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SUMMARY 

Artificial Intelligence is experiencing dramatic growth in recent times. AI models such as 

ChatGPT have become controversial topics as they continously transform our world. 

Nevertheless, the true nature of AI is still widely not yet understood by society. Nowadays, Artificial 

Intelligence is still seen by many as an obscure and foreign concept, even mysterious and 

threatening. However, this couldn’t be further from the truth. At their essence, they are just 

mathematical tools which rely on centuries-old knowledge: algebra and calculus. 

In this project, a neural network model has been created to solve a chemical engineering 

problem, the predictive model of a double tube heat exchanger. 

This model is a neural network that predicts future system outputs (inner stream output 

temperature) from the past values of the input variables of the system (inner and outer streams 

input temperatures and outer stream flow rate). 

The data used to train the model was obtained in a simulation written in the Python 

programming language. Afterwards, the optimal design parameters of the neural network were 

found experimentally by training different models and testing their performance. This was done in 

three stages: a proof of concept, a general design stage and a detailed design stage.  

The model has been successful in predicting the future state of the system with high 

exactitude while being circa. 3000 times faster than a conventional simulation.  

Keywords: artificial intelligence, neural networks, simulation, dynamics, Python, software 

architecture 
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RESUMEN 

La Inteligencia Artificial está experimentando un crecimiento dramático recientemente. Los 

modelos de IA como ChatGPT se han convertido en temas controvertidos mientras transforman 

continuamente nuestro mundo. Sin embargo, la sociedad aún no comprende la verdadera 

naturaleza de la IA. Hoy en día, la Inteligencia Artificial todavía es vista por muchos como un 

concepto oscuro y extraño, incluso misterioso y amenazante. Sin embargo, esto no podría estar 

más lejos de la realidad. En esencia, son solo herramientas matemáticas que se basan en 

conocimientos centenarios: álgebra y cálculo. 

En este proyecto se ha creado un modelo de red neuronal para resolver un problema de 

ingeniería química, el modelo predictivo de un intercambiador de calor de doble tubo. 

Este modelo es una red neuronal que predice los valores de salida futuros del sistema 

(temperatura de salida de la corriente interna) a partir de los valores pasados de las variables de 

entrada del sistema (temperaturas de entrada de las corrientes interna y externa y caudal de la 

corriente externa). 

Los datos utilizados para entrenar el modelo se obtuvieron en una simulación escrita en el 

lenguaje de programación Python. Posteriormente, los parámetros óptimos de diseño de la red 

neuronal se encontraron experimentalmente entrenando diferentes modelos y probando su 

rendimiento. Esto se realizó en tres etapas: una prueba de concepto, una etapa de diseño general 

y una etapa de diseño detallado. 

El modelo ha predicho exitosamente el estado futuro del sistema con exactitud y 

aproximadamente 3000 veces más rápido que una simulación convencional. 

 

 

Palabras clave: inteligencia artificial, redes neuronales, simulación, dinámica, Python, 

arquitectura de software 
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SUSTAINABLE DEVELOPMENT GOALS 

The impact of this project is mainly centred on the “Prosperity” and “Planet” sections of the 

Sustainable Development Goals. The employment of artificial intelligence in industry is one of the 

drivers of the fourth industrial revolution or “Industry 4.0”. This new paradigm of industry employs 

new advances in informatics to improve manufacturing efficiency. More efficient factories waste 

less raw material and electricity, which produces both economic and ecological advantages. 

Innovation in industry is a core tenet of Goal 9: Industries, Innovation, and Infrastructure.  

The efficiency of an industrial process is heavily influenced by its control systems. The 

predictive nature of the neural networks allows action to be taken before the system enters a 

wasteful or dangerous state. Improved control strategies directly translate into a reduction of 

electricity use (Goal 7: Affordable and Clean Energy), and raw material wastage (Goal 12: 

Responsible Consumption and Production). Additionally, predictive models can detect potential 

future unsafe conditions and enable safety actions to be taken earlier than with traditional 

feedback control. In some cases, such as in a reactor runaway, taking proper safety measures 

early enough is vital to preventing an accident. Chemical industry accidents are devastating to 

the people and the environment, so preventing them is crucial.  

In cases where a simulation-based predictive system was already in place, a neural network 

can learn from the simulation and replace it. Neural network models require less computational 

power than simulations, which is directly correlated to a reduction in electricity use. Such actions 

to increase energy efficiency are related to the Goal 7: Affordable and Clean Energy. The better 

use of energy and resources translates directly into a reduction in greenhouse gas emissions. 

Extracting and transporting resources and generating electricity have associated CO2 

emissions. Consequently, using resources and power in a more efficient manner translates 

directly into a reduction in carbon dioxide emissions. Since CO2 is a main driver in climate change, 

reducing its emissions is vital to stop global warming and the damage it is causing to the people 

and environment. This furthers Goal 13: Climate Action. 
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1. INTRODUCTION 

The dynamic systems that govern double tube heat exchangers make their control a 

challenging task. The core problem is that in these systems, the gain, dead time and time constant 

vary depending on flow rate. This makes these systems strongly nonlinear, so they cannot be 

correctly described by conventional linear partial differential equations. 

These heat exchangers also have long dead times and a tendency to exhibit oscillatory 

behaviour when controlled. Dead times are known to make systems harder to control, especially 

so in cases where these delays are long and even more so if they are not constant. Double tube 

heat exchangers have both issues.  

Classical PID uses feed-back control, which in this case would make decisions based on the 

output temperature. Since the effects of disturbances and control actions on the output 

temperature are delayed, the controller is always making decisions based on outdated 

information. This makes PID controllers unsuitable for these systems. 

To successfully control such systems, feed-forward control elements need to be used. [36] 

Feed-forward control relies on measuring disturbances and making a prediction of their effect 

before they affect the system. In a heat exchanger, this would be done by measuring the 

temperature and flow rate of the streams that feed into the exchanger and using them to predict 

the future output temperature. 

Feed-forward control requires a mathematical model of the plant to determine what control 

actions should be taken. This model calculates the outputs of the system depending on its inputs.  

One example of feed-forward control strategy is Model Predictive Control (MPC). In this 

strategy, the mathematical model of the system is used to predict its future behaviour and optimize 

control actions over a finite time horizon.  

Consequently, the performance of the control strategy relies on the quality of the model. This 

model must be accurate and fast to calculate since it is necessary to perform iterative calculations 

during optimization. 
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The model of these systems is obtained via system identification, which is more challenging 

in nonlinear systems such as double tube heat exchangers. In these cases, the model may be 

based on fundamental mass and energy balances. However, this requires simulating these 

balances, which is computationally intensive and, in some cases, too slow to allow iterative 

optimization. As an alternative, empirical approaches have been studied. Their objective is to fit 

the empirical data into a function that is faster to calculate than the simulation. In cases where the 

balances cannot be calculated, only empirical approaches can be used.  

A novel approach that is steadily being developed is using artificial intelligence as empirical 

models. [37][38] 

These techniques consist of creating a surrogate model (the artificial neural network) which 

is in essence a regression from empirical data. The model behaves like a black box that 

disregards the physical balances of the system it is modelled after. The result is a function that 

correlates inputs to outputs directly, a sort of black-box system identification transfer function.
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 ARTIFICIAL INTELLIGENCE 

Artificial intelligence is the simulation of human intelligence by a machine. It refers to the 

development of computer systems that can perform tasks that usually require human intelligence 

such as learning, reasoning, problem-solving and decision-making. [1] 

The study of artificial intelligence began in 1956, when the term "artificial intelligence" was 

coined by John McCarthy, an American computer scientist, at The Dartmouth Conference.[2]. 

 MACHINE LEARNING 

Machine learning is the use of algorithms that allow AI models to learn from data and improve 

their performance on specific tasks. [3] Training is done by optimizing the model parameters to 

improve its performance. A successfully trained model would be able to react accordingly to new 

inputs. 

Three main approaches have been developed for machine learning: supervised learning, 

unsupervised learning, and reinforcement learning. 

In supervised learning the training data is labelled with the correct answer. The difference 

between the data and the result predicted by the method is then minimized using optimization 

algorithms such as gradient descent. 

Supervised learning has two main applications: classification and regression.  

Classification is used to assign inputs into discrete groups. They are assigned into categories 

or labels such as {True, False} or {0,1,2,3}. 

Regression is used to find correlations between variables to predict a continuous output 

variable. It follows the same principles as conventional linear regression. 

 

In unsupervised learning, the data is unlabelled. The objective is to find hidden patterns in the 

data, such as clusters of data points. 

Reinforcement learning is performed in an interactive dynamic environment. The program 

must achieve a goal and it is given feedback, being rewarded “points” on a function which it tries 

to maximize. [4] 



4 Gómez, Cáceres Max 

 DEEP LEARNING 

Deep learning is a subset of machine learning. It focuses on the development of artificial 

neural networks, a type of machine-learning algorithm that is based on the structure of the human 

brain.  

Perceptrons are the building blocks of neural networks. Neural networks have perceptrons 

organized in layers: an input layer, an output layer, and an arbitrary number of hidden layers. 

    Figure 1. An illustration of a perceptron 

 

Perceptrons can distinguish between two classes of inputs. They consist of input nodes, which 

receive input signals, and a single output node, which computes a weighted sum of the inputs 

and applies an activation function to produce an output signal. Each input has a weight that 

impacts the effect it has on the output. These weights determine the behaviour towards inputs 

and its capability to properly classify them. The optimal weights can’t be known beforehand and 

must be obtained using optimization algorithms. 
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Figure 2. An illustration of a multilayer perceptron. Each circle is a perceptron. 

Multiple perceptrons can be connected in parallel (where multiple perceptrons share inputs) 

and in series (the input of a perceptron is the output of another perceptron) to produce a multilayer 

feed-forward perceptron. Multilayer perceptrons are the simplest type of neural network. The 

individual perceptrons of the multilayer perceptron are often called neurons. 

Multilayer feed-forward perceptrons with at least 2 layers of depth are in theory universal 

function approximators [14]. This means that these algorithms can approximate any arbitrary 

function if they have enough neurons. Depending on the activation function used they can perform 

either regression or classification, while single perceptrons can only perform classification. [5] 

Consequently, a multilayer perceptron can be created to make a regression or a prediction 

from data which follows functions that are not solvable analytically, such as the partial differential 

equations governing the behaviour of dynamic systems.  

 However, the number of required neurons may be impractical in some cases, which induced 

the development of diverse architectures which incorporate features such as feed-back loops or 

convolution. 

1.3.1.  Activation Functions 

Activation functions define an output based on an input or set of inputs. The impact of each 

input is determined by their weight, a parameter which is optimized during training. Non-linear 

functions are used because neural networks with linear activation functions do not exhibit 

universal function approximation capabilities. [6] 
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A widespread activation function is the Rectified Linear Unit (ReLU) which is a ramp function 

defined as:  𝑓(𝑥) = max(0, 𝑥) .  

Also common are sigmoid-like activation functions such as the logistic 𝑓(𝑥) = (1 + 𝑒−𝑥)−1 

and the hyperbolic tangent  𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)⁄  

 

 

Figure 3. Common activation functions 

1.3.2.  Hyperparameters 

Hyperparameters are the design parameters of the neural network that describe its structure 

and control the learning process. They are not optimized during training and remain constant. 

The structure is described by hyperparameters like number of neurons, number of layers and 

activation functions. 

The learning process is described by the learning rate (the rate at which weights are changed 

by the optimizer), which optimizers are used, and the number of epochs (the number of times the 

training data is inputted into the network while training), among others. Some optimizers such as 

Adam automatically adjust the learning rate for each layer, thus incorporating the hyperparameter 

into the training. [7] 
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However, hyperparameters can also be optimized (hyperparameter optimization). However, 

using an optimization algorithm such as gradient descent or grid search would require the whole 

training process to be repeated each time a hyperparameter is changed. The optimization of all 

hyperparameters is unfeasibly time-consuming due to the “combinatorial explosion” (the number 

of possible combinations increases exponentially with the number of variables). Consequently, it 

is common that many hyperparameters are chosen based on heuristics and only a few most 

significant ones are optimized. 

1.3.3.  Training 

To train neural networks they are usually first initialized with small random weights and zero 

bias. Training neural networks require data, which must be split into three segments: training, 

testing data and validation data. Training and validation data are both used to fit the model: The 

“train” set is used to train the model (optimization with backpropagation), and the “validation” set 

is used to fine-tune the properties of the model with hyperparameter optimization. [8]. The “test” 

set is used to evaluate the performance of the model on completely unseen data. 

 

 

 

 

 

 

  

Figure 4. Data segmentation 

 

First, the training data set is divided into batches. The first data entry of the first is inputted 

into the algorithm and the outputs are produced. Then, the loss is calculated out of the deviation 

from the expected value using a loss function. An example of a loss function is the squared loss, 

which is also used in the least-squares method of linear regression.  
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The process is repeated for all data entries in the batch and the cost function is calculated, 

which is often the average of all losses of the batch. 

The objective is to minimize the cost function by iteratively adjusting the appropriate weights 

and biases for all neurons. This optimization is performed by optimizers based on gradient 

descent such as SGD (Stochastic gradient descent) or Adam (adaptive moment estimation). 

The adjustments are performed with backpropagation. Backpropagation works by calculating 

the gradient of the cost function with respect to each weight in the network. This gradient is a 

vector in the direction of the highest slope. The negative of this vector points towards the path 

that minimizes the function the most.  

First, this gradient is calculated for the last row of neurons, finding the direction these weights 

should change. Since the output of a neuron is determined by the outputs of the preceding 

neurons and the weights of the connections, the optimal path for these preceding outputs also 

must be calculated. These outputs also depend on the weights and outputs of the preceding 

neurons, the process is repeated until the first layer of neurons is reached. This gradient is then 

calculated using Leibniz’s chain rule of derivatives. [9][10][11] 

The resulting gradient is a vector of N dimensions, one for each weight to optimize. 

Afterwards, a step is performed in this direction. The size of the step is determined by the learning 

rate. 

Higher learning rates produce larger steps, making the system in some cases converge faster 

but risk overstepping the solution (the system would fail to converge). Smaller learning rates lower 

the risk of overstepping, (more robust training) but at the cost of being slower. 

This process is then repeated for all batches in the training data set. A pass through all 

batches of the training data is an epoch. After all batches have been passed through, the 

performance of the neural network is tested with the validation data and the next epoch begins. 

The process is then repeated until it reaches a pre-defined number of epochs or until it is 

interrupted by an early-stopping algorithm.[12]  

1.3.4.  Bias-Variance Tradeoff 

The bias-variance trade-off is the relationship between the ability of a model to fit the training 

data (bias) and its ability to generalize to new, unseen data (variance). [13]  
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This is the reason why the dataset is divided into training, validation, and testing data. The 

model is trained only with training data and validation data (both of which will be referred to as 

training data in the context of overfitting and underfitting), keeping testing data as unknown new 

data to test the model with. A good model should be accurate both in the training data and in the 

testing data. 

During training, the neural network is expected to find relationships between data points in 

the training data which can be then applied to new data. This can fail in two different ways: 

underfitting and overfitting. 

Underfitting is the phenomenon in which the model is unable to capture all the complex 

patterns in the training data, which produces a high bias. These models are often exceedingly 

simple and perform poorly on training and test datasets. 

Overfitting is the opposite phenomenon. It is caused by models with too complex structures, 

where they just “memorize” the training data instead of finding patterns. This produces a high 

variance. These models perform very well on training datasets (as they have memorized them) 

but poorly on testing datasets (as they have not learned anything). 

These phenomena can also be found in conventional regression, where it is easier to 

illustrate. Here, the R-squared value is analogous to the inverse of the training error or loss. 

As an example, suppose a parabola with the following function: 

𝑦 = 0.4𝑥2 − 2𝑥 + 3 + 𝑛𝑜𝑖𝑠𝑒  where noise is a random number between -0,5 and +0,5. 
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Figure 5. Underfitted and overfitted polynomial regression models 

 

The under-fitted model ( 𝑦 = 0,7962𝑥 + 0,1409 ) is too simple to capture changes in 

slope and is thus unable to reproduce a parabola. It has a R-squared value of 0,6159. 

The overfitted model is a 5th-degree polynomial, the highest possible degree with 6 data 

points. 

(𝑦 = 0,0776𝑥5 − 1,3595𝑥4 + 8,941𝑥3 − 26,789𝑥2 + 35,392𝑥 − 14,366) 

This model captures all noise, it is unable to discern between the underlying trend and the 

random noise. Consequently, it has an R-squared value of 1. The training error is 0, as the model 

has a theoretically perfect, unbiased fit. However, it would fail to predict the value at x = 1,5 despite 

having a perfect fit at x = 1 and x = 2. 

 

The good fit model (𝑦 = 0,4169𝑥2 − 2,1222𝑥 + 3,75) has a higher training loss than the 

overfitted model, an R-squared value of 0,9761, lower than the 1 of the overfitted model. However, 

this is not a negative property. This bias is caused by the ability of the model to ignore the noise 

and only focus on the underlying trend.  
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 RECURRENT NEURAL NETWORKS 

The neural network architecture used in this project is Long Short-Term Memory, a type of 

Recurrent Neural Network. 

Recurrent Neural Networks (RNN) are a type of neural network that is best used to find 

patterns in sequences of data. Sequential data include human language, genes, stock market 

prices, industrial sensor data… 

The main difference between feed-forward neural networks (“basic” neural networks) and 

RNNs is that RNNs include feed-back transfers of information. Just like normal perceptrons, RNN 

(including LSTM) neurons can be joined in series and in parallel. The hidden layer may contain 

an arbitrary number of neurons and layers of neurons. 

  

Figure 6. Comparison between a multi-layer perceptron (feed-forward) and a recurrent neural 
network (feed-back) 

 

Feed-forward neural networks do not have memory, and thus they can only make predictions 

on the present conditions. The inclusion of feed-back loops allows the model to remember past 

states and include them into the predictions. [12] 
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Figure 7. Unfolded Recurrent Neural Network 

Figure 8. RNN Hidden Layer 

 

However, RNNs exhibit phenomena known as “vanishing gradient” and “exploding gradient”. 

These problems happen during backpropagation. Backpropagation in an RNN is done by 

performing backpropagation on each unit of the unfolded recurrent neural network. It is 

“backpropagation through time”. The gradients obtained by backpropagation in the first units must 

propagate through all units of the sequence until the current time step. After each layer, small 

gradients shrink and end up vanishing after a few time steps. The model has “forgotten” what 

happened in that first unit. [26] The opposite is exploding gradient, which happens with large 

gradients that increase through time until the model becomes unstable.[24] [25]  
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 LONG-SHORT TERM MEMORY NEURAL NETWORKS 

Long Short-Term Memory is a variety of RNN built to avoid the vanishing gradient problem 

which is common in basic RNN since they allow the gradient to flow unchanged. However, they 

are still vulnerable to the less common exploding gradient problem. Research is being conducted 

on different algorithms to reduce this issue [31]. Nevertheless, only one instance of exploding 

gradient happened during the training of all the models of this study so there was no need to apply 

these algorithms. 

This architecture keeps the RNNs ability to capture long-term dependencies. As a type of 

RNN, LSTM are used in sequential and time-series data, such as stock price prediction, weather 

prediction, and language translation (Google Translate). [25] [28] 

It also has applications in the field of control and robotics, such as the predictive control of a 

corn processing plant [30] and the development of robotic hands [29]. 

The main difference between LSTM and RNN is that LSTM cells incorporate memory cells. 

Each LSTM neuron has two streams of data (called “states”), the hidden state (the “output” of the 

neuron and an input of the next cell, which works the same as in RNN) and the cell state (the 

output of the memory cell of this neuron and input of the memory cell and the next neuron). 

 

 Figure 9. Folded architecture of a LSTM neural network 
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LSTM use gates to control the information that enters and leaves the memory cell. These 

gates allow data to flow unmodified and with no impact on the cell output unless these gates are 

“open”. This behaviour makes the memory cell act like a “long-term memory”, while the hidden 

state behaves like a “short-term memory”. This is the namesake of this architecture “Long Short-

Term Memory”. 

 

Figure 10. LSTM Hidden Layer architecture 

 

The gates consist of sigmoid and hyperbolic tangent activation functions. The sigmoid 

activation functions control the gates. They have a range of (0,1), where an output of 0 represents 

a closed gate and 1 an open gate. The behaviour of all three gates is controlled by the current 

input and the hidden state of the previous cell. The hyperbolic tangent functions are the “normal” 

activation functions that process inputs into outputs. 

The Forget Gate has the task of deleting the content of the memory cell (“forgetting”). The 

hidden state of the previous neuron and the current input are concatenated and multiplied by a 

weight (w1). By consequence, the choice of how much information to delete depends on both the 

input and the hidden state. If the output of the sigmoid function is 0, this 0 is multiplied by the Cell 

State of the previous cell. The result of this multiplication is 0, deleting its contents. Results 

between 0 and 1 allow for partial deletion of the memory cell. 
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The Input Gate has the task of selectively adding information into the memory cell. The choice 

of how much information to add is done by a sigmoid activation function like the one in the forget 

gate. The actual information added into the memory cell is processed by the hyperbolic tangent 

function. Both outputs are multiplied together.  

If the result of the sigmoid function is 0, the result of the hyperbolic tangent function is 

discarded, and the memory cell is not modified. On the contrary, a sigmoid output of 1 would allow 

the result of the tanh function to be completely added into the memory cell. 

The Output Gate selectively returns information from the memory cell to the hidden state, 

which is the output of the neuron. This gate can withhold the information in the output cell until a 

point in the future. This behaviour allows LSTM neural networks to work with delayed systems. 

This gate is also controlled by the input and a hidden state, which means that the time this 

information is stored (the dead time) depends on the input. This would in theory allow the neural 

network to adapt to different dead times, which depend on the input.  

LSTM layers are often composed of multiple “stacked” LSTM units. Instead of having just one 

cell for each time step, there is an arbitrary number of them. However, the general structure 

remains the same as seen in Figure 10, but the hidden states, cell states, weights and outputs 

become vectors instead of scalars. 

All units receive the same inputs but produce different outputs, which adds a dimension to 

these outputs. 

A LSTM layer with only one unit returns a vector 𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑦𝑡1,  𝑦𝑡2, 𝑦𝑡3) 

A LSTM layer with more than one unit returns a matrix, for example a layer with two units 

would return 𝑂𝑢𝑡𝑝𝑢𝑡 =  [
𝑦𝑡1,𝑢1 𝑦𝑡2,𝑢1 𝑦𝑡3,𝑢1

𝑦𝑡1,𝑢2 𝑦𝑡2,𝑢2 𝑦𝑡3,𝑢2
  ] 

The number of units determines the capacity and complexity of the layer. This is analogous 

to the degree of the polynomial used in the polynomial regression example. More layers allow 

capturing more complex patterns but at the cost of increased computational costs and higher risk 

of overfitting. 
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2. OBJECTIVES 

The objectives of this project are divided into two main sections: research and application. 

First, bibliographic research into neural networks with emphasis on their underlying 

mathematical characteristics. The purpose of this research is to demystify artificial intelligence 

and learning how it really operates from a more scientific perspective. 

Second, developing a neural network to solve a chemical engineering problem. Especially, 

the goal was to provide a solution to a problem that was challenging to solve with conventional 

methods. 

The problem to be solved is the modelling of a double tube heat exchanger. A model that 

predicts the future state of the system from past disturbances is needed to apply a feed-forward 

loop. The objective is to create a neural network that predicts with reasonable accuracy and speed 

the effects any disturbance would have on the future state of the system. In essence, the neural 

network is desired to behave like an empirical, time-domain version of a transfer function. 

It is desirable to obtain a model that predicts far enough into the future to allow seeing the 

whole dynamic response to most disturbances, from the moment of the disturbance to at least 

the point at which the system reaches a stationary state. 

To achieve these objectives, a simulation must be performed which produces compatible data 

that the model can learn and improve from. 

Afterwards, the model must be designed. Finding the appropriate design parameters is done 

mainly in an experimental fashion. As such, experiments are to be performed to optimize these 

parameters. 
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3. METHODS 

 SOFTWARE TOOLS 

The programming language Python was used to develop all software programs of this Project. 

Python was chosen because it is the leading programming language in Computer Science 

applications in Science and Engineering. It is also the first programming language in terms of 

general popularity according to the TIOBE Community Index. [15] 

Python is a free high-level language which focuses on readability and ease of use. 

Consequently, the user can focus on writing complex applications and algorithms quickly. [16] 

However, this abstraction comes at a cost. Since it is not possible to optimize memory 

management, programs written in Python are usually slower than those written in lower-level 

languages such as C.  

Another important advantage of Python is its very rich free library environment. Libraries are 

collections of pre-written functions that can be downloaded and used in programs at the users’ 

discretion. Once downloaded, they can be loaded into the program by adding the line “import 

(library) as (abbreviation)” at the top of the program. Afterwards, they can be integrated 

seamlessly into the code as they behave like a regular user-written function. [17] 

These functions often perform more computationally complex functions by calling a function 

written and compiled in a lower-level language, often C. In consequence, they allow the user to 

benefit from the speed of lower-level languages while maintaining the simplicity and readability of 

Python. 
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The Python libraries used in this project are free to download.  

Libraries Used 

NumPy: Adds the “array” data structure, which is absent from base Python. This data structure 

is common in lower-level languages such as C or C++. They are similar to Python lists, but their 

length is fixed. Arrays are a faster alternative to lists when working with vectors and matrices.  It 

also includes additional mathematical functions such as sine and cosine. [18] 

Pandas: Adds the “DataFrame” data structure, which is very similar to Excel spreadsheets. 

This library also allows the user to read and write Excel files in several formats such as “.csv” and 

“.xlsx”. Consequently, Pandas is used frequently in data analysis and data science applications. 

[19] 

Matplotlib: Graphical library that allows plotting NumPy arrays and Pandas dataframes 

directly. [20] 

Scikit-learn: Machine learning library built on NumPy, SciPy and matplotlib that provides tools 

to assist in data processing and modelling. [21] 

TensorFlow: Artificial intelligence library which provides the “tensor” data structure. Tensors 

are in essence arrays optimized for deep learning purposes. This library also allows the usage of 

the GPU to accelerate the training of the models using CUDA. [22] 

Keras: Deep learning library associated with TensorFlow. Keras provides the user with all the 

tools needed to build a neural network, such as optimizers, activation functions and loss functions. 

[23] 

The code was written using Visual Studio Code, a free code editor. The also free “Python” 

plug-in was downloaded from the “Plugin Store” menu of the editor. This plug-in allows executing 

Python programs inside the editor by only clicking a button.  

The neural network is written in Jupyter notebook format. Jupyter notebooks are a type of 

Python file based on cells that can be executed independently, similar to Wolfram 

MATHEMATICA. The support for Jupyter notebooks is included in the Python plugins for Visual 

Studio Code. 
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 SIMULATION INTRODUCTION 

The main objective of the artificial intelligence is to make a prediction of the future state of the 

system according to present and past sensor data. To achieve this, empirical data of the system 

behaviour is required.  

The empirical data takes the form of a time series which includes the reading of all sensors. 

Step disturbances are performed in the disturbance and manipulated variables in regular intervals 

inside the operating range of the system. 

This data can be produced with either experimentally in a laboratory or in a computer 

simulation. Since a physical system was unavailable, a simulation of that system was used to 

produce the data. This is called a digital twin and it is a widely used technique in the Industry 4.0 

paradigm. 

 SIMULATION STRATEGY 

The system is a double tube heat exchanger with co-current turbulent streams. There is 

perfect convection in the radial axis, which means that the only temperature difference in the 

radial axis is between both streams. This temperature difference is the driving force for the heat 

exchange between the inner and outer tubes. This heat exchange produces a temperature 

gradient along the axial axis. For each differential in the axial length, the heat exchange between 

streams is calculated using the macroscopic heat exchange equation. 

Inner tube balance: 

(𝑇𝑖𝑛(𝑥,𝑡+1) − 𝑇𝑖𝑛(𝑥,𝑡))

𝑑𝑡
=

(𝑊𝑖𝑛(𝑡) ∗ 𝐶𝑝𝑖𝑛 ∗ (𝑇𝑖𝑛(𝑥−1,𝑡) − 𝑇𝑖𝑛(𝑥,𝑡)) − 𝑄(𝑥,𝑡))

𝑚𝑎𝑠𝑠𝑖𝑛(𝑥,𝑡) ∗ 𝐶𝑝𝑖𝑛(𝑥,𝑡)
 

Outer tube balance: 

(𝑇𝑜𝑢𝑡(𝑥,𝑡+1) − 𝑇𝑜𝑢𝑡(𝑥,𝑡))

𝑑𝑡
=

(𝑊𝑜𝑢𝑡(𝑡) ∗ 𝐶𝑝𝑜𝑢𝑡 ∗ (𝑇𝑜𝑢𝑡(𝑥−1,𝑡) − 𝑇𝑖𝑛(𝑥,𝑡)) + 𝑄(𝑥,𝑡))

(𝑚𝑎𝑠𝑠𝑜𝑢𝑡(𝑥,𝑡) ∗ 𝐶𝑝𝑜𝑢𝑡(𝑥,𝑡))
 

Heat flow between streams: 

𝑄(𝑥,𝑡) = 𝑈 ∗ 𝐴 ∗ (𝑇𝑖𝑛(𝑥,𝑡) − 𝑇𝑜𝑢𝑡(𝑥,𝑡)) 
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Accordingly, both streams are simulated with one spatial coordinate (axial position “length”) 

and one time coordinate. The heat exchange over time and axial coordinate for each stream is 

calculated in separate energy balances. The heat exchange between streams is modelled as a 

“generation” variable in the energy balance. 

The system is divided along the axial axis into 100 sections, with each length section having 

one node for the inner tube and one for the outer tube, totalling 200 nodes. Simulations with less 

sections (e.g 50) were tried but produced less accurate results. Simulations with more than 100 

sections produced identical results, indicating diminishing results in accuracy. 

The time axis is divided into 0,25 second steps. Step sizes at or above 0,5 seconds produced 

instabilities in which the simulation diverged towards infinity. 

 

The microscopic heat transfer equation is solved using the explicit Euler method. At first, the 

simulation is initialized to let it reach a steady state, 1000 seconds was proven to be enough. 

Once the initialization period is over, the main loop begins. For producing training data, random 

step disturbance signals are performed once every a random number of seconds. 

 Figure 11. Extract of the simulation 
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3.3.1.  System Study 

To understand the behavior of the system, a simulation was run in which only one signal 

was produced. Afterwards, the response of the system to this disturbance was observed. 

However, the response varied significantly depending on the value of other variables. Disturbance 

signals of +10 K in the outer tube fluid initial temperature were performed under different outer 

tube fluid volumetric flows, from 2.5 to 20 L/s under co-current flow. 

 

 Figure 12. Response to a disturbance of +10 K in the outer stream initial temperature 

 

As seen in figure 12, under flows higher than 10 L/s the response was of a dead time and a 

relatively fast sigmoid shaped increase of temperature. This dead time increases as volumetric 

flow decreases. However, at 10 L/s the dead time stops increasing, remaining at 35 seconds. 

Further reducing flow reduced the slope of the sigmoid function. Static gain increases with flow 

rate.  

The interval between signals of a variable can be constant or randomized. Both options have 

been used successfully in the literature [39] [40]. 
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However, randomized intervals reduce the risk of overfitting by making it more difficult for the 

model to attempt to predict the periodicity of signals. If the signals are always produced at the 

same time or under predictable intervals the model may learn these intervals and produce 

predictions using that information. Since the objective is to make a model that makes predictions 

using sensed disturbances data, not predicting disturbances, this would be undesirable. 

Consequently, randomized intervals have been used in the simulation. Different intervals have 

been tested, depending on the number of disturbed variables. Experiments with more disturbed 

variables have been done with higher intervals, to preserve a similar time between signals of any 

variable. The ideal time between signals must be found empirically as it has been observed to 

depend on the architecture of the neural network. As an initial proposal, 50 seconds was chosen, 

which is higher than the delay time (35 seconds) and lower than the time it takes for the 10 L/s 

flow to achieve steady-state conditions (70 seconds). Afterwards it had to be increased to 100 

and 150 seconds.  

 

3.3.2.  Data Storage 

Background noise in the sensor has been added, with an amplitude of 0.05 K for all 

temperatures and 0.025 L/s for flow rates. 

The stored data is kept as the sensor data as is, not converted to “disturbance variable” 

format. Disturbance variable format consists of storing the values of variables as the difference 

from their value in the stationary state at the beginning of the simulation. Even though using 

converting to disturbance variables is widespread in control theory, it is not adequate in this case 

since it conflicts with standardization, a data pre-processing technique used to train the neural 

network. 

However, simulations used for illustrative purposes use disturbance variable format since it 

allows for better visualizations of the dynamics of the system. 

The data of the disturbance variables and the controlled variable are stored in a “.csv” file. To 

reduce the size of the file and the computational load of training the model, the storage of this 

data is done in 1-second intervals. Since the simulation is done in 0,25-second steps, data is 

stored every 4 simulation steps. In the other 3 steps, the data is only used to calculate the 

simulation, not stored in the “.csv” file. 
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 DATA PRE-PROCESSING 

Data pre-processing is important before training any machine learning model, and in some 

cases, like in this project, it is required. It represents the actions done to convert raw data into a 

usable form.  

3.4.1.  Loading and Checking 

First, the data is loaded. The “.csv” files with the simulation data are read and stored into 

Pandas Data Frames, which behave like an Excel table. 

Once the data is loaded, the data is checked for errors or outliers. This has been done by 

using pandas’ “describe()” function, which creates a table with descriptive statistics of the data 

(minimum, maximum, average, standard deviation, percentiles…) 

 

Table 1. Example of a “describe()” statistics table for one of the simulations 

  
Outer Temp. 
[K] 

Initial Inner Temp. 
[K] 

Outer Ws 
[L/s] 

Inner Temp. 
[K] 

count 800000 800000 800000 800000 

mean 25.00 69.98 10.04 55.08 

std 2.92 5.75 5.70 4.76 

min 19.98 59.98 0.00 44.20 

25% 22.47 65.05 5.25 51.49 

50% 24.94 69.86 9.96 54.81 

75% 27.55 75.07 14.87 58.29 

max 30.02 80.00 20.01 72.67 

 

Anomalous or missing values can be detected using this table. This was useful because it 

allowed to detect an instability in the simulation. At first, the simulation was run in 0,5-second 

steps. This produced results that looked fine at the beginning but after several hundred thousand 

seconds of simulation, it became unstable and diverged into infinity. This was detected by the 

anomalously large “max” values in the variables. 
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3.4.2.  Data Segmentation and Standardization 

Afterwards, the data is separated into training, validation, and test segments. The ratio used 

for this division is 70% train, 20% validation and 10% test. 

The next step is standardization. It is a normalization technique that adjusts the scales of the 

variable in a way that all vary in the same range. This ensures that the scale of the variable (such 

as which units are used) does not impact the model. It has been proven to improve the quality of 

the models even though it slows down training slightly [32]. 

Standardization is done by calculating the average and the standard deviation of all variables 

in the testing data. Validation and training data are not used because they are treated as 

“unknown new data”. If they were used, they would affect the results of the normalization, which 

is not desired. The model should not know anything about validation and test data until validation 

and testing. 

Afterwards, all values of the variables in all 3 data segments are expressed in (train data) 

standard deviations from the (train data) mean. These values are calculated only once during 

training and stored for future use. Afterwards, they are used to convert the predictions back from 

standard deviations into temperature. Also, all future inputs into the model must be standardized 

using the stored values for standard deviation and mean from the training set. 

3.4.3.  Data Windowing 

Afterwards, the data (in time-series format) is converted into a supervised learning dataset.  

Supervised learning datasets consist of inputs and labels. Inputs are the data given to the 

model to predict the labels. In this case, the objective is for the neural network to make a prediction 

of the next m seconds (labels), using the last n+1 seconds as inputs.  

This is done by using a sliding time-window. The “WindowGenerator” available in the 

TensorFlow documentation was used. [33] 
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The Window Generator creates a slice of the dataset that contains the data from t-n to t+m 

so that there is only the relevant data (inputs and labels). This is then repeated for t = t+1, until 

the end of the dataset is reached. The result is a collection of small time series which are treated 

independently. 

 

Figure 13. Data Windowing example 

 

For the first window, the values of the inputs and the labels from t=1 to t=5 are given to the 

model to make predictions of the labels at t=6 to t=8. Then these labels are revealed and the 

differences between the predicted values and the real ones are calculated. 

Afterwards, the values of the inputs and the labels from t=2 to t=6 are used to predict t=7 to 

t=9… 

The time column is not shown to the machine, so it does not know that these windows belong 

to the same data sequence. It cannot “cheat” by learning what is the label at t=8 in the first window, 

copying it and then pasting it in the t=8 of the second window. 

However, this comes with a problem. 

At time t, the system conditions for t+1, t+2… t+m are estimated from the system conditions 

at t-n, t-n+1, t-n+2… t. If a disturbance were to happen at t+1, the whole prediction would be 

wrong as the system would implicitly assume that all input variables would remain constant from 

t to t+m.  
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There is no way to get around this problem as the information of this “random” disturbance 

(which comes from out of the system and is thus unpredictable from inside the system) does not 

exist at time t. A way to avoid this problem from arising is to set up disturbance intervals in a way 

that the time between them is always higher than m. However, this would come at a cost of 

reducing the available data points significantly. 

 

As an example of this problem, suppose a system where the label variable follows the 

equation (𝑙𝑎𝑏𝑒𝑙𝑡 − 𝑙𝑎𝑏𝑒𝑙𝑡−1) = 0,01 ∗ 𝑖𝑛𝑝𝑢𝑡 

This system is subject to random disturbances in the input variable. The input is kept constant 

at 5 until at t=6 a step disturbance signal is done with a resulting value of -10. 

Table 2. Data Windowing Unpredictability Issue 

 Time Input Label Prediction 

t-n 1 5 5.45 - 

t-3 2 5 5.50 - 

t-2 3 5 5.55 - 

t-1 4 5 5.60 - 

t 5 5 5.65 - 

t+1 6 -10 5.55 5.70 

t+2 7 -10 5.45 5.75 

t+m 8 -10 5.35 5.80 

 

When t=5, the system is only given information of the inputs and labels from t=1 to t=5. As it 

sees a constant input of 5, the model thinks that the input will remain constant (a continuation of 

the trend). It has no way of knowing about the t=6 random disturbance. Since the disturbances 

are random, they cannot be predicted. If the disturbances followed a trend, they could be 

predicted, but that it is not the case here. 

By consequence, this prediction is unavoidably wrong. However, if not too frequent, these 

incorrect predictions are treated as noise and ignored by the neural network. 
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 NEURAL NETWORK MODEL 

 

The model takes the inputs at time=t and makes the predictions for t=t+1 to t=t+m in one step, 

instead of iterating the predictions one by one. This is called a single-shot approach. [34] 

The model consists of a LSTM layer with an arbitrary number of units and a Dense layer. The 

dense layer is a layer of “regular” perceptrons that convert the LSTM output vectors into scalars 

(the output of the model). 

 

Figure 14. LSTM model illustration 

 

The model is trained for up to 15 epochs or until stopped by its early stopping algorithm. After 

each epoch, the training loss of the model diminishes but there is a point at which validation loss 

stops diminishing. At this point the neural network has captured all possible data and additional 

epochs make the model start overfitting. After this, the validation loss starts increasing again 

(Figure 14). When the program detects that the validation loss has stopped diminishing, the 

training is completed. 

Further details on the structure of the model can be found in the annex. 
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4. NEURAL NETWORK DESIGN PROCESS AND 

RESULTS 

  QUALITY MEASUREMENTS 

The quality of the models is measured in mean absolute error, which is in standard deviations. 

The value of a standard deviation depends on which dataset is used. The interval between 

disturbances in the training data is the variable that affects the standard deviation the most. 

 The conversion from std. dev. into Kelvin is as follows: 𝑀𝐴𝐸 [𝐾] = 𝑀𝐴𝐸 [𝑠𝑡𝑑] ∗ 𝐶𝑟𝑒𝑔 

where 𝐶𝑟𝑒𝑔= 4,7 (0,2) K if interval = 50 ; 5,2 (0,2) if interval = 100 ; 5,2 (0,2) if interval = 150. 

The development of the models has been done in two stages. First, a basic engineering stage. 

This is a “discovery” stage where different techniques are tested in a “trial-and-error” fashion to 

see what works and what doesn’t. Here, the quality of the models is measured using their 

accuracy on their own testing data. Because of the data windowing technique used to prepare 

the data, there are unpredictable disturbances that reduce the accuracy of the predictions. The 

error caused by these predictions produces a “MAE floor”. 

𝑀𝐴𝐸𝐷𝑖𝑠𝑐𝑆𝑡𝑎𝑔𝑒 =  𝑀𝐴𝐸𝑟𝑒𝑎𝑙 + 𝑀𝐴𝐸𝑓𝑙𝑜𝑜𝑟  

At this point, techniques that do not work properly produce high errors that are evidently above 

the MAE floor. In essence, this allowed to compare which models work and which don’t. 

However, comparing the performance of the best models is difficult in this stage since their 

error is very small compared to the MAE floor. 

These models have been downloaded and tested further in a detail engineering stage. There, 

they have been made to predict a series of predefined tests which have no unpredictable 

disturbances. In that environment, only the real prediction error is measured. With these 

measurements, the best hyperparameters for these models are chosen. 
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 PROOF OF CONCEPT 

The first task was to observe if this neural network can learn from the data. Essentially, it is 

to verify if the choice of architecture (LSTM) was incompatible with the data, or if the way the data 

was generated was wrong. The results for this first model are successful.  

Table 2. Proof of concept results 

Number of units 15 24 32 36 42 60 

Outer Temp. Dist. 0,0227 0,0197 0,017 0,0171 0,0174 0,0339 

Inner Temp. Dist. 0,0213 0,0179 0,0165 0,0149 0,0139 0,0157 

 

The MAE is as low as 0.0170 std (0.08 K) for the 32 units outer temperature disturbed model 

and 0.0139 std (0.065 K) for the 42 units inner temperature disturbed model. Even though both 

errors are very small, it seems that the model struggles more with streams where both 

temperature and flow rate change (outer temperature dist. In this case) 

Figure 15. Example predictions for the proof of concept 

The window generator produces charts of some example predictions to visually evaluate their 

quality. A time t is chosen at random, and a prediction is made with the previous n (in this case 

60) time steps. In these charts, t = 0 to 59 are used to make a prediction of t = 60 to 89. The green 

dots represent the labels (“real data”) and the red crosses are the predictions.  

Both the MAE values found in Table 2 and the predictions shown in Figure 15 demonstrate 

that this approach has been successful. Hence, the proof of concept is validated. 
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  EXPLORATORY DESIGN 

4.3.1. 30-second horizon prediction model 

In this stage the model is made to work under increasingly complex situations. The first step 

is increasing the number of disturbed variables. A simulation was conducted in which both the 

inner and outer streams temperatures experience disturbances. The outer stream volumetric flow 

is also disturbed, while the inner stream volumetric flow is constant. In this case, the model must 

also learn the interaction between initial inner temperature and initial outer temperature and the 

effect each combination of them, under different outer volumetric flows, have on the final inner 

temperature. Since these flows have different dead times, the model needs to be able to work 

with simultaneous disturbances in which their effects are not equally delayed. This is an important 

problem in control theory. 

Since these conditions are more complicated to work with, an initial hypothesis was that a 

higher number of units would be needed to produce a good fitting.  

To test the hypothesis, an experiment was done but with higher number of units. Since the 

model has proven to be successful in the two variables scenario, it has been deemed appropriate 

to follow a more careful approach in taking measurements. When not deemed unfeasible by 

computational time issues, the experiments have been done in triplicate and the results expressed 

in terms of their average and standard deviation. 

The length of the simulation was increased from 400.000 seconds to 800.000 seconds to 

ensure that there is enough data.  

The MAE of this model indicates that it has learned to work with 3 variables successfully, with 

an average absolute error of 0,07 K. The results can be seen in Table 3. 
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Table 3. 30-second horizon predictions MAE 

Number of units 10 24 42 64 90 120 

Replica 1 0,0247 0,0234 0,0175 0,0149 0,0148 0,0211 

Replica 2 0,0298 0,0221 0,0229 0,0197 0,0158 0,0167 

Replica 3 0,0249 0,0173 0,0167 0,0195 0,0228 0,0164 

Average 0,026 0,021 0,019 0,018 0,018 0,018 

Std. Deviation 0,003 0,003 0,003 0,003 0,004 0,003 

 

The prediction plots also display satisfactory results, as seen in Figure 16. 

 

 Figure 16. Example predictions for the 30-second prediction horizon model 
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However, working with more variables increased the number of unpredictable changes that 

produced completely wrong predictions.  

In this example (Figure 17), the outer volumetric rate increased violently sometime slightly 

after t=60. Since the model only knew about the conditions at t=0 to t=59, it could not know that 

the volumetric flow was going to change at t=63. For the AI, this information “does not exist”, it is 

in the future.  So, it made a prediction that would have been correct if the volumetric flow did not 

change. 

Figure 17. Example of the unpredictability issue producing wrong predictions 

 

The next step has been to increase the range of the predictions to more than 30 seconds. 

This prediction range is slightly too low for this system and gives it a flaw. For outer stream 

volumetric flows lower than 10 L/s, the dead time is higher than 30 seconds, up to 37. By 

consequence, there is a 7 second delay between when the sensor obtains information of the 

disturbance and when its effects enter the predicted time range. 

 At volumetric flows above 10 L/s this is not a problem as the dead time is under 30 seconds. 

Whenever a disturbance happens, at least some of its effects are immediately visible in the 

predictions. 

To ensure at least some information of the effect of any disturbance is immediately seen, this 

predicted range must be higher than 37 s. First, a prediction range (m) of 40 s has been tried. 

At first, the same conditions from the previous experiments were replicated. The model with 

42 units was used, predicting 40 seconds from the previous 60 seconds of data. There should be 

no need to increase the number of units as the complexity of the underlying system is the same. 

The obtained MAE was 0,0259 with a standard deviation of 0,003.  

This error is substantially higher than in the previous experiment. While an increase in error 

is expected since predictions far into the future carry more uncertainties, this change seems too 

high for such a small increase in the prediction horizon.  
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Another problem is that the training time increased, which was expected to become a problem if 

the prediction horizon were to be extended further. A measure to reduce this training time is 

increasing batch size. Models with higher batch sizes are significantly faster to train but are less 

accurate. The significance of this loss in accuracy must be found empirically.  

To test the impact of increasing batch size, the 42-units model with n=60 and m=40 was 

trained with a batch size of 64 and of 128. 

The results (Table 4) indicate that the loss in accuracy by increasing the batch size to 128 is 

very low, below one standard deviation (0,003). On the contrary, training times improved 

significantly. By consequence, all further experiments have been done with a batch size of 128. 

 

Table 4. Batch size experimentation 

Batch Size MAE Train time by Epoch [s] 

32 0,0259 90 

64 0,0265 60 

128 0,0277 40 

 

 

4.3.2. 60-second prediction horizon model 

At a prediction horizon of 60 seconds, a different problem arose. At this point, the time 

between disturbances is smaller than the prediction horizon. By consequence, more than half of 

the data windows included at least one “unexpected change” that made them at least partially 

unusable. The available useful data windows would be less than half of the ones provided. 

Predictably, the results obtained using the same conditions as the previous experiment (42 

units, batch size = 128 but with n=60 and m=60) were unacceptable. The MAE was 0,0794 and 

the prediction error was visually evident in the plot. 

At this point, it was decided that the Mean Squared Error loss function was not performing 

correctly. Mean Squared Error punishes larger errors more harshly. With these long prediction 

horizons, unpredictable disturbances had enough time to produce very large deviations from the 

prediction.  
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These unavoidable “noise” errors were given too much importance by the loss function, more 

than the actual errors made in the normal predictions. This made the model attempt to fit these 

unpredictable disturbances, which is overfitting. 

Additionally, different further approaches to reduce the error have been tried. 

The first one was increasing the length of the simulation. Its length has been doubled to 1,6 

million seconds. This increases the total amount of available windows, to compensate for the 

ones lost. It did not produce successful results.  

Table 5. Effects of increasing the length of the simulation. 

Length [s] 24 units 42 units 64 units 

800 000 0,0652 0,0635 0,0637 

1 600 000 0,0663 0,0643 0,0635 

 

Another option was increasing the number of previous data steps used. Since the prediction 

horizon is larger, it needs more capacity to capture long term trends. Increasing n from 60 to 90 

yielded a slight improvement in accuracy. Further increases produced no improvement.  

 

Table 6. Effects of increasing the number of past data points. 

Length [s] 24 units 42 units 64 units 

800 000 0,0629 0,0611 0,0604 

1 600 000 0,0626 0,0606 0,0600 

 

And finally, increasing the time between disturbances to 100 seconds. 

Table 7. Experiment from Table 6 repeated with 100 seconds between disturbances. 

Length [s] 24 units 42 units 64 units 

800 000 0,0326 0,0316 0,0309 

1 600 000 0,0314 0,0315 0,0320 
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This reduces the proportion of wasted windows but at the cost of also reducing the total 

amount of disturbances. By consequence, there are more empty data windows where nothing 

happens. It should also be noted that this approach also changes the testing data. Thus, the MAE 

obtained with this approach cannot be compared with MAE obtained in other methods, as MAE 

can only be compared among models with the same testing data. Since the performance between 

these approaches cannot be directly compared in this stage, models with both approaches have 

been saved for the testing stage. 

Both interval = 50 s and interval = 100 s produced very similar predictions despite having 

different MAE. This makes evident that the quality of models with different training sets cannot be 

compared by their performance in their respective training sets. In both cases the predictions are 

very accurate except when unpredictable disturbances happen. (Figure 18) 

 

Figure 18. Comparison of the predictions of models with both disturbance intervals 

 

4.3.3. 90-second prediction horizon model 

Since the model was able to expand its prediction range from 30 to 60 seconds, an attempt 

to increase it to 90 seconds has been done. Here, datasets with 100- and 150-seconds delay 

between disturbances have been used. 
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Using MSE as a loss function produced completely wrong predictions. In Figure 19 it can be 

seen how the model “invents” disturbances where there should be none.  

 

Figure 19. Wrong prediction of a model with a MAE of 0,11. 

 

So, it seems that MAE is the only option for longer time horizons. The successful techniques 

used to predict a 60 second horizon were used for the 90 second horizon model. 

Data from the last 90 seconds was used, as using 120 seconds did not improve the results. 

The trend is very similar to the one observed when increasing the prediction horizon from 30 

to 60 seconds. Using the same disturbance interval yields significantly higher MAE (more than 

double), even though the loss in real accuracy is much lower since this increase is mostly caused 

by a larger MAE floor (caused by unpredictable disturbances) rather than real prediction error.  

However, increasing this range reduces the number of disturbances in the data, which means 

less information. At 150 second intervals, 800 000 seconds of data isn’t enough to “saturate” the 

neural network with data as using 1 600 000 produces better results. 

Table 8. Different interval results 

 MAE using 100 s intervals MAE using 150 s intervals 

Length [s] 24 units 42 units 64 units 24 units 42 units 64 units 

800 000 0,0825 0,0826 0,0831 0,0566 0,0563 0,0565 

1 600 000 0,0831 0,0821 0,0828 0,0537 0,0539 0,0534 

 

Like in the 60-second intervals, models with both interval lengths have been stored so they 

can be tested in the next stage. There, the performance across intervals can be compared. 
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The plotted predictions (Figure 20) follow the same trend that was observed in the previous 

experiments. Even though MAE is higher, it is caused by those unavoidably wrong predictions. In 

those cases where there are no unexpected disturbances, the predictions are very accurate. 

 

Figure 20. 90-second prediction horizon example predictions 

 

The prediction horizon won’t be extended further beyond this point as 90 seconds is enough 

to capture the dynamic trends of the system. 90 seconds is enough for any disturbance to reach 

stationary state while flow rate is over 7,5 L/s, which is more than half of the range of that variable. 

However, if it were needed, it seems theoretically possible to increase this horizon further or even 

indefinitely, given high enough disturbance intervals and long enough simulations. 
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  DETAIL ENGINEERING AND TESTING 

4.4.1.  Testing Approach 

Models with different number of units (identified with a letter “s”), disturbance intervals (“i), 

and simulation length (“l”) have been trained with the techniques that have performed the best in 

the previous stage. Afterwards, they have been tested with 8 intentionally made testing 

simulations. A description of the tests and all results is available in the annex. 

In these tests, one or more disturbances are performed and immediately after the last 

disturbance the model is tasked with predicting the future state of the system. The average MAE 

of each model over the 8 tests is used to compare their performance. 

The 60- and 90-second prediction horizon models are tested, since the 30-second prediction 

horizon is hard to test under these conditions and served more as a proof of concept. 

All models have been trained using the Mean Average Error loss function, a batch size of 128 

and at least 800 000 seconds of data with randomized disturbance intervals. The models’ number 

of units range from 24 to 150. 

The MAE has been converted from standard deviations to Kelvin using the stored 

standardization constants of each model, which can be found in the annex. The values in the 

following tables are in Kelvin, so they are in the order of 5 times higher than if they were in 

standard deviations like in the previous stage. 
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4.4.2.  Results 

Table 9. 60-second prediction horizon results 

 MAE [K] by number of units 

Model 24 42 64 90 120 150 

i = 100, l = 800 0,049 0,046 0,045 0,034 0,028 0,035 

i = 100 , l = 1600 0,046 0,033 0,030 0,032 0,027 0,026 

i = 50 , l = 800 0,047 0,035 0,034 0,027 0,033 0,027 

i = 50, l = 1600 0,034 0,030 0,029 0,025 0,028 0,033 

 

Table 10. 90-second prediction horizon results 

 MAE [K] by number of units 

Model 24 42 64 90 120 150 

i = 150, l = 800 0,054 0,047 0,033 0,031 0,036 0,036 

i = 150 , l = 1600 0,044 0,041 0,036 0,031 0,026 0,028 

i = 100 , l = 800 0,064 0,055 0,048 0,030 0,034 0,030 

i = 100, l = 1600 0,056 0,037 0,028 0,034 0,039 0,044 

 

 

As expected, the results of these tests allowed for better comparisons among models since 

there is no MAE floor due to unavoidable predictions (explained by how the difference between 

models with different “i” is much smaller than in the previous stage). This also highlighted the 

differences in MAE between models with different number of units. 

The performance of all models was very satisfactory since their MAE is close to the absolute 

minimum of 0,025 K, which is the noise in the measured variable. 
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The best model for the 60-second horizon is the 90-unit, with 1 600 000 seconds of data and 

50-second disturbance intervals. 

In the 90-second horizon, it is the 120-unit model with 1 600 000 seconds of data and 150-

second disturbance intervals. 

Figure 21. Prediction examples of the best models for the 60- and 90-second horizons, with the 
real value in blue and the prediction in orange 

 

This conflicts with what was observed in the previous stage, where quality seemed to stagnate 

after 24 units and remained constant afterwards. Here, this trend continued further up to 64 units. 

Consequently, overfitting is less of an issue than expected, with models starting to overfit 

(increasing MAE) at 120-150 units. The ideal number of units across all models is 90-120, higher 

than the 42 that was seen in the development stage. However, the 42-unit models still perform 

very close to optimal, since the optimum in the number of units is a wide range rather than an 

exact number. 
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The 1 600 000-second models perform marginally better than their 800 000-second 

counterparts and with an adequate number of units their performance is almost identical. It is 

likely that at 800 000 seconds the neural network is already “saturated” with data and good results 

could still be obtained with shorter simulations. 

In the 60-second prediction horizon, the shorter interval (50) performed better than the longer 

one (100). However, in the 90-second interval, the longer interval (150) is better. Thus, it seems 

that the ideal disturbance interval does not scale linearly with the prediction horizon and should 

still be found empirically. The optimal MAE is similar in both intervals. However, it is found at 

different number of units, closer to 120 for the longer intervals and 90 for the shorter ones.  

 The optimal MAE obtained in both prediction horizons is essentially the same, even though 

the 90-second horizon has higher errors in the suboptimal models. By consequence, it is possible 

to extend the prediction horizon without losses in quality if the hyperparameters are correctly 

optimized. Thus, it should be possible to extend this horizon further if it were needed. 

All models produced results extremely fast, doing 200 complete horizon predictions in the 

order of 3 ms. This equals to 15 μs per prediction or 66.000 predictions per second. This equals 

to over 8 000 000 seconds of simulation per second, which would have taken on the order of an 

hour to simulate on the original simulator. 
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5. CONCLUSIONS 

The results were very satisfactory. The mean error in the predictions of the best models were 

less than 5% over the background noise, which is an almost perfect fit despite working with 3 

input variables in a complicated dynamic system. Additionally, these predictions have been done 

on the order of 3000 times faster than conventional simulations. 

Consequently, neural networks are an adequate alternative to conventional system 

identification, with the advantage of being theoretically applicable to any system. This makes them 

a promising tool for modelling non-linear systems with variable dead times, a difficult problem in 

the field of control. 

 

The performance of the model has been observed to rely on the data (quantity and quality) 

and the neural network structure (architecture and hyperparameters).  

The data required to train the model was obtained via a simulation. The length of the 

simulation required to achieve optimal results is short enough to viably simulate, but it may be too 

long to obtain experimentally in the laboratory. Further work would need to be done in optimizing 

the data generation strategy to reduce the length of the required dataset. 

The Long-Short Term Memory (LSTM) neural network architecture has been proven to be a 

good fit for systems with varying dead time, as it has made correct predictions under different flow 

rates.  

The appropriate hyperparameters had to be found empirically, even though the range at which 

the model performed close to optimal was wide. For example, batch size was increased from 32 

to 128 with a minimal loss in quality but a significant improvement in training speed. 

The ideal number of units is around 90 for these models, but the results were satisfactory in 

the range of 24-150. Under 24 units the model was too simple and failed to capture the trends in 

the data, underfitting.  
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On the other end, excessively high number of units produced models that fitted the training 

data too closely (overfitting), failing to generalize on new data. The early stopping algorithm 

prevented the model from overfitting up until 150 units. 

However, the choice of loss function had a significant impact in the quality of the model. 

Between the two standard regression loss functions, Mean Squared Error (MSE) and Mean 

Absolute Error (MAE), MAE produced the best results. This is explained by the fact that the data 

windowing technique used to process the data caused some unavoidably wrong predictions, 

which disturbed the training process when using MSE but were treated as noise and disregarded 

with MAE. 

The prediction horizon was expanded up to 90 seconds (enough to capture the effects of most 

disturbances in this system) without loss in quality, only requiring changing the hyperparameters. 

As such, this horizon may be expanded further or even indefinitely. 

Since the model makes predictions on the order of thousands of times faster than the 

simulation, it is fast enough to allow real-time optimization of future control actions. This may be 

applied in Model Predictive Control or be used to reduce the computational load (and thus power 

consumption) of already existing models. However, the applications are not limited to MPC, as it 

may be used for any application that requires performing system identification on dynamic 

systems with non-linearities or variable dead times. 
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ACRONYMS 

MAE: Mean Absolute Error 

MSE: Mean Standard Error 

RNN: Recurrent Neural Network 

LSTM: Long-Short Term Memory 
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APPENDIX 1: USING THE FILES 

The folder with all the required files (Simulator, neural network model and testing program) 

along with the models and simulations used are available in the following public GitHub repository: 

https://github.com/Maxekai/TFG 

To execute the programs, it is required to have a Python 3 interpreter installed in the 

computer. It is available in the Microsoft Store or in the Python page 

https://www.python.org/downloads/ 

To open, edit and execute the files a code editor is necessary. The free “Visual Studio Code” 

code editor was used to develop this project, but any other code editor should also work.  

Visual Studio Code is available to download here: https://code.visualstudio.com/ 

To execute these files in the editor, open the Extensions Store by clicking on its icon on the 

left of the screen or use the shortcut (Ctrl+Shift+X) and download the “Python” extension. The 

correct one should appear the first in the list, and its author is Microsoft. 

This extension allows executing the files inside the editor and support for Jupyter Notebooks. 

Afterwards, open a terminal either by clicking on “Terminal” on the top menu or by using the 

shortcut (Ctrl+Shit+ñ). There, paste the following text: pip install -r requirements.txt 

This command installs all required libraries to run the program. 

Execute the simulator by clicking the play button on the upper right corner or the screen. For 

the Jupyter notebooks, they can be executed all at once by clicking the Run All button on the top 

of the screen or cell by cell by clicking their respective “Play” button. 

 

 

https://github.com/Maxekai/TFG
https://www.python.org/downloads/
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APPENDIX 2: NEURAL NETWORK PARAMETERS 

 

Data Properties: 

Fixed Settings: 

The heat exchanger itself is kept unchanged. Its physical properties (length,area,U…) are 

constant in all experiments. 

The physical properties of the fluids (density,heat capacity…) are also kept constant, except 

for the temperature. 

Valve Range: The valve that controls the outer fluid flow rate has a constant range of 0 to 20 

L/s. 

Disturbed variable range: In the experiments where they are disturbed, outer fluid initial 

temperature has a range of -5 K to +5 K from the initial steady state, -10 K to +10 K for the inner 

fluid initial temperature and -1 L/s to +1 L/s for the inner fluid flow rate. 

Initial State: The system is always initialized with a 7 L/s, 70 °C inner fluid stream and a 10 

L/s, 25 °C outer fluid stream. 

 

 

Manipulated Settings: 

Disturbance variables: Different experiments are performed with numbers of disturbed 

variables. However, the possible values of these variables compared to the initial stationary state 

is fixed at [-10, +10] L/s for outer stream flow rate, [-5,+5] K for outer stream input temperature 

and [-10,+10] K for inner stream input temperature. 

Time between disturbances: The average time between disturbances of any kind is 

manipulated by changing the time between disturbances of each variable. 

Randomness of the time between disturbances: Some experiments have been done with a 

constant time between each disturbance and others with a random interval. 

Noise: Some experiments have been done with noise in the non-constant variables. The noise 

is an arbitrary value fixed at 0,05 K for temperatures and 0,025 L/s for volumetric flows.  
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Neural Network Properties: 

 

Fixed Settings: 

Features = 1. This is the number of variables to predict. The model only predicts the final inner 

temperature. 

Return Sequences = False. This makes the LSTM layer return an output only at the last time 

step. This output is the prediction for the following m time steps. This can be observed in Figure 

14T, where the LSTM cells from t-n to t-1 do not return any output but only pass information to 

the next cell.  

Optimizer = Adam. This is a state-of-the-art optimizer, the “default” choice. 

Metrics = Mean Absolute Error (MAE). This is how the quality of the model is measured during 

validation and testing. It is not used to train the model, but to calculate the expected error of the 

predicted values. 

Manipulated Settings: 

Label Width: The “m” number of predicted time steps. 

Input Width: The “n+1” number of time steps used to make a prediction.  

Number of Units: The number of stacked LSTM cells, which is related to the complexity of the 

model. 

Input data size: The number of simulation time-steps loaded into the model. 

Loss = Mean Squared Error (MSE) and Mean Absolute Error (MAE). At first MSE was use, 

but in the models with a longer prediction window MSE did not yield good results and MAE was 

used instead. 

 

Batch Size = This parameter affects the learning process; higher values make learning faster 

but less accurate. The simpler models, where training time is not excessive, have been trained 

with a batch size of 32. This is at the lower end of typical batch sizes, giving the best quality. [35]  

The more complicated models have been done with batch sizes of 64 and 128, which have 

been shown to produce significantly faster results with minimal loss in accuracy. 
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These constants can be copied and pasted them into the program to apply them. 

I =50, l=800k 

train_mean = pd.Series({'Outer Temp.':25.041515,'Initial Inner Temp.':69.902352,'Outer 

Ws':10.039647,'Inner Temp.':55.038887}) 

train_std = pd.Series({'Outer Temp.':2.929728,'Initial Inner Temp.':5.753829,'Outer 

Ws':5.711073,'Inner Temp.':4.768334}) 

 

i=50, l=1600k 

train_mean = pd.Series({'Outer Temp.':24.981220,'Initial Inner Temp.':70.028579,'Outer 

Ws':10.030917,'Inner Temp.':55.138814}) 

train_std = pd.Series({'Outer Temp.':2.909863,'Initial Inner Temp.':5.762679,'Outer 

Ws':5.771887,'Inner Temp.':4.784221}) 

 

 

i=100 , l=800k 

train_mean = pd.Series({'Outer Temp.':24.995166,'Initial Inner Temp.':70.154394,'Outer 

Ws':9.860415,'Inner Temp.':55.6092745}) 

train_std = pd.Series({'Outer Temp.':2.885494,'Initial Inner Temp.':5.796503,'Outer 

Ws':5.754449,'Inner Temp.':5.250952}) 
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i=100, l=1600k 

train_mean = pd.Series({'Outer Temp.':24.985298,'Initial Inner Temp.':69.970662,'Outer 

Ws':9.854125,'Inner Temp.':55.485196}) 

train_std = pd.Series({'Outer Temp.':2.868629,'Initial Inner Temp.':5.775671,'Outer 

Ws':5.751491,'Inner Temp.':5.213089}) 

 

i=150, l=800k 

train_mean = pd.Series({'Outer Temp.':25.057913,'Initial Inner Temp.':69.808034,'Outer 

Ws':9.720709,'Inner Temp.':55.678122}) 

train_std = pd.Series({'Outer Temp.':2.900207,'Initial Inner Temp.':5.835023,'Outer 

Ws':5.837478,'Inner Temp.':5.589536}) 

 

 

i=150, l=1600k 

train_mean = pd.Series({'Outer Temp.':25.103154,'Initial Inner Temp.':69.712887,'Outer 

Ws':9.888763,'Inner Temp.':55.491773}) 

train_std = pd.Series({'Outer Temp.':2.866545,'Initial Inner Temp.':5.794157,'Outer 

Ws':5.807717,'Inner Temp.':5.437240}) 

  



 

 

 

APPENDIX 4: TEST RESULTS 

 

All results are expressed in standard deviations, m= prediction horizon in seconds, n= past 

seconds used for the predictions, s= number of units, i= disturbance interval, l= simulation 

length 

 

 

  Test 1 Test 2 Test 3 Test 4 

m60n90s24i100l800 0.02051 0.00522 0.00499 0.00479 

m60n90s42i100l800 0.00819 0.00484 0.00559 0.00561 

m60n90s64i100l800 0.01217 0.00466 0.00579 0.00548 

m60n90s90i100l800 0.00753 0.00634 0.00352 0.00510 

m60n90s120i100l800 0.00625 0.00272 0.00373 0.00635 

m60n90s150i100l800 0.00410 0.00347 0.00593 0.00699 

  Test 5 Test 6 Test 7 Test 8 Average 

m60n90s24i100l800 0.00724 0.00811 0.01176 0.01278 0.00943 

m60n90s42i100l800 0.00758 0.00589 0.01067 0.02201 0.00880 

m60n90s64i100l800 0.01010 0.00874 0.00695 0.01450 0.00855 

m60n90s90i100l800 0.00498 0.00444 0.00624 0.01378 0.00649 

m60n90s120i100l800 0.00745 0.00552 0.00587 0.00551 0.00542 

m60n90s150i100l800 0.00489 0.00519 0.00597 0.01631 0.00661 
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  Test 1 Test 2 Test 3 Test 4 

m60n90s24i100l1600 0.00974 0.00399 0.00611 0.00595 

m60n90s42i100l1600 0.00915 0.00304 0.00449 0.00403 

m60n90s64i100l1600 0.00683 0.00283 0.00534 0.00418 

m60n90s90i100l1600 0.00475 0.00322 0.00591 0.00549 

m60n90s120i100l1600 0.00729 0.00273 0.00364 0.00563 

m60n90s150i100l1600 0.00509 0.00274 0.00366 0.00538 

  Test 5 Test 6 Test 7 Test 8 Average 

m60n90s24i100l1600 0.01084 0.00732 0.01058 0.01595 0.00881 

m60n90s42i100l1600 0.00474 0.00561 0.00719 0.01173 0.00625 

m60n90s64i100l1600 0.00795 0.00484 0.00714 0.00751 0.00583 

m60n90s90i100l1600 0.00725 0.00675 0.00858 0.00708 0.00613 

m60n90s120i100l1600 0.00481 0.00417 0.00472 0.00803 0.00513 

m60n90s150i100l1600 0.00557 0.00453 0.00673 0.00579 0.00494 

 

 

  Test 1 Test 2 Test 3 Test 4 

m60n90s24i50l800 0.01995 0.00667 0.00680 0.00573 

m60n90s42i50l800 0.01226 0.00427 0.00572 0.00476 

m60n90s64i50l800 0.01108 0.00464 0.00504 0.00485 

m60n90s90i50l800 0.00594 0.00577 0.00502 0.00644 

m60n90s120i50l800 0.00942 0.00856 0.00748 0.00516 

m60n90s150i50l800 0.00769 0.00381 0.00420 0.00622 

  Test 5 Test 6 Test 7 Test 8 Average 

m60n90s24i50l800 0.01039 0.00782 0.01065 0.01071 0.00984 

m60n90s42i50l800 0.00656 0.00611 0.00811 0.01148 0.00741 

m60n90s64i50l800 0.00430 0.00536 0.00767 0.01364 0.00707 

m60n90s90i50l800 0.00509 0.00483 0.00503 0.00779 0.00574 

m60n90s120i50l800 0.00525 0.00638 0.00595 0.00748 0.00696 

m60n90s150i50l800 0.00344 0.00423 0.00493 0.01046 0.00562 

 

 



 

 

  Test 1 Test 2 Test 3 Test 4 

m60n90s24i50l1600 0.00945 0.00459 0.00513 0.00559 

m60n90s42i50l1600 0.00757 0.00332 0.00648 0.00473 

m60n90s64i50l1600 0.00694 0.00671 0.00698 0.00449 

m60n90s90i50l1600 0.00728 0.00427 0.00421 0.00377 

m60n90s120i50l1600 0.00478 0.00431 0.00585 0.00561 

m60n90s150i50l1600 0.00722 0.00796 0.00655 0.00455 

  Test 5 Test 6 Test 7 Test 8 Average 

m60n90s24i50l1600 0.00848 0.00679 0.00748 0.00933 0.00710 

m60n90s42i50l1600 0.00477 0.00533 0.00729 0.01003 0.00619 

m60n90s64i50l1600 0.00401 0.00497 0.00787 0.00669 0.00608 

m60n90s90i50l1600 0.00369 0.00464 0.00576 0.00886 0.00531 

m60n90s120i50l1600 0.00439 0.00489 0.00576 0.01066 0.00578 

m60n90s150i50l1600 0.00390 0.00588 0.00871 0.01111 0.00699 

 

 

 

 

  Test 1 Test 2 Test 3 Test 4 

m90n90s24i150l800 0.01598 0.00728 0.00531 0.00515 

m90n90s42i150l800 0.00988 0.00562 0.00636 0.00488 

m90n90s64i150l800 0.01158 0.00393 0.00289 0.00408 

m90n90s90i150l800 0.00631 0.00394 0.00469 0.00335 

m90n90s120i150l800 0.00790 0.00606 0.00405 0.00465 

m90n90s150i150l800 0.00726 0.00544 0.00385 0.00399 

  Test 5 Test 6 Test 7 Test 8 Average 

m90n90s24i150l800 0.01463 0.00903 0.00997 0.01012 0.00969 

m90n90s42i150l800 0.01120 0.00879 0.00943 0.01125 0.00843 

m90n90s64i150l800 0.00548 0.00626 0.00493 0.00829 0.00593 

m90n90s90i150l800 0.00543 0.00494 0.00582 0.00953 0.00550 

m90n90s120i150l800 0.00790 0.00498 0.00421 0.01237 0.00652 

m90n90s150i150l800 0.00662 0.00668 0.00734 0.00993 0.00639 
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  Test 1 Test 2 Test 3 Test 4 

m90n90s24i100l800 0.01907 0.01178 0.00565 0.00525 

m90n90s42i100l800 0.01193 0.01082 0.00694 0.00575 

m90n90s64i100l800 0.00731 0.00631 0.00695 0.00495 

m90n90s90i100l800 0.00757 0.00412 0.00359 0.00399 

m90n90s120i100l800 0.00818 0.00484 0.00609 0.00686 

m90n90s150i100l800 0.00665 0.00416 0.00345 0.00429 

  Test 5 Test 6 Test 7 Test 8 Average 

m90n90s24i100l800 0.01587 0.00932 0.00827 0.02257 0.01222 

m90n90s42i100l800 0.00803 0.00589 0.00962 0.02413 0.01039 

m90n90s64i100l800 0.01239 0.00965 0.00797 0.01758 0.00914 

m90n90s90i100l800 0.00627 0.00423 0.00586 0.00951 0.00564 

m90n90s120i100l800 0.00687 0.00564 0.00466 0.00819 0.00642 

m90n90s150i100l800 0.00931 0.00517 0.00602 0.00671 0.00572 

 

 

 

  Test 1 Test 2 Test 3 Test 4 

m90n90s24i100l1600 0.01453 0.00572 0.00587 0.00557 

m90n90s42i100l1600 0.00879 0.00366 0.00519 0.00417 

m90n90s64i100l1600 0.00880 0.00369 0.00410 0.00387 

m90n90s90i100l1600 0.00907 0.00344 0.00353 0.00419 

m90n90s120i100l1600 0.01047 0.00604 0.00375 0.00534 

m90n90s150i100l1600 0.00670 0.00502 0.00600 0.00669 

  Test 5 Test 6 Test 7 Test 8 Average 

m90n90s24i100l1600 0.00955 0.01129 0.00858 0.02531 0.01080 

m90n90s42i100l1600 0.00687 0.00660 0.00878 0.01312 0.00715 

m90n90s64i100l1600 0.00631 0.00517 0.00481 0.00585 0.00532 

m90n90s90i100l1600 0.00742 0.00531 0.00542 0.01337 0.00647 

m90n90s120i100l1600 0.00729 0.01062 0.00491 0.01121 0.00745 

m90n90s150i100l1600 0.00961 0.00982 0.01174 0.01216 0.00847 

 



 

 

  Test 1 Test 2 Test 3 Test 4 

m90n90s24i150l1600 0.01120 0.00557 0.00585 0.00423 

m90n90s42i150l1600 0.00737 0.00529 0.00470 0.00416 

m90n90s64i150l1600 0.00854 0.00443 0.00518 0.00421 

m90n90s90i150l1600 0.00877 0.00346 0.00299 0.00365 

m90n90s120i150l1600 0.00452 0.00295 0.00341 0.00405 

m90n90s150i150l1600 0.00446 0.00317 0.00401 0.00405 

  Test 5 Test 6 Test 7 Test 8 Average 

m90n90s24i150l1600 0.00766 0.00613 0.01108 0.01247 0.00802 

m90n90s42i150l1600 0.00775 0.00907 0.00733 0.01436 0.00750 

m90n90s64i150l1600 0.00565 0.00645 0.00788 0.01124 0.00670 

m90n90s90i150l1600 0.00610 0.00857 0.00507 0.00763 0.00578 

m90n90s120i150l1600 0.00382 0.00419 0.00537 0.00996 0.00478 

m90n90s150i150l1600 0.00469 0.00452 0.00506 0.01084 0.00510 

 


