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We study the dynamics of matter undergoing a first order phase transition in an expanding
universe. We contemplate the scenario where the universe experiences significant supercooling,
leading to local instability known as spinodal instability. We use second-order hydrodynamics to
derive the equation that governs the behavior of the unstable modes that arise in this situation,
and numerically solve it. The resulting solutions differ significantly from the ones found for a
flat universe. Specifically, we observe a damped behaviour and a notable time dependence in the
momentum range of the unstable modes, highlighting the richer dynamics at play. Finally, we
model this time dependence using an adiabatic approximation and show that it captures the main
momentum and expansion rate dependence of unstable modes growth.

I. INTRODUCTION

In the field of cosmology, one of the intriguing aspects
of the early universe is the occurrence of phase transi-
tions. These transitions involve changes in the funda-
mental properties of matter. While the standard model
does not posses a first-order phase transition, many of its
extensions show such behaviour. If that is the case, the
early universe can probe the dynamics of the transitions
as it cools and expands [1]. Such phase transitions in the
early universe are known to generate gravitational waves
that have the potential to be detected in forthcoming
experiments like the LISA mission.

A precise understanding of the dynamics involved in
the phase transition may be crucial in the discovery pro-
cess. Conventionally, the phase transition is believed to
occur through the nucleation of bubbles, where the stable
phase forms within the metastable phase that has been
supercooled. However, it has been observed [2, 3] that
under certain conditions the nucleation rate may be suf-
ficiently suppressed enabling the universe to continue to
supercool until reaching the end of the metastable branch
(for further details, refer to Sec. 3.1 in [2]). In such con-
ditions, the universe eventually enters the spinodal re-
gion (FIG. 1), and the transition progresses through the
exponential growth of unstable modes and subsequent
formation, merging, and relaxation of phase domains [3].

FIG. 1 shows the different phases the early universe
can undergo. States lying along the red dashed-dotted
curve are thermodynamically unstable due to their neg-
ative specific heat. In this situation, the primary pertur-
bations that arise are in the form of sound modes with
an imaginary speed of sound, while other perturbations,
such as those originating from diffusion, can be neglected.
Therefore, the dynamics of these states will be studied
by examining the behavior of their sound modes. The
spinodal instability is well known in the case of a static
universe [2–5]. The study considering an expanding uni-
verse has yet to be done. Within this context, the aim
of this work is to study the behaviour of states in the
spinodal region for a dynamical geometry.

FIG. 1: Energy density as a function of temperature of a
typical first-order phase transition. The thermodynamically
stable states are represented by the solid, blue curves. The
metastable states are depicted by the dashed, brown curves.
The unstable states are indicated by the dashed-dotted, red
curve. Λ is the characteristic energy scale of the system. (Fig-
ure taken from [2]).

In Sec. II, we provide a derivation of the equation gov-
erning the sound modes using second-order hydrodynam-
ics. Subsequently, in Sec. III, we numerically solve these
equations using the RK4 method and analyze the results
in three distinct contexts. First, we assume the universe
to be flat and determine the analytical behaviour of the
unstable modes. Secondly, by setting a constant speed
of sound, |cs| = 1/

√
30, we gain a comprehensive under-

standing of the equation and its deviations from the case
of a static universe. Finally, we explore a variable speed
of sound, which, as we will argue, better approximates
the dynamics of overcooled matter in the vicinity of the
spinodal transition.

II. DYNAMICS OF SOUND MODES IN
DE-SITTER

De-Sitter space (dS) is a theoretical framework that
effectively captures the expansion characteristic of the
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early universe. With our choice of coordinates, its line
element is

ds2 = −dt2 + e2Htdxidx
i. (1)

The curvature of dS is set by the parameter H, which is
its intrinsic Hubble constant.

Let us assume an expanding universe, modeled by dS,
containing a viscous fluid. Its stress-tensor reads

Tµν = ϵuµuν +∆µνp+Πµν , (2)

where ∆µνp = gµν+uµuν serves as a projection operator
on the space orthogonal to the fluid velocity, and gµν is
the metric defined in eq.(1). The viscous stress tensor
Πµν , which plays a crucial role in characterizing the ef-
fects of viscosity, can be determined using second-order
hydrodynamics [5, 6].

The conservation of the stress tensor yields

Dϵ+ (ϵ+ p)∇µu
µ −Πµν∇⊥

(µuν) = 0

(ϵ+ p)Duα +∇α
⊥p+∆α

ν∇µΠ
µν = 0.

(3)

Here the (. . .) denote symmetrization and we have
introduced the shorthand notations D ≡ uµ∇µ and
∇α

⊥ ≡ ∆µα∇µ for the projection of derivatives parallel
and perpendicular to uµ respectively.
Consider small perturbations of energy density and

fluid velocity in a system that is initially in equilibrium
and at rest. Due to the isotropy of the fluid, we can
choose both the momentum k and the velocity u to align
with the x-direction. As a result, the perturbation only
depends on a single spatial coordinate. In what follows,
we will work in the local rest frame, uµ = (1,0) so we
can focus on the relevant dynamics and properties of the
states without considering the effects of fluid motion. We
can obtain the equations that describe the sound modes
by introducing this perturbations into eqs.(3),

∂tδϵ+ (ϵ+ p) ∂xδu
x = 0

(ϵ+ p) (∂tδu
x +Hδux) + e−2Ht∂xδp+∇µδΠ

µx = 0.

(4)

Considering a system without conserved charges, all mo-
mentum is due to the flow of energy density, i.e. uµTµν =
ϵuν =⇒ uµΠ

µν = 0. This condition implies δΠ0ν = 0.
Hence the only not-vanishing term of the viscous stress
tensor that contributes in eqs.(4) is δΠxx, which can be
written in terms of second-order gradients and reads

δΠxx = −(ϵ+ p)ΓdS(H)e−2Ht∂xδu
x + fLe

−4Ht∂2
xδϵ.

(5)

We can write the sound attenuation in de-Sitter space,
ΓdS , and the longitudinal transport coefficient, fL, in
terms of the shear and bulk viscosity coefficients, η
and ζ respectively, and other second order transport
coefficients as

ΓdS(H) =
4

3

η

ϵ+ p

[
1 +

(
τπ − τ∗π

3

)
H

]
+

ζ

ϵ+ p

[
1 +

(
τΠ − 2τ∗Π

)
H

] (6)

fL = − c2s
ϵ+ p

(
4

3
ητπ + ζτΠ

)
. (7)

The proof of eq.(5), as well as the derivation of both
coefficients, can be found in the Appendix.
We can solve eqs.(4) using a spatial Fourier ansatz:

δϵ = eikxδϵk(t) and δui = eikxδui
k(t). In this rep-

resentation, x is a comoving coordinate. And, since
the physical wavelength of this modes grows in time as
k−1
phys = eHtk−1 due to the universe expansion, k is not

the physical momentum but a mathematical parameter
that represents the initial momentum of the mode. In
terms of the Fourier components, eqs.(4) become

∂tδϵk + ik(ϵ+ p)δux
k = 0 (8)

(ϵ+p) [∂tδu
x
k +Hδux

k] + ike−2Htc2sδϵk

+ k2(ϵ+ p)e−2HtΓδux
k − ik3fLe

−4Htδϵk = 0,
(9)

where we have used the state equation to compute the
pressure gradient as ∂xp = (dp/dϵ)∂xϵ = c2s∂xϵ.
From the continuity equation in dS (first equation

in eqs.(3)) one knows the behaviour of the background
energy. In the local rest frame D −→ ∂t, ∇µu

µ =
∂µu

µ + Γµ
µρu

ρ = Γi
i0u

0 = H and ∇⊥
(µuν) = 0. Then

∂tϵ = −H(ϵ + p). Combining eq.(8) and (9) and using
this result, one finds that the energy density perturba-
tions for a viscous fluid in an expanding universe behave
following a differential equation that reads

∂2
t δϵk +

(
k2e−2HtΓdS(H) + (2 + c2s)H

)
∂tδϵk

+ k2e−2Ht
(
c2s − k2e−2HtfL

)
δϵk = 0. (10)

In the limit of Minkowski space (H → 0), we recover the
sound mode equations for a static universe, which can
be found in the appendix section of [3]. However, in the
presence of a non-zero Hubble parameter, we need to pay
extra attention to the term (2 + c2s)H, which acts like a
viscosity arising from the expansion of the universe. It is
important to note that this term only acts as a viscosity
when |c2s| < 2, which is satisfied in our study cases as
discussed in Sec. III C. Based on this, we can already
deduce that the perturbations will exhibit a damped be-
havior compared to the Minkowski case.

III. SPINODAL INSTABILITY

A. Spinodal instability in flat space

In order to validate the numerical procedure, we will
also simulate the Minkowski case with a constant speed
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of sound, as it has an analytical solution. The speed of
sound is defined by c2s ≡ dP/dϵ = s/cv, where s is the
entropy density, and cv is the specific heat. In the spin-
odal region cv is negative and, since the entropy density
is positive everywhere, c2s is also negative and hence, cs
imaginary. In order to study states that are located near
the spinodal point, we set the value of sound speed to be
small, |cs| = 1/

√
30.

In this context, setting H = 0 in eq.(10) provides a
solution that is also documented in [2, 3]. This solution
yields the following growth rate, up to second order in
momentum, for the unstable modes,

γ(k) = k|cs| −
k2

2
Γ. (11)

We observe that the perturbations will only grow for

momenta in the range 0 < k < k∗ = 2|cs|
Γ ≈ 1.38T .

The numerical values used for Γ are discussed in Sec.
III B. The spinodal instability exhibits an infrared na-
ture, indicating that only modes with momentum be-
low a specific threshold are susceptible to instability.
The most unstable mode, corresponding to the mode
with the largest growth rate, has momentum given by

kmax = |cs|
Γ ≈ 0.69T . We will use these results to verify

the accuracy of our numerical calculations. Furthermore,
since the unstable modes dominate the dynamics of the
system, and since their typical momentum is k <∼ T , we
conclude that hydrodynamics is a valid approximation.

B. Spinodal instability in de-Sitter with fixed
sound speed

Before analyzing the real physical situation, let us be-
gin by considering a simpler case with constant sound
speed, in specific |cs| = 1/

√
30. This choice will let us

compare the dynamics in dS and in Minkowski space.
Unlike the flat universe case, eq.(10) is not analyti-

cally solvable and numerical methods are required. The
computations were performed in Fortran using the RK4
method. In order to carry out these computations, we
treated the temperature as an independent parameter
and expressed all other variables in terms of it. The
choice of viscosity coefficients was based on existing lit-
erature, specifically references such as [2, 3, 7]. Briefly,
we set ΓdS(t = ts) = Γ = 5

6π and fL = −Γ2
dS/4 where

ts represents the time at which the perturbation forms
at the spinodal point. However, it is important to note
that in the de-Sitter space, these coefficients will have
a dependence on time, given by ∼ eH(t−ts), due to the
thermal variation induced by the universe expansion. In
addition, it is worth noting that the growth of unstable
modes will be more pronounced for smaller values of H,
as the expansion of the universe acts as a damping viscos-
ity on the perturbations. To ensure that our study differs
significantly from the case of a static universe while still
allowing for analysis of important unstable modes, we set
H = 0.01T . Other values of H will be explored in Sec.
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FIG. 2: Perturbations energy as a function of the mode’s
momentum for different times ( tT = 50 indicated in black
and tT = 100 indicated in red) and for both the Minkowski
(dashed curves) and de-Sitter (solid curves) cases.
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FIG. 3: Maximum mode (shown in black) and the threshold
mode (shown in red) as functions of the time for for both the
Minkowski (dashed curves) and de-Sitter (solid curves) cases.

III C. Moreover, all the computations have been made
assuming an initial amplitude of 0.1T .

FIG. 2 shows the behaviour of the perturbation for dif-
ferent modes in both the dS and Minkowski cases. The
numerical results in the Minkowski case align with the
anticipated values, providing confirmation of the validity
of the computations. Regarding the results in dS, we
observe that they exhibit a damped behavior compared
to the static universe case, as predicted earlier. Further-
more, both the most unstable mode and the threshold
shift to larger momenta as time progresses.

The complete time evolution of these modes is depicted
in FIG. 3, in which we recognize that the perturbations
become frozen after a certain amount of time has passed.
This freezing behavior can be deduced from eq.(13) in the
limit of large times by introducing the variable transfor-
mation τ = e−Ht. One obtains a power series solution
in terms of τ , and in the limit of large times, only the
zeroth-order term remains. This term is a constant that
depends on k and H. This serves as a further test for our
numerical results.

It is important to note that, unlike the Minkowski case,
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FIG. 4: Perturbation’s behaviour for a mode with momentum
k > k∗(0). The value δϵ(0) has also been illustrated by a
dotted grey curve.

in the de Sitter universe the value of k∗ increases with
time. This means that an initially stable mode with k >
k∗(0) may eventually enter the unstable range 0 < k <
k∗. As a result, the mode initially experiences a damping
effect, causing it to decrease in amplitude. However, as
time progresses the mode eventually surpasses its initial
value and becomes unstable. This behavior is illustrated
in FIG. 4 for a specific mode.

C. Spinodal instability in de-Sitter with variable
sound speed

In the real physical case, we start by examining a state
that is initially located at the spinodal point, where the
sound speed is zero. Subsequently, we observe its time
evolution and analyze the behavior of the sound modes
as they penetrate further into the spinodal branch, lead-
ing to increasingly imaginary sound speeds. As a result,
the state predominantly resides near the spinodal point
for most of its time within the spinodal region. Con-
sequently, the region around the spinodal point plays
a crucial role in the phase transition of the early uni-
verse. Therefore, our study will focus on small sound
velocities, where the growth of unstable modes accepts
a linear analysis. In this context, the thermal time-scale
is much shorter than the time-scale of variations in our
system, indicating that the gradients are small enough to
assume the viscosity coefficients to be constant. Close to
the spinodal point, the sound speed exhibits a parabolic
behavior with temperature (see FIG. 1),

c2s = −α

√
T

Ts
− 1, (12)

where α is a dimensionless parameter with origin in the
state equation and we have assumed it to be α2 = 1/3.
Considering that the expansion of the universe is isen-
tropic and using the sound speed definition, we have

1

T

dT

dϵ
=

s

T

dT

ds

1

s

ds

dt
= −3Hc2s. (13)
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FIG. 5: Perturbations energy as a function of the mode’s
momentum for different times.

Combining both equations, we find that the temperature
close to the spinodal point satisfies

1

T

dT

dt
= 3Hα

√
T

Ts
− 1. (14)

Around the spinodal point, t → ts, we can write the
solution of this equation as a power series in time. Sub-
stituting this result into eq.(12), we find that close to the
spinodal point

c2s =
3

2
Hα2(ts − t). (15)

This assumption is only valid at regions near the spin-
odal point. Therefore, we will limit our calculations to
a specific time, denoted as tlim, which is defined as the
time when δϵ/ϵ(tlim) = 1 for an arbitrary momentum. In
other words, it is the time at which the perturbation ex-
hibits a linear behavior. To facilitate our analysis, we will
work with dimensionless variables, specifically δϵ/ϵ. To
do so, we perform the following variable change, δϵ = ϵδϵ̃,
while keeping in mind that the background energy time
dependence is ∂tϵ = −H(ϵ+p) as stated previously. The
behavior of the perturbations for different modes in the
linear regime is shown in FIG. 5.
FIG. 5 clearly demonstrates that both kmax and k∗

shift towards higher momenta as time elapses. We can
model their specific behavior by assuming an adiabatic
expansion. Indeed, in the linear regime, we can make the
assumption that Ht → 0. Consequently, eq.(10) becomes
the same as the one found in the case of a flat universe
but with a variable speed of sound. In this scenario,
we can consider the expansion of the unstable modes to
be adiabatic, meaning that δϵ/ϵ ∼ eγ̃(k,t), where γ̃(k, t)
represents the sum of all the Minkowski growth rates over
time. This is

γ̃(k, t) =

∫ t

ts

[
k|cs(t′)| −

k2

2
Γ

]
dt′

=

√
2

3
α2H(t− ts)

3/2k − Γ

2
(t− ts)k.

(16)
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Hence the most unstable and threshold modes are

kadibmax =
√
2α2H(t− ts)/3Γ2 kadib∗ = 2kadibmax. (17)

In FIG. 6 and 7 we have presented the results for dif-
ferent values of H. Eq.(17) tells that for larger values
of H, both kmax and k∗ move to larger momenta more
rapidly. To ensure that the behavior of the modes in the
linear regime is independent of the magnitude of the uni-
verse expansion, we have illustrated their quotient with

their adiabatic counterparts. It is interesting to observe
that the most unstable and threshold mode computed
stabilize at values kmax ≈ 2.4kadibmax and k∗ ≈ 2kadib∗ .

It is important to mention that the adiabatic approx-
imation is only effective in describing the momentum of
the most unstable and threshold modes, but it does not
accurately describe the amplitude of the unstable modes.

IV. CONCLUSIONS

This study investigates the behavior of states in the
spinodal region within an expanding universe, with a par-
ticular focus on the dynamics of sound modes during the
phase transition of the early universe.

Considering small perturbations in energy density and
fluid velocity we have determined a differential equation
for energy fluctuations. By analyzing the system’s be-
havior as it progresses deeper into the spinodal branch,
we have gained valuable insights into the characteristics
of unstable modes. Specifically, we have determined that
the spinodal instability exhibits an infrared nature, with
only modes of lower momenta being susceptible to insta-
bility. Furthermore, we have obtained the time evolution
of both the most unstable mode and the threshold mode.
Notably, near the spinodal point, we can model both
kmax and k∗ by assuming that the unstable modes exhibit
an adiabatic expansion, resulting in kmax ≈ 2.4kadibmax and
k∗ ≈ 2kadib∗ regardless of the value of H.

In summary, this research provides insights into the
dynamics of sound modes in the spinodal region of an
expanding universe. A further non-linear analysis of the
system using hydrodynamics beyond the linearized ap-
proximation should be performed to fully understand
how the early universe phase transition occurred.
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Appendix A: Viscous-stress tensor perturbations

In this section a detailed proof of eq.(5) is provided.
The viscous-stress tensor can be written as an expansion
of gradients using all the symmetric traceless tensors and
scalars that can be form independently. Up to second
order one has

Πµν = πµν +∆µνΠ.

πµν = −ησµν + ητπDσ<µν> + ητ∗π
∇αu

α

3
σµν

+ κR<µν> + κ∗2uαuβR
α<µν>β

+ λ1σ
<µ
λ σν>λ + λ2σ

<µ
λ Ωµ>λ

+ λ3Ω
<µ
λ Ων>λ + λ4∇<µ ln s∇ν> ln s

Π = −ζ(∇αu
α) + ζτΠ(∇αu

α) + ξ1σ
µνσµν

+ ξ2(∇αu
α)2 + ξ3Ω

µνΩµν

+ ξ4∇⊥
µ ln s∇µ

⊥ ln s+ ξ5R+ ξ6u
αuβRαβ .

(A1)

Let us introduce first the perturbation into the sym-
metric traceless part, πxx:

δπxx = −ηδσxx + ητπδ(Dσxx) + ητ∗πδ

(
∇αu

α

3
σxx

)
+ κδR<xx> + κ∗2δ(uαuβR

α<xx>β). (A2)

The other terms vanish when introducing the perturba-
tions since they will always have spatial derivatives of
the velocity or energy density of the background and are,
hence, null. The terms in eq.(A2) are then computed
individually. The resulting expressions are

−ηδσxx = −η

[
2∇(x

⊥ δux) − 2

3
gxx∇xδu

x

]
= −4

3
ηe−2Ht∂xδu

x

ητπδ(Dσxx) = ητπ(δD)σxx + ητπDδσxx

= +
4

3
τπηe

−2Ht∂t∂xδu
x

ητ∗πδ

(
∇αu

α

3
σxx

)
= ητ∗π

[
δ

(
∇αu

α

3

)
σxx +

∇αu
α

3
δσxx

]
=

4

3
ηe−2Ht τ

∗
π

3
H∂xδu

x.

To compute the fourth one, we notice Rxx = ∂λΓ
λ
xx −

∂xΓ
λ
xλ + Γρ

xxΓ
λ
ρλ − Γρ

λλΓ
λ
ρx = ∂0Γ

0
xx − Γx

x0Γ
0
xx = Hgxx.

Therefore δR<xx> ∼ δgxx = 0. Finally the fifth term
reads

δ(uαuβR
α<xx>β) = δ(uαuβ)R

α<xx>β + uαuβδR
α<xx>β

= 0.

In the expression above, the first part becomes zero be-
cause Rx

xx0 = R0xxx = 0 and it only remains when ei-
ther α = x and β = 0, or vice versa. Consequently,
Rα<xx>β = 0. The second part disappears because
it only persists when α = β = 0, and in that case,
R0xx0 = −Hgxx. Hence, we have δRα<xx>β ≈ δgxx = 0.

When perturbing the trace part of the viscous tensor,
the following terms are the only ones that remain non-
zero,

δΠ = −ζδ(∇αu
α) + ζτΠδ(D∇αu

α)

+ ξ2δ (∇αu
α)

2
+ ξ5δR+ ξ6δ(uαuβR

αβ). (A3)

Again, we compute δΠ term by term. The first three
read

−ζ∇αδu
α = −ζ∇xδu

x = −ζ∂xδu
x

ζτΠδ(D∇αu
α) = ζτΠ(δD∇αu

α+D∇αδu
α) = ζτΠ∂t∂xδu

x

ξ2δ (∇αu
α)

2
= 2ξ2∇αu

α(∇αδu
α) = 2ζτ∗ΠH∂xδu

x

where we have used that∇xδu
i = ∂xδu

i and have defined
ξ2 ≡ ζτ∗Π. The fourth term is null since we suppose that
the perturbations don’t act in the metrics, hence neither
in the curvature. The fifth term can be expressed in two
parts: δ(uαuβ)Rαβ + uαuβδRαβ . The first one is zero
because Rx0 = R0x = 0 and the second one vanishes
since we suppose δgαβ = 0.
Finally introducing the computed terms of eq.(A2) and

(A3) into eq.(A1), one finds that the perturbation of the
general stress-tensor reads

δΠxx = δπxx + e−2HtδΠ

= −
[
4

3
η

(
1− τ∗π

3
H

)
+ ζ(1− 2τ∗ΠH)

]
e−2Ht∂xδu

x

+

(
4

3
ητπ + ζτΠ

)
e−2Ht∂x∂tδu

x.

(A4)

In the second part of the last equation, one can substitute
the time derivative of the velocity with a spatial deriva-
tive of the energy density. Indeed, differentiating the
relativistic Navier-Stokes equation for the perturbations
(bottom eqs.(4)) with respect to the spatial coordinate
x, one finds

∂x∂tδu
x = − c2s

ϵ+ p
e−2Ht∂2

xδϵ−H∂xδu
x +O(∂3 . . . ).

Here the higher order in gradients terms come from the
viscous stress tensor part. With this, δΠxx can be written
as

δΠxx = −4

3
η

[
1 +

(
τπ − τ∗π

3

)
H

]
e−2Ht∂xδu

x

+ ζ
[
1 +

(
τΠ − 2τ∗Π

)
H
]
e−2Ht∂xδu

x

− c2s
ϵ+ p

(
4

3
ητπ + ζτΠ

)
e−4Ht∂2δϵ

This equation takes the same form as the one previ-
ously introduced (eq.(5)) if we define a sound attenuation
in de Sitter space and identify the longitudinal transport
coefficient as given by eq.(6) and (7).
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