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Abstract: The aim of the project is to study the formalism behind Bose-Einstein condensates.
Using the imaginary time method, we obtain the ground state of the condensate solving the Gross-
Pitaevskii equation with an ansatz wave function. Then, we study the two analytical limit cases: the
Thomas-Fermi approximation and the non-interacting limit. After that, we perturb the condensate
with the monopolar excitation operator and we observe the oscillations produced on the expectation
value of ⟨r2⟩. We obtain the frequency of the oscillations of the condensate with a Fourier transform
analysis. Finally, we expand our study considering a contribution beyond the mean-field theory in
order to study the emergence of self-bound droplets. We compute the ground state for this system,
following the same procedures as for the condensate.

I. INTRODUCTION

At very low temperatures, matter can behave in two
very different ways: as fermions or as bosons. Fermions
are particles with half-integer spin and interfere destruc-
tively between them, while bosons are particles with in-
teger spin which interfere constructively. Although most
of the fundamental matter are fermions (protons, elec-
trons, neutrons), by putting together an even number of
fermions so their spins are coupled to make a total, in-
teger spin, one ends up having a system that behaves
as a boson. The Pauli exclusion principle is the cru-
cial difference between the two types of particles: two
fermions cannot occupy the same quantum state, but we
can have any number of bosons in the same state. This
last property, along with the indistinguishability of the
particles, make bosons interesting to study, specially if
we cool them to very low temperatures.

If we cool down a bosonic dilute gas close to 0K, al-
most all the atoms of the system occupy the lowest single-
particle energy state. As a knock-on effect, they lose
their individual properties and the whole system starts
to behave as a single collective quantum wave that fol-
lows the Bose-Einstein statistics. Quantum effects be-
come macroscopic. This behaviour was predicted almost
100 years ago by Satyendra Nath Bose and Albert Ein-
stein. Since then, Bose-Einstein condensation has been
one of the most studied phenomenon in quantum sci-
ences. Nevertheless, it was not until 1995 that a research
group at the Joint Institute for Laboratory Astrophysics
(JILA) produced the very first quantum condensate. It
was composed of 2000 87Rb atoms and cooled down to
temperatures of nanokelvin [3].

After some years of investigation, in 2015 D. S. Petrov
demonstrated that self-bound droplets, without any ex-
ternal confinement, could be produced in bosonic binary
mixtures by extending the Gross-Pitaevskii formalism to
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account for quantum fluctuations [7]. Then, three years
later, in 2018, the first quantum droplets were observed
as heteronuclear mixtures of 41K and 87Rb. Even so, this
liquid-like behaviour was first noticed in dipolar conden-
sates and in homonuclear mixtures of 39K [6]. In or-
der to obtain these droplets, we need to have competing
mean-field interactions so they can compensate with the
quantum fluctuations of the system. We can achieve this
with heteronuclear mixtures, where we have contact in-
teractions between atoms of the same type and between
atoms of different component. In addition, we can tune
these interactions in order to achieve larger lifetimes so
droplets can be observed in an easier way.
This project aims at studying the theoretical mean-

field description of Bose-Einstein condensates. First, we
will numerically obtain the ground state and check it with
the analytical limits. Then, we will perturbe it with a
monopolar excitation. Finally, we will extend the mean-
field formalism to account for quantum fluctuations and
obtain self-bound droplets. We will study in what they
differ from ordinary condensates and we will compute the
ground state for the self-bound droplet.

II. BOSE-EINSTEIN CONDENSATES

We consider N identical bosons at T = 0K and assume
that the system is very dilute and weakly-interacting.
In such a low density system, the interacting potential
can be described as an effective contact potential which
only depends on the s-wave scattering length of the par-
ticles. This is, therefore, a mean-field approximation, as
we can assume every particle feels the same effective po-
tential. Furthermore, if the interactions between atoms
are attractive, then our system will collapse in any cir-
cumstance. If it is repulsive, then the system expands
so we need a confinement method in order to have a
bounded system. This means that in order to have a
Bose-Einstein condensate (BEC), an external, confining
potential is needed.
At a very low temperature, thermal fluctuations can
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be neglected, so we can consider that almost all atoms
are condensed, and due to the diluteness and weak in-
teractions, quantum fluctuations are also negligible. Un-
der this conditions, the system is within the mean-field
regime and can be described by the time-dependent
Gross-Pitaevskii equation [8], which is enunciated as[
−ℏ2∇2

2m
+ Vext(r⃗) + gN |Ψ(r⃗, t)|2

]
Ψ(r⃗, t) = iℏ

∂

∂t
Ψ(r⃗, t),

(1)
where the first term refers to the kinetic energy and the
second one is the external, confining potential mentioned
before. Contact interactions are characterized by the
coupling constant g = 4πℏ2as/m, which depends on the
s-wave scattering length as, and N is the number of par-
ticles. As said before, we need interactions to be repul-
sive, so g will be positive. It is important to mention
that Eq. (1) provides a good description of BECs as long
as the conditions described before regarding thermal and
quantum fluctuations are maintained. We also assume
that densities are still low enough to avoid losses due to
three-body interactions.

Aiming to obtain an expression for the ground state
of the condensate, since it is a stationary state, we can
split our wave function in two parts: the first one con-
tains the spatial dependence and the second one the time
dependence, as

Ψ(r⃗, t) = φ(r⃗) exp (−iµt/ℏ) , (2)

where µ is the chemical potential. Inserting this wave
function into Eq. (1) we obtain the time-independent
Gross Pitaevskii equation (GPE),[

−ℏ2∇2

2m
+ Vext(r⃗) + gN |φ(r⃗)|2

]
φ(r⃗) = µφ(r⃗). (3)

III. BEC WITH HARMONIC CONFINEMENT

We consider a BEC confined in an isotropic harmonic
trap of frequency ω, Vext(r) = mω2r2/2. To facilitate
calculations, we write these equations in harmonic oscil-
lator units, with aho =

√
ℏ/(mω) as the length unit, ℏω

as the energy unit and ω−1 as the time unit. Then we
write dimensionless positions, wave functions, energies

and chemical potentials as r = r/aho, φ(r) = a
3/2
ho φ(r),

E = E/(ℏω) and µ = µ/(ℏω). We rewrite Eq. (1) as[
−∇2

2
+

1

2
r2 + gN |φ(r, t)|2

]
φ(r, t) = i

∂

∂t
φ(r, t), (4)

where g = 4πa and a = as/aho. Eq. (3) becomes[
−∇2

2
+

1

2
r2 + gN |φ(r)|2

]
φ(r) = µφ(r). (5)

A. Ground State

In this section we will numerically obtain the ground
state of the system by means of the imaginary time
method. We wrote a Fortran program that included this
method. It sets the time of the differential equation as
an imaginary time τ = −i t, so the equation becomes a
diffusion equation. For long enough times, it is guaran-
teed that the method converges to the ground state of
the system starting from any initial wave function.
First, we solve the GPE for different number of parti-

cles using the following initial wave function:

ϕ0(r) = α r e−βr2 , (6)

where α and β are both constants. We solve Eq. (5) with
the imaginary time method, where µ is calculated as

µ =
1

N

∫
dr⃗ ϕ∗(r) Ĥϕ(r), (7)

with Ĥ defined as

Ĥ = −∇2

2
+

1

2
r2 + gN |ϕ(r)|2. (8)

The results for the ground state are shown in Fig. 1 for
different number of atoms.
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FIG. 1: Density profile of the Bose-Einstein condensate
ground state in dimensionless units and for different num-
ber of atoms.

It is interesting to see that we recover the two analyt-
ical limits for large and small number of particles [4].
For large N , when aN ≫ 1, the Thomas-Fermi (TF)

limit is achieved. The kinetic energy can be neglected in
front of the interaction term, and an analytical solution
of the GPE can be obtained. This can happen in two
situations: if the kinetic term is very small and/or if
the interaction term is very big, which is the case here.
As this last one increases linearly with N , for big N the
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kinetic part of the hamiltonian is negligible. Graphically,
the approximation can be seen as the turning point near
zero of the density disappears, so the density profile is
almost an inverted parabola. Given our parameters, for
N = 10000 the TF approximation is valid.

For smallN the non-interacting limit is achieved, when
the interaction term can be neglected in front of the ki-
netic energy. In this limit, the ground state is a gaussian.
Note that the interaction term is the only one that de-
pends on N , so if we reduce enough the number of parti-
cles, this term is negligible with regard to the kinetic and
the external potential ones. In the system we are study-
ing, for N = 30 the non-interacting limit is achieved.

B. Dynamic Evolution: monopolar excitation

Now we will study the dynamic evolution of the con-
densate. To evaluate the response of the system to a
small perturbation, a superior order integration method
will be used to solve the time-dependent differential equa-
tion (4). In this case, we use the 4th order Runge-Kutta
method to solve it. Here, the Fortran program we need
to write is more simple than the imaginary time one but
it is harder in terms of running time. For each itera-
tion, we solve the equation in every position of the grid
in parallel.

Before studying the dynamical evolution, we have
tested the ground state solution obtained by solving
Eq. (5). For this purpose, we introduce the numeri-
cal wave function obtained before in the time-dependent
GPE (4). As expected, the wave function does not change
at all and preserves its normalization, that is, no particles
are being lost or gained in the process. Gaining particles
does not have any physical sense but it can happen with
numerical methods. In fact, the number of particles os-
cillates around the correct normalization value.

Now we are going to introduce the perturbation to the
condensate to study its dynamical response. In order
to study its time evolution, we will proceed following
two steps. First of all, we calculate a perturbed ground
state with the static method explained previously. Af-
ter that, we switch off the perturbation and we let the
condensate evolve. We can introduce the perturbation
in two different ways: we can change the harmonic os-
cillator frequency, which means changing the parameters
of the harmonic oscillator units, as we cannot find ω ex-
plicitly in the reduced equations, or we can introduce to
our hamiltonian the monopolar excitation operator, λr2,
which excites the so called “breathing mode”. We tried
both perturbing methods but the presented results were
calculated with the monopolar excitation operator. In
fact, both methods are equivalent, as we are changing
the multiplying factor of r2. We set λ = 10−6. It is a
small perturbation but it is enough to see how the con-
densate evolves and oscillates.

At this point, we introduce the perturbed wave func-
tion in the dynamical code to study the real time evo-

lution. Since we are exciting the monopolar (breathing)
mode, in order to study the dynamical evolution of the
BEC we compute ⟨r2(t)⟩. Afterwards we will use Fourier
analysis to obtain the frequencies of oscillation of the con-
densate. Results for a condensate of N = 20000 atoms
are shown in Figs. 2 and 3.
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FIG. 2: Expectation value of r2 as a function of time for
the oscillations of the perturbed condensate in dimensionless
units. Several periods are presented.

Figure 2 shows that the condensate oscillates follow-
ing two differentiated periodical wave oscillations: on the
one hand, the amplitude of the wave oscillates periodi-
cally with time, describing a main sinusoidal shape. On
the other hand, a smaller frequency modulates the main
oscillation also in a sinusoidal shape. The frequency of
the main wave is bigger than the frequency of the modu-
lation wave. This shape may be approximated as a sum
of two oscillations described as

f(t) = A cos(ω1 t) +B cos(ω2 t), (9)

where ω1 corresponds to the main frequency and ω2 to
the modulation one. In addition, A/B ≈ 10 and ω1/ω2 ≈
4.5. This result has been obtained empirically.
Figure 3 shows the results of the Fourier spectra anal-

ysis performed to our condensate from Fig. 2 in dimen-
sionless units. It is shown that as a whole, it oscillates
at a frequency around ω1 = 9.43. Then, we find another
peak around ω5 = 2.09, with a lower strength compared
to the first one. If we substitute ω1 and ω5 in Eq. (9),
we can see they verify ω1/ω5 ≈ 4.5. It is worth men-
tioning that frequency ω = 0 has been excluded from the
spectra as it is considered noise associated with the finite
dimensions of the system.
Once we have analysed the numerical results, now we

can compare them with the analytical predictions. In
the TF limit, it has been shown in Refs. [4, 8] that the
frequency for the monopolar mode admits an analytical
expression: ωM =

√
5 (in units of the trap frequency). If

we compare this value with our results, it is clear that ω5
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FIG. 3: Frequency spectrum of the condensate oscillations
in dimensionless units. The top right label presents the six
frequencies obtained with decreasing strength.

corresponds to the monopolar mode, as its value is very
close to ωM. The large-frequency oscillations that we ob-
serve at frequency ω1 may be a result of the perturbation
not being small enough. As a result, besides the oscil-
lation related to the monopolar excitation we observe a
second oscillation because the perturbation might be ex-
citing other modes. The larger strength for ω1 that we
see on the frequency spectrum is related to the number
of periods that we consider, which is much larger for the
large-frequency oscillations.

IV. SELF-BOUND DROPLETS

Now that we have studied how a Bose-Einstein conden-
sate behaves under a monopolar perturbation, we con-
sider beyond mean-field effects to investigate self-bound
quantum droplets.

As mentioned in the introduction, in order to achieve
the droplet state, we need to expand our study with two
considerations. First, our system will need to be a mix-
ture of two different species in order to have competing
mean-field interactions within the condensate: we will
have inter-species and intra-species interactions. This
means that we now have different interaction constants
g that will be described later in this section. Then, with
the purpose of getting our self-bound droplet, we need
to consider a beyond mean-field contribution so we can
take into account quantum fluctuations. These quantum
fluctuations can stabilize the system against the collapse
predicted by the mean-field framework. This contribu-
tion is the Lee-Huang-Yang (LHY) correction [5].

For very dilute and weakly-interacting systems, quan-
tum fluctuations are usually neglected. However, there
are systems where the mean-field energy can be very low
and become of the order of magnitude of quantum fluc-

tuations. This happens when there are competing mean-
field interactions within the condensate and the density
is large enough so quantum fluctuations are significant.
In this case, then, the balance between the attractive
mean-field interactions and the repulsive quantum fluc-
tuations leads to equilibrium at a given density where the
mean-field theory would predict collapse.
If we consider our 41K-87Rb mixture has an attractive

interaction potential, in the absence of an harmonic trap
the system should collapse. If we contemplate quantum
fluctuations and we add this repulsive LHY correction to
our maths, then the condensate can stabilize and sustain
itself. This attractive-repulsive compensation that we
achieve permits us to set the external potential equal
to zero and still get a self-bound system. This system
described is named a self-bound quantum droplet.
Mathematically, the following formalism was presented

by D.S. Petrov in [7]. Altough this binary system is
described by two coupled GPEs, for the ground state
and the lowest energy states of the system we can ef-
fectively model it as a one component system, neglecting
the relative motion between species. If we write the GPE
in dimensionless form and we add the LHY correction
5/2|ϕ|3 − µ̃ we get[
−∇2

r̃

2
− 3|ϕ(r̃, t̃)|2 + 5

2
|ϕ(r̃, t̃)|3 − µ̃

]
ϕ(r̃, t̃) = i

∂

∂t̃
ϕ(r̃, t̃)

(10)
Where µ̃ is the dimensionless chemical potential and r̃, t̃
are the rescaled position and time coordinates, r̃ = r/ξ
and t̃ = t/τ , being ξ and τ :

ξ =

√
3

2

√
g22/m1 +

√
g11/m2

|δg|√g11n
(0)
1

, τ =
3

2

√
g22 +

√
g11

|δg|√g11n
(0)
1

,

(11)
where m1 and m2 are the masses of the two components,

n
(0)
1 is the density of the first component, gij represents

both the intra-species (i = j) and the inter-species (i ̸= j)
contact interactions, and |δg| = g12 +

√
g11g22. Solving

Eq. (10) we obtain the ground state wave function of the
self-bound droplet.

A. Ground state

All the computation used to obtain the ground state
for the condensate can be recycled in this section. We
only need to change the non linear potential terms from
the GPE for the one that appears in Eq. (10), and
set the external potential to zero. In addition, we put
∂t̃ϕ(r̃, t̃) = 0 in Eq. (10) so we get the time-independent
extended GPE, the one we need to solve, as it follows[

−∇2
r̃

2
− 3|ϕ(r̃)|2 + 5

2
|ϕ(r̃)|3

]
ϕ(r̃) = µ̃ϕ(r̃). (12)

We follow the same steps as we did to find the ground
state of the condensate: we solve our equation iteratively
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and we calculate µ̃ as in Eq. (7) to evaluate it. After
several iterations we obtain what is shown in Fig. 4 for
different number of particles.
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FIG. 4: Density profile of the self-bound droplet ground state
in dimensionless units and for systems with different number
of particles.

We can clearly see that by increasing the number of
particles of the droplet, the bulk grows until it reaches
saturation. We can now compare Fig. 1 with Fig. 4.
For a small number of particles, the density profiles of
both systems are almost the same, for droplets we also
recover the gaussian distribution. It is worth mentioning
that for Ñ = 18.65 the droplet becomes unstable and can
no longer contain itself as the kinetic term of the total
energy is big enough compared to the rest of the terms [7].
For a large number of particles, both behaviours differ
from each other. While for the condensate we recover the
inverted parabola of the TF approximation, the droplet
increases its bulk and saturates due to being self-bound.

V. SUMMARY AND CONCLUSIONS

In this project, we have studied the theoretical mean-
field description of Bose-Einstein condensates in both the

static and the dynamic regimes. Then, we have taken
into account a beyond mean-field correction (known as
the Lee-Huang-Yang correction) in order to obtain self-
bound droplets.
First, we studied the mathematical formalism of Bose-

Einstein condensates: how it can be explained by means
of the Gross-Pitaevskii equation and why we need every
term of the equation. Then, using the imaginary time
method, we computed the ground state of the BEC and
we checked its analytical limits: for large number of par-
ticles we recovered the TF approximation while for small
number of particles we recovered the non-interacting
limit, where the density profile is a gaussian. Once we
had the ground state of the condensate, we introduced
a perturbation with the aim of exciting the monopolar
mode (also known as the breathing mode). We evolved
the numerical wave function obtained from the static
study with the perturbation and then we analysed the
frequency oscillations using a Fourier transform analysis.
With all the condensate formalism developed, we have

included quantum fluctuations in our GPE formalism in
order to obtain self-bound droplets. We have studied un-
der what circumstances they can be produced and sta-
bilized: taking into account the Lee-Huang-Yang correc-
tion for quantum fluctuations. We have seen that we
need competing mean-field interactions so the mean-field
contribution is small and comparable to the quantum
fluctuations. It is due to this balance between mean-
field interactions and quantum fluctuations that droplets
are self-bound systems. Finally, via this extended GPE
(including the LHY correction) we obtained mumerically
the ground state of a droplet the same way it was done for
the condensate, and we discussed the differences between
the density profiles of BECs and droplets for different
number of atoms.
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