M+H]+ C11H20O3N2 2.5 -2.483 77.75 70.0652; 86.0964; 116.0706 Leucylproline Dipeptide II 
258.1096 Positive [M]+ C8H21O6NP -0.5 1.977 99.92 60.0811; 86.0964; 104.1070; 

124.9999; 184.0735 
Glycerophosphocholine Choline derivative II 

381.0785 Positive [M+K]+ C12H22O11 1.5 -2.282 85.16   Disaccharide IV 
463.1228 Positive [M]+ C22H23O11 11.5 -1.529 95.65 258.0521; 286.0472; 301.0705 Peonidin 3-O-glucoside Polyphenol (flavonoid - 

anthocyanin) 
II 

479.1178 Positive [M]+ C22H23O12 11.5 -1.216 99.06 274.0473; 302.0422; 317.0660 Petunidin 3-O-glucoside Polyphenol (flavonoid - 
anthocyanin) 

II 

493.1332 Positive [M]+ C23H25O12 11.5 -1.749 95.74 270.0522; 286.0465; 287.0544; 
298.0466; 299.0546; 315.0493; 
316.0575; 331.0804 

Malvidin 3-O-glucoside Polyphenol (flavonoid - 
anthocyanin) 

II 

535.1440 Positive [M]+ C25H27O13 12.5 -1.116 96.49 242.0570; 270.0522; 287.0546; 
299.0546; 315.0496; 331.0807 

Malvidin 3-O-(6 -acetyl- 
glucoside) 

Polyphenol (flavonoid - 
anthocyanin) 

II 

639.1699 Positive [M]+ C32H31O14 17.5 -1.536 93.21 242.0572; 270.0519; 287.0548; 
299.0552; 315.0499; 331.0811 

Malvidin 3-O- 
coumaroylglucoside 

Polyphenol (flavonoid - 
anthocyanin) 

II 

PAPRI A 
 

Measured 

 

Accurate 

 

Isotopic 

 
 

Identification 
accurate Ionisation Ion Molecular RDB mass pattern MS HRMS Tentative identification lass confidence 
mass mode assignment formula e uivalent error score level 
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111.0087 Negative [M-H]- C5H4O3 4.5 -0.967 99.40 67.0190; 68.0223 2-furoic acid Carbo ylic acid II 
117.0193 Negative [M-H]- C4H6O4 2.5 -0.188 99.98 73.0295; 74.0328; 99.0088 Succinic acid Dicarbo ylic acid II 
133.0142 Negative [M-H]- C4H6O5 2.5 -0.651 99.90 71.0139; 72.9932; 87.0087; 

89.0244; 115.0035 
Malic acid Dicarbo ylic acid II 

135.0298 Negative [M-H]- C4H8O5 1.5 -0.419 99.31 59.0139; 71.0139; 75.0088; 
89.0245; 117.0081 

L-threonic acid Carbo ylic acid (sugar 
acid) 

II 

147.0299 Negative [M-H]- C5H8O5 2.5 -0.249 99.75 57.0346; 59.0139; 71.0139; 
75.0088; 83.0138; 85.0295; 

8-ribono-1,4-lactone Monosaccharide II 

       87.0088; 89.0244; 99.0088; 
101.0244; 129.0194 

   

       57.0346; 75.0088; 83.0138; D-a-hydro yglutaric acid Dicarbo ylic acid II 
       85.0295; 101.0244; 103.0400;    

       129.0194    

161.0455 Negative [M-H]- C6H10O5 2.5 -0.538 99.50 57.0346; 59.0139; 99.0451; 
101.0243; 117.0344 

3-hydro y-3- 
methylglutaric acid 

Dicarbo ylic acid II 

 



 

 
 
 

173.0090 Negative [M-H]- C6H6O6 4.5 -1.047 99.87 67.0190; 85.0295; 111.0087; 
129.0193; 154.9986 

t ans-aconitic acid Tricarbo ylic acid II 

175.0610 Negative [M-H]- C7H12O5 2.5 -0.895 99.12 59.0139; 85.0659; 113.0608; 
115.0400; 131.0712; 157.0505 

2-isopropylmalic acid Dicarbo ylic acid II 

177.0403 Negative [M-H]- C6H10O6 2.5 -0.741 99.90 57.0346; 59.0139; 71.0139; 
75.0088; 85.0295; 87.0088; 

Gluconolactone Polyhydro y acid II 

       89.0244; 99.0088; 129.0194; 
141.0194; 159.0299 

   

179.0561 Negative [M-H]- C6H12O6 1.5 -0.287 99.94 59.0139; 71.0139; 75.0088; 
85.0295; 89.0244; 94.0298; 
131.0348; 135.0452; 161.0456 

 Monosaccharide III 

181.0717 Negative [M-H]- C6H14O6 0.5 -0.229 99.54 59.0139; 71.0139; 73.0295; 
83.0138; 85.0295; 89.0244; 
101.0243; 113.0243; 115.0397; 

 Sugar alcohol III 

       119.0349; 131.0348; 163.0611    

187.0975 Negative [M-H]- C9H16O4 2.5 -0.386 98.98 57.0346; 97.0659; 123.0816; 
125.0971; 126.1006; 143.1077 

Azelaic acid Dicarbo ylic acid II 

191.0198 Negative [M-H]- C6H8O7 3.5 0.388 99.73 85.0295; 87.0087; 111.0086; 
129.0193; 173.0091 

Citric acid Tricarbo ylic acid II 

191.0560 Negative [M-H]- C7H12O6 2.5 -0.687 99.67 85.0295; 87.0087; 93.0346; 
111.0447; 127.0399; 173.0451 

 uinic acid Carbo ylic acid II 

195.0509 Negative [M-H]- C6H12O7 1.5 -0.697 99.76 57.0346; 59.0139; 71.0139; 
75.0088; 85.0295; 87.0088; 
89.0244; 99.0088; 101.0244; 

Gluconic and galactonic 
acid 

Dicarbo ylic acid (sugar 
acid) 

II 

       129.0194; 159.0296; 177.0405    

205.0352 Negative [M-H]- C7H10O7 3.5 -0.711 99.65 67.0189; 69.0346; 71.0139; 
72.9932; 75.0088; 81.0346; 
87.0088; 99.0088; 111.0087; 

 Tricarbo ylic acid III 

       125.0243; 131.0349; 143.0348; 
161.0608; 164.0719; 177.0559; 

   

       190.0274    

215.0328a Negative [M+Cl]- C6H12O6 0.5 0.144 98.79 59.0139; 71.0139; 75.0088; 
85.0295; 89.0245; 95.0135; 
101.0244; 113.0245; 135.0452; 
161.0456 

 Monosaccharide III 

279.2329 Negative [M-H]- C18H32O2 3.5 -0.299 99.79 59.0130; 261.2208 Linoleic acid Polyunsaturated fatty 
acid 

II 
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295.2276 Negative [M-H]- C18H32O3 3.5 -0.773 97.83 59.0138; 113.0971; 171.1026; 

195.1388; 249.2227; 277.2171 
Hydro yoctadecadienoic 
acid 

Polyunsaturated fatty 
acid 

II 

313.2384 Negative [M-H]- C18H34O4 2.5 -0.137 97.76 99.0816; 129.0921; 183.1390; 
201.1132; 251.2380; 277.2169; 
295.2274 

Dihydro yoctadecenoic 
acid 

Monounsaturated fatty 
acid 

II 

329.2333 Negative [M-H]- C18H34O5 2.5 -0.174 70.47 59.0139; 99.0816; 127.1127; 
139.1129; 171.1027; 201.1133; 
211.1338; 229.1443; 293.2125; 

(15Z)-9,12,13-trihydro y- 
15-octadecenoic acid 

Monounsaturated fatty 
acid 

II 

       311.2231    

447.0931 Negative [M-H]- C21H20O11 12.5 -0.525 94.61 151.0035; 227.0340; 243.0299; 
255.0297; 271.0246; 300.0274; 

 uercitrin Polyphenol (flavonoid - 
flavonol) 

II 

       301.0351    

       151.0035; 227.0340; 243.0299; 
255.0297; 271.0246; 284.0319; 

Astragalin Polyphenol (flavonoid - 
flavonol) 

II 

       285.0404; 300.0274; 301.0351;    

       327.0517    

659.3285 Negative [M-H]- C32H52O14 7.5 0.168 94.67 59.0140; 69.0347; 71.0139; 
85.0295; 101.0245; 111.0085; 
113.0243; 319.2266; 497.2770; 

Capsianoside I Capsianoside II 

       641.3340    

104.1072 Positive [M]+ C5H14ON -0.5 2.011 99.91 58.0658; 60.0815 Choline Choline II 
116.0707 Positive [M+H]+ C5H9O2N 1.5 0.904 99.77 70.0657 Proline Amino acid II 
118.0864 Positive [M+H]+ C5H11O2N 0.5 0.888 99.82 55.0542; 72.0814 Valine Amino acid II 

       100.0760; 101.0600 5-aminovaleric acid Amino acid II 
       59.0499; 70.0657; 72.0814; 2- Amino acid II 
       87.0445 (methylamino)isobutyric   

        acid   

  [M]+ C5H12O2N    58.0659; 59.0737 Betaine Amino acid II 
126.0550 Positive [M+H]+ C6H8O2N 3.5 0.039 99.98 68.0138; 80.0500; 108.0445 6- 

(hydro ymethyl)pyridin- 
Pyridine II 

        3-ol   

132.1019 Positive [M+H]+ C6H13O2N 0.5 -0.267 99.07 69.0706; 86.0969 Leucine and isoleucine Amino acid II 
142.1225 Positive [M+H]+ C8H14ON 1.5 -0.990 99.96 58.0659; 67.0548; 93.0704; 

98.0968; 124.1121 
Tropine Alkaloid II 

144.1016 Positive [M]+ C7H14O2N 1.5 -2.326 74.15 58.0659; 84.0811; 102.0554 Stachydrine Amino acid II 
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146.0809 Positive [M+H]+ C6H11O3N 1.5 -1.573 98.14 82.0657; 100.0759; 128.0706 4-hydro y-1-methyl-2- 
pyrrolidine carbo ylic 
acid 

Carbo ylic acid 
(pyrrolidine) 

II 

166.0860 Positive [M+H]+ C9H11O2N 4.5 -1.536 98.86 103.0545; 120.0808; 131.0491; 
149.0592 

L-phenylalanine Amino acid II 

175.1186 Positive [M+H]+ C6H14O2N4 1.5 -1.954 90.55 60.0564; 70.0658; 116.0707; 
130.0974; 158.0922 

Arginine Amino acid II 

189.1594 Positive [M]+ C9H21O2N2 0.5 -1.821 95.86 60.0815; 84.0813; 130.0862 N6.N6.N6-trimethyl-L- 
lysine 

Amino acid II 

306.2057 Positive [M+H]+ C18H28O3N 5.5 -2.156 90.02 122.0363; 137.0595; 153.1269; 
170.1535; 182.1537 

Capsaicin Capsaicinoid II 

  IV   I  
 

Measured 

 

Accurate 

 

Isotopic 

 
 

Identification 
accurate Ionisation Ion Molecular RDB e   mass pattern MS HRMS Tentative identification lass confidence 
mass mode assignment formula error score level 
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  ppm   %   

121.0294 Negative [M-H]- C7H6O2 5.5 -0.518 99.87 92.0268; 93.0346 4-hydro ybenzaldehyde Benzaldehyde II 
123.0451 Negative [M-H]- C7H8O2 4.5 -0.267 99.75 95.0501; 105.0346; 108.0218; 

122.0372 
4-methylcatechol Polyphenol (alkylphenol) II 

153.0555 Negative [M-H]- C8H10O3 4.5 -1.290 98.79 93.0345; 95.0503; 105.0344; 
108.0215; 122.0373; 123.0452 

Hydro ytyrosol Polyphenol (tyrosol) II 

165.0556 Negative [M-H]- C9H10O3 5.5 -0.712 99.56 59.0139; 93.0344; 121.0657 Dihydro- -coumaric acid Polyphenol (phenolic 
acid - 
hydro yphenylpropanoic 

II 

         acid)  

       93.0344; 105.0344; 121.0295; 
123.0452 

a-metho yphenylacetic 
acid 

Carbo ylic acid (anisole) II 

       119.0504; 147.0449 3-phenyllactic acid Carbo ylic acid II 
183.0663 Negative [M-H]- C9H12O4 4.5 0.043 99.26 69,0346; 95,0503 Dialdehydic 

decarbo ymethyl elenolic 
acid 

Polyphenol (tyrosol) II 

195.0665 Negative [M-H]- C10H12O4 5.5 0.912 99.88 59.0139; 135.0450; 153.0555 Hydro ytyrosol acetate Polyphenol (tyrosol) II 
241.0717 Negative [M-H]- C11H14O6 5.5 -0.462 99.02 139.0036; 196.7264 Elenolic acid Polyphenol (tyrosol) II 

 



 

 
285.0406 Negative [M-H]- C15H10O6 11.5 0.452 99.59 107.0140; 133.0295; 151.0033; 

175.0400; 199.0404; 217.0501; 
241.0506; 257.0451 

Luteolin Polyphenol (flavonoid - 
flavone) 

II 

319.1187 Negative [M-H]- C17H20O6 8.5 0.089 99.43 59.0139; 69.0346; 85.0296; 
95.0502; 111.0088; 121.0297; 

Oleacein Polyphenol (tyrosol) II 

       155.0713; 183.0663; 195.0675;    

       199.0613    

361.1295 Negative [M-H]- C19H22O7 9.5 0.730 98.15 69.0346; 95.0501; 101.0244; 
111.0088; 127.0401; 259.0976; 

Ligstroside aglycone Polyphenol (tyrosol) II 

       291.0876    

377.1244 Negative [M-H]- C19H22O8 9.5 0.528 97.00 59.0139; 68.9982; 95.0503; 
111.0088; 139.0037; 149.0242; 
275.0913; 307.0826; 327.0875; 

Oleuropein aglycone Polyphenol (tyrosol) II 

       345.0980    

391.1402 Negative [M-H]- C20H24O8 9.5 0.816 99.48 59.0138; 68.9980; 95.0502; 
111.0090; 139.0033; 149.0242; 
275.0910; 321.0980; 340.5735; 

Methyl oleuropein 
aglycone 

Polyphenol (tyrosol) II 

       349.3463    

393.1194 Negative [M-H]- C19H22O9 9.5 0.851 98.51 59.0139; 68.9982; 95.0504; 
109.0659; 137.0607; 181.0507; 
289.1077; 317.1033; 361.0935 

Hydro y oleuropein 
aglycone 

Polyphenol (tyrosol) II 

471.3482 Negative [M-H]- C30H48O4 7.5 0.439 97.46 393.3153; 423.3277 Maslinic acid Isoprenoid (triterpene) II 
121.0650 Positive [M+H]+ C8H8O 4.5 1.392 99.76 65.0395; 77.0394; 79.0549; 

91.0550; 93.0706; 95.0498; 
103.0548; 105.0453 

Acetophenone Ketone II 

137.0596 Positive [M+H]+ C8H8O2 4.5 -0.628 99.68 63.0242; 65.0395; 91.0550; 
119.0496 

3-methylbenzoic acid Carbo ylic acid II 

       67.0550; 79.0551; 81.0707; 2-metho ybenzaldehyde Benzaldehyde II 
       94.0419; 109.0653    

165.0545 Positive [M+H]+ C9H8O3 5.5 -1.034 99.91 133.0289; 137.0600; 147.0441 Dihydro yphenylpropenal Phenylacetaldehyde II 
169.0857 Positive [M+H]+ C9H12O3 3.5 -1.306 99.19 139.0755; 151.0756 Homovanillyl alcohol Polyphenol 

(hydro yphenylalcohol) 
II 

195.0650 Positive [M+H]+ C10H10O4 5.5 -0.796 98.64 125.0602; 153.0549; 167.0708; 
177.0550 

Ferulic acid Polyphenol (phenolic 
acid - hydro ycinnamic 
acid) 

II 

265.0679 Positive [M+Na]+ C11H14O6 4.5 -1.280 99.78  Elenolic acid Polyphenol (tyrosol) IV 
327.1201 Positive [M+Na]+ C17H20O5 7.5 -0.565 98.45  Oleocanthal Polyphenol (tyrosol) IV 
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343.1148  Positive [M+Na]+ C17H20O6 7.5 -1.223 98.77 Oleacein Polyphenol (tyrosol) IV 
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A  B  S  T  R  A  C  T   
 

Ion mobility spectrometry (IMS) has proved its huge potential in many research areas, especially when hy- 
phenated with chromatographic techniques or mass spectrometry (MS). However, focusing on food analysis, and 
particularly in classification and authentication issues, very few applications have been reported. In this study, 
differential mobility spectrometry coupled to mass spectrometry (DMS–MS) is presented for the first time as an 
alternative and high-throughput technique for food classification and authentication purposes using a finger- 
printing strategy. As a study case, 70 Spanish paprika samples (from La Vera, Murcia, and Mallorca) were 
analyzed by DMS–MS to address their classification —using partial least squares regression-discriminant analysis 
(PLS-DA)— and authentication —through soft independent modeling of class analogy (SIMCA). As a result, after 
external validation, complete sample classification according to their geographical origin and excellent La Vera 
and Mallorca sample authentication were reached. 

 
 

 
l. Introduction 

 
In the early 20th century, the first studies using ion mobility spec- 

trometry (IMS) were conducted. However, it was not until the 1970s that 
Cohen and Karasek introduced it as an analytical tool (Cohen & Karasek, 
1970; Karasek, 1974). Since then, and especially in the last two decades, 
this platform has attracted the interest of scientists as a powerful sepa- 
ration technique, owing to its capacity of separating strongly related 
compounds. In IMS, ions are separated in the gas phase based on their 
mobility, which depends on their charge, size, and shape (D’Atri et al., 
2018; Dodds & Baker, 2019; Eiceman, Karpas, & Hill, 2013; Gabelica & 
Marklund, 2018; Kirk, 2019). However, the specific separation mecha- 
nism differs among the different platforms (manufacturer), being 
possible to establish three different categories. (i) Time-dispersive 
techniques, which encompass drift-time ion mobility spectrometry 
(DTIMS) and traveling wave ion mobility spectrometry (TWIMS), 
separate ions based on the time they require to go through the same 
pathway. (ii) Space-dispersive techniques, such as field asymmetric 
waveform ion mobility spectrometry (FAIMS), differential mobility 
spectrometry (DMS), and differential mobility analysis (DMA), rely on 

the different trajectories that ions describe based on their mobility. (iii) 
In ion-trapping with selective release techniques, such as trapped ion 
mobility spectrometry (TIMS), the ions are trapped in a pressurized re- 
gion and are selectively ejected based on their mobilities (D’Atri et al., 
2018). 

In the last years, the interest in the hyphenation of IMS with other 
techniques has spectacularly grown. In this line, ion mobility spec- 
trometry coupled to mass spectrometry (IMS–MS) combines the sepa- 
ration capacity based on the mobility of ions with the structural 
information provided by mass spectrometry. Beyond that, the addition 
of a third separation dimension, such as liquid chromatography (LC), 
opens excellent possibilities for analyzing complex samples. Indeed, 
IMS, as a standalone technique as well as coupled to LC and MS, has been 
extensively used in a wide range of research areas, from biomedical or 
pharmaceutical applications to environmental and security fields 
(Armenta,   Esteve-Turrillas,   &   Alcalà,   2020;   Cossoul   et   al.,   2015; 
Hernández-Mesa, Escourrou, Monteau, Le Bizec, & Dervilly-Pinel, 2017; 
Odenkirk & Baker, 2084; To, Ben-Jaber, & Parkin, 2020). 

In food analysis, where chromatographic techniques (often hy- 
phenated to MS) are still the gold standard for determining a wide range 
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of compounds, from natural components to additives or contaminants, 
IMS begins to be seen as an alternative. Although it can be used as a 
standalone technique, its combination with LC, gas chromatography 
(GC), or MS is usually preferred (Alikord, Mohammadi, Kamankesh, & 
Shariatifar,   2021;   Domínguez,   Frenich,   &   Romero-González,   2020; 
Hernández-Mesa et al., 2019). Until now, IMS has been mainly focused 
on the determination of specific compounds (targeted analysis) (Rue, 
Glinski, Glinski, & van Breemen, 2020; Wang, Harrington, Chang, Wu, & 
Chen, 2020; Will, Behrens, Macke, Quarles, & Karst, 2021), and fewer 
applications have been reported following a fingerprinting approach 
(non-targeted analysis) (Burnum-Johnson et al., 2019; Freire et  al., 
2021; Paglia, Smith, & Astarita, 2021). In this regard, the -omics strat- 
egy has been used basically for authentication and food integrity 
assessment, being DTIMS the preferred mode of IMS (Martín-Gómez & 
Arce, 2021). However, other separation mechanisms, such as space- 
dispersive methods, can also be exploited for fingerprinting analysis 
(Piñero et al., 2020). 

DMS separates the ions based on their differential mobility under the 
influence of a high asymmetric radiofrequency. Under these conditions, 
only those ions with the proper mobility can describe the correct tra- 
jectory to traverse the DMS cell while interferences are deviated into the 
cell walls. A compensation voltage (CoV) is then applied to correct the 
trajectory of the ions letting only target ions enter the mass spectrom- 
eter. The main application of this technique deals with improving the 
method sensitivity by reducing background noise and removing isobaric 
interferences (Bravo-Veyrat & Hopfgartner, 2018; Dempsey, Moeller, & 
Poklis, 2018; Su et al., 2021). However, to our knowledge, DMS, or more 
specifically differential mobility spectrometry coupled to mass spec- 
trometry (DMS–MS), has not been previously used for non-targeted 
analysis in food research. The good reproducibility, speed, and high 
separation capacity of this technique offer an attractive alternative not 
only to those well-established chromatographic methods but also to 
direct MS techniques, such as flow injection analysis coupled to high- 
resolution mass spectrometry (FIA–HRMS) or ambient mass spectrom- 
etry (AMS) (Campmajó, Saurina, & Núñez, 2021; Ibáñez, Simó, García- 
Cañas, Acunha, & Cifuentes, 2015). 

This manuscript aimed at evaluating the applicability of direct 
infusion DMS–MS fingerprinting for food classification and authentica- 
tion purposes, using Spanish paprika samples as a case study. In this 
regard, paprika is a red powdered spice, obtained from red pepper fruits 
of the genus Capsicum (Solanaceae family), widely used because of its 
characteristic organoleptic properties. Currently, only three paprika 
products are registered in Spain with the protected designation of origin 
(PDO) status: Pimentón de La Vera, Pimentón de Murcia, and Pebre bord de 
Mallorca. Although it ensures high-quality products, it also leads to 
higher prices, making them vulnerable to food fraud practices. To date, 
several fingerprinting methods based on LC, with spectroscopic detec- 
tion or coupled to HRMS, have been developed to address paprika 
classification  (Barbosa,  Saurina,  Puignou,  &  Núñez,  2020;  Campmajó, 
Rodríguez-Javier, Saurina, & Núñez, 2021). In this study, the DMS–MS 
fingerprints of 70 paprika samples from La Vera, Murcia, and Mallorca 
PDOs, were used for the first time to classify and authenticate them 
through partial least squares regression-discriminant analysis (PLS-DA) 
and soft independent modeling of class analogy (SIMCA), respectively. 

 
2. Materials and methods 

 
2.1. Reagents and solutions 

 
Regarding the sample treatment, water was purified using an Elix® 3 

coupled to a Milli-Q® system (Millipore Corporation, Bedford, MA, USA) 
and filtered through a 0.22-µm nylon membrane, while UHPLC- 
supergradient acetonitrile was purchased from Panreac (Castellar del 
Vallès,  Spain).  For  DMS  optimization,  technical  grade  acetone  and 
UHPLC-supergradient acetonitrile and methanol obtained from Panreac 
and 2-propanol obtained from Merck (Darmstadt, Germany) were used. 

 
                                 

 
Phenolic compounds used in the DMS optimization were purchased from 
different  suppliers:  quercetin  dihydrate  from  Riedel-de-Haën  (Seelze, 
Germany); chlorogenic acid from HWI Analytik GMBH (Ruelzheim, 
Germany); gallic, homogentisic, and ferulic acids, and vanillin from 
Fluka (Steinheim, Germany); and D-( )-quinic, caffeic, homovanillic, p- 
coumaric, sinapic, and betulinic acids, syringaldehyde, protocatechuic 
aldehyde, and rutin from Merck. 

2.2. Instrumentation 
 

A 5500 Qtrap (AB Sciex, Framingham, MA, USA) mass spectrometer 
with an electrospray ion source (ESI) and the SelexION differential 
mobility separation device (DMS, AB Sciex, Framingham, MA, USA), 
installed between the ionization source and the vacuum interface, was 
used for the analysis of samples. Paprika extracts were directly intro- 
duced for 1.6 min by infusion to the ionizations source at a rate of 5 
µL⋅min−1 using the integrated syringe pump. 

Regarding DMS conditions, the temperature was fixed at 225 ◦C 
(medium), the separation voltage (SV) and DMS offset (DMO) were set at 
2500 V and 3 V, respectively, and the high DMS resolution enhancement 
option was selected. Under these conditions, a CoV ramp (from    10 to 7 
V) was performed. MS detection in negative full-scan MS mode (Enhance 
MS, EMS) was used from 100 to 650 m/z at a scan rate of 1000 Da⋅s−1. 
Nitrogen, used as nebulizer and auxiliary gas, was set at 20, 15, and 
0 arbitrary units for the curtain gas, the ion source gas 1, and the ion 
source gas 2, respectively. Besides, the ion spray voltage (IS) was set at 

4500 V without heating the ion source, and the declustering potential 
(DP) and the entrance potential (EP) were fixed at    100 V and   10 V, 
respectively. Analyst software (version 1.6.2) from AB Sciex was used 
for instrument control and data acquisition. 

 
2.3. SamplesJ sample treatmentJ and sample analysis 

 
In this study, 70 paprika samples belonging to the three Spanish 

regions with the PDO label were analyzed. In this line, 30 La Vera 
samples (10 of each paprika type: hot, sweet, and bittersweet) were 
directly purchased from paprika production companies, and 20 Murcia 
and 20 Mallorca samples (containing half hot and half sweet types, each 
one) were bought in Spanish commercial markets. 

Samples were subjected to an ultrasound-assisted solid–liquid 
extraction  (USLE) method,  previously  described  by Cetó et  al. (2018), 
using water:acetonitrile (20:80, v/v) as extracting solvent. 

Samples were randomly analyzed to reduce the impact of any po- 
tential instrumental drift on the chemometric results. Moreover, a 
quality control (QC) sample, prepared by mixing 50 µL of each paprika 
sample extract, was also analyzed (at the beginning and every ten 
samples) to check for systematic errors along the analysis. 

2.4. Data analysis 
 

2.4.1. Data matrix construction 
Raw data were converted to mzXML format using the MSConvertGUI 

software (Chambers et al., 2012). Then, aiming at constructing a data 
matrix containing DMS–MS fingerprints, data were processed using the 
mzMine 2.53 software (Pluskal, Castillo, Villar-Briones, & Orešič, 2010). 
Firstly, nominal mass detection centroided each mass spectrum acquired 
for a sample, through the “Wavelet transform” algorithm (establishing a 
noise level of 2.0 104, a scale level of 3, and a wavelet window size of 
30%), particularly suitable for noisy low-resolution mass spectrometry 
(LRMS) data. Secondly, using the option of chromatogram builder, 
nominal mass signals found in at least 5 contiguous scans for a sample 
were connected, with a group intensity threshold of 3.0    104, a mini- 
mum highest intensity of 7.0 104, and an m/z tolerance of 800 ppm. 
Thirdly, each ionogram was then deconvoluted into individual peaks, 
using the “Baseline cut-off” algorithm that recognized peaks with a CoV 
duration range between 0.4 and 2.0 V and fulfilling the peak intensity 
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conditions established in the previous step. Fourthly, isotopes were 
removed, considering the most intense isotope as the most representa- 
tive and setting an m/z tolerance of 800 ppm. Finally,  the  random 
sample consensus (RANSAC) aligner matched m/z signals detected 
across samples, establishing a mass tolerance of 1000 ppm, peak CoV 
tolerances of 1.5 and 0.5 V (before and after correction, respectively), 
and a minimum number of points of 80%. In the end, an X-data matrix 
containing DMS–MS fingerprints (ion peak area matrix in which each 
row corresponds to a sample (78 samples) and each column corresponds 
to a variable (203), being a variable a specific ion (specific m/z) 
migrating at a specific CoV) of the studied samples was obtained 
(Table S1). 

2.4.2. Chemometric analysis 
Principal component analysis (PCA), PLS-DA, and SIMCA were car- 

ried out using Solo 8.6 chemometrics software from Eigenvector 
Research (Manson, WA, USA). Details of the theoretical background of 
these chemometric methods are given elsewhere (Massart et al., 1997; 
Wold, 1976). In this paper, we will only make a brief description of the 
most relevant aspects related to our study. 

Independently of the chemometric method employed, an X-data 
matrix was required, consisting of DMS–MS fingerprints. Moreover, data 
were autoscaled before the chemometric analysis to suppress differences 
in each variable’s magnitude and amplitude scales. For such a purpose, 
data were mean-centered and subsequently divided by the standard 
deviation of the corresponding variable according to the following 
expression: 

xi − x 
 

 
                                 

 
decision threshold assessed the sample class membership. Moreover, 
considering that SIMCA calibration models were built with less than 20 
samples, the leave-one-out method was proposed for CV. Finally, as with 
PLS-DA, SIMCA models’ performance was assessed by external 
validation. 

3. Results and discussion 
 

3.1. Selection of the DMS–MS conditions 
 

A mixture of 15 phenolic compounds (namely chlorogenic, gallic, 
homogentisic, ferulic, D-( )-quinic, caffeic, homovanillic, p-coumaric, 
sinapic, and betulinic acids, vanillin, quercetin, syringaldehyde, proto- 
catechuic aldehyde, and rutin), previously identified as possible key 
components for the classification of paprika samples (Barbosa, 
Campmajó, Saurina, Puignou, & Núñez, 2020), was used to set DMS–MS 
conditions. As commented before, this work was not focused on opti- 
mizing the polyphenol separation but on the untargeted analysis of 
paprika samples to obtain characteristic sample fingerprints to 
discriminate samples according to geographical origin and type. 

With this in mind, the polyphenol standard solution (10 mg⋅L-1 each 
compound) was introduced by infusion to the  mass  spectrometer 
through the SelexION differential mobility separation device to establish 
the DMS–MS parameters. Then, a negative full-scan using Q3 in ion trap 
mode (EMS) was recorded from 100 to 650 m/z. Total ion intensity was 
monitored to evaluate MS parameters such as DP and IS, obtaining the 
maximum signal intensity at 100 V and 4500  V,  respectively. 
Following the same criterion, DMS temperature was fixed at 225 ◦C 

xiautoscaled =    s (medium). 
The separation of the polyphenols included in the standard mixture 

where xi autoscaled is the value for variable i after autoscaling, xi is the 
 

 

original value for variable i, and X and s are the mean value and standard 
deviation, respectively. 

A preliminary exploration of DMS-MS fingerprints by PCA assessed 
the behavior of samples and variables. PCA concentrates the relevant 
information of the X-matrix, contained in a large number of experi- 
mental variables, into a reduced number of mathematical  variables 
called  principal  components  (PCs).  PCA  relies  on  decomposing  the 
experimental data matrix into two smaller submatrices of scores (T, with 
coordinates of the samples) and loadings (PT, with the eigenvectors or 
coordinates of the variables). As a result, the scatter plot of scores on PC 
space depicts the sample layout which may reveal similarities and dif- 
ferences among sample characteristics such as origins and varieties. The 
loadings’ plots may figure out the most descriptive variables and their 
correlations. 

The supervised sample classification (according to geographical 
origin and type) was studied through PLS-DA and evaluated after 
external validation through sensitivity, specificity, and accuracy. The 
experimental X-matrix is correlated with the class matrix that encodes 
the sample membership to its class. The classification model is estab- 
lished to obtain the minimum error in the sample assignation to the 
corresponding classes. Here, the optimal number of latent variables 
(LVs) used in each PLS-DA model was established at the first significant 
minimum point of cross-validation (CV) error using the Venetian blinds 
method. Subsequently, the classification performance was assessed by 
external validation using independent test samples. 

SIMCA was proposed for paprika sample authentication. SIMCA re- 
lies on a PCA model constructed using only samples belonging to a given 
class. Hence, a PCA model is obtained, for instance, with la Vera, Murcia, 
or Mallorca samples. Reduced Q residuals and Hotelling T2 values, 
normalized to a 95% confidence limit, were used to calculate the dis- 
tance between a new projected sample and the established PCA sub- 
model. The number of PCs used in the PCA submodel, as well as the 
decision threshold, were optimized in each SIMCA model by maximizing 
the calibration step performance. Then, both the distance and the 

was studied to choose the most appropriate SV. Hence, a ramp of the 
CoV was performed at different SV (from 1000 V to 4000 V, in steps of 
500 V). As a result, the higher the SV, the higher degree of separation 
was observed. However, the signal  intensity  was  strongly  affected 
(Fig. S1), and therefore, as a compromise, an SV of 2500 V was selected 
to analyze paprika samples. 

Additionally, several gas modifiers —namely methanol, acetonitrile, 
2-propanol, and acetone— were evaluated. Volatile reagents introduced 
into the gas flow may interact differently with the ions to form clusters, 
thus modifying their mobility and affecting both separation and signal 
intensity. Hence, the effect of each modifier on the DMS separation of 
the selected polyphenols was studied at low (1.5%) and high (3.0%) 
modifier concentrations. However, no significant improvement was 
observed in any case. Therefore, and considering that this study aimed to 
use a simple method to generate discriminating sample DMS–MS fin- 
gerprints, the addition of a gas modifier was discarded. 

Fig. 1 shows representative DMS–MS fingerprints for a hot La Vera, 
Murcia, and Mallorca PDO paprika sample. Several qualitative differ- 
ences in the ionograms regarding compounds detected and their peak 
intensity can be observed. In this context, Mallorca paprika samples 
presented the most distinctive DMS–MS fingerprints. However, 
remarkable dissimilarities were encountered among La Vera and Murcia 
samples. Therefore, the DMS–MS fingerprints were proposed as chemi- 
cal descriptors for further multivariate chemometric analysis. 

3.2. Non-supervised and supervised chemometric analysis 
 

After the visual inspection of the DMS–MS raw data, a 78 203 
(samples variables) data matrix was constructed following the pro- 
cedure described in Section 2.4.1. Then, PCA was used for an explor- 
atory assessment of the behavior of samples and QCs. Fig. S2 presents 
the PCA scatter plot of scores on the PC2-PC1 (describing 28.06% of the 
variance), where QC samples were in a compact cluster, discarding the 
presence of a systematic error (e.g., a shift in the analytical system) and, 
thus validating the subsequent chemometric results. Mallorca paprika 
samples were located on the top of the plot, displaying positive PC2 
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Fig. l. DMS–MS fingerprints obtained for a hot La Vera, Murcia, and Mallorca PDO paprika sample at SV 2500 V, and MS full-scan spectra at CoV 3.58 V. 

 
values, while La Vera and Murcia ones appeared jointly (Fig. S2A). 
Moreover, the PCA score plot noticed no sample distribution according 
to paprika type (Fig. S2B). 

Once demonstrated the good performance of the analysis, QC sam- 
ples were removed from the DMS–MS data matrix for the supervised 
chemometric classification carried out through PLS-DA, resulting in a 
dimension of 70 203 (samples  variables). Firstly, sample classifi- 
cation according to the geographical origin (La Vera, Murcia, and 

 
Mallorca) was studied. In this context, a PLS-DA model built with two 
LVs (explaining a Y-variance of 58.51%) allowed an apparent distinction 
between the three Spanish regions under study, thus improving the non- 
supervised chemometric results given above. Hence, in the obtained 
scores plot of LV1 vs. LV2, LV2 values allowed the isolation of Murcia 
samples, located at the bottom of the diagram, while the separation of La 
Vera and Mallorca samples (placed on the top of the diagram, displaying 
positive LV2 values) was mainly attributed to LV1 values (Fig. 2A). 

 

 
 

Fig. 2. PLS-DA scores plot of LV1 vs. LV2 obtained for the analyzed paprika samples according to their geographical origin, using DMS–MS fingerprints (A) and 
individual La Vera (B), Murcia (C), and Mallorca (D) PLS-DA models to classify samples according to their type. 
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External validation was carried out to evaluate the ability of the PLS-DA 
model established to classify paprika samples from the three Spanish 
regions distinguished with the PDO label. Thus, 60% of samples were 
randomly stratified and used as the calibration set, while the remaining 
40% were used as the external validation set. As a result, a classification 
rate of 100% was achieved, being [12, 0, 0; 0, 8, 0; 0, 0, 8] the confusion 
matrix for the established PLS-DA model. Please note that rows in the 
confusion matrix correspond to La Vera, Murcia, and Mallorca classes, 
respectively, and columns are given in this same order. Hence, the 12 La 
Vera, the 8 Murcia, and the 8 Mallorca samples were correctly classified 
into their respective classes. 

Additionally, sample classification regarding paprika’s type (hot, 
bittersweet, or sweet) was also evaluated by PLS-DA. In this line, Fig. S3 
contains the plot of scores of LV1 vs. LV2 obtained after assigning each 
sample to its class, considering both geographical origin and type. As can 
be seen, although Murcia and Mallorca paprika samples seemed to follow 
a trend related to the sample type (La Vera samples appeared jointly in 
the plot), the similarities due to the geographical origin prevailed. 
Therefore, to better analyze sample grouping depending on the product 
type, individual PLS-DA models were built for each region under study. 
As a result, as shown in Fig. 2B, DMS–MS fingerprints allowed La Vera 
samples separation according to their type. To our knowledge, this 
separation has only been previously achieved using an untargeted ultra- 
high-performance liquid chromatography coupled to high-resolution 
mass spectrometry (UHPLC–HRMS) method (Barbosa et al., 2020). 
However, the UHPLC-HRMS method required more expensive and 
complex instrumentation than the  method  proposed  here. In addition, 
30 min were needed for analyzing each sample, while only 1.6 min were 
required using the DMS-MS method. Both PLS-DA scatter plots of scores 
of Murcia (Fig. 2C) and Mallorca (Fig. 2D) samples also discriminate 
between their hot and sweet type. However, in this case, no external 
validation could be performed because of the scarcity of samples for 
each class. 

Finally, considering the excellent classificatory results obtained with 
PLS-DA, SIMCA was proposed as a one-class modeling chemometric 
technique to assess the authenticity of the Spanish paprika samples ac- 
cording to their geographical origin based on DMS–MS fingerprints. 
Again, as in the PLS-DA study, DMS–MS data was split into the cali- 
bration  set  (42     203, samples     variables) and the validation set (28 
203, samples     variables). Table 1 shows the number of PCs and the 
decision threshold selected in each SIMCA model, as well as the 
authentication performance in terms of sensitivity, specificity, and ac- 
curacy after the external validation. The developed La Vera and Mallorca 
SIMCA models provided good accuracy results, although specificity and 
sensitivity were more limited. Instead, assignation results were poorer 
with the Murcia SIMCA model. 

A variable selection strategy was applied to improve these results, 
given that the first PCs of the SIMCA model do not necessarily contain 
discriminant information. Thus, a new data matrix was constructed, 
containing only the 10 variables with the highest selectivity ratio among 
the 20 ones with the highest variable importance in projection (VIP) 
values obtained for each paprika geographical origin class in the pre- 
vious PLS-DA model. As a result, considering that some variables were 

 
Table l 

 
                                 

 
simultaneously relevant for two of the studied classes, 42    25 (samples 

variables)  and  28     25 (samples     variables) calibration and external 
validation data matrices were built, respectively. As observed in Table 1, 
the applied variable selection strategy remarkably improved the assig- 
nation accuracy of the SIMCA models in all the cases. In this context, 
excellent results were obtained for La Vera (assignation rate of 92.9%) 
and Mallorca (assignation rate of 100.0%) authentication because of an 

enhancement in the specificity and sensitivity results, respectively, 
when using the reduced data matrix. Instead, although better assigna- 
tion performance was achieved in the Murcia SIMCA model due to good 
specificity values, poor sensitivity values were obtained. 

4. Conclusions 
 

As commented before, LC or GC, often coupled to MS, is the preferred 
separation technique when dealing with classification  or authentication 
in food analysis. The separation capacity of IMS to separate closely 
related compounds is well-known; however, not much research has been 
done using this technique for dealing with food classification or 
authentication issues. In fact, from our point of view, considering the 
separation potential of this technique, there is still a long way to go. 
Separations by IMS, and more specifically by DMS, offer faster and 
greener alternatives to the widely used LC counterpart. With this in 
mind, the applicability of DMS–MS was evaluated in this manuscript. It 
is worth highlighting the short analysis time required for sample anal- 
ysis (1.6 min per sample). From the results obtained, we conclude that 
this technique was satisfactorily applied for the first time to a food 
classification and authentication issue through a fingerprinting 
approach combined with chemometrics. With such a purpose, 70 
paprika samples from the three Spanish regions distinguished with the 
PDO label (La Vera, Murcia, and Mallorca) were used as a case study. 
Sample classification according to geographical origin and type was 
achieved by subjecting DMS–MS fingerprints to PLS-DA. In this context, 
in the first case, a classification accuracy of 100% was reached after 
external validation. Moreover, SIMCA results proved the ability of 
DMS–MS fingerprinting to authenticate La Vera and Mallorca paprika 
samples, especially after applying a previous variable selection strategy. 
Therefore, with this study, DMS–MS has been demonstrated to be a 
reliable high-throughput alternative to other currently applied 
techniques. 
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Martín-Gómez, A., & Arce, L. (2021). Ion Mobility Spectrometry to Assess Food 
Authenticity and Integrity. In Chromatogr. Relat. Sep. Tech. Food Integr. Authent. (pp. 
105–135). WORLD SCIENTIFIC (EUROPE). https://doi.org/10.1142/ 
9781786349958_0005. 

Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., de Jong, S., Lewi, P. J., & 
Smeyers-Verbeke, J. (1997). Handbook of chemometrics and qualimetrics (first 
edition). Amsterdam, The Netherlands: Elsevier Science. 

Odenkirk, M. T., & Baker, E. S. (2020). Utilizing Drift Tube Ion Mobility Spectrometry for 
the Evaluation of Metabolites and Xenobiotics. Methods in Molecular Biology (New 
 orkJ N J United States)J 2084, 35–54. https://doi.org/10.1007/978-1-0716-0030-6_ 
2 

Paglia, G., Smith, A. J., & Astarita, G. (2021). Ion mobility mass spectrometry in the 
omics era: Challenges and opportunities for metabolomics and lipidomics. Mass 
Spectrometry Reviews. https://doi.org/10.1002/mas.21686 
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Arce, L. (2020). Chemical fingerprinting of olive oils by electrospray ionization- 
differential mobility analysis-mass spectrometry: A new alternative to food 
authenticity testing. Journal of the American Society for Mass SpectrometryJ 31, 
527–537. https://doi.org/10.1021/jasms.9b00006 

Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular 
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3.3. DISCUSSION 
 

The publications contained in this chapter expand the application of metabolomic 

fingerprinting approaches to fraud cases involving nuts, hen eggs, paprika, red wine, 

and olive oil. As done in Chapter 2, this discussion section complements the already 

presented scientific results with a general comparison and analysis. In this line, the 

studies analysing the same food samples are first compared, followed by a discussion 

regarding the different fingerprinting methodologies used in this thesis. 

Nevertheless, before discussing some details of the obtained results, it is remarkable 

to mention that since it is impossible to cover the entire metabolome and despite the 

non-targeted nature of the developed methodologies, most of the sample extraction 

and instrumental conditions were oriented to favour the detection of phenolic and 

polyphenolic compounds and their derivatives. The fact that, as previously described, 

these compounds are abundantly found in plant-based food products and have already 

been successfully proposed as potential markers in multiple fraud issues motivated 

this decision [27,28]. 

Therefore, for instance, Publications IV, VI, and VIII describe the analysis of nuts 

through non-targeted LC-UV, LC-FLD, and LC−HRMS methodologies, 

respectively. Thus, these studies aimed to achieve the nut type classification and, in 

some cases, the detection and quantitation of almond-based products adulteration 

with other nuts (i.e., hazelnut or peanut). Thus, the applied sample treatment, 

consisting of an SLE extraction with acetone:water (70:30, v/v) followed by a 

defatting step with hexane, was optimised in Publication IV and subsequently 

implemented in the other studies. In particular, the selection of the extracting solvent 

was based on the measured total chromatographic peak area in the acquired LC-UV 

chromatograms at an absorption wavelength of 280 nm (corresponds to the maximum 

absorption wavelength of several phenolic classes such as hydroxybenzoic acids, 

flavanols, or flavanones). Hence, this parameter was established to estimate the 

extracted phytochemical content. Furthermore, the same chromatographic separation 
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conditions —C18 stationary phase column and acidified water with 0.1% formic acid 

(v/v) and methanol as the mobile phase components— were used in each case. 

Regarding the chemometric analysis, comparison of the discriminant ability of each 

acquired chromatographic fingerprint is herein carried out through the results 

obtained after external validation of the built multi-class PLS-DA model (60% of 

samples for calibration and 40% for external validation), which includes the ten nut 

types analysed. These results were not previously provided in Publications IV and VI 

but were calculated for this discussion. Thus, 46.7%, 98.3%, and 100% classification 

accuracies were reached for LC-UV, LC-FLD, and LC−HRMS fingerprinting data, 

respectively. Besides, Table 3.2 provides each case’s sensitivity and specificity 

values. While excellent classification was achieved for LC-FLD (only one walnut 

sample was misclassified as macadamia nut) and LC−HRMS data, poorer results 

were obtained in the case of LC-UV fingerprints. 

Table 3.2. External validation results —sensitivity (%) and specificity (%)— obtained 

through the developed multi-class PLS-DA models (comprising the ten analysed nut types) 

using the LC-UV, LC-FLD, and LC−HRMS fingerprinting data. 
 

LC-UV LC-FLD LC−HRMS 

 
 
 
 

nut 
 
 
 
 
 

seed 
 
 
 

Therefore, focusing on LC-UV fingerprinting, the low classification accuracy could 

be attributed to the strong influence of walnut and sunflower seed classes in the multi- 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
Almond 8.3 81.3 100.0 100.0 100.0 100.0 
Cashew nut 0.0 100.0 100.0 100.0 100.0 100.0 
Hazelnut 25.0 98.1 100.0 100.0 100.0 100.0 
Macadamia 100.0 96.4 100.0 98.2 100.0 100.0 

Peanut 87.5 100.0 100.0 100.0 100.0 100.0 
Pine nut 75.0 82.1 100.0 100.0 100.0 100.0 
Pistachio 0.0 100.0 100.0 100.0 100.0 100.0 
Pumpkin seed 37.5 80.8 100.0 100.0 100.0 100.0 
Sunflower 100.0 100.0 100.0 100.0 100.0 100.0 

Walnut 100.0 100.0 75.0 100.0 100.0 100.0 
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class chemometric model. Therefore, in this discussion, to maximise the 

classification ability of these chromatographic fingerprints and considering that the 

PLS-DA performance improves when a few classes are studied, the classification 

decision tree shown in Figure 3.1 is proposed. As a result, an overall classification 

accuracy of 95% was reached (only 3 samples out of 60 were misclassified), proving 

that LC-UV fingerprints can also be excellent chemical markers for nut classification 

when following the proposed strategy. 

Furthermore, aside from the global chemometric classification of nuts, Publications 

VI and VIII also dealt with the detection and quantitation of almond-based products 

(i.e., almond flour and almond custard cream) adulterations with hazelnut or peanut. 

However, while LC-FLD fingerprinting was employed in Publication VI, targeted 

LC−HRMS profiles focusing on specific chemical markers were used instead of 

fingerprints in Publication VIII. In both cases, the PLS prediction of the level of 

adulteration provided errors (RMSEP values) below 10%. Furthermore, although the 

custard cream is a fatter food matrix than the flour, no significant differences between 

the corresponding prediction results were observed either through LC-FLD 

fingerprints or the LC−HRMS profiles. 

In contrast, Publication V evaluated the ability of LC-UV fingerprinting, combined 

with chemometrics, to address the classification of hen eggs according to their 

production system (i.e., eggs from cage hens, barn hens, and free range hens, and 

organic eggs). In this study, after a straightforward sample extraction with 

acetonitrile:water (80:20, v/v), a 35 min-chromatographic separation was carried out. 

In this line, previous optimisation of the chromatographic separation was done, 

aiming to achieve rich LC-UV fingerprints. Similarly, different absorption 

wavelengths were considered for the UV detection (i.e., 250, 280, 310, 370, and 550 

nm), 250 nm being the one providing the best conditions. 



 

 
 
 

CLASSIFICATION 

DECISION TREE 

 
 

Figure 3.1. Flowchart of the designed decision tree for the classification of nuts through LC-UV fingerprinting, built using PLS-DA models 

as the rule node. Data matrices dimensions and LVs used to construct the calibration models are detailed. 
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Concerning the chemometric analysis, Publication V contained the external 

validation results obtained for three two-input PLS-DA models built using the LC- 

UV fingerprints in which higher-class eggs were evaluated in front of lower-class 

ones. Nevertheless, although classification accuracy values for each model were 

provided, no general classification results were given. In this context, to complement 

the results shown in Publication V, Table 3.3 presents the external validation values 

obtained after sample classification following the classification decision tree 

consisting of 1) organic hen eggs vs. others, 2) cage hen eggs vs. others, and 3) barn 

hen eggs vs. free range hen eggs. As a result, an overall classification accuracy of 

84.3% was obtained, with complete distinction of organic hen eggs and satisfactory 

results for cage, barn, and free range hen eggs. 

Table 3.3. External validation results after carrying out the proposed classification decision 

tree, based on PLS-DA models, for the assessment of hen eggs production system through 

LC-UV fingerprinting. 
 

 Sensitivity Specificity 
Cage hen eggs 87.5 97.7 
Barn hen eggs 78.9 93.8 
Free range hen eggs 87.5 85.3 
Organic hen eggs 100.0 100.0 

 
 

Finally, Publications VII, IX, and X analysed paprika samples through non-targeted 

LC-FLD, FIA–HRMS, and DMS–MS, respectively. In each case, samples were 

extracted following the procedure previously employed in Publication I, which 

consisted of an SLE with water:acetonitrile (20:80, v/v) as the extracting solvent. 

Different sample sets were analysed in each publication due to sample availability; 

therefore, no chemometric comparison between them can be carried out. 

Nevertheless, regarding the paprika geographical origin, excellent classification 

results were obtained with each of the proposed fingerprinting methods. 

Furthermore, focusing on La Vera paprika samples, their complete classification 

concerning their types —hot, bittersweet, and sweet— had only been reached before 
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through a non-targeted LC–HRMS method by Barbosa et al. [29]. Thus, in this thesis, 

while for instance low-level data fusion FIA–HRMS fingerprinting did not allow 

distinguishing between La Vera types (Figure 3.2.A), only DMS–MS fingerprinting 

discriminated them (Figure 3.2.A). Thus, according to the results, separation before 

MS (either by LC or IMS) is required to distinguish between the three La Vera flavour 

types. This fact may indicate that isomeric compounds could be responsible for these 

differences. 
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Figure 3.2. PLS-DA model of La Vera paprika samples according to their type, obtained 

through A) low-level data fusion FIA–HRMS fingerprinting or B) DMS–MS fingerprinting. 

Therefore, the results presented in this chapter have demonstrated the huge potential 

of non-targeted chromatographic- and mass spectrometric-based methods to assess 

different food fraud issues. In particular, three different types of fingerprints have 

been proposed: 1) chromatographic fingerprints acquired with spectroscopic data, 2) 

non-targeted LC–HRMS data, and 3) direct MS-based fingerprinting. Each of them 

presents several advantages. Thus, for instance, chromatographic methods with 

spectroscopic detection systems are generally less expensive (i.e., both in terms of 

initial purchase and maintenance), more user-friendly, and easier data handling 
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procedures. Instead, despite its high costs, non-targeted LC–HRMS provides 

exceptional discriminant ability, mainly due to its high sensitivity and selectivity. 

Moreover, it can also allow the identification of markers that could be further 

determined through subsequent targeted analysis. Finally, direct MS-based 

fingerprinting methods' high throughput and speed are their most significant assets. 

Nevertheless, the instrument-dependence of non-targeted chromatographic and mass 

spectrometric methods (e.g., variability inherent to the chromatographic separation 

and the detection system) is nowadays their main limitation, impeding their 

application in routine analysis. In this context, research seems to go in this direction 

in the following years [30,31]. 
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In the present thesis, several food fraud cases, including different food products 

(paprika, nuts and seeds, hen eggs, vegetable oils, and red wine) and issues 

(assessment of the botanical origin, geographical origin, production system, and 

product quality), have been evaluated through metabolomic profiling and 

fingerprinting approaches. 

In this context, the following conclusions can be drawn from the experimental studies 

presented. 

 
 

Regarding the metabolomic profiling approaches: 
 

A total of 36 phenolic compounds belonging to different classes were determined by 

LC–MS/MS in paprika samples. 

• Among the targeted compounds, 20 were detected and semi-quantified in the 

111 paprika samples under study (16 being present in all of them). 

• The phenolic profile allowed excellent sample classification according to the 

corresponding geographical origin through PLS-DA. 

Paprika samples were analysed by LC−HRMS, using APCI as the ionisation source, 

to determine their capsaicinoid and carotenoid profile. 

• After the semi-quantification of the targeted compounds, it was observed that 

the capsaicinoid content was strongly associated with the flavour paprika 

type. In contrast, carotenoid content could be related to the country of origin. 

• A PLS-DA classification decision tree assessed the samples’ geographical 

origin and flavour type, reaching an overall classification accuracy of 80.9% 

after external validation. 

According to the obtained results, the phenolic profile proved to be a better chemical 

descriptor than the capsaicinoid and carotenoid one to address the paprika 

geographical origin. 
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Concerning the metabolomic fingerprinting approaches based on liquid 

chromatography with spectroscopic detection: 

Nut and seed samples of ten different types were analysed through non-targeted LC- 

UV and LC-FLD methods. 

• Although the LC-UV fingerprints (280 nm as the excitation wavelength) 

were richer in peak features than their LC-FLD counterparts (280 and 350 

nm as the excitation and emission wavelengths), better descriptive 

performance was obtained in the latter case, which may be due to its more 

selective detection of highly relevant chemical descriptors. 

• Using LC-UV fingerprinting, a classification decision tree was built to 

optimise sample PLS-DA classification. As a result, 95% of the samples were 

correctly classified after external validation. 

• Instead, after external validation, a single multi-class PLS-DA model, built 

using non-targeted LC-FLD data, reached a classification accuracy of 98.3%. 

• Moreover, LC-FLD fingerprinting was also successfully applied to detect 

and quantitate the adulteration of almond-based products with hazelnut or 

peanut by PLS. 

The geographical origin of paprika samples was addressed using the acquired LC- 

FLD fingerprints. 

• LC-FLD fingerprints were subjected to a PLS-DA classification decision tree 

for geographical origin classification. As a result, an accuracy of 97.9% was 

reached after external validation. 

• Detection and quantitation of different paprika geographical blend scenarios 

by PLS provided external validation and prediction errors below 1.6% and 

10.7%, respectively. 

LC-UV fingerprinting was proposed to assess the classification of hen eggs according 

to their production system (i.e., organic, free range, barn, and cage hen eggs). 
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Chapter 4. Conclusions 
 
 
 

• LC-UV fingerprints, acquired using 250 nm as the excitation wavelength, 

proved their excellent ability to effectively classify organic hen eggs from 

lower priced ones by PLS-DA completely. Moreover, an overall 

classification rate of 84.3% was obtained through a classification decision 

tree and after external validation. 

 
 

About the metabolomic fingerprinting approaches based on LC–HRMS: 
 

A non-targeted LC–HRMS method was used to classify nut and seed samples and 

tentatively identify the discriminant molecular features. 
 

• The discriminant ability of the obtained LC–HRMS fingerprints was proved 

by achieving the complete sample classification through a multi-class PLS- 

DA model. 

• A total of 136 molecular features —corresponding to the chemical 

differences between nut types according to the VIP scores— were tentatively 

identified and annotated. 

A targeted LC–HRMS method, focusing on some of the previously found markers, 

was used to detect and quantitate almond-based products adulteration with hazelnut 

or peanut. 

• PLS allowed the prediction of blend percentages with errors below 10%, 

proving the validity of the proposed chemical descriptors. 

 
 

Regarding the metabolomic fingerprinting approaches based on direct MS- 

based techniques: 

The authentication and classification of different food products were assessed by 

means of FIA–HRMS. 
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Chapter 4. Conclusions 
 
 
 

• A fast and high throughput method was proposed to analyse several food 

matrices, including red wine, paprika, and vegetable oils. 

• Different data matrices —negative ionisation FIA–HRMS fingerprints, 

positive ionisation FIA–HRMS fingerprints, low-level FIA–HRMS 

fingerprints, and mid-level FIA–HRMS fingerprints— were evaluated. 

• While no clear characteristic patterns due to geographical features were 

observed for red wine samples in the chemometric study, an excellent 

distinction was observed for the other food products analysed. Thus, 

compositional FIA–HRMS fingerprints of paprika differed considerably 

according to their geographical origin, while vegetable oils did it according 

to their botanical origin and, particularly, olive oils to their quality. 

Non-targeted DMS–MS was evaluated as a high throughput method for assessing 

paprika’s geographical origin. 

• DMS–MS was applied satisfactorily for the first time to a food classification 

issue following a fingerprinting approach. 

• The complete classification of paprika samples belonging to the three 

Spanish regions distinguished with the PDO label was reached through PLS- 

DA. 

• DMS-MS fingerprints also distinguished the flavour types within a specific 

region. 

 
 

Finally, overall, it can be concluded that both metabolomic profiling and 

fingerprinting approaches, through the analytical techniques herein proposed, have 

great potential to address a diverse set of food fraud issues (e.g., mislabelling related 

to the species origin, the geographical origin, the production system, or the product 

quality). Nevertheless, further research about validating chemometric models and the 

inter-laboratory transference of fingerprinting methods is still required to establish 

standardised guidelines for their use in routine analysis. 
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