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Recherche Médicale (INSERM),

France
Suryasarathi Dasgupta,

Takeda Pharmaceuticals,
United States

*Correspondence:
Pere Santamaria

psantama@ucalgary.ca

Specialty section:
This article was submitted to

Mucosal Immunity,
a section of the journal

Frontiers in Immunology

Received: 11 February 2022
Accepted: 14 March 2022
Published: 27 April 2022

Citation:
Garabatos N and Santamaria P
(2022) Gut Microbial Antigenic

Mimicry in Autoimmunity.
Front. Immunol. 13:873607.

doi: 10.3389/fimmu.2022.873607

REVIEW
published: 27 April 2022

doi: 10.3389/fimmu.2022.873607
Gut Microbial Antigenic Mimicry
in Autoimmunity
Nahir Garabatos1 and Pere Santamaria1,2,3*

1 Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, 2 Julia McFarlane Diabetes Research Centre
(JMDRC), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada,
3 Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School
of Medicine, University of Calgary, Calgary, AB, Canada

The gut microbiota plays a major role in the developmental biology and homeostasis of
cells belonging to the adaptive and innate arms of the immune system. Alterations in its
composition, which are known to be regulated by both genetic and environmental factors,
can either promote or suppress the pathogenic processes underlying the development of
various autoimmune diseases, including inflammatory bowel disease, multiple sclerosis,
systemic lupus erythematosus, type 1 diabetes and rheumatoid arthritis, to just name a
few. Cross-recognition of gut microbial antigens by autoreactive T cells as well as gut
microbe-driven alterations in the activation and homeostasis of effector and regulatory T
cells have been implicated in this process. Here, we summarize our current understanding
of the positive and negative associations between alterations in the composition of the gut
microbiota and the development of various autoimmune disorders, with a special
emphasis on antigenic mimicry.

Keywords: gut microbiota, dysbiosis, autoreactive T-cell responses, autoimmune disease, molecular mimicry, gut
microbial metabolites, immunoregulation, gut microbial homeostasis
INTRODUCTION

Our natural anatomic barriers, including the skin and mucous membranes, are colonized by billions
of microorganisms that live in a symbiotic relationship with the host. The gut microbiota, for
example, is composed of different species of commensal bacteria, fungi, viruses and archaeas.
During natural evolution, the host and the commensal microorganisms that colonize it have co-
evolved to develop complex relationships that impact numerous host biological processes, including
immune system homeostasis. Multiple gut microbial species, dietary compounds and/or microbial
metabolites contribute to these processes. Gut dysbiosis or disruption of the gut barrier function can
trigger a loss of tolerance to gut microbial antigens, eliciting immune responses that can potentially
promote not only local inflammation, but also distal autoimmune phenomena. Here, we review our
current understanding of the positive and negative associations between alterations in the
composition of the gut microbiota and autoimmunity, including known examples of antigenic
mimicry. Altogether, this information paints a complex landscape that exposes knowledge gaps and
research opportunities.
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GUT MICROBIOTA AND HOMEOSTASIS
OF THE GUT-ASSOCIATED
IMMUNE SYSTEM

The crosstalk between the immune system and the gut
microbiome begins in the immediate postnatal period. The host
immune system matures during the first few years of life in a
dynamic relationship with the gut microbiome, leading to a state
of equilibrium at around 3 years of age (1, 2). The largest microbial
colonization of the gut occurs during and immediately after birth
(3), and is impacted by factors such as the delivery mode (4) and
breast feeding (5, 6). It has been recently shown that a weaning
reaction to the microbiota, leading to the generation of
RORgamma(+) Treg cells via bacterial and dietary metabolites,
including short-chain fatty acids (SCFAs) and retinoic acid, is
required for resistance to immunopathologies in the adult, such as
colitis and allergic inflammation (7). Related to this, intestinal
secretion of the antimicrobial peptide cathelicidin upon exposure
to commensal bacteria has been reported to shape a protective
neonatal gut microbiota against pancreatic autoimmunity (8).

Maintenance of immune tolerance against the gut microbiota
is regulated by complex processes that are orchestrated in the
gut-associated lymphoid tissue (GALT). GALT-associated innate
immune cells can distinguish between potentially pathogenic
microbial components and their harmless commensal
counterparts by recognizing pathogen-associated pattern
recognition receptors (PRRs), which ultimately lead to the
activation of antigen-specific CD4+ and CD8+ T cell effectors.
In the healthy steady state, the GALT-associated B cells produce
gut microbial antigen-specific IgAs to suppress mucosal
penetration by commensals, hence the induction of potentially
harmful local immune responses by effector T cells (9). This
process is supported by both dendritic cells and T-follicular
helper (TFH) cells. In addition, Peyer´s patch-associated Th17
cells promote Ig class switching and production of soluble IgA
via IL-21 (10). Local induced FoxP3+ Treg cells (iTregs) also
contribute to the maintenance of normal immune homeostasis,
by both suppressing pathogenic effector T cell responses and
promoting IgA production (11). Interestingly, there is evidence
suggesting that most of the TFH cells in the Peyer’s patches arise
from pre-existing Treg cells and Th17-type cells (12, 13).

Commensal bacteria and metabolites play an active role in the
development and regulation of adaptive immune responses in
the gut (Figure 1). In mice, segmented filamentous bacteria
(SFB) living in the small intestine help promote the induction of
protective, pathogen-specific Th17 responses (14, 15) by
triggering the intestinal production of serum amyloid A
protein (SAA) and reactive oxygen species (ROS) (16). In
humans, the Bifidobacterium B. adolescentis might play a
similar role (17). Other commensals promote the activation of
Th17-suppressing Treg cell responses by eliciting the production
of intestinal thymic stromal lymphopoietin (TSLP) (18). Gut
bacteria can also modulate Th1 responses to promote gut
microbial tolerance. In mice, for example, gut microbes can
suppress local Th1 cell responses via CX3CR1+ mononuclear
phagocytes to favor a local tolerant state (19). In contrast, when
Frontiers in Immunology | www.frontiersin.org 2
Klebsiella, which is normally found in the oral cavity, ectopically
colonizes the gut, it activates CD11b–CD103+ dendritic cells
(DCs), promoting the activation of pro-inflammatory Th1 cell
responses (20).

Other gut bacteria contribute to this process by inducing local
Treg cell responses. Clostridium clusters IV and XIVa stimulate
the secretion of transforming growth factor (TGF)-b by
intestinal epithelial cells, promoting the differentiation and
expansion of Treg cells in the colonic lamina propria (21).
Likewise, F. prausnitzii induces the formation of T-regulatory
type 1 (TR1)-like cells via TLR4-mediated activation of DCs (22).
Moreover, R. hominis has been associated with activation of
FoxP3+ Treg cells in the lamina propria (23). Commensal
microbial metabolites also contribute to promoting local Treg
cell responses. Eubacterium spp. produce SCFAs, mainly
butyrate, that contribute to local immune homeostasis via
several mechanisms (24–29). Microbial polysaccharides (PS)
have also been associated with this process (30). In mice, for
example, B. fragilis promotes the formation of tolerogenic
CD103+ DCs and IL-10-producing FoxP3+ Treg cells via PSA-
TLR2 signaling (31, 32).

Maintenance of gut microbial tolerance also involves the
induction and regulation of other types of T cell responses.
Recently, 11 bacterial strains were identified in healthy humans
that induce protective IFNg-producing CD8+ T cell responses in
the intestine (33). In mice, invariant natural killer T-cells
(iNKT), which bridge the innate and adaptive immune
systems, have also been shown to be regulated by the host
microbiota. B. fragilis sphingolipids, for example, modulate
host colonic iNKT cell homeostasis, promoting gut barrier
integrity (34).

Although most gut microbes reside in the lumen or on the gut
epithelium, some commensal bacteria such as Alcaligenes spp.,
Achromobacter spp., Bordetella spp. and Ochrobactrum spp, exist
in lymphoid follicles, Peyer’s patches and mesenteric lymph
nodes of both healthy mice and humans (35). These bacteria
trigger local interleukin-10 (IL-10) and IL-22 production from
DCs and Type 3 Innate Lymphoid cells (ILC3), respectively.
Whereas IL-10 suppresses the development of pro-inflammatory
Th17 responses against commensals, IL-22 signaling favors
bacterial colonization of lymphoid tissues.

Thus, the microbiota and the host immune system co-exist in
a unique symbiotic relationship, where the host fosters gut
colonization by microbes that are beneficial to the host, and/or
help it suppress immune responses against these commensals.
DISRUPTION OF MICROBIAL
HOMEOSTASIS VERSUS
PATHOGENIC IMMUNITY

Dysregulation of tolerance to gut microbes can lead to the
development of intestinal inflammatory processes, such as
Crohn’s disease (CD) and ulcerative colitis (UC). Changes in the
lifestyle of individuals living in industrialized societies during the
last century have transformed how humans are exposed to
April 2022 | Volume 13 | Article 873607
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environmental microbes. Excessive use of antibiotics, increase in
hygiene, changes in childbirth mode and maternal breast-feeding
patterns and poor nutritional habits have conspired with normal
genetic determinants to increase the incidence of various immune-
mediated diseases, betraying the beneficial role that these genetic
determinants have on the host in the absence of these behavioral/
societal changes (Figure 2). This putative association between
decreased exposure to microbes and the rapid rise in the incidence
and prevalence of chronic inflammatory disorders in
industrialized societies has been conceptualized in the “hygiene
hypothesis” (36). Various lines of experimental evidence in
rodents support this hypothesis. Nonobese diabetic (NOD) mice
as well as Biobreeding (BB) rats housed in conventional, non-
specific pathogen-free (SPF) conditions develop a significantly
decreased incidence of type 1 diabetes (T1D). In addition,
Frontiers in Immunology | www.frontiersin.org 3
infection of these rodent strains with various pathogens
suppresses their autoimmune disease proclivity (37–39). Similar
effects have been observed in systemic lupus erythematosus (SLE)-
prone (NZB x NZW) F1 mice, where infection with P. berghei
suppressed the development of lupus nephritis and prolonged
survival (40), and in murine models of allergy, where microbial
pathogen exposure suppresses disease. Although the precise
mechanisms underlying these associations remain unclear, it has
been suggested that excessive “hygiene” somehow interferes with
adequate development of Treg cells.

Thus, antibiotics can have a profound impact on microbiome
diversity and, as a result, on the host´s susceptibility to allergic
and/or autoimmune diseases. In mice, antibiotics can increase
the susceptibility of murine models to these pathological
processes. In humans, the effects of antibiotic exposure on
FIGURE 1 | Microbiota–T cell crosstalk in the maintenance of gut homeostasis. Commensal bacteria can trigger pattern recognition receptors (PPRs) on enterocytes
and/or activate antigen specific CD4+T cell responses via dendritic cells (DC). Naïve CD4+ T cells can differentiate into four major cell types: Th1, Th2, Th17 and
Tregs. The differentiation of each Th type requires specific transcription factors and cytokine sets, as shown in the figure. Th1 cells play an important role in
eliminating intracellular pathogens while Th2 control parasitic infections and extracellular pathogens trough the induction of antibody responses. The primary role of
Th17 cells is to control infection, but also contributes to intestinal homeostasis by inducing protective IgA responses. SFB commensal bacteria promote gut Th17 cell
responses by triggering the intestinal production of SAA and ROS. iTreg cells play a key role in controlling Th cell responses and in maintaining gut immune
homeostasis. Several commensal bacteria such as Clostridia spp., dietary compounds (SCFA) and AhR ligands participate in the maintenance of tolerance by
inducing gut Treg cell responses or by imprinting tolerogenic features on DCs, as is the case for Alcaligenes spp. Other immune cell types such as invariant natural
killer T-cells (iNKT) are suppressed and controlled by bacterial sphingolipids preventing intestinal pro-inflammatory responses. In addition, type 3 innate lymphoid
cells (ILC3) promote protective Th17 responses via IL-22 and IL-17. The types of bacteria implicated in particular T cell differentiation pathways as well as metabolites
are indicated in the figure. SFB, segmented filamentous bacteria; AhR, Aryl hydrocarbon receptor; TGF-b, transforming growth factor-beta; SCFA, short-chain fatty
acids; PSA, polysaccharide A; SAA, serum amyloid A protein; ROS, reactive oxygen species; GALT, gut-associated lymphoid tissue; TSLP, thymic stromal
lymphopoietin; iTreg, induced regulatory T cell.
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these disorders vary as a function of the timing of administration.
Whereas excessive use of antibiotics during childhood may
increase the susceptibility of children to atopic diseases,
antibiotic use during adulthood may help suppress certain
autoimmune disease processes (41). For example, excessive
oral antibiotic use by mothers or newborns has been associated
with increased susceptibility to T1D and asthma during
childhood. In contrast, antibiotic-mediated resolution of A.
actinomycetemcomitans infections (e.g. in periodontitis) in
adults have been associated with suppression of rheumatoid
arthritis (RA) (42), presumably due to the ability of the pore-
forming toxin of this facultative anaerobe to promote protein
citrullination, a major target of RA-associated autoantibodies.
Frontiers in Immunology | www.frontiersin.org 4
Genetics and sex are additional key variables. Allelic variation
at genes such as NOD2, encoding the intracellular PRR Nucleotide
Binding Oligomerization Domain Containing 2, is strongly
associated with susceptibility or resistance to inflammatory
bowel disease (IBD). Microbial colonization of NOD male mice
results in increased levels of serum testosterone and protection
against T1D development (43, 44).

Despite all these important observations linking alterations in
the gut microbiota with different autoimmune and allergic
responses, the precise underlying mechanisms are not fully
understood. Nevertheless, there is evidence suggesting that this
is a multifactorial process, involving microbial-induced
polarization of gut-associated T cells toward pathogenic
FIGURE 2 | Extrinsic and intrinsic factors inducing gut dysbiosis. Host genetic susceptibility and hormones as well as various host-extrinsic factors such as intake of
specific drugs, unhealthy diets, inappropriate microbial exposure, childbirth delivery or breast feeding may induce alterations in the composition of the gut microbiota.
Decreased richness and perturbations in taxonomic commensal and metabolite composition have been extensively associated with the development of multiple
autoimmune inflammatory disorders.
April 2022 | Volume 13 | Article 873607
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FIGURE 3 | Alterations in the microbiota may promote autoimmunity through different mechanisms. Alterations of intestinal permeability caused by diet, bacterial
metabolites, dysbiosis or pathobionts might increase exposure of gut microbial antigens to the gut associated lymphoid tissue. These adverse events have been
associated with various autoimmune disorders through different mechanisms. Induction of Th17/Th1 cell responses, impaired or low levels of IL10-secreting
Treg cell types, epitope spreading, dual TCR recognition or antigenic mimicry are some of the mechanisms. T1D, type 1 diabetes; AIG, autoimmune gastritis;
IBD, inflammatory bowel disease; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; PBC, primary biliary cholangitis; MS, multiple sclerosis; SCFA,
short chain fatty acids; MS, multiple sclerosis; b2-GPI, b2-glycoprotein I; APS, anti-phospholipid syndrome; PDC-E2, pyruvate dehydrogenase complex; GDP-L-
FS, guanosine diphosphate-L-fucose synthase; RPL23A, arthritis-related autoantigen 60S ribosomal protein L23a; IGRP, islet-specific glucose-6-phosphatase
catalytic subunit-related protein.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8736075
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subsets, bystander activation of autoreactive T cells, activation of
T cells co-expressing dual (autoreactive and gut microbial
antigen-specific) TCRs, and antigenic mimicry (Figure 3).

Gut dysbiosis or infections with pathobionts may disrupt gut
immune homeostasis by polarizing T cell responses. Apoptosis
during microbial infection drives autoreactive Th17 cell responses
(45). Furthermore, there is evidence that commensals and gut
pathogens can trigger differential cytokine expression patterns in
gut T-helper cell subsets. Thus, whereas murine SFB promote the
formation of IL-10-expressing (non-inflammatory) Th17 cells in
the steady state, C. rodentium infection induces the formation of
interferon-g+ (pro-inflammatory) Th17 cells instead (46). In mice,
another bacterium, A. muciniphila, promotes TFH cell formation
under physiological conditions, but Th17 cell formation in the
context of inflammation (47). In humans, A. muciniphila, which is
enriched in the microbiota of patients with Multiple Sclerosis
(MS), can skew differentiation of T cells into the Th1 cell subset in
vitro (48, 49).

Antigenic cross-reactivity or molecular mimicry is another
mechanism by which certain gut microbial antigens might be
able to trigger T cell responses against autoantigens. Persistent
colonization of the host with bacteria expressing cross-reactive
epitopes in a host carrying high-risk Human Leukocyte Antigen
(HLA) genes might trigger the sustained activation of cross-reactive
autoreactive T cells in the gut, particularly if there is a loss in gut
barrier integrity. Various autoantigen orthologues and non-
orthologous mimotopes of autoantigens encoded in the
microbiota have been implicated in the activation of autoreactive
T cell responses in various autoimmune disorders (Table 1). Ro60-
specific CD4+ T cell hybridomas (targeting the Sjögren’s syndrome
Antigen A (SSA)), have been shown to cross-react, in HLA-DR3
transgenic mice, with an orthologous antigen expressed by
Capnocytphaga ochracea (52). Likewise, DRB1*04:01-restricted T
cells targeting b2-glycoprotein I (b2GPI) epitopes in patients with
anti-phospholipid syndrome (APS) have been shown to cross-react
with a bacterial peptide from R. intestinalis, inducing pro-
inflammatory Th1 cell responses in vitro (51). Another example
of molecular mimicry involves the rheumatoid arthritis (RA)-
relevant autoantigens N-acetylglucosamine-6-sulfatase (GNS) and
filamin A (FLNA). Multiple gut microbial peptide epitopes are
structural mimics of these synovial proteins (50). Likewise, the
murine diabetogenic IGRP206-214 epitope is a structural and
agonistic mimic of a highly homologous epitope from the
Bacteroides integrase (53). There is also evidence suggesting an
association between CD4+ T-cell cross-reactivity against an E. coli
antigen and the pyruvate dehydrogenase complex (PDC), a major
autoantigenic target in human Primary Biliary Chollangitis (PBC)
(54). Likewise, human autoimmune gastritis has been associated
with T cell cross-reactivity against the H. pilory H+, K+–ATPase
(55). Furthermore, there is evidence supporting an association
between central nervous system (CNS) autoimmunity and cross-
reactivity between gut microbial antigens and autoantigenic targets
in MS, such as myelin basic protein (MBP) and guanosine
diphosphate-L-fucose synthase protein (56–58).

Certain pathobionts can promote autoimmune responses
through mechanisms other than molecular mimicry.
Frontiers in Immunology | www.frontiersin.org 6
For example, E. gallinarum, a pathobiont associated with SLE
autoimmunity and autoantibody responses against various SLE
and APS-relevant autoantigens, such as RNA, double-stranded
DNA and b2GPI, has been detected in gut-distal organs of
patients, suggesting a role for bacterial translocation in this
process (59). As noted above, the pore-forming toxin of the
oral pathobiont A. actinomycetemcomitans can citrullinate
proteins, leading to neoantigen formation and production of
RA-associated autoantibodies (60). Other pathogens can activate
autoreactive responses in a non-antigen specific way, by creating
an inflammatory environment that promotes bystander
lymphocyte activation. For example, in a mouse model of
arthritis, SFB antigens induced autoimmune lung inflammation
by triggering the formation of autoreactive Th17 cells from naïve
T cell precursors co-expressing SFB antigen specific TCRs (61).
Notwithstanding these associations, the precise mechanisms and
the potential role of these processes in human autoimmune
diseases remain unclear.
GUT MICROBIOTA – AUTOIMMUNE
DISEASE ASSOCIATIONS

Dysbiosis and disruption of the integrity or barrier function of
the intestinal epithelium have been associated with various
autoimmune diseases. Below, we discuss such associations with
a focus on potential mechanisms, including antigenic mimicry
(Table 2 and Figure 4).

Inflammatory Bowel Disease
CD is a form of IBD that can affect any part of the gastrointestinal
tract, but predominantly targets the terminal ileum and colon.
Ulcerative colitis (UC) is another form of IBD which only targets
the colon. Despite the fact that the incidence and prevalence of
IBD are increasing worldwide and are appearing earlier in life, the
etiology and pathogenesis of CD and UC remain ill-defined (95).
Although there is an important underlying genetic component
(96), disease development requires an environmental trigger (97).
Many studies have provided evidence for the loss of gut microbial
tolerance in human IBD (98), including the development of B and
T cell responses against gut microbial antigens and autoantigens
(99–106).

Whereas CD has been generally associated with increased
Th17- and Th1-type responses, UC is primarily associated with
Th17- and Th2-type responses (107). In CD patients, Th1-
associated transcription factors such as STAT4 and T-bet, and
cytokine receptors such as IL-12Rb2 are highly expressed in the
lamina propria of the inflamed gut (108). Likewise, the
development of CD-like ileitis in SAMP1/YitFc and TnfDARE
mice has been associated with Th1-driven inflammation (109,
110). Indeed, Th1-type cells appear to be necessary for gut
inflammation since immune cells from Ifng–/–, Tbx21−/−, and
Stat4−/− donors cannot transfer intestinal inflammation into
immunocompromised hosts (111–113).

There is also strong evidence for the contribution of Th17-
type responses to human IBD. Mucosal biopsies from both CD
April 2022 | Volume 13 | Article 873607
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TABLE 1 | Antigenic cross-reactivity between autoimmune disease relevant autoantigens and gut/oral microbial T-cell antigens.

ntigen MHC
Restriction

Evidence Reference

ND Patients show
reactivity against
autoreactiveand
bacterial epitopes

(50)

eptide

eptide ND RA patients show
reactivity against
autoreactiveand
bacterial

(50)

epitopes
eptide

eptide DRB1*04:01 Tetramer reactive
CD4+ T cells
isolated from blood
cross-react with
commensal
bacteria

(51)

eptide DRB1*0301 T cells isolated from
Ro60-immunized
DR3-humanized
mice recognize
commensal epitope

(52)

H-2–Kd Bacterial peptide
triggers recruitment
of low avidity
IGRP206-214-

reactive CD8+ T
cells to the gut and
protects mice
against colitis

(53)

ding
mensal

DRB4
*0101

Specific CD4+ T
cell clones isolated
from patients
crossreact with
commensal PDC-
E2 protein

(54)

e DR Specific CD4+ T
cell clones isolated
from autoimmune
gastritis patients
crossreact with
multiple H. pylori
antigens

(55)
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Autoimmune
Disease

Species T Cell
Response

Autoantigen Tissue
Expression

Peptide Epitope Bacteria
Species

Crossreactivity

Tissue
Location

Bacterial A

Rheumatoid
Arthritis

Human CD4+ N-
acetylglucosamine-
6-sulfatase (GNS)

Synovial
tissue

p222-
235

FEPFFMMIATPAPH Prevotella spp. Gut and
oral cavity

Arylsulfatase

Butyricimonas
spp.

Gut Commensal p

Human CD4+ Filamin A (FLNA) Synovial
tissue

p2446-
2460

NPAEFVVNTSNAGAG Prevotella spp. Gut and
oral cavity

Commensal p

Parabacteroides
spp.

Gut Commensal p

Anti-
phospholipid
Syndrome
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glycoprotein I
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binds to
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cells
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intestinalis

Gut Commensal p

Systemic
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Erythematosus
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Mouse CD4+ ND Ubiquitous p371-
381

FLLAVDVSASM Capnocytophaga
ochracea

Oral
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Commensal p

Type 1
Diabetes

Mouse CD8+ Islet-specific
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phosphatase
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p206–
214

VYLKTNVFL B. vulgatus; B.
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B. sp.
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sp. 3_1_33FAA;
and B. dorei
5_1_36/D4

Gut Integrase

Primary Biliary
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dehydrogenase
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domain of com
PDC-E2

Autoimmune
Gastritis
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hydrogen
potassium
adenosine
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pylori

Gut Histidine kinas
n
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TABLE 1 | Continued
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guanosine
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that is recognized
by cerebrospinal
fluid-infiltrating CD4
+ T cells from HLA-
DRB3- positive
patients

(57)
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peptides that
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colonized with this
strain develop more
severe experimental
autoimmune
encephalomyelitis
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Autoimmune
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triphosphatase
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transferase
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protein 2
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protein
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Gut UvrABC sy
protein A (

ND, not determined.
d

n

n

l

o

n

n

a

U
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TABLE 2 | Gut and oral bacterial species associated with autoimmune disorders.

Clinical
ociations [Refs]

Animal Studies [Refs]

eased levels in
atients (62).

CD4+CD25+FoxP3+ T cell
numbers increased in the lamina
propria of mice treated with R.
hominis. Treatment with the R.
hominis bacterium provided
protection against dextran sodium
sulfate (DSS)-induced colitis (23).

ased antibody
nses against
C were
ciated with IBD
rity. Imparied
C-specific IL10-
ucing CD4+ T cell
nses were
ted in blood of
atients (63, 65).

Detected activated Th1 CD4+ T
cells against E. coli antigens (64).

er levels of
inococcus gnavus
ted in IBD
nts often co-
rring with
ased disease
ity (67).

Germ-free mice colonized with an
unencapsulated strain of R.
gnavus show increased gut
inflammation compared to an
encapsulated strain, which
stimulates a tolerogenic response
in vivo (53).

eroides integrase
ive CD8+ T cells
nt in PBMC of
1 diabetic and
n´s disease
nts (53).

Low avidity autoreactive IGRP
206-214/Kd-specific CD8+ T cells
suppress experimental colitis (53).

er B. fragilis
lence associates
Crohn's disease
erbations (69).

Treatment of mice with
Bacteroides fragilis
glycosphingolipids reduces colonic
iNKT cell numbers and confers
protection against oxazolone-
induced colitis (34).

ification of H+,
TPase-specific
+ T cells that
react with
obacter pylori in
atients (55).
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Disease
Group

Autoimmune
Disorder

Bacterial Species Classification Tissue
Localization

Disease
Association

Target Cell
Type

Mechanisms [Refs]
Ass

Gut Axis Inflammatory
Bowel Disease
(IBD)

Roseburia sp,
Eubacterium
sp.Ruminococcaceae
spp., Lachnos piraceae
spp., Faecalibacterium
prausnitzii,

Commensal Gut Protective DC and Treg Bacteria produce SCFA
playing a major role in
modulation of inflammation,
regulation of immune
responses and maintenance
of barrier integrity in the gut.
Also promote expansion of
Tregs and skew dendritic cells
to prime IL-10 secreting T
cells (22, 23, 24).

Dec
IBD

Escherichia coli Commensal Gut Pathogenic Autoantibodies,
Th1 and Tregs

Bacterial antigens induce
anti-OmpC antibodies, Th1
cells and impaired CD4+IL-10+
cell responses, promoting
intestinal inflammation (63–65).

Incre
resp
Opm
asso
seve
Omp
prod
resp
dete
CD

Ruminococcus gnavus Commensal Gut Pathogenic DC Bacteria secrete a complex
glucorhamnan polysaccharide
inducing TNFa secretion by
DCs through TLR4 signaling
(66)

High
Rum
dete
patie
occu
incre
activ

B. vulgatus; B. sp.
4_3_47FAA;B. sp.
9_1_42FAA; B. sp.
3_1_33FAA; and B.
dorei 5_1_36/D4

Commensal Gut Protective CD8+ Gut microbial antigen recruits
low avidity IGRP206-214/Kd
specific CD8+ T cells to the
gut, which then promote the
killing of gut microbial mimic-
loaded dendritic cells,
precluding the activation of
other T cell effectors (53).

Bac
reac
pres
type
Croh
patie

Bacteriodes fragilis Commensal Gut Protective iNKT Bacteria produce lipid
antigens controlling
homeostatic iNKT cell
proliferation and activation,
preserving gut integrity (34).

High
prev
with
exac

Autoimmune
Gastritis (AIG)

Helicobacter pylori Commensal Gut Pathogenic Th1 Bacterial antigens activate
pro-inflammatory Th1 CD4+ T
cells that recognize H+,K+–
adenosine triphosphatase
host proteins (55).

Iden
K+–
CD4
cros
Hely
AIG
r
p

o

o
c
p

c

t
t
e

a

t
A

s
c
p
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TABLE 2 | Continued

Clinical
ociations [Refs]

Animal Studies [Refs]

ted increased
of Firmicutes

ies in Relapsing
on-relapsing -
tting MS patients

SFB colonized germ-free mice
develop spontaneous EAE (71).

ced levels of
roides species
been detected in
all cohort of
tric MS patients
Disease
fying therapy
ased Bacteriodes
nt (73).

EAE protection mediated by oral
PSA administration (31, 32).

inal Th17 cell
ency is inversely
d to the relative
dance of
tella strains in
uman small
ine of MS
nts (70).

Inhibits EAE in mice treated with
the commensal bacteria (74).

andomized,
le-blind, placebo-
olled trial, oral
nistration of
ensals improved
isease (77).

Bacterial administration in EAE
mice show therapeutic activity (75,
76).

E.coli Nissle 1917 reduced the
severity of EAE induced by
immunization with the MOG 35 -
55 peptide (78). E.coli peptide
activates and drives EAE in Ob
TCR-DR2b mice (56).

ification of
rospinal fluid-
ting cells in MS
ensal levels also
iate with MS
se (48).

Akkermansia association with MS
was reported in a twin study
where mice colonized with patient
stool samples harbored Tregs
producing lower levels of IL-10
(48).
Co-colonization with both strains
increased EAE severity (58).

R161H mouse model, which
expresses the R161 TCR,
recognize residues 161–180 of
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Disease
Group

Autoimmune
Disorder

Bacterial Species Classification Tissue
Localization

Disease
Association

Target Cell
Type

Mechanisms [Refs]
Ass

Brain/
Optical -
Gut Axis

Multiple
Sclerosis (MS

Segmented filamentous
bacteria (SFB)

Commensal Gut Pathogenic Th1/Th17 and
Treg

Bacteria promote Th17 pro-
inflammatory responses (14,
15).

Dete
level
spec
vs. N
Rem
(70).

Bacteriodes fragilis Commensal Gut Pathogenic DC and Treg Promotes induction of
tolerogenic CD103+ DC and
expansion of IL-10 FoxP3+
CD39+ CD4 Treg cells trough
PSA-TLR2 signaling (31, 32).

Redu
Bact
have
a sm
pedi
(72).
mod
incre
cont

Prevotella histicola Commensal Gut Protective DC, Treg and
macrophages

Bacteria inhibit pro-
inflammatory Th1 and Th17
cells and increase frequencies
of CD4+FoxP3+ regulatory T
cells, tolerogenic DC and
suppressive macrophages
(74).

Intes
frequ
relat
abun
Prev
the h
intes
patie

Lactobacillus and
Bifidobacterium spp.

Commensal Gut Protective Treg Bacteria promote Tregs, Th1/
Th17 supporting autoreactive
responses (75, 76).

In a
doub
cont
adm
com
MS d

Escherichia coli Commensal Gut Protective/
Pathogenic

CD4+ and Treg E.coli Nissle 1917 trigers the
recruitment of anti-
inflammatory, IL10-producing
MOG-specific CD4+ T cells to
the CNS (78). Bacterial
molecular mimicry (56).

Akkermansia spp. Commensal Gut Pathogenic CD4+ and Treg Bacteria mimics guanosine
diphosphate-L-fucose
synthase sequence (79), and
also induce impaired Treg
responses (48).

Iden
cere
infiltr
com
asso
disea

Erysipelotrichaceae
family and Lactobacillus
reuteri

Commensal Gut Pathogenic Th17 Bacterial peptides mimic
MOG40 - 48 epitope and
induces Th17 polarization (58).

Autoimmune
uveitis

Undefined microbiota Commensal Gut Pathogenic Th1/Th17 Bacteria mimics IRBP
autoantigen (80) and also
induce Th1/Th17 T cells (81).
c
s

i

e

a

i

e
t

e

o

t

r

r
i
m

t
b
a
m
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TABLE 2 | Continued

Clinical
ociations [Refs]

Animal Studies [Refs]

IRBP, a major uveitogenic epitope
in B10.RIII mice. These cells can
be activated by ommensal
microbiota. In addition, germ-free
C57BL/6 mice were resistant to
experimental autoimmune uveitis
(80).

ency of PDC-E2
176 reactive
T cells is
cantly increased
ripheral blood of
patients as
ared to healthy
cts (82).

CD4+CD25+FoxP3+ T cell
numbers increased in the lamina
propria of mice treated with R.
hominis . Treatment with the R.
hominis bacterium provided
protection against dextran sodium
sulfate (DSS)-induced colitis (23).

pared to healthy
duals, T1D
nts have fewer
Treg cells in
iation with a
prevalence of
nococcus (83).

Ruminococcus spp. are more
abundant in parasite infected mice
and seem to be responsible for
the induction of CD8+ Treg cells
and suppression of streptozotocin
(STZ)-induced diabetes (83).

ased levels are
ted in children
1D-associated
ntibody
ositivity (84).

ria was found in
iopsies of SLE
nts, but not in
y controls (59).

Antibiotic treatment decreases
mortality in SLE mice by
suppressing growth of E.
gallinarum in tissues, as well as
decreasing pathogenic
autoantibodies and autoreactive T
cells (59).

mensal-reactive T
lones from SLE
nts cross-react
uman and
rial Ro60 protein

Monocolonization of germ-free
mice with B. thetaiotaomicron
triggers T and B cell responses
against hRo60 (85).

T cells that
react with
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Disease
Group

Autoimmune
Disorder

Bacterial Species Classification Tissue
Localization

Disease
Association

Target Cell
Type

Mechanisms [Refs]
Ass

Endocrine/
Exocrine
-Gut Axis

Primary Biliary
Cholangitis
(PBC)

E. coli Commensal Gut Pathogenic CD4+ Bacteria mimic host PDC-E2
molecule (54).

Freq
163
CD4
signi
in pe
PBC
com
subj

Type 1
Diabetes (T1D)

Ruminococcus gnavus Commensal Gut Protective CD8+ Treg Bacteria induce CD8+CD122+
regulatory T cells (83).

Com
indiv
patie
CD8
asso
lowe
Rum

F. prausnitzii Commensal Gut Protective DC and Treg Produce SCFA, playing a
major role in modulation of
inflammation, regulation of
immune responses, and
maintenance of barrier
integrity in the gut. Also
promotes expansion of Tregs
and skews dendritic cells to
prime IL-10 producing T cells
(22, 23, 28).

Decr
dete
with
auto
sero

Systemic-
Gut Axis

Systemic
Lupus
Erythematosus
(SLE)

Enterococcus
gallinarum

Pathobiont Gut Pathogenic Th1/TFH and
Antibodies

Bacteria induce Th17 and
TFH responses supporting
autoantibody responses (59).

Bact
liver
patie
healt

Bacteroides
thetaiotaomicron

Commensal Gut Pathogenic CD4+ and
Antibodies

Bacteria mimic Ro60T, induce
specific T and B cell
responses (85).

Com
cell c
patie
with
bact
(85).

Anti-
Phospholipid

Roseburia intestinalis Commensal Gut Pathogenic CD4+ and
Antibodies

Bacteria mimics b2GP1
autoantigen (51).

CD4
cros
u
-
+
fi

p
e

i

+
c
r
i
e
c
T
a
p

e
b

h

h
e

+
s
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TABLE 2 | Continued

Clinical
ociations [Refs]

Animal Studies [Refs]

ensal bacterial
etected in blood
S patients (51).

Monocolonization with SFB
triggers arthritis in germ-free K/
BxN mice (86). SFB expand dual
T cell receptor (TCR) - expressing
Th17 cells recognizing both an
SFB epitope and autoantigen in a
model of autoimmune arthritis
(61).

nts with RA have
cantly higher
of anti-P.
alis antibodies as
ared to controls,
without any
lation with
se severity (88).

Periodontitis induced by bacteria
significantly aggravated the
severity of collagen-induced
arthritis in mice (87).

sure to Ltxa Aa
s was confirmed
tients with RA
as associated
ncreased titers of
itrullinated
in antibodies and
atoid factor (60).

Inhibits EAE in mice treated with
the commensal bacteria (74).

nts with early RA
se harbored
inal microbiota
nated by P. copri

SKG mice harboring microbiota
from RA patients had an increased
number of intestinal Th17 cells
and developed severe arthritis
after zymosan treatment. In
addition, naive SKG mouse T cells
co-cultured with P. copri
-challenged dendritic cells
produced IL-17 in response to
RPL23A antigen and rapidly
induced arthritis in mice (90).
A role for Collinsella in altering gut
permeability and disease severity
was confirmed in experimental
arthritis (91).
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Ass

comm
are d
of AP

Patie
signifi
titers
gingiv
comp
albeit
corre
disea
Expo
strain
in pa
and w
with i
anti-c
prote
rheum
Patie
disea
intest
domi
(90).
Disease
Group

Autoimmune
Disorder

Bacterial Species Classification Tissue
Localization

Disease
Association

Target Cell
Type

Mechanisms [Refs]

Syndrome
(APS)

Rheumatoid
Arthritis (RA)

Segmented filamentous
bacteria (SFB)

Commensal Gut Pathogenic Th17 and
Antibodies

Bacteria induce Th17 and
antibody responses
[86].Activation of auto-
reactive/SFB epitope cross-
reactive T cells expressing two
TCRs (61).

Porphyromonas
gingivalis

Pathobiont Gut Pathogenic Th17 and
Antibodies

Bacteria induce specific
antibodies and Th17 cell
responses by TLR-2 signaling
(87, 88). Also increase the
antigen repertoire by protein
citrullination (89).

Aggregatibacter
actinomycetemcomitans

Commensal/
Pathobiont

Gut Pathogenic Antibodies Bacteria induce
hypercitrullination in host
neutrophils via pore- forming
LtxA signaling, promoting
autoantibody formation (60).

Prevotella copri Commensal Gut Pathogenic Th17 Bacterial molecules mimic
RPL23A, and also induce
Th17 cell responses (90).

Collinsella Commensal Gut Pathogenic Th17 Collinsella correlated strongly
with high levels of alpha-
aminoadipic acid and
asparagine as well as
production of the
proinflammatory cytokine IL-
17A in RA patients (91).

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Garabatos and Santamaria Gut Microbial Antigenic Mimicry in Autoimmunity

Frontiers in Immunology | www.frontiersin.org
 13
and UC patients contain increased levels of Th17 cell-derived
cytokines (114, 115). In addition, human IBD is associated with
genetic polymorphisms at loci encoding Th17 pathway
components (e.g., IL6ST, JAK2, STAT3, RORC, IL23R, CCR6)
(116). In agreement with these observations, Stat3–/– and Rorc–/–

mice are resistant to experimental colitis (117, 118). However,
since Th17-type cells are known to contribute to the
maintenance of normal gut microbial homeostasis, it seems
likely that the pathogenic Th17-like cells that contribute to
IBD are a different subset (119, 120). Th17-type cells, like
other Th cell subsets, are plastic, and the associations between
Th17-type cells and both IBD and other autoimmune disorders
appear to be mediated by Th17-like cells co-expressing IFNg and
IL-17A (121, 122). In mice, pathogenic Th17-type cells express
high levels of the IL-23 receptor (123, 124), and the IL23R gene is
strongly associated with human IBD (116). Interestingly, a subset
of intestinal human memory CCR6+CXCR3+ T cells co-
expressing Th17 and Th1 markers from CD patients express
the Multidrug Resistant Mutation MDR1, a plasma membrane
drug efflux pump (125) that is encoded in a gene strongly
associated with IBD (ABCB1) (126).

Although the role of Th2-type cells in the pathogenesis of IBD
remains unclear, studies in both humans and mice support their
involvement. For example, biopsies of UC patients contain
increased levels of IL-4 (127) and sera from both UC patients
and mice with oxazolone-induced colitis contain elevated levels
of IgE, an IL-4-regulated immunoglobulin isotype (128, 129).
Likewise, development of ileitis in SAMP1/YitFc mice, and colitis
in the TNBS-induced model are associated with Th2-type
responses (130, 131).

The onset of IBD has been linked to both microbial dysbiosis
and disruption of gut epithelial permeability (132). Decreased
abundance on Firmicutes bacteria belonging to the
Ruminococcaceae spp., Lachnospiraceae spp, F. prausnitzii and
Roseburia spp. families is a signature of microbial dysbiosis in
IBD (62, 133). Since these bacteria are butyrate producers, this
association may be driven by altered (reduced) induction of
iTreg cells in the gut (134, 135). In agreement with this,
polymorphisms in genes coding for the immunoregulatory
cytokine IL-10 (IL10) or subunits of the IL-10 receptor
(IL10RA, IL10RB) are strongly associated with human IBD,
particularly with early onset forms of colitis (136). Increased
prevalence of pro-inflammatory commensals is yet another
mechanism through which dysbiosis may contribute to the
pathogenesis of IBD. For example, gut inflammation in
patients and murine models has been associated with increased
prevalence of R. gnavus (67, 68), which triggers the production of
inflammatory cytokines (e.g. TNFa) by DCs via polysaccharide
signaling (66). The role of other commensals is less clear. For
example, although B. fragilis metabolites promote barrier
integrity, the prevalence of this bacteria has been associated
with disease exacerbation in CD patients (69), suggesting
context-dependent effects.

Increased antibody responses against various gut microbial
antigens have been described in IBD. For example, CD patients
have increased serum titers of antibodies against the E. coli
membrane porin C (OmpC), yeast S. cerevisiae mannose
T
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epitopes (ASCA) and bacterial flagellins (CBir) (105, 106), and
both the presence and titers of these antibodies are associated
with disease severity (63). CD4+ T cell responses against some of
these gut microbial antigens have also been associated with IBD.
For example, activated OmpC-specific CD4+ T cells are
colitogenic in mice (64), and OmpC-specific CD4+ T-cells
have been detected in the peripheral blood of IBD patients
(65). There is also evidence for a role of flagellin-specific CD4+
T cells; increased frequencies of flagellin-specific CD4+ T cells
with an activated, gut homing phenotype were detected in CD
and UC patients versus controls. Furthermore, CD, albeit not
Frontiers in Immunology | www.frontiersin.org 14
UC, is associated with increased serum levels of anti-flagellin IgG
and IgA antibodies (137).

Many studies have provided evidence for the contribution of
an autoimmune component in the maintenance of chronic
intestinal inflammation. Most UC, and to a lesser extent CD
patients develop peri-nuclear anti-neutrophil cytoplasmic
antibodies (pANCA) (99, 138). These antibodies cross-react
with the OmpC protein, suggesting a possible role for B cell
autoreactivity and gut microbial antigenic cross-reactivity in the
pathogenesis of IBD (139). Likewise, IBD has been associated
with autoantibody responses against Glycoprotein 2 (GP2) (100,
FIGURE 4 | Associations of various autoimmune diseases with commensal bacteria. Specific commensal bacteria may enhance or reduce the host’s susceptibility
to specific autoimmune diseases by altering intestinal permeability, polarizing effector or regulatory T cell responses and/or by triggering autoreactive T cell responses
via antigen mimicry. SFB, segmented filamentous bacteria; DC, dendritic cell; iNKT, natural killer T-cells; Treg, regulatory T cell; TCR, T cell receptor.
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101), a receptor for bacterial adhesin FimH that is upregulated in
the gut epithelium of patients (100). Of note, high levels of anti-
GP2 IgA antibodies have been described in pediatric IBD
patients (101). An increased prevalence of autoantibodies
against FAM84A, a neuronal sensory protein expressed in the
gastrointestinal tract, has also been associated with IBD (102).

The contribution of autoreactive T-cell responses to IBD is
much less clear. Some studies have reported the ability of
commensal bacteria to activate colitogenic T-cells or
autoreactive T cells. A Citrobacter infection in ovalbumin
specific TCR transgenic mice triggered the apoptotic cell death
of infected colonic epithelial cells, promoting intestinal
inflammation via the activation of autoreactive Th17 CD4+ T
cells (45). Importantly, there is also evidence for protective
autoreactive T cell responses in IBD. Specifically, a Bacteroides
integrase epitope was shown to induce the recruitment of a
highly prevalent low avidity IGRP206-214 specific CD8+ T cell
subset to the gut, affording the mice protection against
experimental colitis (53).

The above observations suggest that the relative contribution
of autoimmune vs. non-autoimmune phenomena to UC and CD
is different. Thus, whereas autoreactivity against colonic
epithelial cells may play a role in UC, immune reactivity
against the intestinal flora is primarily a feature of CD.
Multiple environmental factors, genetic determinants as well as
the specific contribution of commensal bacteria to dysbiosis
could bias the inflammatory response and the disease
phenotype in each of these two inflammatory bowel diseases.

Multiple Sclerosis
MS is a CNS-specific autoimmune disease that is largely driven
by Th17-type cells and is characterized by CNS inflammation,
demyelination, and progressive neurodegeneration (140). Most
patients suffer a relapsing-remitting form of disease (RR-MS).
Although the etiology of MS is complex and incompletely
understood, both genetic and environmental factors clearly
play a role (141, 142).

Several studies have provided evidence for associations
between dysbiosis and MS, such as increases in the prevalence
of Methanobrevibacter (Archaea) and Akkermansia (143) or
firmicutes (70), as well as a reduction in the prevalence of
Butyricimonas (143).

In experimental autoimmune encephalomyelitis (EAE), a
mouse model of MS, induction of autoreactive B cell responses
against myelin oligodendrocyte glycoprotein (MOG) requires the
presence of the microbiota (144). In addition, induction of EAE
in germ-free mice was associated with reduced levels of IL17 and
IFNg in both the intestine and spinal cord as well as increased
levels of Treg cells. Interestingly, colonization of these germ-free
mice with SFB restored EAE susceptibility, implicating the
microbiota on the development of encephalitogenic Th17
responses (71). More recently, two different bacteria from the
Erysipelotrichaceae family and L. reuteri have been associated
with the severity of EAE via effects on Th17 cells and MOG
molecular mimicry, respectively (58). Another study reported
defective production of IL-10 by Treg cells from mice colonized
with fecal samples fromMS patients, suggesting that MS patients
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harbor a specific repertoire of commensals that favor CNS
autoimmunity (48).

Cross-reactive T cell responses against gut microbial antigens
have also been described in MS. In a recent study, cerebrospinal
fluid (CSF)-infiltrating T cells specific for GDP-L-fucose
synthase cross-reacted with Akkermansia antigens (79).
Furthermore, GDP-L specific clones recognized the myelin
basic protein (MBP) epitope MBP83-99, suggesting that T cell
cross-reactivity between gut microbial and CNS autoantigens
could act as a trigger of CNS inflammation.

Other studies reported protective effects of certain commensal
bacteria against CNS autoimmunity. Administration of B. fragilis
PSA has been shown to protect mice against CNS autoimmune
inflammation by promoting the expansion of Foxp3+ Tregs
expressing CD39 (31) and by inducing tolerogenic DCs (32).
Likewise, administration of P. histicola resulted in reduced
frequencies pro-inflammatory Th1 and Th17 cells and
increased frequencies of FoxP3+ Treg cells, tolerogenic DCs
and suppressive macrophages (74). Other species, such as
Bifidobacterium and Lactobacillus have been shown to protect
mice against EAE by promoting Treg cell responses and reducing
Th1- and Th17-type responses (75, 76). The E. coli Nissle 1917
strain was also shown to suppress CNS inflammation by
promoting the formation of IL-10-producing autoreactive Treg
cells (78).

Similar observations have been reported in humans. A study in
a small cohort of pediatric MS patients reported a reduced
prevalence of Bacteroides (72). In addition, increases in the
Bacteroides content of the gut microbiota of RRMS patients with
commensal modifying therapies was associated with disease-
protective effects (73). Likewise, a reduced prevalence of
Prevotella strains has been associated with increased frequencies
of Th17 cells and disease activity in MS patients (70), suggesting a
potential protective role for these bacteria against CNS
inflammation. In addition, gut microbiota from MS patients
imprinted defective IL-10 responses in fecal transplanted host
mice, promoting the development of spontaneous EAE (48). In a
recent human clinical trial, oral delivery of Lactobacillus and
Bifidobacterium spp ameliorated MS symptoms (77).

Systemic Lupus Erythematosus
SLE is a systemic (multi-organ) autoimmune disease
characterized by development of autoantibody responses
against nucleic acids, histones and ribonucleoproteins, leading
to the formation and deposition of pathogenic immune
complexes in various organs, including the kidney. Th17
polarization and higher frequencies of TFH cells have been
described in the peripheral blood of SLE patients (145),
consistent with the extensive autoantibody response underlying
disease pathogenesis. The etiology of SLE, as is also the case for
most other autoimmune diseases, remains unclear. There is an
important genetic component that, although necessary, is
insufficient for disease development (146). Environmental cues,
such as infectious agents, are suspected to play a role as triggers
of disease development in individuals at risk.

Recent evidence points to the microbiota as another potential
contributing factor to the development of SLE (147, 148).
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Disruption of the barrier function of the gut, leading to
translocation of commensal bacteria and pathobionts is one of
the possible mechanisms underlying this association. For
example, E. gallinarum was detected in the liver of SLE
patients (as well as in the liver of patients with autoimmune
hepatitis) but not in the liver of healthy controls (59). In a murine
model of SLE, antibiotic treatment reduced mortality and
decreased the production of pathogenic autoantibodies and
autoreactive T cells, in part by suppressing the growth of E.
gallinarum in tissues (59).

The composition of the early gut microbiota in mice also
appears to have an impact on the development of anti-nuclear
autoantibodies (149). SLE patients develop autoantibodies
against the evolutionarily conserved RNA binding protein
Ro60 (150, 151). Multiple gut commensals, such as B.
thetaiotaomicron, express Ro60 orthologues with high
sequence homology to human Ro60. Furthermore, colonization
of germ-free mice with B. thetaiotaomicron led to the
development of T and B cell reactivity against Ro60, as well as
to glomerular immune complex deposition mimicking lupus
nephritis (85). The same study reported that bacterial Ro60-
specific T cell clones isolated from SLE patients cross-reacted
with the human orthologue. Together, these data provided
evidence for gut microbial molecular mimicry as a potential
contributor to the development of SLE.

Type 1 Diabetes
T1D is a multifactorial autoimmune disorder characterized by
immune-mediated destruction of the pancreatic b-cells, in which
numerous genetic elements and putative environmental triggers
play a role. Several different alterations of gut microbial health
have been associated with T1D in both animal models and
humans (152–154), including alterations of intestinal
permeability (155, 156), as well as loss of gut microbial diversity
before the onset of disease (157). Pro-diabetogenic, oral antibiotic-
induced gut dysbiosis in NOD mice has been associated with
impaired enteric Th17/Treg responses (158). More recently, R.
gnavus has been suggested to protect mice against streptozotocin
(STZ)-induced diabetes, as well as to promote the development of
anti-diabetogenic CD8+CD122+ Treg cells in T1D patients (83).

Gut microbial molecular mimicry has also been implicated as
a possible mechanism of autoreactive T-cell activation in the
pathogenesis of T1D. A protein from L. goodfellowii was
suggested to function as a structural mimic of the murine
diabetogenic IGRP206‐214 epitope, as it could promote the
activation of cognate TCR-transgenic CD8+ T-cells in vitro
(159). In another study, however, metagenomic sequencing of
the gut microbiota failed to verify the presence of L. goodfellowii
in the gut microbiota of both mice and patients (53). Most
importantly, the latter study identified the Bacteroides integrase,
an abundant gut microbial antigen, as a true structural and
functional mimic of IGRP206‐214 (53). However, experiments in
mono-colonized germ-free mice indicated that this gut microbial
epitope promotes the recruitment and activation of anti-
colitogenic, low avidity IGRP206-214-specific CD8+ T-cells,
rather than the activation of their diabetogenic high-avidity
counterparts (53).
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Gut microbial metabolites have also been implicated in the
immunopathogenesis of T1D. Increased prevalence of
Bacteroides species as well as deficiencies in bacteria that
produce SCFAs have been described in T1D patients (84, 160).
For example, children with T1D-associated autoantibody
seropositivity have a reduction in the abundance of the
butyrate producer F. prausnitzii (84). Another multicenter
study of 783 children showed that the microbiota of healthy
children is enriched in SCFA-producers, without obvious
associations with any taxa, suggesting that microbial function
rather than composition might contribute to T1D development
(161). In agreement with these observations, NOD mice fed with
diets promoting gut microbial production of acetate and butyrate
were almost completely protected from T1D via SCFA-mediated
immunomodulation (162).

Rheumatoid Arthritis
RA is an organ-specific autoimmune disease that is characterized
by chronic inflammation and progressive destruction of the joint
tissues by arthritogenic T cells and autoantibodies. Although the
pathogenesis of RA remains incompletely defined, both genetic
and environmental factors, including alterations in the gut
microbiota, have been implicated in its development. As is the
case for the other autoimmune diseases discussed above,
alterations in intestinal permeability (163) and gut microbial
composition (164) have been found to predate the onset of
disease in RA. Commensal bacteria such as Collinsella have
been associated with increased gut permeability and disease
severity in both an experimental model of arthritis and in
human RA. In RA patients, for example, pro-arthritogenic IL-
17A responses in a subset of RA patients were associated with an
increased prevalence of Collinsella (91). In another study,
colonization of germ-free mice with SFB bacteria was sufficient
to induce arthritogenic Th17 responses (86).

Other studies have suggested a role for molecular mimicry as
a trigger of arthritogenic autoimmune responses in both animal
models and patients. An early work reported the presence of
immunoreactivity against an E. coli epitope, QKRAA, in the
synovial fluid of patients as compared to controls (165). A more
recent study found that autoreactive CD4+ T cells against the
autoantigens Filamin A (FLNA) and N-acetylglucosamine-6-
sulfatase (GNS) cross-react with similar sequences found in
Prevotella, Butyricimonas and Parabacteroides species (50).
Furthermore, increased prevalence of Prevotella species, such
as P. copri were detected in patients with new-onset RA (166). In
mice, Prevotella has also been proposed to contribute to RA
development, in this case by both, activating autoreactive T cells
specific for the arthritis-relevant autoantigen Ribosomal Protein
L23a (RPL23A), and by inducing pro-inflammatory Th17
responses (90).

The oral microbiota has also been implicated in RA.
Periodontitis induced by P. gingivalis, an established oral
pathobiont linked to this condition, has been associated with
the exacerbation of autoimmune arthritis, presumably by
inducing pathogenic Th17 responses via TLR2- and IL-1-
signalling (87). Of interest, P. gingivalis has been found to
contribute also to the generation of citrullinated proteins
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(antigenic targets of RA) in the oral cavity of RA patients (89,
167), suggesting a potential link between immune responses
against these post-translationally modified oral proteins and
downstream joint inflammation (168). This property has also
been documented for another RA-associated oral pathobiont, A.
actinomycetemcomitans (60).

Skin Autoimmunity
Psoriasis is a prevalent autoimmune disease characterized by
keratinocyte hyperproliferation and skin inflammation, where
both genetic and environmental factors also play a role (169).
Psoriatic skin lesions are associated with dermal and epidermal
infiltration of leukocytes, triggered and maintained by T
lymphocytes (170, 171). Most of the T cells that infiltrate the
psoriatic dermis are CD4+, whereas those that infiltrate the
epidermis are primarily CD8+ (171, 172). Different clinical
phenotypes have been associated with the presence of bacterial
skin commensals capable of inducing local pro-inflammatory
Th17 responses (173). However, multiple studies have also
underscored the importance of the gut-skin axis on cutaneous
autoimmunity. Gut dysbiosis induced by oral antibiotic treatment
in neonatal mice promoted the development of psoriasis by
increasing the frequency of cutaneous IL-22 producing gd+T
cells (174). In addition, induction of experimental psoriasis via
imiquimod exposure is blunted in germ free or antibiotic treated
mice, in association with a reduction in Th17 cells (175, 176). In
particular, Helicobacter pylori infection has been associated with
psoriasis (94), potentially via both local and systemic effects of the
inflammatory response (177, 178), such as increased permeability
of the gastric mucosa to food antigens, among others (92). In
addition, the H. pylori enterotoxin binds to the T cell receptor and
induces the expression of T cell skin homing receptors (179, 180).

Vitiligo is another T cell-dependent autoimmune disorder of
the skin characterized by skin depigmentation due to immune
mediated killing of melanocytes (181). Recently, in a murine
model of vitiligo harboring tyrosinase-reactive T cells, oral
ampicillin treatment decreased disease severity, suggesting that
the gut microbiota may also play a role in this disease (182).
CONCLUDING REMARKS

The specific role that gut microbes, metabolites or gut microbial
antigens play in the pathogenesis of autoimmune disease is
complex and remain ill-defined. There are clear associations
between gut dysbiosis and increased intestinal permeability with
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several autoimmune phenomena. However, whether these
abnormalities contribute to, or are merely a bystander effect of
disease progression remains to be addressed. Although
experiments in gnotobiotic mice have provided useful
information in this regard, it is unclear to what extent the
presence of an altered immune system in the germ-free mice
that were used in these studies might have affected the study
outcome. Bacterial translocation due to gut barrier disruption
can lead to increased presentation of gut microbial antigens to
the immune system. As a result, activation of autoreactive T and
B cells by cross-reactive gut microbial antigens remains a
potential mechanism, but the evidence providing direct links
between gut microbial antigen cross-reactivity and pathogenic
autoimmunity remain largely circumstantial in nature. A more
extensive use of reductionist systems of autoimmunity (e.g.,
TCR-transgenic mice), coupled to mono-colonization of germ-
free mice with wild-type and mutant gut microbial species (53)
should help address this knowledge gap. The links between the
effects of gut microbe-derived metabolites (e.g., SCFA) on the gut-
associated lymphoid tissue and autoimmune disease are compelling
and intriguing but will need to be integrated into the poorly
understood sequence of events underlying the corresponding
autoimmune diseases, including their genetic underpinnings.

Notwithstanding these limitations, the studies summarized
herein strongly support multifaceted roles for the gut microbiota
on autoimmune disease susceptibility or resistance. A precise
understanding of each of the many potential mechanisms
through which commensal bacteria can promote or protect
against autoimmune disorders will help conceptualize novel
therapeutic applications in this area.
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