Gravitational lensing on a binary mass lens: caustics and critical lines
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Abstract: LIGO and Virgo interferometers have been able to detect gravitational waves resulting
of the energy loss experienced by two compact objects orbiting around their common center of mass.
When encountering massive objects, these gravitational waves can experience gravitational lensing
while propagating through the Universe. This could lead to distortion effects encoded inside the
detected signal, which means that one would have to consider these effects in order to obtain correct
results. In this work, we want to study the gravitational wave lensing by a binary system, setting
the bases for a future research of this effect near caustics and its application in gravitational wave

detection.
I. INTRODUCTION

Gravitational waves (GWSs) are disturbances in space-
time caused by accelerated massive objects. Although
they have been an object of study since Albert Einstein’s
General Theory of Relativity, interferometers have only
recently been able to detect them, due to their extremely
small effect. The first direct observation of GWs was
made on September 14, 2015 [1]. Since then, 90 events
have been detected and a new observing run has recently
started.

What is important in our study is the fact that GWs
can be affected by the geometry of spacetime. As the
GW propagates through the Universe, the masses along
its way change the curvature of spacetime, which results
in the wave getting distorted. This phenomenon is called
gravitational lensing [2]. Our interest lies in the case
where the lenses are two point masses: the binary lens.

Although gravitational lensing by GWs is now getting
more attention, most studies are dedicated to the gravi-
tational lensing of light. This has become an active field
in astronomy [3, 4]. For example, it allows us to calculate
the Hubble constant using the time delay between mul-
tiple images of a quasar, once the lens mass has been ob-
tained from the location and shape of the images. What
makes gravitational lensing of light so interesting is its
effects, such as magnification or multiple imaging. Ob-
serving these effects gives us information about the cos-
mological parameters and the large scale structure distri-
bution in the Universe. It also allows us to measure the
amount of matter in the Universe and its spatial distri-
bution at different scales. Gravitational lensing of light
is also used to search for compact dark objects and as
a way to get some insight into the dark matter problem
[3, 4]. We expect that gravitational lensing of GWs could
be useful to detect non-emitting objects that curve the
path of the waves, causing some of the effects mentioned
above. There is also a possibility that the matched filter-
ing technique used to retrieve the characteristic parame-
ters of the objects involved in the merger, which does not
take into account gravitational lensing, could be leading
to slightly mistaken results.

In this work, we will first discuss the basic concepts
concerning gravitational lensing in Sec. II. In Sec. III, we
will talk about the magnification effect experienced by
a gravitationally lensed source and the directions along
which this magnification diverges: the caustics. Then,
we will briefly introduce the lens equation of the binary
lens model and the possible outcomes of its resolution
in Sec. IV. In Sec. V, we will talk about the numerical
method we have used to obtain the magnification of the
source and the lens plane, and the steps we have followed
to program it. In Sec. VI, we will explain how we have ob-
tained the transmission factor and its use in future work.
Finally, in Sec. VII, we will review the most important
aspects of the work and we will discuss the future of this
project.

II. GRAVITATIONAL LENSING

An important parameter in gravitational lensing is the
Einstein angle. When the source, the lens and the ob-
server are aligned within approximately the Einstein an-
gle g = Rg/Dy, we expect the lensing effects to be
significant. Here, the Einstein radius Rg is given by [2]

DpDprs
Rg =4/2Rg Ds
where Rg is the Schwarzschild radius of the lens, Dy,
Dy s and Dg are the distances between the observer and
the lens, the lens and the source, and the observer and the
source, respectively. The Einstein radius will be useful
in order to work with dimensionless expressions.

The gravitational deflection of waves can be described
by a mapping from the lens plane to the source plane. In
the absence of a lens, an observer would see the source
at a position 3 (in angular units). In contrast, when the
lens deflects the wave, the observer sees the source at a
position g. Given that the source’s image position orig-
inates in the lens plane, we will often refer to it as the
image plane. The equation that gives us the relation be-
tween the source’s true position and its observed position
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is called the lens equation [5]-[8]:
B=60-a@).

For simplicity, we will be using the dimensionless form of
the above equation,

j= & a(@), (1)

where Z = 0/05 and 7 = (/0.

The propagation of electromagnetic and GWs when
the effect of lensing on polarization is negligible, can be
described by a scalar wave equation [9]. This allows us to
treat the GWs as scalars for the wave equation, instead
of treating them as tensors. We will also consider the
thin less approximation, which says that if the size of
the lens is small compared to the cosmological distances
travelled by the wave, we can neglect the extension of
the lens along the line of sight in the calculation of the
wave’s deflection. This occurs in the so-called lens plane
[2].

The gravitational lensing of light has been extensively
studied [3]-[5], [7]-[11]. We can take advantage of the de-
veloped formalism to use it for the gravitational lensing
of GWs. However, we must take into account the dif-
ferences between electromagnetic (EM) waves and grav-
itational waves. In the case of EM waves, we can use
the geometrical optics (GO) limit, since the wavelength
is small in all observational situations. Instead, the GO
approximation is not always valid for GWs due to their
large wavelengths. Moreover, GWs propagate through
matter with nearly no absorption, which means that we
receive them only distorted by the gravitational lensing,
while electromagnetic waves experience a large amount
of absorption by galaxies and dust, so plenty of informa-
tion is lost along the way. Because of that, the wave optic
effects for GWs are more substantial than those for EM
waves.

III. CAUSTICS

Caustics can be encountered on a daily basis. Whether
it is in a glass of water or on the surface of a swimming
pool (Fig. 1), everyone has seen these bright curves de-
spite not knowing their actual name. In those cases, wa-
ter is acting as a magnifying glass, creating these bright
patterns because of the refraction and reflection taking
place on the water waves. An analogous thing happens

FIG. 1: Caustics on a swimming pool.
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with gravitational waves. To have a better understanding
of these curves, we will introduce some formulas.

The Jacobian of the mapping between the source and
the lens plane is given by [5, §]

oy
oF’
The source will experience magnification by the effect of
gravitational lensing. This is due to the area distortion

of the lens mapping, which is given by the inverse of the
Jacobian. Then, for an image at &, the magnification is

[5]

J(#) =

. 1
@) = T @

For a more rigorous explanation, caustics are the direc-
tions in the source plane along which the amplification
diverges, i.e. detJ(Z) = 0 [3]. When a source crosses
these curves, additional images appear or disappear. The
images of the caustics are called critical lines. Caustics
are of great interest to us because when additional im-
ages appear, they do so on the critical line, attaining in-
finite magnification (in practice, the magnification does
not diverge due to diffraction). This magnification im-
plies a distortion of the wave in the frequency domain,
which ends up affecting what is being detected.

For the binary lens, the expected behaviour is the fol-
lowing [8]. When the separation between the two lenses
is bigger than (m}/2 + mé/2)3/2, there are two separate
extended caustics. For smaller distances, but bigger than
(mi/g—l—mé/g)_?’/‘l, there exists one caustic with six cusps,
which are points where the caustics are not smooth. For
smaller separation, there are three caustics: two are tri-
angularly shaped, and the other one resembles an astroid
with four cusps. The behaviour explained above will be
confirmed by numerical calculations in Sec. V.

IV. BINARY LENS

It is convenient to define an Einstein radius for a mass
equal to the sum of the two point masses, M = M; + M.
We can write the reduced deflection angle as [5]-[8]:

= 6% . 0% -
a(e):mlﬁ(a_ 1)+m2 _’ 2( _92)
g, (9—92‘

We have set mq = My /M and my = My /M in the above
equation. The dimensionless lens equation (1) for a bi-
nary system then reads

mi

j=7- (7 — i) +

|7 — i
In what follows, to speed up numerical calculations we
use the lens equation in terms of complex numbers [3, 12]

zg =2 — Mmoo T2 (3)

* * * *
T — 2 27— 29
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where z = x7 + ix5 is the position on the lens plane,
zs = Y1 + 1ys is the position on the source plane, and z*
denotes the complex conjugate of z.

This lens equation can be reduced to a fifth-degree
complex polynomial equation [3]. Solving this equation
will lead to finding the multiple images of a source at zg.
The three possible cases are:

e A source outside the caustics has three images, two
inside the critical lines, and one outside.

e A source on the caustic implies two additional im-
ages on the critical line. This means that the im-
ages have infinite magnification.

e A source inside the caustics has five images.

The latter case is shown in Fig. 2.
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FIG. 2: Upper figure: representation of the critical lines on
the image plane (continuous line), the two lenses (crosses)
and the five images (blue circles). Bottom figure: plot of the
caustics (red) and the source on the source plane. The lenses
have a mass of M = M.

V. NUMERICAL METHOD

The method used to obtain the magnification maps of
the source and the lens plane is called the inverse ray
shooting method [7, 10, 11]. Using this method, one can
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map an area of the lens plane onto the source plane using
the lens equation for arbitrary mass distribution. The
rays sent from the lens plane are then collected in the
source plane. In particular, we will obtain the magnifi-
cation at a pixel in the source plane as the sum of rays
that hit that pixel, up to a scaling factor. After that, we
can obtain the magnification in the lens plane by tracing
back the rays and assigning their pixel’s magnification in
the source plane to their corresponding pixel in the lens
plane.

The code consists of the following steps. First of all, we
create the image plane grid, a square-shape area divided
into n2 pixels. For this purpose, we define the image
plane length (x;) and the size of each pixel (zs). The
lens plane will then extend from —z; to x;, in both of its
directions. We then proceed to find the coordinates of
the centre of each pixel.

It is also crucial to define the lenses that we are going
to use. We must assign a mass to the first lens, define
the mass ratio between the two lenses and choose the
distance between them. For this study, we have chosen
a binary system of two equal point mass lenses, and we
have varied the distance between them to see its effects
on the magnification, caustics and critical lines. Since the
choice of the reference frame is arbitrary, we have chosen
that the real axis passes through the two lenses, and have
set the position of the second lens to zo = —z;. That way,
we must only define the distance between the two lenses
instead of their respective positions in the image plane.

We can now send a ray backwards from the centre of
each of the pixels using the lens equation (3) to calculate
the deflection. This will give us the position in the source
plane at which the rays arrive. At this point, we can
define the source plane length (y;) and the size of each
pixel (ys) in order to maximize the area at which rays hit.
The next step is to determine the pixels corresponding to
each of the coordinates in the source plane at which rays
hit. This is the most demanding part of the algorithm.
We can create the source plane magnification array (of
the same size as the source plane array) in which we will
save the values of the magnification at each pixel. In
order to calculate this value, for each time a ray hits a
specific pixel, we will sum 1 to the square representing
this pixel in the source plane magnification array. In the
end, we will have an n, x n, (number of pixels in the
source plane) matrix with the value of the magnification
at each pixel in the source plane.

We must take into account the scaling factor associated
with the method: f,. = a7 /n2-x2. The final value of the
magnification is obtained by multiplying the magnifica-
tion array by this scaling factor. It is useful to visualize
this magnification in a density plot.

It is in our interest to also determine the magnification
in the lens plane. To do so, we trace back the rays and
assign the value of the magnification in the pixel at which
they hit the source plane to the pixel from which we have
sent the rays. An example of our simulation can be seen
in Fig. 3.
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FIG. 3: Magnification of the source plane for a binary system with two masses of M = 1M ® and separation between the two
masses of d=2, d=1 and d=0.7 (in units of the Einstein radius), from left to right. The magnification has been obtained by

our code in Python. The caustics are in agreement with Ref. [8].

We can also see in Fig. 4 that using the suitable pa-
rameters, we can retrieve the expected result for a point
mass lens: an Einstein ring.

VI. TRANSMISSION FACTOR

The transmission (or amplification) factor in the geo-
metrical optics limit takes the form [13, 14]

Fao(w, ) =Y _ |ujl"? exp [iwT; —imns],  (4)
J

where we sum over the j images and n; =0, 1/2, 1 when
Z; is a minimum, saddle or maximum point of the time
delay, respectively. We have used the dimensionless fre-
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FIG. 4: Magnification on the lens plane for a point mass lens,
using our algorithm with a distance between the two masses
of zero (in units of the Einstein radius).
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quency w, defined by [14]

Dy Ds
LS

w
w = E(1+ZL) 0%, (5)
where zy, is the redshift of the lens and w is the GW
frequency. The dimensionless time delay is given by

@) = 5 - 0@ ol ()
where (&) is the dimensionless deflection potential and
¢m () is the arrival time for the ray with minimum delay.
Accordingly, the minimum value of the time delay is zero.
We can write the dimensionless deflection potential of a
binary lens as [7]

-

]

d
(&) =myIn :?—5 +meln|Z+ <], (7)

[\

where d is the separation of the lenses in units of Rg.

We can see from Fig. 5 that using our algorithm and
imposing a separation between the two masses of d = 0,
i.e. imposing a point mass lens, we retrieve the expected
results for a point mass lens [15].

VII. CONCLUSIONS

We have studied the lensing properties of a binary mass
system. We have created a program to calculate the mag-
nification on the source and the lens plane, using the in-
verse ray shooting method (IRS). The program is able
to calculate the magnification once we have specified one
of the masses, the mass ratio and distance between the
masses, and the size of the planes (specifying the number
of pixels). It also plots the caustics and critical lines. The
results agree with those in the bibliography. Moreover,
we can reproduce the expected results for a point mass
lens with the same algorithm.

Finally, we have created another program which cal-
culates the transmission factor in the geometrical optics

Barcelona, June 2023
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FIG. 5: Absolute value of the transmission factor for different
frequencies, for a binary lens with separation d=2.4 and a
point mass lens (binary lens with d=0) and the source position
y= 1+1\({§i‘

limit. For that, we have needed to calculate the delay
time, the dimensionless deflection potential, as well as
knowing if each of the images of the source were a mini-
mum, a maximum or a saddle point of the time delay. To

validate the algorithm, we have studied the limit when
the distance between the masses goes to zero, and we
have obtained the expected results for the point mass
lens, i.e., equally spaced frequency peaks for the trans-
mission factor.

The main point is: wave effects are important when
the wavelength of the gravitational wave is of the order
of the Schwarschild radius. In this limit, neglecting them
will induce an error in our results, since the GO approx-
imation will be no longer valid.

The next step would be calculating the signal to noise
ratio by Fourier transforming the product of an unlensed
waveform and the transmission factor. Then, we could
study what happens exactly near caustics and, since the
geometrical optics limit stops being suitable in that case,
to look for a better approximation in order to understand
the real effect of the magnification there and use it as an
astrophysical tool. Tintend to continue with this research
in my Master’s thesis.
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