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(anti-)dSITTER
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Abstract: In this work we discuss a precise derivation of shadows for spherically symmetric
black holes. A brief overview of the historical Synge solution is also provided, along with a
detailed explanation of the modern methodology that can be used with more complex metrics. The
methodology will then be applied to some of the most significant black hole solutions. (Schwarzschild
& Reissner-Nordström dSitter).

I. INTRODUCTION

Since the discovery of General Relativity, Black Holes
(BH) have garnered considerable attention within the
scientific community. These objects that are massive
enough to curve space-time to the point where not even
light can escape its gravitational pull, were initially
regarded as purely abstract mathematical solutions,
devoid of physical manifestation. Over time, however,
the concept of their actual existence grew in credibility,
culminating in the seminal work by Penrose, wherein
he established, through his renowned paper, the
inescapability of Black Holes within the framework of
General Relativity [1].

The scientific community now generally accepts the
existence of black holes, and research into them has
made substantial progress as a result of advancements in
measurement equipment (such as LIGO and the Event
Horizon Telescope). Moreover, there has been a lot of
expectation in the media as a result of recent publishing
of the first image of a black hole [2]. This event has
also shown that black holes may be studied not only
through indirect methods, like gravitational waves or
Doppler effect, but also through more direct methods like
shadows, which can be useful to quantify the magnitudes
from the black hole and even from space-time itself.

II. SYNGE’S SOLUTION

In 1965, Synge [3] published the first in-depth
explanation of what is now known as a “Black Hole
Shadow”. Since they are the same entity, even though he
spoke about gravitationally intense stars, his derivation
is entirely valid. His starting point was the standard
Schwarzschild in dimensionless spherical coordinates (i.e.
ρ ≡ r/2m and τ ≡ t/2m), which is written as

ds2 = 4m2[(1− ρ−1)−1dρ2 + ρ2(dθ2 + sin2 θdϕ2)

− (1− ρ−1)dt2].

The spherical symmetry of the solution permits the

establishment of a constant value for ϕ without sacrificing
generality. By taking the second derivative with respect
to an affine parameter for both sides of the metric
equation and applying the condition that

ṡ2 ≡
(
ds

dλ

)2

= 0 ,

for a null geodesic, light rays trajectories must fulfill

(1− ρ−1)−1ρ̇2 + ρ2θ̇2 − (1− ρ−1)ṫ2 = 0 . (1)

Now, two constants of motion may be defined as
ρ2θ̇ = α and (1 − ρ−1)ṫ = αβ, associated with angular
momentum and energy conservation. We find

(
dρ

dθ

)2

= ρ4F (β, ρ) (2)

F (β, ρ) = β2 − (ρ− 1)/ρ3 . (3)

From (3) the forbidden region for the photons, where
the condition β2 < (ρ − 1)/ρ3 holds, can be obtained.
Additionally, the LHS from (2) can be expressed in
terms of the infinitesimal angle formed by the light ray
trajectory and the line (θ = cte,ϕ = cte) that passes
through the center of the black hole as follows (see
FIG.1)

cotψ =

√
gρρ
gθθ

dρ

dθ
, (4)

where gρρ and gθθ are the metric components that can
be taken from (1).
With some trigonometric manipulation, (2) now reads

as

sin2 ψ =
ρ− 1

ρ3β2
, (5)

which holds at any point of the trajectory. The
condition in β yields that β2

max = 4/27 when ρ = 3/2.
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FIG. 1: In this illustration, the limiting light ray path is
represented, as well as the definition of Synge’s ψ angle.

Light rays possessing a smaller angle would be absorbed by
the Event Horizon, and the ones with greater angle would be

deflected to infinity (which is the illuminated region the
observer would see).

This will serve as a significant threshold that must
be overcome by light rays originating from ρ0 > 3/2.
Taking the observer coordinates as the initial parameters
together with these conditions, Synge equation is
recovered

sin2 χ =
27

4

ρ0 − 1

ρ30
. (6)

Although Synge applied this equation for escaping light
rays on the surface of the “gravitationally intense star”,
which will escape if their angle fulfills ψ0 < χ, it can also
be applied for computing the angular radius from the
Black Hole Shadow seen by a stationary observer at ρ0.
Similarly, rays sent by the observer should fulfill ψ0 >
χ in order to be deflected and not captured, thus the
shadow will have an angular radius of χ.

III. SPHERICALLY SYMMETRIC SOLUTIONS

A more efficient and comprehensive approach to tackle
Synge’s problem lies in resolving the generalized versions
of spherically symmetric geometries and employing the
Lagrange formalism to calculate the constants of motion.
With this method, the first step is identifying the metric
of the problem, which in this case, is

ds2 = −A(r)dt2+B(r)dr2+D(r)(dθ2+sin2 θdϕ2) , (7)

where A(r),B(r) and D(r) are all positive definite. To
obtain the conserved quantities, it is imperative to derive
the Lagrangian associated with the system. In G.R, for
the vacuum case without Electromagnetic interaction,
this Lagrangian can be written as

L :=
1

2
gµν ẋ

µẋν .

Then, Euler-Lagrange equations impose that if a
coordinate does not appear explicitly in the Lagrangian
(i.e. ∂xµL = 0) then it has an associated constant of
motion which can be computed as

Kµ =
∂L
∂ẋµ

.

In the spherically symmetric Lagrangian there are two
Killing fields, ∂ϕ and ∂t, which will give two constants
of motion. In addition, the condition L = 0 for photons
is also taken into account.

From the general metric we can get these constants in
terms of A(r), B(r) and D(r):

Kt ≡ −E = −A(r)ṫ
Kϕ ≡ Lz = D(r)ϕ̇ ,

which are usually redefined into a new constant b named
impact parameter that is defined as

b :=
Lz

E
=
D(r)

A(r)

ϕ̇

ṫ
=
D(r)

A(r)

dϕ

dt
.

Inserting these constants into the Lagrangian, the
trajectory equation arises in its differential form

(
dr

dϕ

)2

=
D(r)

B(r)

(
D(r)

A(r)

1

b2
− 1

)
. (8)

Although this equation can be integrated analytically,
as in [4], which is the usual way to find shadows from
more complex black holes, Synge’s condition can also
be found in terms of the metrics components. At this
point, it is useful to compute the turning points from
these trajectories, which is the same as finding forbidden
regions from Synge equation (2). These points can be
found with the condition

dr

dϕ

∣∣∣∣
R

= 0 ,

which implies the solution

b2 =
D(R)

A(R)
. (9)

Other solutions such as D(r) = 0 or B(r) → ∞ are
ruled out because they imply that the metric is singular
outside the event horizon. Although it is also feasible to
calculate these objects’ shadows, it is not the primary
aim of this work.
Now, it is useful to define the function h(x) as

h2(x) ≡ D(x)

A(x)
→ b = h(R) . (10)

Using (4) together with (8), the angular radius from
the shadow will be

cot2 ψ =
h(r)

h(R)
− 1 ,
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which holds at any point of the trajectory for the same
reasons that (5) does. With some trigonometry, Synge’s
condition is recovered and it can be expressed in two
forms

sin2 ψ =

(
h(rph)

h(r0)

)2

(11)

sin2 ψ =
b2crA(r0)

D(r0)
, (12)

where bcr ≡ h(rph) and rph is the radial coordinate of
the circular orbits of photons around the black hole (i.e.
the photospheres) which can be found analogously as in
Synge derivation. Firstly, the term that could lead to the
RHS to be negative must be identified from (8). In this
case, for spherically symmetric geometries this would be

F (r; b) =
D(r)

A(r)

1

b2
− 1 ,

where F (r; b) is formally the same as the one in Synge’s
derivation and only depends on the coordinate r and
could depend on a set of parameters (i.e. F (r; b) →
F (r; b1, b2...)). At this point, in order to find the allowed
regions for the r coordinate, the condition F (r; b) > 0
must be fulfilled. This condition can be visualized by
plotting

1

b2
=
A(r)

D(r)
. (13)

This curve will define the turning points of photons
(i.e. it sets dϕ/dr to 0). Photons above the curve (13)
are permitted, whilst those below it are prohibited. What
is interesting is that photon orbits can be found at the
extreme points of this curve, and they will be stable when
it is a minimum and unstable when it is a maximum.
Applying this condition

d(b−2)

dr

∣∣∣∣
rph

=
d

dr

(
A(r)

D(r)

)∣∣∣∣
rph

= 0 , (14)

enables very efficient computation of Shadows from
spherically symmetric Black Holes.

Moreover, with this derivation it is interesting to note
that the equation for shadows of spherically symmetric
metrics is invariant under conformal transformations (i.e.
gµν → g̃µν = f(r)gµν), being f(r) an arbitrary function
of the radial coordinate only. This transformation implies
that every metric component from (7) will be multiplied
by this general function and then, it is straightforward to
show that f(r) cancels out from (12) and (14), therefore
neither rph nor the shadow will change.

A. SCHWARZSCHILD METRIC

In Schwarzschild solution, the metric’s components are

A(r) = 1− 1/r = B(r)−1 , D(r) = r2 .

rph can be computed using (14)

d

dr

(
1− 1/r

r2

)
rph

= 0 → rph = 3/2 .

Expression (6) can now be recovered using (12).

B. REISSNER-NORDSTRÖM METRIC

The Reissner-Nordström (RN) solution describes
charged black holes with the following metric components

A(r) = 1− 1/r+β2/r2 = B(r)−1 , D(r) = r2

(2M)2β2 ≡ q2e + q2m ,

where M is the mass of the black hole (which is added
to make β dimensionless), and (qe, qm) are the electric
and the magnetic charge respectively. The quadratic
dependence on β reflects the charge invariance of the
metric. This is expected because negative and positive
charge will affect equally the energy (i.e. the mass) of
the black hole.

Using (14), rph can be computed as

d

dr

(
1− 1/r + β2/r2

r2

)
rph

= 0 →

rph± =
3

4

(
1±

√
1− 32

9
β2

)
.

(15)

In the RN BH, an inner and outer horizons arise and
their location can be found by solving:

A(rh) = 1− 1/rh + β2/r2h = 0 →

rh± =
1

2

(
1±

√
1− 4β2

)
.

(16)

This equation gives an upper bound to the charge of
the Black Hole which is β2 < 1/4. It can be proved that
rph+ > rh+ > rph− > rh− for any physically acceptable
value of β, which means that only the rph+ photosphere
coordinate will be relevant for the shadow.
Again, using (12), rph can be computed

sin2 ψRN =
(ρ20 − ρ20 + β2)(3 +

√
9− 32β2)4

32ρ40(3− 8β2 +
√
9− 32β2)

. (17)

Indeed, for β = 0 the Schwarzschild solution is
recovered.
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FIG. 2: This picture illustrates how the horizons
coordinates (zeroes of the A(r) component) change with the

charge β

C. REISSNER-NORDSTRÖM-KOTTLER (RNK)

In this section, charged BH in Universes with a non-
vanishing cosmological constant are studied. In the
former case, the components of the metric will be

A(r) = 1−1/r+β2/r2−Λr2 = B(r)−1 , D(r) = r2 ,

where Λ ≡ (2M)2

3 Λ̃ is defined as a dimensionless
Cosmological constant. A brief discussion without
taking into account the Black Hole charge can be found
in [5].

In the above RNK solution, the number of horizons
depends on the values of the pair of parameters {β,Λ}.
Only three types of solutions will arise, which are
presented in FIG3. It is useful to examine these three
solutions in terms of the critical values of this parameters.

FIG. 3: In this figure β2 = 0.2 and the different types of
solutions one can obtain are displayed

While for Λ > 0 a cosmological horizon, rc, is
formed, for Λ ≤ 0 there is no cosmological horizon. In
addition, the solutions might have the inner and the
outer horizons of the charged BH (RN solution), when

the parameters are within certain critical values. These
values correspond to the ones which cause the polynomial
equation, A(r)r2 = 0, to vanish. This leads to

Λ(256β6 Λ2 + (128β4 − 144β2 + 27)Λ + 16β2 − 4) = 0 ,

therefore,

Λ±
c =

−27 + 16β2(9− 8β2)±
√
(9− 32β2)3

512β6
. (18)

BH’s will then only exist in the interval

Λ−
c (β

2) < ΛOBS < Λ+
c (β

2) . (19)

The different regions are illustrated in FIG.4.

FIG. 4: The real and positive zeroes of A(r) in a (Λ,β)
diagram. White (no zeroes), light gray (one zero), dark gray

(three zeroes) and darker gray (two zeroes).

In this figure, the darker region is limited by the
critical curves Λ+

c on the top and Λ−
c on the right

(represented as black lines) while the gray vertical line

corresponds to (βmax
RNK)

2
= 9/32 which is the maximum

charge that a RNK BH can have. The function with two
real positive roots (in FIG.3) corresponds to the darkest
region (RN-like BH) and the one that has three roots to
the dark gray region (RN with cosmological horizon).
Finally, if it only has one root a BH can not be formed.

Because of the quadratic dependence on r of the
Cosmological Constant term in A(r), the expression of
the radial coordinate of the photosphere will be the same
as in Reissner-Nordström B.H. (15). It can also be shown
that rph− will be always inside the event horizon, whereas
rph+ will be located between the event horizon and the
cosmological horizon. The expression of the shadow for
RNK B.H. can now be obtained using rph+ instead of
rph−:

sin2 ψRNK =

G(β2)4P (ρ0;β
2,Λ)

−128β4Λ−G(β2)(−4 + 27Λ) + 8β2(−4 +D(β2)Λ)
,

(20)
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where G(β2) ≡ 3 +
√
9− 32β2, D(β2) ≡ 6(3 +G(β2))

and P (ρ0;β
2,Λ) ≡ β2+ρ0(−1+ρ0− Λρ3

0)

8ρ4
0

. Solutions for RN

and Schwarzschild can be recovered by taking the limits
Λ → 0 and Λ, β → 0 respectively.

It is interesting to see that, positive values of Λ allow
charges of BH to be greater than β2

RNK > 1
4 . For

negative and small |Λ| one recovers the R.N condition
of β2 < 1/4 and, for more negative values of Λ, the
maximum value permitted for β2 gets monotonically
smaller.

D. SHADOW AT LARGE DISTANCES

From (11)

sin2 ψ =

(
β2

r40
− 1

r30
+

1

r20
− Λ

)
h2(rph) . (21)

If the limit for r0 >> 1 (i.e. r>>m) without crossing
the cosmological horizon is now taken, the expression
obtained is

sin2 ψ =

(
β2

r40
− Λ

)
h2(rph) =

(
1

r20
− Λ̃

3

)
h2(r̃ph) ,

(22)
where in the second equality, the original coordinates

(i.e. with dimensions) are restored. This expression
agrees with equation (39) in [6].

It is useful to derive a formula for the angular size of
the shadow as seen by a comoving observer. Using the
aberration formula given in [6] (equations (23) & (34))
and taking into account the identification f(r) → B(r),
it can be applied to equation (21) and compute the limit
for a very distant observer

lim
r0→∞

sin2 ψComov =
1

1 + 1/(Λh2(rph))
,

which is the same equation as (38) in [6].

IV. CONCLUSIONS AND FURTHER
RESEARCH

This paper presents a comprehensive analysis of
the Shadows cast by spherically symmetric Black
Holes. Section {III} establishes a general approach
for calculating Shadows in spherically symmetric
geometries, which is subsequently applied to investigate
the properties of the most general stationary and
spherically symmetric Black Holes, namely the Reissner-
Nordström (anti-)dSitter metric. The methodology
employed in this study demonstrates the conformal
invariance of the shadow associated with any spherically
symmetric solution. In section {III B} upper and
lower boundaries for the pair of parameters {β,Λ} are
presented and discussed. The determination of the
maximum charge achievable by a Black Hole could lead,
in theory, to the value of the Cosmological constant.
However, due to the small predicted values of this
constant in modern theories, its impact on the results
is deemed negligible. Finally, the dependence of the
Shadow in {β,Λ} is also found analytically in (22).
To our knowledge, the derivation of shadows for RNK
metric remains unexplored within the existing body of
literature.

Further research can be conducted to explore the
properties inherent in the shadows of alternative type of
Black Holes, such as axially symmetric or time-dependent
mass configurations. By scrutinizing the shadow, one
could derive intrinsic characteristics of the object.
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