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Summary
Background Previous studies of artificial intelligence (AI) applied to dermatology have shown AI to have higher 
diagnostic classification accuracy than expert dermatologists; however, these studies did not adequately assess 
clinically realistic scenarios, such as how AI systems behave when presented with images of disease categories that 
are not included in the training dataset or images drawn from statistical distributions with significant shifts from 
training distributions. We aimed to simulate these real-world scenarios and evaluate the effects of image source 
institution, diagnoses outside of the training set, and other image artifacts on classification accuracy, with the goal of 
informing clinicians and regulatory agencies about safety and real-world accuracy.

Methods We designed a large dermoscopic image classification challenge to quantify the performance of machine 
learning algorithms for the task of skin cancer classification from dermoscopic images, and how this performance is 
affected by shifts in statistical distributions of data, disease categories not represented in training datasets, and imaging 
or lesion artifacts. Factors that might be beneficial to performance, such as clinical metadata and external training data 
collected by challenge participants, were also evaluated. 25 331 training images collected from two datasets (in Vienna 
[HAM10000] and Barcelona [BCN20000]) between Jan 1, 2000, and Dec 31, 2018, across eight skin diseases, were provided 
to challenge participants to design appropriate algorithms. The trained algorithms were then tested for balanced accuracy 
against the HAM10000 and BCN20000 test datasets and data from countries not included in the training dataset (Turkey, 
New Zealand, Sweden, and Argentina). Test datasets contained images of all diagnostic categories available in training 
plus other diagnoses not included in training data (not trained category). We compared the performance of the algorithms 
against that of 18 dermatologists in a simulated setting that reflected intended clinical use.

Findings 64 teams submitted 129 state-of-the-art algorithm predictions on a test set of 8238 images. The best 
performing algorithm achieved 58·8% balanced accuracy on the BCN20000 data, which was designed to better reflect 
realistic clinical scenarios, compared with 82·0% balanced accuracy on HAM10000, which was used in a previously 
published benchmark. Shifted statistical distributions and disease categories not included in training data contributed 
to decreases in accuracy. Image artifacts, including hair, pen markings, ulceration, and imaging source institution, 
decreased accuracy in a complex manner that varied based on the underlying diagnosis. When comparing algorithms 
to expert dermatologists (2460 ratings on 1269 images), algorithms performed better than experts in most categories, 
except for actinic keratoses (similar accuracy on average) and images from categories not included in training data 
(26% correct for experts vs 6% correct for algorithms, p<0·0001). For the top 25 submitted algorithms, 47·1% of the 
images from categories not included in training data were misclassified as malignant diagnoses, which would lead to 
a substantial number of unnecessary biopsies if current state-of-the-art AI technologies were clinically deployed.

Interpretation We have identified specific deficiencies and safety issues in AI diagnostic systems for skin cancer that 
should be addressed in future diagnostic evaluation protocols to improve safety and reliability in clinical practice.
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Introduction
Melanoma has the highest mortality rate of all skin 
cancers, with about 220 000 cases and 37 000 deaths 
reported annually in the USA and Europe combined.1 
Early detection of melanoma and other skin tumours is 
the most important predictor for survival.2,3 Diagnosis of 

skin cancer requires sufficient expertise and proper 
equipment for adequate accuracy. For expert dermato
logists, the accuracy of melanoma diagnosis is about 
71% with nakedeye inspection, and 90% using a 
dermatoscope, which is a magnifying lens with either 
liquid emulsion or crosspolarisation filters to eliminate 
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surface reflectance of skin.4,5 However, there is a global 
shortage of expert dermatologists: in Spain, there are 
3·27 dermatologists per 100 000 citizens, 6·6 in Germany, 
0·55 in the UK, and 0·33 in the USA.6

Because of this shortage of expertise, efforts have focused 
on scaling expertise by developing tools for automated 
assessment. The International Skin Imaging Collaboration 
(ISIC) Archive has collated the largest public repository of 
dermoscopic image datasets to support this continued 
research effort, facilitating 5 years of public challenges to 
use artificial intelligence (AI) to detect skin cancer.7–12 
Several articles have reported the development of AI 
systems with diagnostic accuracy superior to expert 
dermatologists in controlled experiments.9,13–17

Although tremendous technical progress has been 
achieved, there are still important deficiencies that 
remain to be addressed before clinical deployment. For 
example, external validation studies with shifted 
statistical distribution that is more reflective of real
world clinical application have not been performed, 
even for algorithms that are already available for use in 
clinical practice.9,17,18 In addition, current AI systems are 
unable to communicate what they do not know. For 
example, when shown an image of a disease not 
represented in the training data, the system cannot flag 
it as a category on which it was not trained, and will 
instead classify it as one of the conditions it was trained 
to identify.19,20 Finally, most previous work on this topic 
has involved studying system performance on only 
standardised image data or without correlation to 
performance of dermatologists.9,21–23

We aimed to create the largest public dataset in this 
domain, the BCN20000 dataset, to design a skin cancer 
recognition challenge that rigorously evaluates the effects 
to AI performance of statistical imbalances, images from 
categories not trained (NT), and clinical data of varying 
quality, and allows us to analyse the effect of these factors 
on performance. The public challenge approach was 
chosen to explore the current stateoftheart algorithms 
in skin cancer diagnosis through AI. We investigated the 
accuracy (1) of stateoftheart classification methods on 
datasets specifically designed to better reflect clinical 
realities than previous studies; (2) of algorithms 
specifically designed to fail safely by flagging not trained 
categories; (3) and of algorithms as related to realworld 
clinically unusual features and other imaging artifacts, 
such as variations in lighting conditions, clinical 
markings on the skin, or hair occluding visualisation of 
the lesion. We also tested the algorithms against 
dermatologists.

Methods
Study design
We designed a large image classification challenge, the 
ISIC challenge, to quantify the performance of machine 
learning algorithms for the task of skin cancer 
classification from dermoscopic images. The challenge 
was hosted online using the Covalic platform, where 
challenge participants could upload their algorithm’s 
diagnostic predictions for each image in the test dataset.

Invitations for submissions were solicited from around 
the world; calls for submissions were sent via email to 

Research in context

Evidence before this study
We searched arXiv and PubMed Central for articles published in 
English between Jan 1, 2002, and Feb 28, 2021, using the search 
terms “melanoma diagnosis” or “melanoma detection”. 
Our search returned more than 60 000 articles, of 
which 30 were relevant to this topic. The summary estimate of 
the accuracy of machine learning algorithms reported for 
melanoma detection had consistently exceeded that of human 
experts since 2018. We found no study that evaluated 
algorithm performance across a range of image artifacts and 
source institutions. Although there were studies that evaluated 
algorithm performance on untrained diagnostic classes, none 
systematically evaluated the errors that algorithms are prone to 
make on untrained images or images with artifacts. We found 
many studies that were susceptible to biases, such as selection 
and labelling, and many did not include publicly available data.

Added value of this study
This study provides an analysis of state-of-the-art deep learning 
algorithms. Using algorithms submitted via the 
2019 International Skin Imaging Collaboration Grand 
Challenge, we assessed the effect on diagnostic accuracy of 
alternate statistical distributions of data (via different image 

sources), disease categories not represented in training 
datasets, imaging or lesion artifacts, and factors that might be 
beneficial to performance (such as clinical metadata and 
external training data). Although algorithms continued to 
outperform expert readers on melanoma detection, shifted 
statistical distributions and disease categories not included in 
training data contributed to decreases in algorithm accuracy. 
For automated methods, around 50% of the images from 
categories not included in the training data were misclassified 
as malignant diagnoses, which would lead to a substantial 
number of unnecessary biopsies if clinically deployed.

Implications of all the available evidence
We have identified specific deficiencies and safety issues in AI 
dermatological diagnostic systems that should be addressed in 
future diagnostic evaluation protocols to improve safety and 
reliability before clinical implementation. These findings 
advance existing evidence as they highlight the effects of 
image artifacts, image source institution, and underlying 
training distributions and diagnostic classes on algorithm 
performance. This work advocates for future funding and 
research devoted to accurate benchmarking and 
predeployment testing that mimics clinical scenarios.

For the Covalic platform see 
https://github.com/girder/

covalic 

https://github.com/girder/covalic
https://github.com/girder/covalic
https://github.com/girder/covalic
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ISIC subscribers and the challenge was publicised on 
social media and at academic conferences. Challenge 
participants were permitted to form teams, and allowed 
to submit diagnostic predictions from up to three distinct 
algorithms. Unlimited submissions were allowed per 
algorithm, but only the most recent submission was 
scored. Further details of the challenge can be found 
online.

We divided the challenge into two tasks: (1) skin cancer 
classification from dermoscopic images and (2) skin 
cancer classification from dermoscopic images and 
metadata.24 In both tasks, algorithms were tested on their 
ability to recognise the eight trained categories, as well as 
whether they were able to fail safely by correctly 
identifying diagnostic categories on which they were not 
trained. To improve the reproducibility of successful 
algorithms, each team in the challenge was required to 
submit a manuscript detailing the methods used for 
image classification.25

The study protocol was approved by the ethics review 
boards of the University of Queensland, Memorial Sloan 
Kettering Cancer Center, the Medical University of 
Vienna, and the Hospital Clinic of Barcelona. At all 
contributing institutions, written informed consent for 
retrospectively collected dermoscopic images was waived 
by the ethics review due to the deidentified nature of the 
images.

Datasets
Dermoscopic images of skin lesions were obtained from 
skin cancer surveillance clinics around the world, with 
photographs captured between Jan 1, 2000, and 
Dec 31, 2018. Each image was paired with metadata 
regarding the age and sex of the patient, the anatomical 
location of the lesion, and a lesion identifier. Multiple 
images acquired from different photographic equipment 
or on different dates were allowed for a given lesion, 
mimicking true clinical practice. Lesions were partitioned 
between training and test sets, balanced by source and 
diagnostic category in the training dataset.

The training dataset contained 25 331 images, which 
was composed of data from the Medical University of 
Vienna (HAM10000)26 and Hospital Clinic Barcelona 
(BCN20000).7,27–29 HAM10000 was used as the benchmark 
for a previous ISIC challenge in 2018.8,9 All datasets 
included labels specifying the clinic that data were 
acquired from, which is henceforth referred to as the 
source institution.26

An independent, unbalanced, validation dataset of 
100 randomly selected dermoscopic images captured 
between Jan 1, 2000, and Dec 31, 2018 from the Medical 
University of Vienna was available to challenge 
participants.9 These images were not included in the 
training or test datasets and were provided to challenge 
participants to validate and debug their algorithm 
submissions, but the validation dataset was not used for 
evaluation or further assessments.

The test dataset included 8238 images retrospectively 
collected from the Hospital Clinic Barcelona (BCN) and 
the Medical University of Vienna (HAM). Images from 
Turkey, New Zealand, Sweden, and Argentina were also 
included. Patient images were not individually labelled 
for ethnicity, skin tone, or nationality.9 The test dataset 
contained all diagnostic categories available in training, 
as well as other diagnoses not included in training data, 
which were grouped into a single category referred to as 
NT. Although test data were acquired at centres that also 
contributed training data, there was no image or lesion 
overlap between training and testing datasets. Further 
dataset details and distributions are available in the 
appendix (p 2). 

Diagnostic labels
The training and test datasets contained images of nevi, 
melanoma, benign keratosis, dermatofibroma, basal cell 
carcinoma, squamous cell carcinoma including Bowen’s 
disease, vascular lesions, and actinic keratosis. Borderline 
melanocytic lesions were excluded. Participants were 
challenged to classify untrained images into a ninth 
category in the test dataset, labelled NT, which refers to 
diagnostic classes that were not included in the training 
data. We generated ground truth diagnostic labels through 
review of histopathology for all malignant and biopsied 
lesions and unanimous expert consensus (at least three 
experts defined as board certified dermatologists from 
Memorial Sloan Kettering Cancer Center, Medical 
University of Vienna, or Hospital Clinic Barcelona; VR, 
CC, MAM, SPo, SPu, JM, PT, and HK), digital monitoring, 
or confocal microscopy for unbiopsied benign lesions.7,8 

For the BCN dataset, we conducted these reviews. For 
HAM, we used published data.26 

Additional labels
In addition to the labels provided as training and testing 
metadata, geographical characteristics and the source 
institution were obtained by the researchers of this study 
for the purposes of this analysis. The source institution 
represents alternate statistical distributions and 
photographic acquisition differences.26 Further more, 
quantified imaging features (such as pigmentation) and 
lesion artifacts (such as the presence of ulceration, crust, 
pigmentation, hair, or pen marks) were manually 
annotated. Paid medical student research fellows at 
Memorial Sloan Kettering Cancer Center and Hospital 
Clinic Barcelona used inhouse annotation software to 
annotate the presence or absence of ulceration, crust, 
pigmentation, hair, or pen using active learning 
techniques.9,21,27,30 Pigmentation was defined as a brown 
pigment in the lesion area, crust was defined as 
keratinaceous crust or scale over the lesion area, and 
ulceration was a defect in the epidermal surface (such as 
an erosion or ulcer). Hair was defined as having vellus or 
terminal hairs over the lesion of interest, and pen 
markings could be anywhere in the image.

For the challenge see https://
challenge.isic-archive.com/
landing/2019/

See Online for appendix

https://challenge.isic-archive.com/landing/2019/
https://challenge.isic-archive.com/landing/2019/
https://challenge.isic-archive.com/landing/2019/
https://challenge.isic-archive.com/landing/2019/
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Algorithm evaluation
Challenge participants submitted a commaseparated 
value file to the online submission and scoring system 
(Covalic) containing the diagnostic predictions for each 

image in the test dataset. Diagnosis confidences were 
expressed as floatingpoint values in the closed interval 
(0·0, 1·0).

Algorithms were ranked according to balanced 
multiclass accuracy (mean recall across classes after 
mutually exclusive classification decisions), which has 
the advantage of balancing for the prevalence of 
malignant diagnoses, especially melanoma, as compared 
to standard accuracy.7 Algorithms’ balanced accuracy 
performance was compared between data subsets using 
Bonferroniadjusted paired t tests. The level of signifi
cance for all hypothesis tests was 0·05. Paired Student’s 
t test was used because algorithms were evaluated on the 
same images. Confusion matrices and area under the 
receiver operating characteristic curve (AUROC), were 
also calculated and compared with imaging and lesion 
factors that each influence diagnostic accuracy (using 
algorithm identifiers as group labels with an 
exchangeable covariance matrix). Matrices are separated 
into nine diagnostic groups for each ground truth 
annotation, with aggregate statistics shown in the first 
row of each group (the reference row), and stratifications 
shown across subsequent rows. Values of the matrix 
convey the proportion of images with given ground truth 
labels (specified by group) that were assigned a particular 
prediction by algorithms (specified by the columns) on 
average across the top 25 algorithms.

Statistical analyses were performed using pandas, 
matplotlib, scipy, numpy, and statsmodels Python 
packages.31–34

Expert reader study
We compared the performance of the algorithms against 
that of dermatologists in a simulated setting that reflected 
intended clinical use. 18 expert boardcertified dermato
logists from around the world (with at least 2 years of 
active daily use of dermoscopy) classified images selected 
from a pool of 1269 images from the test set. To perform 
assessment, these experts (henceforth referred to as 
expert readers) used a custom platform, DermaChallenge,  
created by the Medical University of Vienna.8,13,32,35 Expert 
readers were first given three training levels of 30 images 
each from the training dataset to practise, before 
classifying images from the nine diagnostic categories 
(including NT) in groups of 30 images at a time. To 
compare performance between expert readers and the 
algorithms, a summary sAUROC metric was used and 
implemented in R.36

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
169 algorithms were submitted by 64 teams, divided into 
the imageonly task (129 submissions from 64 teams) and 

For DermaChallenge see https://
dermonaut.meduniwien.ac.at/

dermachallenge/

BCN with NT

BCN with NT
BCN without NT

HAM

0·42 (0·32 to 0·52)
0·49 (0·37 to 0·61)
0·68 (0·53 to 0·83)

BCN without NT HAM
0·0

0·2

0·4

0·6

0·8

A
 A

cc
ur

ac
y

Origin dataset

SCC NTMEL NV BCC AK BKL DF VASC
0·0

0·2

0·4

0·6

1·0

0·8

B

 A
cc

ur
ac

y

Diagnosis

Mode
Without metadata With metadata

0·0

0·2

0·1

0·4

0·3

0·6

0·5

C

 A
cc

ur
ac

y

Median accuracy (IQR)

Median accuracy (IQR)

MEL
NV
BCC
AK

0·65 (0·54 to 0·76)
0·84 (0·72 to 0·96)
0·78 (0·65 to 0·91)
0·30 (0·15 to 0·45)

Median accuracy (IQR)

BKL
DF
VASC
SCC
NT

0·48 (0·32 to 0·64)
0·42 (0·19 to 0·65)
0·44 (0·21 to 0·67)
0·34 (0·16 to 0·52)
0·01 (–0·07 to 0·09)

Figure 1: Algorithm accuracy across all submissions, by dataset, metadata 
use, and diagnostic class
(A) Boxplot and table showing median (IQR) for balanced accuracy across all 
participant submissions for each test set partition (p<0·001 for all comparisons). 
(B) Boxplot of diagnosis-specific balanced accuracies for each diagnostic class. 
(C) Comparison of balanced accuracy over all submissions with and without 
clinical metadata. AK=actinic keratosis. BCC=basal cell carcinoma. BCN=Hospital 
Clinic Barcelona. BKL=benign keratosis. DF=dermatofibroma. HAM=Medical 
University of Vienna. MEL=melanoma. NT=not trained. NV=nevi. 
SCC=squamous cell carcinoma. VASC=vascular lesions.
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the combined image and metadata task (40 submissions 
from 16 teams). The top two performing algorithms used 
ensembles of the EfficientNet architecture,37–39 and 
the thirdplace team used ensembles of the ResNet 

architecture.37 The top performing algorithm achieved 
63·6% overall balanced accuracy.

The balanced algorithm accuracy on the HAM dataset 
partition—which is an earlier benchmark that is less 
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reflective of image quality variations seen in practice—was 
significantly better than the BCN images, even without 
considering the impact of the NT category, on which all 
algorithms performed poorly (figure 1). Balanced accuracy 
of the best algorithm reduced by 23·2% (from 82·0% 
to 58·8%) when comparing the HAM dataset to the new 
images in BCN. For mean AUROC, this decrease 
was 0·075 (from 0·981 in HAM to 0·907 in BCN). Across 
all algorithms, the mean decrease in balanced accuracy 
between dataset partitions was 22·3% (SD 8·6; p<0·0001).

The use of auxiliary metadata (such as the lesion 
anatomic location, patient sex, and age) slightly improved 
mean algorithm accuracy from 50% (SD 15) to 56% 
(7; figure 1).

Across all methods, the algorithms’ ability to flag the 
NT category was impaired relative to the algorithms’ 
ability to classify diagnoses included in the training data 
(figure 2). On average across the top 25 teams, only 11% 
of the NT predictions were correct, which was similar to 
random chance (1 in 9). Most of the benign NT disease 
states were misclassified as basal cell carcinoma (32·4% 
on average across the top 25 algorithms), with another 
7·8% misclassified as melanoma, and another 6·9% 
misclassified as squamous cell carcinoma.

The best performing team approached the NT class 
by training a model on external data they obtained 

themselves, including healthy skin, warts, cysts, and 
benign alterations. Other approaches used by challenge 
participants included direct 8class models allowing the 
image not to belong to any class, and Shannon entropy 
estimation.40 Despite these attempts, the top algorithm 
estimated only 1·6% of the NT class correctly (appendix p 6).

A confusion matrix as a function of diagnosis for the 
top 25 algorithms (additionally stratified according to 
image artifacts, anatomic site, and source institution) is 
shown in figure 2. The proportional representation of 
each category is provided in the appendix (p 3).

The influence of quantified image artifacts (such as 
crust, hair, or pen marks), on diagnostic accuracy is 
shown in subsequent rows of figure 2 across the 
top 25 algorithms. Diagnoses that do not frequently 
present with crust (such as vascular lesions, dermato
fibromas, and nevi) were frequently miscategorised by 
the algorithms when crust was present. Presence of hair 
did not affect misclassification; except for actinic 
keratosis, where only 36% of actinic keratosis with hair 
present in the image were correctly classified (vs 56% 
without hair). Typically, pigmented lesions, such as nevi 
and melanomas, were frequently misclassified as basal 
cell carcinomas when they were nonpigmented (24% and 
27% of the time, respectively). Typical pigmented lesions, 
such as nevi (83% correct when pigmented) and 
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Values represent the proportion of images in the test set given a classification specified by columns, on average for the top 25 algorithms. The reference row of each group shows the aggregate values for 
each diagnosis. Subsequent rows include stratifications across artifacts (ie, crust, hair, pen marks), anatomical site, and source institution. Upper extremity refers to arms and feet (not palms or soles). 
Lower extremity refers to legs (not palms or soles). AK=actinic keratosis. BCC=basal cell carcinoma. BCN=Hospital Clinic Barcelona. BKL=benign keratosis. DF=dermatofibroma. HAM=Medical University of 
Vienna. MEL=melanoma. NT=not trained. NV=nevi. SCC=squamous cell carcinoma. VASC=vascular lesion.



Articles

 www.thelancet.com/digital-health   Vol 4   May 2022 e336

melanomas (71% correct when pigmented), had 
decreased accuracy when nonpigmented (35% for nevi 
and 46% for melanomas). When nonpigmented, nevi 
and melanoma were frequently misclassified as basal cell 
carcinomas (24% and 27% of the time, respectively).

When we measured the impact of anatomical site on 
algorithm performance, lesions from the head and neck 
anatomical regions were frequently misclassified 
among nevi, vascular proliferations, and dermato
fibromas. This finding could be a result of differences in 
dermo scopic patterns on skin from chronic sun damage 
due to their location in sunexposed areas on the body. 
Regarding the impact of different image source 
institutions, the top 25 algorithms correctly diagnosed 
99·0% of nevi correctly from s_HAM_molemax; 
however, no algorithms correctly identified melanoma 
from that same source. On average, the top 25 
algorithms correctly identified 75·0% of melanomas 
from s_HAM_external. This disparity in diagnostic 
performance between image sources probably reflects 
the varied underlying distri butions of melanomas and 
nevi in the datasets (appendix p 3).

The NT category was divided into five subcategories for 
the purpose of analysis, including scar, benign neoplasm 
(eg, onychomatricoma), normal variant (including 
hyperpigmentation and hypomelanosis), inflammatory 
disease (including eczema and psoriasis), and infectious 
disease (appendix p 3). Figure 3 presents a confusion 
matrix between these subcategories and other diagnostic 
categories included in the training data, averaged across 
the top 25 algorithms. Lesions that are predominantly 
pink, such as scars, inflammatory lesions, and benign 
neoplasms, were commonly misdiagnosed as basal cell 
carcinoma (which are also pink in colour).

We used an online interactive reader platform 
(DermaChallenge) to evaluate the diagnostic performance 
of expert readers as compared with the algorithm 
submissions. 82 tests of 30 images were performed 
(baseline distribution, table 1), each reflecting the overall 
distribution in the test set. This distribution was not 
known to the expert readers at the time of the study. We 
received 2460 ratings on 1269 images in rounds of 
30 images each. (table 2, figure 4). The receiver operating 
characteristic curve analysis showed that the performance 
of the top three algorithms for malignancy was superior 
to that of expert readers, except for the NT category 
(figure 4). The top experts still outperformed the top 
three algorithms for malignancy; however, on average, 
experts did not outperform the top three algorithms. For 
the actinic keratosis diagnosis, expert readers demon
strated lower accuracy than the top three algorithms 
(43% vs 83%) but performed similarly (43% vs 44%) to the 
algorithms on average (table 2). The top three algorithms 
had better diagnostic accuracy than expert readers did on 
basal cell carcinomas (91% vs 70%), dermatofibromas 
(73% vs 50%), and nevi (76% vs 56%). Although the NT 
class was challenging for experts and for the algorithms, 

expert readers performed significantly better than all 
algorithms in terms of sensitivity and summary AUROC 
(26% correct classification vs 6%, p<0·0001).

Discussion
Our image classification challenge and analysis shows 
that, when compared with a previously published, well 
controlled benchmark (HAM10000), the balanced, multi
class accuracy of stateoftheart image classification 
methods decreases by more than 20% on datasets 
specifically designed to better reflect clinical realities. 
Overall, a balanced accuracy of 63·6% for the top algorithm 
is a notable decrease in performance when compared with 
the previous benchmark of 86·1%.9 We simulated intended 
clinical use by including images that were of varying 
quality, were from different source institutions, contained 
diagnostic categories that were not captured in the training 
dataset, and contained quantified imaging artifacts across 
both train and test datasets, all of which were found to 
contribute to performance degradation. Algorithms 
specifically designed to fail safely by flagging images 
outside its area of expertise were unable to complete this 
task. These findings highlight the poor generalisability of 
current stateoftheart algorithms, and a potentially 
serious safety issue for clinical deployment, despite 
previously reported high AUROCs for malignancy on 
well controlled datasets.

The poor performance of algorithms on the NT category 
has significant implications for clinical practice. The NT 
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Goal number

Actinic keratosis 1

Basal cell carcinoma 6

Benign keratosis 3

Dermatofibroma 1

Melanoma 1

Not trained 5

Nevi 8

Squamous cell carcinoma 1

Vascular lesion 1

Table 1: Goal distribution of diagnoses included in a set of 30 images in 
the reader study
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class was diagnosed correctly only 11% of the time across 
the top 25 algorithms. The NT category, which primarily 
comprised benign inflammatory diagnoses and scars, 
was confused for malignancy 47% of the time by the 
top 25 algorithms. NT images were most commonly 
confused for basal cell carcinoma, probably due to the 
pink colour of basal cell carcinomas and most lesions in 
the NT category. This leads to concerns for clinical 
implementation, as 47% of benign NT lesions might have 
been biopsied if biopsy decisions were predicated upon 
an automated classification system for skin lesions. In 
addition, falsepositive malignancy predictions will 
contribute to patient anxiety and concern. Although the 
NT category was also challenging for expert clinician 
readers, readers performed significantly better than the 
algorithms (26% vs 6% correct, p<0·0001), on average.

Melanomas, benign keratoses, and actinic keratoses 

were frequently confused for one another. Clinically 
unusual features decreased the accuracy of algorithms’ 
predictions compared with images without those features, 
such as the decrease seen between pigmented versus non
pigmented nevi (83% correct vs 35% correct) and 
melanomas (71% correct vs 46% correct). Source institution 
was also found to influence classification errors, 
highlighting the challenges of algorithm generalisation.

These results highlight that algorithms should be tested 
on both usual and unusual types of lesions and imaging 
attributes, and the need for algorithms with a robust 
capability to identify images outside of its training 
distributions. Caution should be used when considering 
the implementation of automated classification 
predictions into clinical workflows, especially in clinically 
unusual representations (such as nevi with crust, which 
were correctly classified in only 34·7% of cases). Careful 
analysis of the distribution of algorithm performance on 
test data according to various characteristics, such as 
image source, anatomical site, image attributes, and 
clinical features, will help stakeholders to understand how 
to deploy algorithms in prospective studies.

The results from our comparison of boardcertified 
dermatologists against AI challenge submissions are 
consistent with previous reports. On average, the 
algorithms achieved higher accuracy than most expert 
readers (apart from the top experts who outperformed the 
algorithms for malignancy). However, to our knowledge 
this study is the first to identify a group of lesions, the NT 
categories, for which expert readers outperformed the 
automated approaches. This result exposes concerning 
safety issues around the deployment of automated 
algorithms in clinical settings, and the need to design 
better methods to identify images outside of an algorithm’s 
area of expertise to avoid unnecessary biopsies or missed 
melanomas—both of which would have occurred if the 
algorithms tested in this work were deployed.

This analysis has several limitations. First, providing 
metadata improved algorithm predictions, but the effect 
size was small. This small effect size is probably due to 
the scarce metadata that were available for incorporation 
into the images. For example, it might be possible for age 
to be derived from the amount of sun damage visible on 
the background skin. Future efforts could review a more 
expansive list of metadata features to more deeply 
evaluate this impact. Second, the utility of this work is 
restricted by the retrospective nature of image collection, 
the scarce diversity in ethnicities (as presumed from 
clinic locations), the absence of skin tone labelling of 
patient images, and that the expert reader study was 
conducted on static images that do not mimic a clinical 
setting. We also included multiple lesion timepoints, 
which highlights the difficulty of gold standard labelling 
of melanomas that develop from benign neoplasms. 
Future work could investigate this transition to improve 
AI detection. Third, we tested algorithms against 
scenarios and statistical shifts that are highly dependent 

Figure 4: Receiver operating characteristic curves for the expert readers on grouped malignant diagnoses (A) 
and NT class (B) as compared with the top three algorithms
Crosses represent the average sensitivity and specificity of the readers, with the length of the bars corresponding to 
the 95% CI. AI=artificial intelligence. NT=not trained. SROC=summary receiver operating characteristic curve.
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AK* 0·43 (0·23–0·63) 0·44 (0·42–0·46) 0·83 (0·77–0·89)

BCC* 0·70 (0·61–0·79) 0·80 (0·77–0·82) 0·91 (0·88–0·95)

BKL 0·48 (0·36–0·60) 0·37 (0·35–0·39) 0·43 (0·37–0·50)

DF* 0·50 (0·30–0·71) 0·33 (0·30–0·36) 0·73 (0·50–0·95)

MEL 0·62 (0·53–0·71) 0·58 (0·56–0·60) 0·70 (0·64–0·77)

NV* 0·56 (0·46–0·66) 0·76 (0·74–0·79) 0·76 (0·74–0·77)

NT† 0·26 (0·17–0·35) 0·06 (0·05–0·08) 0·01 (0·01–0·02)

SCC 0·65 (0·46–0·83) 0·31 (0·29–0·33) 0·62 (0·55–0·69)

VASC 0·83 (0·68–0·97) 0·46 (0·43–0·49) 0·79 (0·66–0·92)

Data are accuracy of mean count (95% CI). Mean count of correct reader 
classifications in batches of 30 lesions was 15·7 (95% CI 14·46–16·94). Mean count 
of correct algorithm (best) classifications in batches of 30 lesions was 18·95 
(18·20–19·70). AK=actinic keratosis. BCC=basal cell carcinoma. BKL=benign 
keratosis. DF=dermatofibroma. MEL=melanoma. NT=not trained. NV=nevi. 
SCC=squamous cell carcinoma. VASC=vascular lesion. *Top three algorithms 
(average) performed >20% better than readers. †Readers performed ≥20% better 
than algorithms.  

Table 2: Summary of reader accuracy versus that of automated classifiers
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on the training dataset. Although the specific decreases 
in performance we report might not be generalisable to 
other applications and training distributions, the 
considerations outlined, the image artifacts that are 
found to impact accuracy, and the algorithm failure on 
images have not been trained to recognise should be 
considered for all applications. There is increasing 
evidence that human–computer interaction might 
improve upon the accuracy of humans or AI alone.15 
Further work would benefit from a prospective approach 
to dataset design, and closely supervised trials of 
automated approaches with clinicians in clinical practice.

In summary, this large dermoscopic image classification 
challenge showed that the accuracy of stateoftheart 
classification methods decreases by more than 20% on 
datasets specifically designed to better reflect clinical 
realities, as compared with a previous, well controlled 
benchmark. Quantified imaging artifacts contained in 
both training and testing datasets were found to decrease 
accuracy when accuracy was stratified by artifacts and 
disease conditions. In addition, algorithms specifically 
designed to fail safely by flagging images outside their 
training data performed worse than expert readers. These 
results highlight potentially serious safety issues for 
clinical deployment, despite previous well controlled 
datasets reporting high AUROCs for diagnoses such as 
malignancy.
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