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Abstract: In this work we have explored the formalism of the path integral in the semiclassical
approximation and we have obtained both analytical and numerical results to determine the expected
values of quantum observables incorporating thermal fluctuations. The study has been done for the
harmonic and anharmonic potentials in one dimension. The obtained results have been compared
with those obtained by solving the Schrödinger equation and the path integral Monte Carlo method;
the similarities and discrepancies have been discussed.

I. INTRODUCTION

Richard P. Feynman, in 1948, was responsible for de-
veloping the path integral (PI) formulation of quantum
mechanics (QM) that focuses on trajectories weighted by
the action, and probability distributions as an alternative
description to Schrödinger’s wave function [1, 2].

When working in classical mechanics, out of all the
possible paths that a system can take to go from one
point (ta, xa) to another point (tb, xb), only one will have
to be considered, we will call it xcl(t). This path will be
the one satisfying the principle of least action, where the
action for an arbitrary potential V (x) is defined as,

S =

∫ tb

ta

dt

[
1

2
m

(
dx

dt

)2

− V (x)

]
. (1)

In the PI formalism of QM, the situation is significantly
different. Not a unique path is relevant; we have to ac-
count for all of them. Therefore, we need to define a
probability amplitude that will be the weighted sum of
the contributions from all possible paths. We will call
this amplitude the kernel and will be the main character
of the QM approach we will explore in this work.

As time has passed, this revolutionary approach to
QM has demonstrated its usefulness in handling non-
perturbative interactions, in computing correlation func-
tions and also has proven to be a fundamental tool in the
development of quantum field theory.

The goal of this work is to introduce the PI formal-
ism in QM within the semiclassical approximation and
illustrate these concepts by performing analytical and nu-
merical calculations for the harmonic oscillator (HO) and
anharmonic oscillator (AHO) potentials.

II. PATH INTEGRAL: THEORETICAL
DEVELOPMENT

A. Path integral formalism

The contributions to the probability amplitude of a
particle traveling from the spacetime point a to point

b have equal magnitudes but different phases. These
phases are determined by the particle’s action [3, 4],

ϕ [x(t)] ∝ e(i/ℏ)S[x(t)] , (2)

where x(t) is the particle’s trajectory, S [x(t)] is the par-
ticle’s action and ℏ is the Planck’s constant. Therefore,
calling K(b; a) the probability amplitude (kernel) from a
to b:

K(b; a) =
∑
paths

ϕ [x(t)] . (3)

To compute the sum over all the paths we draw an
analogy with the Riemann sum. We build each path by
discretizing the temporal variable into N steps of size ϵ.
For each time step ti we select a corresponding point xi,
then we connect all the points (ti,xi), (ti+1,xi+1) using
straight lines and integrate each xi. Thus we will have:

K(b; a) ∼
∫

...

∫ ∫
ϕ [x(t)] dx1dx2...dxN−1 . (4)

The points x0 = xa and xN = xb are not included in the
integration because they are fixed in our trajectory.
To express (4) more accurately we need to take the

limit as ϵ −→ 0. To accomplish it we will introduce a
convenient normalization factor, such that,

K(b; a) = lim
ϵ−→0

1

A

∫ ∫
...

∫
e(i/ℏ)S[b,a] dx1

A

dx2

A
...
dxN−1

A
,

(5)

where A =
(
2πiℏϵ
m

)1/2
and (2) has been employed as well.

Usually, we will express the above equation in terms of
Dx which represents the integral over all possible paths,

K(b; a) =

∫ xb

xa

Dx e(i/ℏ)S[x(t)] . (6)

As we mentioned earlier, the kernel will be an ampli-
tude, consequently, we can see the kernel as a probabil-
ity distribution. Another common way of expressing the
kernel in QM will be the so-called spectral representation
[1],
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K(xb, tb;xa, ta) =
∑
n

ϕn(xb)ϕ
∗
n(xa)e

(−i/ℏ)En(tb−ta) ,

(7)
where ϕn(x) and En are respectively the eigenfunction
and eigenvalue of the n-th energy state, solution of the
Schrödinger equation with the corresponding potential.

As will be discussed later, we are only interested in
closed paths, therefore, we will take xa = xb = x, and
without loss of generality, ta = 0 and tb = t also will be
taken. Hence,

K(x, t;x, 0) =
∑
n

|ϕn(x)|2e−iEnt/ℏ . (8)

B. Finite temperature

We observe a similarity between the exponential term
in the equation (8) and the partition function [1],

Z(β) =
∑
n

e−βEn , (9)

where β = 1/(kBT ). Furthermore, if we examine the
expression for the density matrix of a system [1],

ρ(x′, x) =
∑
n

ϕn(x
′)ϕ∗

n(x)e
−βEn , (10)

we note that is remarkably similar to the kernel definition
shown in Eq. (7). In fact, we can identify both expres-
sions if we impose,

it = ℏβ . (11)

Therefore we will define a new imaginary time τ = it =
ℏβ (τa = ita, τb = itb) through which we can incorporate
the temperature. From now on we will lose the notion
of real time, the new imaginary time cannot be easily
interpreted as the standard time anymore. Moreover,
this will have relevant effects on our calculations of the
kernel, as we will see later on.

For an arbitrary potential V (x), the standard action
will be the one shown in Eq. (1), but applying the redef-
inition mentioned in Eq. (11) we obtain,

S = i

∫ τb

τa

dτ

[
1

2
m

(
dx

dτ

)2

+ V (x)

]
= iSE [x(τ)] , (12)

where the Euclidean action, SE , has been identified. We
can now introduce this into the PI expression (Eq. (6)),
resulting in,

K(xb, τb;xa, τa) =

∫ xb

xa

Dx e−SE [x(τ)]/ℏ . (13)

By obtaining an exponential with a real quantity, we can
now interpret it as a statistical weight instead of a phase,

as we had done previously when dealing with an imag-
inary exponent. Since we are interested in computing
expected values of some operators depending on the po-
sition, we will consider only diagonal elements of the den-
sity matrix. Therefore we take xb = xa ≡ xo which we
will call the observation point. Without loss of general-
ity, we will also take τa = 0, τb = τ , using (11) we will
have τ = ℏβ.
To compute the Euclidean action we will use the semi-

classical approximation in which we make an expansion
around the classical trajectory. In this approximation,
we will consider that the largest contribution to the PI
is due to the classical trajectory and the paths around it
[2], then,

x(τ) = xfl(τ) + y(τ) . (14)

The classical trajectory that moves from point (0, xo)
to (ℏβ, xo) will be called flucton, and it will satisfy the
Euler-Lagrange equations [5]. The flucton corresponds to
the first term in the previous equation, while the second
term represents fluctuations around it.
We will have,

SE [x(τ)] = SE [xfl(τ) + y(τ)] . (15)

Thus, we can perform an expansion of SE ,

SE [x(τ)] = Scl +

∫
dτ

δSE

δx(τ)

∣∣∣∣
xfl

y(τ)+

1

2

∫
dτ

∫
dτ ′

δ2SE

δx(τ)δx(τ ′)

∣∣∣∣
xfl

y(τ)y(τ ′) + ... , (16)

which is the series expansion for a functional. We will
start calculating the Scl, which is the classical action.
Clearly, Scl = SE [xfl(τ)], so we will need to calculate
the expression of xfl(τ) to compute the classical action.

Harmonic oscillator

We first consider the 1D HO potential that has the
form,

V (x) =
1

2
mω2x2 , (17)

where m is the particle’s mass, ω is the frequency of
the potential and x is the particle’s position. Using the
classical equations of motion:

mẍ(τ)−mω2x(τ) = 0 . (18)

This equation can be solved analytically with the follow-
ing boundary conditions,

x(τ = 0) = xo x(τ = ℏβ) = xo , (19)

we find,

xfl(τ) =
xo

exp(ωℏβ) + 1
[exp(ω(ℏβ − τ)) + exp(ωτ)] .

(20)
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Thus,

Scl =

∫ ℏβ

0

dτ
mω2x2

o

(eωℏβ + 1)2

[
e2ωτ + e2ω(ℏβ−τ)

]
=

= mωx2
o

eℏβω − 1

eℏβω − 1
= mωx2

o tanh
ℏβω
2

. (21)

We have obtained the expression for the classical action
(first term of the semi-classical expansion).

We know that the first-order fluctuation (second term
in Eq. (16)) must be zero because the principle of least
action demands δScl = δSE/δx(τ)|xfl

= 0.
For the HO potential, the expansion of the action in

Eq. (16) ends with the quadratic term, and higher-order
terms become zero. Moreover, the quadratic term be-
comes a constant, and therefore, there is no need to com-
pute it as it can eventually be fixed by the normalization
of the probability. In conclusion, for the HO potential,
we can calculate the exact kernel using only (21),

K(xo, ℏβ;xo, 0) = e−
mωx2

o
ℏ tanh ℏβω

2 . (22)

This solution coming from the flucton path (when nor-
malized) matches the well-known exact solution for the
HO, appearing for example in Ref. [1].

Anharmonic oscillator

In the previous section, we have been able to take into
account the fluctuations and compute an exact function
of the kernel due to the quadratic dependence of the HO
potential on the position. However, with the AHO oscil-
lator, the situation becomes more complicated.

The anharmonic (quartic) potential will take the form,

V (x) =
1

2
mω2x2 +

1

2
g2x4 . (23)

We will obtain the flucton (classical) solution numer-
ically as described later. The first term of (16) will be
again zero since δScl = 0, and the (space-dependent)
higher-order terms will be not considered in this work,
since they are much more complicated to address.

To validate the obtained results and estimate the sys-
tematic error introduced by neglecting the fluctuations
in the semiclassical approximation we will compare them
with the results obtained from the Schrödinger equation.
This comparison will allow us to evaluate the accuracy of
the approximation and quantify the discrepancies arising
from neglecting the fluctuations. From (8) we know that

K(xo, ℏβ;xo, 0) =
∑
n

|ϕn(x)|2e−Enβ . (24)

We can calculate numerically the values of the wave func-
tions and the energies through the Schrödinger equation
and compute the sum. The details on how to perform
this numerical calculation are given in the Appendix.

We will also compare the results obtained with those
acquired from the Path Integral Monte Carlo method [6].

III. NUMERICAL CALCULATION AND
RESULTS

From now on we will simplify notation, and call x for
the observation point, instead of xo. Additionally, for
simplicity, we will choose units such that ℏ = kB = 1
and also set ω = m = 1.
The problem we aim to solve is to find the first term

of the semiclassical expansion Eq. (16) of the PI in QM.
Numerically this can be reduced to a boundary value
problem, which means we must solve xfl(τ), solution of
the second-order differential equation,

ẍ(τ)− V ′(x) = 0 , (25)

with Dirichlet-type boundary conditions, which are
shown in Eq. (19).
Since we have Dirichlet boundary conditions, we

will make use of the function scipy.integrate.solve bvp
from the SciPy module. This function implements a
fourth-order collocation method solved through a New-
ton method. The collocation method involves discretiz-
ing the solution domain and approximating the solution
at those points. Then, an optimization problem is for-
mulated to minimize the difference between the solution
and the boundary conditions. The Newton method will
be used to iteratively update the collocation points and
approach a solution that satisfies the imposed conditions.
Once we have obtained the kernel numerically, we will

be able to calculate the expected values of any observable
which depend on x, A(x), using

⟨A⟩ =
∫ ∞

−∞
A(x)P (x)dx , P (x) =

K(x, ℏβ;x, 0)∫∞
−∞ K(x, ℏβ;x, 0)dx

,

(26)
where K(x, ℏβ;x, 0) = exp (−S[xfl(x)]).

A. Harmonic oscillator

We will first show the flucton trajectory xfl(τ) and the
probability distribution that we have obtained by numer-
ically solving the Eq. (25).
Figure 1 presents the numerically computed flucton for

the HO potential, obtained by solving Eq. (18), depicted
as a blue solid line. Additionally, the exact solution given
by Eq. (20) is shown as solid circles. We obtain an ex-
cellent agreement between both solutions.
In Figure 2 we show in blue solid line, red dashed

line, and green dash-dotted line the numerically com-
puted probability for the HO for β = 10.0, β = 1.0, and
β = 0.1 respectively. In addition, the exact probabil-
ity given by Eq. (22) normalized has been shown in the
three different temperatures by circles, crosses and dia-
monds, respectively. The discrepancy between the exact
result and the numerical flucton is negligible. Thus we
can ensure that the numerical method is pretty accurate.
At low temperatures, thermal fluctuations are negligible,
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and the probability distribution will coincide with the
square of the ground state wave function. As the tem-
perature increases, we can observe how the probability
distribution broadens due to the growing population of
excited states caused by thermal fluctuations.

FIG. 1: Flucton path for the HO and AHO (g = 1.0) for
β = 1.0 and x0 = 5 compared with the exact solution
and the analytic expression in Eq. (20), respectively.

FIG. 2: Probability distribution of the HO for β = 10.0,
β = 1.0, and β = 0.1 with their exact solutions from
Eq. (22).

B. Anharmonic oscillator

As we observed in the previous section, we can find an
exact analytical solution for the flucton path for the HO
potential but not for the AHO one. However, to compare
our numerical results of the flucton in the AHO, we will
use the semi-analytical exact solution given in Ref. [7].

Figure 1 shows the trajectory of the flucton xfl(τ) ob-
tained from numerical simulation and the semi-analytical
exact solution. Both results exhibit perfect agreement,
proving again the accuracy of the numerical calculation.

We will also compare the results of P (x) obtained
through the numerical flucton with those calculated
through the Schrödinger equation and the Path Integral
Monte Carlo simulation. Since we only account for the

classical solution and neglect the higher-order terms, a
difference with respect to the exact results is expected.
In Fig. 3 we show in red solid line the results from

the numerical flucton, and in green dashed line the ones
from the Schrödinger equation compared to the outcome
of the Monte Carlo simulation, shown in dark green dots.

FIG. 3: Probability distribution in terms of the observa-
tion point for the AHO with g = 1.0 for β = 1.0.

In Fig. 4, we show the difference between the
Schrödinger equation results and the numerical flucton
using green solid, blue dashed, and red dash-dotted lines
for β = 10.0, β = 1.0, and β = 0.1 respectively. We can
observe discrepancies around x = 0, which would be re-
duced by introducing higher-order terms. However, the
discrepancy is significantly reduced in the tails of P (x),
where the semiclassical approximation works better. On
the other hand, the Monte Carlo and the Schrödinger
results agree accurately, as expected.

FIG. 4: Absolute difference between the results from the
Schrödinger equation and the flucton ones (first term of
the expansion (16)) for different temperatures (T = 1/β).

C. Energy Expectation values

Once we have made qualitative comparisons between
all the methods used for calculating the probability distri-
bution we will make a quantitative comparison through
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the expected value of the energy ⟨E⟩.
From our P (x) we can easily obtain expectation values

of x−dependent quantities. To obtain ⟨E⟩ we will apply
the virial theorem to connect the expected value of the
energy to the expected values of different powers of x.
These expected values will be calculated using Eq. (26)

where the integral goes from −∞ to ∞. In practice, we
will choose some large value of x to cut the integral, where
we ensure that P (x) is almost zero there.
The virial theorem states that for a potential of the

form V (x) = αxn, it is fulfilled 2 ⟨T ⟩ = n ⟨V ⟩.
We will have a generic potential like the one in Eq. (23)

(the HO is obtained setting g = 0) thus,

⟨E⟩ =
〈
x2

〉
+

3

2
g2

〈
x4

〉
. (27)

Using the expression (27) and the numerically computed
values of ⟨xn⟩ we will calculate ⟨E⟩.

Numerical Flucton Exact, Eq. (22) Schrödinger Eq.

β = 0.1 10.0078347 10.0078348 10.003

β = 1.0 1.081981 1.081980 1.081977

β = 10.0 0.5005 0.500045 0.500040

TABLE I: Expected values of the energy of HO through
each one of the methods (g = 0).

In Table I we can observe that the results obtained
through the three different methods exhibit a very good
agreement. Minor discrepancies can be attributed to dis-
cretization effects inherent to the numerical calculations.

β = 0.1 β = 1.0 β = 10.0

Numerical flucton 8.010512 1.289979 0.8859

Exact flucton [7] 8.010510 1.289977 0.8860

Schrödinger equation 7.9047 1.0505 0.6962

Monte Carlo method 7.9841 1.1073 0.7369

TABLE II: Expected values of the energy of AHO
through each one of the methods (g = 1).

In Table II we present the results for the AHO with
g = 1, the results obtained through the numerical flucton

and the exact flucton agree very well. Discrepancies can
be attributed to discretization effects.
On the other hand, as was expected, the two results

obtained through the flucton differ in a notable degree
from the ones obtained through the Schrödinger equation
and the Monte Carlo method. This discrepancy arises
from neglecting higher-order terms in Eq. (16).

IV. CONCLUSIONS

In this work, we introduced the PI formalism and
used the semiclassical approximation to numerically com-
pute the probability distribution for both the HO and
AHO potentials. We compared our results with those
obtained from the Schrödinger equation and the Monte
Carlo method.
For the HO potential, we obtained an exact analytical

solution, Eq. (22), where fluctuations only contributed as
an irrelevant constant prefactor. Our numerical simula-
tion yielded satisfactory results, matching the analytical
solution and the Schrödinger equation results (Table I).
For the AHO potential, for which we cannot obtain an

exact and analytical solution of the kernel, our numerical
simulation for the flucton has also perfectly matched with
the exact flucton solution extracted from [7]. However,
as expected, we found a discrepancy compared to the
results obtained through the Schrödinger equation and
Path Integral Monte Carlo simulation, due to neglecting
the fluctuations in the calculation of the probability.
It would be highly interesting to further explore the

investigation by incorporating higher-order terms in the
semiclassical expansion (which would reduce the discrep-
ancies found in the AHO case) and exploring additional
potentials, such as the double well potential or even a
two-body potential.
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V. APPENDIX

A. Computing Schrödinger solutions

In order to compute the solution of the Schrödinger
equation we will reduce the problem to an eigenvalue
problem. We know that the Schrödinger equation in one
dimension can be expressed as:

− ℏ2

2m

d2

dx2
ϕn(x) + V (x)ϕn(x) = Enϕn(x) , (28)

where the potential will be either the HO or the AHO. To
compute the eigenvalues and eigenvectors we will build
the left-hand side of the equation in matrix form (using fi-
nite differences for the first term) and solve the eigenvalue
problem. This will allow us to obtain the eigenvalues,
which correspond to the energies, along with the corre-
sponding wave functions in terms of the position. Thus,
we will be able to compare the resulting wave function
with the value of the kernel previously found.

As β becomes smaller (T bigger) we will have states of
larger values of n occupied (excited states), therefore we
will need to compute more eigenvalues to approach cor-
rectly the solution. All calculations and figures presented
have been made using n = 100 eigenvalues.

B. Numerical solution of Eq. (25)

To solve the differential equation given by Eq. (25), we
used the Python function scipy.integrate.solve bvp from
the SciPy module. This function is specifically designed
to solve boundary value problems using the collocation
method in combination with the Newton method, as
briefly described in Section III.

The function will require four inputs: two vectors and
two functions. The first vector will be the discretized in-
dependent variable (in our case, imaginary time), and the
second vector will be our initial guess for each time step
of x and dx

dτ , which we randomly initialize. The first func-

tion calculates the derivatives of x, taking a vector
[
x, dx

dτ

]
as input, and returning

[
dx
dτ ,

d2x
dτ2

]
. The last required func-

tion applies the boundary conditions and evaluates the
difference between the obtained result and the specified
boundary conditions.

We will need to execute this function in a loop, varying
the values of the observation points x, in order to find the
probability distribution.

Therefore, we have used a variable number of points
for both the observation point values, denoted as Nx,
and the time values, denoted as Nτ . For the calculations
with β = 10.0, we have used Nτ = 10000 and Nx = 1000
since in this case the probability distribution quickly ap-
proaches zero, requiring small values for the observation
point (x = 5). We have determined that the execution
under these conditions takes approximately 155 seconds.

On the other hand, for β = 0.1, we have performed the
calculation with Nτ = 1000 and Nx = 10000 as the value
of β allows for a sufficiently low time step, enabling us to
increase the resolution for the observation point, which
is now larger (x = 11). Taking these values of Nτ and
Nx the calculation is performed in approximately 120
seconds.

Given the fast execution and the high resolution
achieved in the results, we did not need to further op-
timize the code. However, we could optimize the initial
values we set for the scipy.integrate.solve bvp function to
potentially improve it.
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