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Abstract

Cardiac magnetic resonance (CMR) is the reference imaging modality for the
diagnose of cardiovascular diseases. Traditionally, simple CMR parameters related
to the volume and shape of the cardiac structures are calculated by the medical
professionals by means of manual or semi-automated approaches. This process is
time-consuming and prone to human errors. Moreover, despite the importance of
these traditional CMR indexes, they often fail to fully capture the complexity of
the cardiac tissue.

In this work, we propose a novel approach for automated cardiovascular dis-
ease diagnosis, using ischemic heart disease as an example use case. Towards this
aim, we will use a state-of-the-art technology, supervised machine learning, and a
promising mathematical tool, fractal-based analysis.

In order to undertand the potential information that can be derived from
fractal-based features, we introduce and explore the concepts of Haussdorff di-
mension, box-counting dimension and lacunarity. We describe the interrelation-
ships among these concepts and present computational algorithms for calculating
box-counting dimension and lacunarity.

The study is based on data from a large-cohort study, UK Biobank, to extract
box-counting dimension and lacunarity from CMR textures focusing on three car-
diac structures of medical interest: the left ventricle, the right ventricle and the
myocardium. The extraction of these features allows us to obtain quantitative
parameters regarding the complexity and heterogeneity of the tissue. These frac-
tal features, both individually and in conjunction with other vascular risk factors
and CMR traditional indexes, are employed as inputs to state-of-the-art machine
learning models, including SVM, XGBoost, and random forests. The objective is to
determine if the inclusion of fractal features enhances the performance of currently
employed parameters.

The performance evaluation of our models is based on metrics such as bal-
anced accuracy, F1 score, precision, and recall. The results obtained demonstrate
the potential of fractal-based features in improving the accuracy and reliability of
cardiovascular diseases diagnosis.

Resum

Les ressonàncies magnètiques cardiovasculars (RMC) son la modalitat de refer-
ència per a la diagnosi de malalties cardiovasculars. Tradicionalment, alguns
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Abstract v

paràmetres simples de les RMC relacionats amb el volum i la forma de les es-
tructures cardíaques són calculats pels professionals mèdics per mitjans manuals
o semi automatitzats. Aquest és un procés lent i exposat a l’error humà. A més a
més, tot i la importància d’aquests índexs, sovint no poden capturar completament
la complexitat del teixit cardíac.

En aquest treball presentem una nova proposta per a la diagnosi automàtica de
malaties caríaques, amb les malalties de les artèries coronaries com exemple. Amb
aquest objectiu, utilitzarem models d’aprenentatge autònom, i una prometedora
eina matemàtica, l’anàlisi fractal.

Per tal de d’entendre la informació potencial que podem extreure de l’anàlisi
fractal, indroduirem i explorarem els conceptes de dimensió de Haussdoff, dimen-
sió de comptatge de cel.les i lacunaritat. Descriurem les relacions entre aquests
conceptes i presentarem algorismes per al càlcul de la dimensió de comptatge de
cel.les i la lacunaritat.

Aquest estudi utilitza dades d’un estudi grupal, el UK Biobank, per a l’extracció
de la dimensió de comptatge de cel.les i la lacunaritat de la textura d’imatges de
RMC, posant l’ull en tres estructures cardíaques d’interès mèdic: el ventricle es-
querre, el ventricle dret i el miocardi. L’extracció d’aquests paràmetres ens permet
obtenir una mesura quantitativa de la complexitat i la heterogeneïtat del teixit.
Aquests paràmetres fractals, sols i juntament amb altres factors de risc vascular i
índexs tradicionals de la RMC, són emprats com a dades d’entrada per a moderns
models d’aprenentatge autònom com SVM, XGBoost i boscos aleatoris. L’objectiu
es determinar si incloure les característiques fractal millora el funcionament dels
paràmetres utilitzats fins ara.

El rendiment dels nostres models serà evaluat en termes d’exactitud balance-
jada, puntuació F1, precissió i sensibilitat. Els resultats obtinguts demostren el
potencial de l’anàlisi fractal en la millora de l’exactitud i la fiabilitat del diagnòsic
de malaties cardiovasculars.

Resumen

Las resonancias magnéticas cardiovasculares (RMC) son la modalidad de ref-
erencia para diagnosis de enfermedades cardiovasculares. Tradicionalmente, al-
gunos parámetros simples de las RMC relacionados con el volumen y la forma de
las estructuras caríacas son calculados por los professionales médicos por medios
manuales o semi automatizados. Este proceso es lento y esta expuesto a errores
humanos. Además, a pesar de la importancia de estos índices, a menudo no
pueden capturar completamente la complejidad del tejido cardíaco.

En este trabajo presentamos una nueva propuesta para diagnosticar automáti-
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camente enfermedades cardíacas, com la enfermedad de las arterias coronarias
como ejemplo. Con este fin usaremos modelos de aprendizaje autónomo, y una
prometedora herramienta matemática, el análisis fractal.

Para entender la información potencial que podemos extraer del análisis frac-
tal, introduciremos y exploraremos los conceptos de dimensión de Haussdorff,
dimensión de contaje de celdas y lacunaridad. Describiremos las relaciones entre
estos conceptos y presentaremos algoritmos para calcular la dimensión de contaje
de celdas y la lacunaridad.

Este estudio utiliza datos de un estudio grupal, el UK Biobank, para extraer
la dimensión de contaje de celdas y la lacunaridad de la textura de imágenes de
RMC, centrándonos en tres estructuras cardíacas de interés médico: el ventrículo
izquierdo, el ventrículo derecho y el miocardio. La extracción de estos parámetros
nos permite obtener medidas cuantitativas de la complejidad y la heterogeneidad
del tejido. Estos parámetros fractales, solos y junto a otros factores de riesgo
vascular e índices tradicionales de la RMC, son usados como datos de entrada
para modernos modelos de aprendizaje autónomo como SVM, XGBoost y bosques
aleatorios. El objetivo es determinar si incluir las características fractales mejora el
desempeño de los parámetros usados hasta ahora.

El rendimiento de nuestros modelos será evaluado en terminos de exactitud
balanceada, puntuación F1, presisión y sensibilidad. Los resultados obtenidos de-
muestran el potencial del análisis fractal en la mejora de la exactitud y la fiabilidad
del diagnóstico de enfermedades cardiovasculares.



Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are one of the main causes of death world-
wide. In European Union CVDs accounts for nearly 40% of all deaths [42]. Among
the various forms of CVDs, ischemic heart disease (IHD) stands out as the main
global cause of death. Although mortality of IHD in Western countries has dras-
tically decreased through the last decades, developing countries pose new chal-
lenges for public health. Globalisation and adoption of Western lifestyles can lead
to higher prevalence of cardiovascular risk factors, leading to a raise of mortality
caused by CVDs [30].

Invasive diagnostic methods are associated with complications. To overcome
this issue, several noninvasive imagine techniques are available. Among them, car-
diac magnetic resonance images (CMR) are widely used as they provide valuable
information regarding heart function and structure, and, thus, diagnosing cardiac
diseases. [40]. To this end, automated CMR quantitative analysis pipelines that
can deal with the vast amount of data produced by current CMR scanners are of
paramount importance for timely and accurate disease diagnosis.

In the other hand, in the field of pattern recognition, fractal-based analysis, it
is been emerging as a promising technique for classifying textures and geometric
shapes used in different science disciplines [44][48]. Fractal-based metrics such as
box-counting dimension and lacunarity provide texture information that is shown
to be useful in many fields including in medical imaging and cardiology [10].

1.2 Objectives

The main aim of this thesis is to evaluate the potential of fractal-based analysis
for improving diagnosis of cardiac diseases using machine learning and CMR

1



2 Introduction

images. The following main objectives had to be fulfilled to achieve the aim of this
thesis:

1. Theoretical study of fractal-based parameters for the analysis of texture in
3D images.

2. Quantification of fractal-based properties for three cardiac structures (left
ventricle, right ventricle and myocardium) from 3D CMR obtained at two
time-points of the cardiac cycle: end-systole (ES) and end-diastole (ED).

3. Use of the extracted fractal-based features to develop and validate an au-
tomated system for cardiac diseases diagnosis from CMR images based on
machine learning, focusing on ischemic heart disease as an example use case.

1.3 State of the art

The concept of fractal was first introduced by B. B. Mandelbrot [27] along with
the concept of lacunarity and with the help of the existing senses of Hausdorff di-
mension and its computable approximation box-counting dimension. In 1992, N.
Skara and B. B. Chaudhuri proposed an algorithm to compute this box-dimension
for textured images, the widely known as differential box counting algorithm
(DBC)[38]. More refined versions of the algorithm have been proposed [23] [46]
with most recent being the work of Liu et al. in 2014 [24]. This method deals with
two known problems of the previous versions: over-counting boxes along grey
scale direction and under-counting block on neighbourhoods with sharp grey-
level differences. For lacunarity a computable-oriented definition was introduced
by C. Allain and M. Cloitre [2] for binary images and was extended by P. Dong [15]
for textured images. More recently more efficient methods have been published
for both binary and texture scenarios [45][4].

Fractal-based parameters have been the subject of investigation in medical
imaging research, specifically in relation to heart diseases, over the past decade.
These parameters have shown promise as analytical tools in this field [20][9]. For
instance, G. Captur et al. used box-counting dimension for binary images to anal-
yse the endocardial border based on CMR images, resulting in accurate results
for left ventricle non-compaction of the myocardium diagnosis [10]. Furthermore,
Gkontra et al. [18] observed significant differences in 3D reconstructions of the
coronary microvasculature between healthy and infarcted tissues in pig models.
These differences were identified in terms of for box-dimension, lacunarity and
succolarity. Captur et al. [11] characterised the complexity of left ventricular
trabeculation among different populations concluding that Chinese American pa-
tients have slightly less complexity in endocardial structures. Meanwhile, African
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American patients, Hispanic patients, hypertensive patients and those with hy-
pertrophy tend to have more complex endocardial geometry. S. Lorthois and F.
Cassot introduced a two-scale analysis method for fractal characterisation of vas-
cular networks[25]. They state that at small scale, healthy vascular structures are
organised as a homogeneous space filling mesh and, at large scale, they form a
quasi-fractal tree structure.

1.4 Document organization

This thesis is structured in the following manner:

• Fractal dimension and lacunarity: In this section the concepts of Hauss-
dorff dimension, box-counting dimension and lacunarity are introduced.
Results such as geometric invariance and relation among Haussdorff and
box-counting dimensions are proved. Algorithm for box-counting dimen-
sion and lacunarity computation are explained.

• Classification models: In this section we will review the theoretical back-
ground of used classification models: SVM, random forests and XGboost.

• Image feature extraction: In this section we will explain the process of fea-
ture extraction, from CMR raw data to definitive feature values.

• Methodology: In this section the experimental design and proposed ma-
chine learning pipeline is described. It covers the selection and description
of the study sample, the feature selection and the feature combination.

• Results: In this section the experimental results of the study are summarised
and analysed. Moreover, detailed explainability analysis of the best perform-
ing model is included using of a state-of-the-art explainability method.

• Conclusions and further work: Conclusions of the project and ideas for
further work regarding medical imaging fractal-based analysis.
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Chapter 2

Fractal dimensions and lacunarity

In the following chapter, key metrics of fractal sets are presented. We will
define Haussdorff dimension, box-counting dimension and lacunarity.

Haussdorff dimension is used in some theoretical results in fractal geome-
try and other fields. Box-counting dimension and lacunarity are used in applied
problems such as medical classification problems [10], geological analysis [48] and
remote sensing [44]. Box-dimension has a close relation with Haussdorff dimen-
sion and it is usually used as a computable attractive approximation. They both
provide a metric of how complex is the set.

On the other hand, Lacunarity has less relation with dimensions but provides
complementary information on how homogeneously are holes distributed through
the fractal set and allows us to differentiate sets with same dimensions.

These concepts are defined and an algorithm is explained for box-counting
dimension and lacunarity allowing us to approximate them in our practical exper-
iments.

2.1 Hausdorff measure and dimension

The habitual concept of dimension is what is called topological dimension and
is always a natural number. There are several definitions of topological dimension,
but for this case we will define it as follows:

Definition 2.1. Let F be a subset of Rn. We say that:

• F has dimension zero, if each of its points has arbitrarily small neighbourhoods
whose boundaries do not intersect the set.

• F has dimension k, if each point of F has arbitrarily small neighbourhoods whose
boundaries intersect F in a set of dimension k − 1, and k is the smallest natural
number for which this happens.

5



6 Fractal dimensions and lacunarity

We will note topological dimension of a set F as dimT(F)

This topological dimension is not good enough to distinguish between fractals
with different degree of density. We can see that Sierpinski triangle (Figure A.1)
and Koch snowflake (Figure A.2) both have topological dimension 1. In order
to differentiate fractal sets we need a new notion to measure the "complexity" of
fractals. We will introduce the notion of Haussdorff Dimension.

2.1.1 Haussdorff dimension

Let F be a non-empty subset of n-dimensional Euclidean space Rn. Given a set
U we will denote by |U| = sup{|x− y| : x, y ∈ U} the diameter of U.

Definition 2.2. A δ-cover of the set F is a countable (or finite) collection of sets {Ui} with
diameters 0 < |Ui| ≤ δ that covers F. i.e. F ⊂ ⋃∞

i=1 Ui.

Definition 2.3. Let {Ui} be a δ-cover of F and s ≥ 0 we define

Hs
δ(F) = inf

{
∞

∑
i=0
|Ui|s : {Ui} is a δ-cover of F

}
(2.1)

Thus, we look at all covers of F by sets of diameter at most δ and seek to
minimise the sum of the sth powers of the diameter. As δ decreases, the possible
covers of F is reduced. Therefore, the infimum of Hs

δ(F) increases, as δ → 0 and
so, approaches a limit.

Definition 2.4. We define the s-dimensional Hausdorff measure of F, Hs(F) as

Hs(F) = lim
δ→0
Hs

δ(F)

Note that this limit exists for any subset F ⊂ Rn, although it can be 0 or ∞.
Hs may be shown to be a measure for sets F ∈ Rn , this proof can be found in

Real Analysis: Measure Theory, Integration, and Hilbert Spaces, section VII [41].

It is clear that for any given set F ⊂ Rn and δ < 1, Hs
δ(F) is none-increasing

with s, so Hs(F) is also non-increasing. In fact, rather more is true: if t > s and
{Ui} is a δ-cover of F, then

∑
i
|Ui|t ≤∑

i
|Ui|t−s|Ui|s ≤ δt−s ∑

i
|Ui|s

so, taking infima over all δ-covers,

Ht
δ(F) ≤ δt−sHs

δ(F)
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Letting δ → 0, we see that if Hs(F) ≤ ∞, then Ht(F) = 0 for t > s. Thus, a
graph of Hs(F) against s shows that there is a critical value of s at which Hs(F)
"jumps" from ∞ to 0. This critical value is called the Hausdorff dimension of F for
any set F ⊂ Rn.

Definition 2.5. Let F ⊂ Rn, F ̸= ∅. Let Hs the s-dimensional Haussdorff measure, we
define the Hausdorff-Besicovitch dimension of F, dimH F as

dimH F = inf
{

s ≥ 0 : Hs(F) = 0
}
= sup

{
s : Hs(F) = ∞

}
so that,

Hs(F) =

{
∞ if 0 ≤ s < dimH F

0 if s > dimH F

Some basic properties of Haussdorff dimension follow from the definition and
the definition of Haussdorff measure itself.

• Monotonicity. If E ⊂ F, then dimHE ≤ dimH F. This is immediate from the
measure property that Hs(E) ≤ Hs(F) for each s.

• Range of values. If F ⊂ Rn, then 0 ≤ dimH F ≤ n. Clearly, Haussdorff
dimensions are non-negative. If F is bounded and s > n, then Hs(F) = 0.
Thinking about F as a countable union of bounded sets we have Hs(F) = 0
if s > n ∀F ⊂ Rn as we have countable additivity for Haussdorff measure.
In conclusion, we have dimH F ≤ n.

Some other properties can be found in Fractal Geometry: Mathematical Founda-
tions and Applications [16] chapter 3.

2.1.2 Geometric invariant

In topology, we say that two sets are equivalent if there exists a homeomor-
phism between them. As topological dimension defines a topological invariant,
two equivalent sets will always have the same topological dimension. We can
approach this sense of equivalence in fractal geometry, defining two sets as equiv-
alent if there exists a bi-Lipschitz mapping between them. We will see in Propo-
sition 2.8 that if two sets are bi-Lispchitz equivalent they must have the same
Haussdorff dimension. Note that from this proposition we can not state all set with
same dimension are bi-Lispchitz equivalent. With this proposition we can see that
Haussdorff dimension is invariant for geometric transformations.

The concepts introduced in this section are stated in Fractal Geometry: Mathe-
matical Foundations and Applications [16] chapter 3.
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Definition 2.6. A function f : X → Y is called a Hölder function of exponent α (or f
satisfies the α-Hölder condition) if

| f (x)− f (y)| ≤ c|x− y|α x, y ∈ X

for some constant c ≥ 0. f is Lipschitz if is a Hölder function of exponent 1.

Proposition 2.7. Let F ⊂ Rn and f : F → Rm be a mapping such that

| f (x)− f (y)| ≤ c|x− y|α x, y ∈ F

for constants α > 0 and c > 0. Then for each s

Hs/α( f (F)) ≤ cs/αHs(F).

In particular, if f is a Lipschitz mapping, that is if α = 1, then

Hs( f (F)) ≤ csHs(F)

Proof. If {Ui} is a δ-cover of F, then since | f (F ∩Ui)| ≤ c|F ∩Ui|α ≤ c|Ui|α, it fol-
lows that { f (F ∩Ui)} is a cδα-cover of f (F). Thus, ∑i | f (F ∩Ui)|s/α ≤ cs/α ∑i |Ui|s,
so thatHs/α

cδα ( f (F)) ≤ cs/αHs
δ(F). Letting δ→ 0 we obtainHs/α( f (F)) ≤ cs/αHs(F).

The result for Lipschitz mappings follows immediate when setting α = 1.

Proposition 2.8. (a) Let F ⊂ Rn and suppose that f : F → Rn satisfies the α-Hölder
condition then dimH f (F) ≤ (1/α)dimH F. In particular, if f is a Lipschitz map-
ping, that is, α = 1, then dimH f (F) ≤ dimH F.

(b) If f : F → Rm is a bi-Lispchitz transformation, that is

c1|x− y| ≤ | f (x)− f (y)| ≤ c|x− y| x, y ∈ F (2.2)

where 0 < c1 ≤ c < ∞, then dimH f (F) = dimH F.

Proof. (a) If s > dimH F, then by Proposition 2.7 Hs/α( f (F)) ≤ cs/αHs(F) = 0, so
dimH f (F) ≤ s/α for all s > dimH F. The conclusion for Lipschitz mappings
is immediate on taking α = 1.
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Figure 2.1: Von Koch’s curve construction. k represents the construction’s iteration
step.

(b) If f is bi-Lipschitz, then f : F → f (F) is a bijection with inverse f−1 : f (F)→
F. For u, v ∈ f (F) let x = f−1(u), y = f−1(v) in the left-hand inequality of
(2.2). Then

c1| f−1(u)− f−1(v)| ≤ | f ( f−1(u))− f ( f−1(v))| = |u− v|

so f−1 is Lipschitz. Applying part (a) to f−1 gives dimH F = dimH f−1( f (F)) ≤
dimH f (F). From (a) we have dimH f (F) ≤ dimH F thus necessarily dimH f (F) =
dimH F.

From Proposition 2.8 we have geometric invariance as dimension is not affected
by congruence, similarities or affine transformations of the original set. We also
have from (a) a lower bound for dimH F.

2.1.3 Computing Hausdorff dimension

There is not a general method that allows us to calculate the Haussdorff dimen-
sion. We can see some dimension computation examples for middle third Cantor
set C (Figure 2.2) (later in this section), uniform Cantor set [16], C × [0, 1] [16]
or generalised middle Cantor set [29]. Nevertheless, when we compute the di-
mension of self similar sets such as middle third Cantor set or von Knoch’s curve
it becomes much easier. In this section, we will prove a theorem (theorem 2.12)
which provides us with a simple way to compute Haussdorff dimension for self sim-
ilar sets, and we will compute the dimension of a middle-third Cantor set using
upper and lower estimate.

Self-similar sets

In basic terms, a subset of Rn is self-similar if it can be split into parts which
are geometrically similar to the whole set.
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Let us ceonter our attention to von Koch’s curve (see Figure 2.1). In its con-
struction, every segment of length d is replaced by four segments of length d/3.
The von Koch’s curve K is the limit of the polygonal curves obtained in this way.
It is a non-rectifiable curve (i.e. has infinite length). It can also be presented in
terms of similarity maps Si in the form

K = S1(K) ∪ S2(K) ∪ S3(K) ∪ S4(K)

where Si are the orientation-preserving similarities of ration 1/3 of the plane
which map the first initial segment onto the four next ones.

Let us introduce the concepts in order to define self-similar sets.

Definition 2.9. A mapping S : Rn → Rn is called a similitude if there is r ∈ (0, 1) such
that

|S(x)− S(y)| = r|x− y|, for x, y ∈ Rn

Similitudes are exactly those maps S that can be written as

S(x) = r · g(x) + z, x ∈ Rn

for some g ∈ O(n)1, z ∈ Rn and 0 < r < 1. Suppose S = S1, ..., Sn, n ≥ 2, is a finite
sequence of similitudes with contraction ratios r1, ..., rn. We say that a non-empty
compact set K is invariant under S if

K =
n⋃

i=1

Si(K)

Then for any such S there exists a unique invariant compact set. This invariant set
is the unique fixed point of the map S̃ : E→ ∪n

i=1Si(E). Note that S̃ is a contraction
in the Haussdorff metric2 as it has a unique fixed point. By definition this point is
the invariant set we wanted [29].

In addition, from the properties of contractions in complete metric spaces,
it follows that independently from the initial compact set F ⊂ Rn chosen, the
iterations

S̃m(F) = S̃ ◦ ... ◦ S̃(F) =
n⋃

i1=1

...
n⋃

im=1

Si1 ◦ ... ◦ Sim(F)

will converge to K. Moreover, for any m the set K satisfies

K =
n⋃

i1=1

...
n⋃

im=1

Si1 ◦ ... ◦ Sim(K).

1O(n) represents the orthogonal group i.e. all linear maps g : Rn → Rn preserving euclidean
distance.

2Haussdorff metric is defined, for X, Y compact sets in a metric space with metric d, as
dH(X, Y) = max{d(x, Y), d(y, X) : x ∈ X, y ∈ Y}.
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Since
|Si1 ◦ ... ◦ Sim(K)| ≤ (max

1≤i≤n
ri)

m|K| → 0, as m→ ∞

an invariant set can be expressed as a union of arbitrary small sets geometrically
similar to itself.

Definition 2.10. We define an invariant set K under S to be self-similar if, with s =

dimHK,
Hs(Si(K) ∩ Sj(K)) = 0 for i ̸= j

This definition might seem awkward but its construction is useful because
for some known sets we can take a stronger separation condition called open set
condition in order to determine the dimension of K explicitly from the contraction
ratios of the similitude Si in S.

Definition 2.11. We say that S satisfies the open set conditions if there exists a non-empty
open set O such that

n⋃
i=1

Si(O) ⊂ O

and
Si(O) ∩ Sj(O) = ∅ for i ̸= j

Theorem 2.12. If S satisfies the open set condition, then the invariant set K is self-similar
and 0 < Hs(K) < ∞. Then s = dimHK, where s is the unique number for which

n

∑
i=1

rs
i = 1

For a proof of this theorem see Hutchinson (section 5.3) [21].

For the von Koch’s curve, taking O as the open triangle which contains the first
four line segments, we can check that it satisfies the open set condition. As ratios
ri are all equal to 1/3 we have 4 · 3−s = 1 thus s = log 4

log 3 .

In general, if the ratios are equal r = r1 = ... = rn we have dimHK = log n
log 1/r .

Computing the middle-third Cantor set dimension

Now we will compute the Haussdorff dimension of the middle-third Cantor set
(Figure 2.2) on a line C using upper and lower bounds. From theorem 2.12 we
can expect Haussdorff dimension to be log 2

log 3 as the parts of C are disjoint, thus its
construction satisfies the open set condition.
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Figure 2.2: First five iterations of the middle-third cantor set. Black pixels repre-
sent points in the set and k values represent iteration step.

Its construction starts with a closet interval, let us take [0, 1], we will call it C0.
At the first step, the middle third ( 1

3 , 2
3 ) is removed and we get the set C1 =

[0, 1
3 ] ∪ [ 2

3 , 1]. Next step is to repeat the same procedure of removing the middle
third of each interval of C1 resulting in 4 intervals of length 1

9 . This process repeats
again and again, so Cn consists of 2n intervals of length 3−n. The Cantor set C is
defined as the limit of Cn in the Haussdorff metric, which in this case is the same
as

⋂∞
n=1 Cn.

With this definition we can now compute the Haussdorff dimension. We will see
that, for s = log 2/ log 3 we get finite Hs(C). Therefore dimH(C) = log 2/ log 3.

Taking the intervals of Cn as a 3−n-covers of C gives that Hs
3−k(C) ≤ 2k3−ks = 1 if

s = log 2
log 3 . Letting k→ ∞ gives Hs(C) ≤ 1.

Now we will show that

∑ |Ui|s ≥
1
2
= 3−s

for any cover {Ui} of C in order to prove that Hs(C) ≥ 1
2 . Clearly, it is enough

to assume that {Ui} are intervals, and by expanding them slightly and using the
compactness of C, we need only to verify the last inequality if {Ui} is a finite
collection of closed sub-intervals of [0, 1]. For each Ui, let k be the integer such
that

3−(k+1) ≤ |Ui| < 3−k (2.3)

The Ui can intersect at most one level-k interval since the separation of these level-
k intervals is at least 3−k. If j ≥ k, then, by construction, Ui intersects at most
2j−k = 2j3−sk ≤ 2j3s|Ui|s level-j intervals of Cj, using (2.3). If we choose j large
enough so that 3−(j+1) ≤ |Ui| for all Ui, then since the {Ui} intersect all 2j basic
intervals of length 3−j, counting intervals gives 2j ≤ ∑i 2j3s|Ui|s, which reduces to
∑ |Ui|s ≥ 1

2 = 3−s. Thus, Hs(C) ≥ 1/2 so it is finite and not zero as we wanted to
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see.

2.2 Box-counting dimension

In this section we will mainly concern about box-counting dimension, which
has a simple formulation and is widely used as a computational approach for
fractal dimensions due to its intuitively definition that provides a direct algorithm
to calculate it. As done for Haussdorff dimension we will see that this dimension is
invariant for geometric transformations (proposition 2.20). Also we will see how
box-counting dimension provides an upper bound for Haussdorff dimension (Propo-
sition 2.17). This upper bound results into equality for self similar sets (Corollary
2.19).

2.2.1 Box-counting dimension

Let F be a non-empty bounded subset of Rn and let Nδ(F) be the least numbers
of sets of diameter at most δ which can cover F, that is the least number of set of
any δ-cover of F.

Definition 2.13. The lower and upper box-counting dimensions of F, are defined respec-
tively as

dimBF = lim
δ→0

log Nδ(F)
− log δ

dimBF = lim
δ→0

log Nδ(F)
− log δ

If they are equal we refer to the common value as the box-counting dimension of F

dimBF = lim
δ→0

log Nδ(F)
− log δ

We can see that with this definition we get that Nδ ≃ cδ−s for small δ, where
s = dimBF, more precisely,

Nδ(F)δs → ∞ if s < dimBF
Nδ(F)δs → 0 if s > dimBF

Note that to solve s in Nδ ≃ cδ−s, we take logarithms

log Nδ(F) ≃ log c− s log δ

so

s ≃ log Nδ(F)
− log δ

+
log c
log δ
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and we might hope to obtain s as

s = lim
δ→0

log Nδ(F)
− log δ

(2.4)

with the second term disappearing in the limit.
There are several equivalent definition for box counting dimension that might

be more convenient for our purposes. Instead of using sets of diameter at most δ

which can cover F, we can use disjoint balls of radius δ with centres in F or take
the family of cubes of the form

[m1δ, (m1 + 1)δ]× ...× [mnδ, (mn + 1)δ]

where m1, ..., mn are integers. This is called the δ-mesh or δ-grid of Rn

First we will prove the equivalence for the δ-mesh.

Proposition 2.14. Let Nδ(F) be the smallest number of sets of diameter δ that can cover
F. Let N′δ(F) be the number of δ-mesh cubes that intersect F. Then

lim
δ→0

log Nδ(F)
− log δ

= lim
δ→0

log N′δ(F)
− log δ

Proof. We have a collection of N′δ(F) sets of diameter δ
√

n (as they are cubes) that
cover F. By construction of Nδ(F) we have

Nδ
√

n(F) ≤ N′δ(F)

We also have that any set of diameter at most δ is contained in 3n mesh cubes
of side δ. So we have

N′δ(F) ≤ 3nNδ(F)

Combining these inequalities and dividing by − log δ,

log Nδ
√

n(F)
− log δ

≤
log N′δ(F)
− log δ

≤ log 3n + log Nδ(F)
− log δ

(2.5)

so taking lower limits as δ→ 0,

lim
δ→0

log Nδ(F)
− log δ

≤ lim
δ→0

log N′δ(F)
− log δ

≤ lim
δ→0

log Nδ(F)
− log δ

(2.6)

Thus the definition of lower box dimension does not change working with
Nδ(F) or N′δ(F).
Analogously, we can see the same result for upper bound.
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Note that with this equivalence, we can see that the box-counting dimension is
independent of the origin and orientation chosen for the δ-mesh.

Before proving the equivalence for disjoint balls of radius δ with centres in F,
we will define the packing number

Definition 2.15. Let F be a non-empty bounded set of Rn, we will define the packing
number of F with diameter δ as the largest number of disjoint balls of radius δ with
centres in F. And we will note it as

P(F, δ) = max{k : there are disjoint balls B(xi, δ), i = 1, ..., k, with xi ∈ F}

Proposition 2.16. Let Nδ(F) be the smallest number of sets of diameter δ that can cover
F. Let P(F, δ) be the packing number of F with diameter δ. Then

lim
δ→0

log Nδ(F)
− log δ

= lim
δ→0

log P(F, δ)

− log δ

The equivalence is given by the following proposition [16].

Proof. Let B1, ...BP(F,δ) a collection of disjoint balls of radius δ and centres in F.
If x belongs to F, then x must be within distance δ of one of the Bi, otherwise

the ball of centre x and radius δ can be added to form a larger collection of disjoint
balls. Thus, the P(F, δ) balls concentric with the Bi but of radius 2δ (and diameter
4δ) cover F, giving

N4δ(F) ≤ P(F, δ)

Suppose now that B1, ..BP(F,δ) are disjoint balls of radius δ with centres in F. Let
U1, ..., Uk be any collection of sets of diameter at most δ which cover F. Since Uj

must cover the centres of the Bi, each Bi must contain at least one of the Uj. As
the Bi are disjoint, there are at least as many Uj as Bi. Hence,

P(F, δ) ≤ Nδ(F)

Just as in (2.5) - (2.6), on taking logarithms of these inequalities, dividing by − log δ

and taking the limit, we see that the values of definition 2.13 are unaltered if Nδ(F)
is replace by P(F, δ).

Analogously to Haussdorff dimension some basic properties follow from the def-
inition.

• Monotonocity. If E ⊂ F, then dimBE ≤ dimBF and dimBE ≤ dimBF.
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• Range of values. If F ⊂ Rn, F ̸= ∅ and F bounded. 0 ≤ dimBF ≤ dimBF ≤ n.

Some other properties can be found in Fractal Geometry: Mathematical Founda-
tions and Applications [16].

It is reasonable to inquire about the connection between the Hausdorff dimen-
sion and the box-counting dimension, and this relationship is summarised in the
following proposition.

Proposition 2.17. For every non-empty bounded F ⊂ Rn

dimH F ≤ dimBF ≤ dimBF (2.7)

Proof. Suppose that 1 < Hs(F) = limδ→∞Hs
δ(F) for some s ≥ 0. Then, for all

sufficiently small δ

1 < Hs(F) ≤ Nδ(F)δs

where Nδ(F) is the least number of sets of diameter δ that can cover F, using (2.1).
Taking logarithms, 0 < log Nδ(F) + s log δ, and it follows that

s ≤ lim
δ→0

Nδ(F)
− log δ

Let us focus on how "regular" must be a set in order to have equality in 2.7.
Mattila [29] proposed the following characterisation.

Theorem 2.18. Let F be a non-empty subset of Rn. Suppose there are a Borel measure3

µ : Rn → Rn and positive numbers a, b, r0 and s such that

0 < ars ≤ µ(B(x, r)) ≤ brs < ∞ ∀x ∈ F, 0 < r ≤ r0

Then dimH F = dimBF = dimBF = s.

Proof. If F is covered by subsets Ui such that 0 < |Ui| ≤ r0 and F ∩Ui ̸= ∅, we can
pick points xi ∈ F ∩Ui and F is then also covered by the balls B(xi, |Ui|). Thus

b ∑
i
|Ui|s ≥∑

i
µ(B(xi, |Ui|)) ≥ µ(F) > 0

3We say that µ : Rn → Rn is a Borel measure on Rn if all Borel sets in Rn are µ measurable.
Recall that the family of Borel sets in Rn is the smallest σ-algebra containing the open subsets of Rn.
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This gives Hs(F) ≥ µ(F)/b, whence

s ≤ dimH F ≤ dimBF ≤ dimBF

On the other hand, let 0 < δ ≤ r0, k = P(F, δ) the packing number of F with
diameter δ and choose disjoint balls B(xi, δ), xi ∈ F, i = 1, ..., k. Then

aP(F, δ)δs ≤
k

∑
i=1

µ(B(xi, δ)) ≤ µ(Rn),

Which means
a · P(F, δ)

∑k
i=1 µ(B(xi, δ))

≤ δ−s

taking logarithms and upper limit we obtain

lim
δ→0

log P(F, δ)

− log δ
≤ s

And for proposition 2.16 it means dimBF ≤ s.

Mattila stated that, combining this result with theorem 2.12, we obtain equality
in (2.7) for self-similar sets [29].

Corollary 2.19. Let K be a self-similar set generated by similitudes for with the open set
condition holds. Then dimBK = dimHK.

2.2.2 Geometric invariant

As for Haussdorff dimension, box-counting dimension defines a bi-Lipschitz in-
variant metric for subsets of Rn.

Proposition 2.20. (a) If F ⊂ Rn and f : F → Rm is a Lipschitz transformation, that
is,

| f (x)− f (y)| ≤ c|x− y| ∀x, y ∈ F

then dimB f (F) ≤ dimBF and dimB f (F) ≤ dimBF

(b) If F ⊂ Rn and f : F → Rm is a bi-Lipschitz transformation, that is,

c1|x− y| ≤ | f (x)− f (y)| ≤ c|x− y| x, y ∈ F

where 0 < c1 ≤ c < ∞, then dimB f (F) = dimBF and dimB f (F) = dimBF.
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Figure 2.3: First five iterations of Sierpinski carpet construction. White pixels
represent point in the set and k values represent iteration step.

Proof for this proposition can be found in [16] Chapter 2, Section 2, and a proof
is not provided here as it is similar to Proposition 2.8.

Analogously to Haussdorff dimension this proposition tells us that if two sets have
different box-counting dimension, a bi-Lipschitz mapping does not exist. Providing
us with the sense of "equivalence" between fractal sets. Additionally, following
from this proposition we have geometric invariance as dimension is not affected
by congruence, similarities or affine transformations of the original set. This ob-
servation has huge relevance in our case of study because we can compute the
box-counting dimension of an image without taking into account scales, orientations
or rotations.

2.2.3 Computing box-counting dimension

As for Haussdorf dimension there are several ways for computing box-counting
dimension. The present dimension offers an advantage over the Hausdorff dimen-
sion, because it allows a computationally feasible solution to approximate it. In
this subsection, we introduce an algorithm for computing the present dimension
and investigate its performance in approximating the theoretically calculated di-
mensions the Sierpinski carpet. We will also provide an example of the theoretical
calculation of a box-dimension for Sierpinski carpet (Figure 2.3).

Computing the Sierpinski carpet set dimension

Sierpinski carpet construction starts from the set F0 which is a square, consider
[0, 1]× [0, 1]. In stage k = 1, the previous square is divided in nine equal squares
F1

1 , F2
1 , F3

1 , F4
1 , F5

1 , F6
1 , F7

1 , F8
1 , F9

1 and the central square (we will take F5
1 as central

square) is removed from the set. Next step will repeat this process for every
Fi

1, i = 1, ...9, i ̸= 5. The process is iterated and we define the Sierpinski carpet F as
the limit of iterating this construction.
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In terms of similarities if x ∈ [0, 1]× [0, 1] we can consider

S1(x) = x/3 S5(x) = x/3 + (2/3, 0)
S2(x) = x/3 + (0, 1/3) S6(x) = x/3 + (2/3, 1/3)
S3(x) = x/3 + (0, 2/3) S7(x) = x/3 + (1/3, 2/3)
S4(x) = x/3 + (1/3, 0) S8(x) = x/3 + (2/3, 2/3)

Then, F = limi→∞ S1(Fi) ∪ S2(Fi) ∪ S3(Fi) ∪ S4(Fi) ∪ S5(Fi) ∪ S6(Fi) ∪ S7(Fi) ∪
S8(Fi)

Let F be the Sierpinski carpet with side length 1. Then dimBF = dimBF =

log 8/ log 3
We can observe that, by construction of F, the kth stage of construction consists

of 8k squares of side length 3−k and diameter
√

2 · 3−k. If
√

2 · 3−k < δ ≤
√

2 · 3−k+1,
the 8k squares of kth stage give a δ-cover of F, so Nδ(F) ≤ 8k. Then

dimBF = lim
δ→0

log Nδ(F)
− log δ

≤ lim
δ→0

log 8k

− log
√

2 · 3−k+1
=

log 8
log 3

For the lower dimension, consider any plane set of diameter δ with
√

2 · 3−k−1 ≤
δ <
√

2 · 3−k. This plane set can intersect at most eight squares of the kth stage.
There are 8k squares so at least 8k/8 squares or more are needed to cover F. Hence,
Nδ(F) ≥ 8k−1, so

dimBF = lim
δ→0

log Nδ(F)
− log δ

≥ lim
k→∞

log 8k−1

− log 3−k−1 =
log 8
log 3

Thus
dimBF =

log 8
log 3

Algorithm description

The general idea behind box-counting algorithm is to cover the set F with a
δ-grid and count Nδ(F) the least number of elements of the grid that can cover F.
Then dimBF is obtained by using a regression plot between Nδ and δ. This method
comes directly from the equation (2.4) and works well for binary n-dimensional
images, which are sets in Rn.

Nevertheless our problem involves a more specific domain. We want to com-
pute the box-counting dimension of a 3-dimensional grey level image, which is
a 4-dimensional space where three dimensions correspond to space and one di-
mension represents the grey-scale values of the image. A method for this kind
of problems was introduced first by Sarkar and Chaudhuri [38]. They proposed
a method for box-counting dimension in 2-dimensional grey scale images called
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the Differential Box Counting (DBC) technique. It consist on applying formula
(2.4) using δ-mesh. For the grey level dimension δ-mesh uses a different δ and it
is considered that all block within maximum and minimum grey level values are
needed to cover the set. DBC has some limitations as it over counts and under
counts the number of boxes needed to cover F simultaneously. Other methods
where proposed but no one could deal with the two problems at same time un-
til Liu et al. [24] presented an improved version of DBC. Our version is based
in this method but input dimension is increased in order to compute the fractal
dimension for 3-dimensional grey level images.

Consider an image of size P× Q× R as a 4-dimensional spatial surface with
(x, y, z) denoting voxel position on the image space, and the fourth coordinate
(t) denoting the voxel grey level. The (x, y, z) space is partitioned into non-
overlapping blocks of size δ × δ × δ, where min(P, Q, R)/2 ≥ δ ≥ 2. Since this
is the usual practice, P, Q, R are required to be multiple of 2 [24]. We also require
δ to divide P, Q, R thus δ = 2r for some r > 1, r ∈ N . On each grid we define
boxes of size δ× δ× δ× δ′ where G · δ = δ′ ·min(P, Q, R) and G is the total number
of grey levels i.e. G = 255.

Our goal is to cover the set surface. Consider the (i, j, k)th block and let
Imin, Imax be the minimum and maximum intensity of grey level within this block.
Then we need nδ(i, j, k) boxes to cover the set with (i, j, k)th block. With

nδ(i, j, k) =

{
ceil( Imax−Imin+1

δ′ ), Imax ̸= Imin

1, Imax = Imin
(2.8)

The subscript δ denotes the result using scale δ. With (2.8) we can compute the
minimum needed boxes used to cover the (i, j, k)th block. It provides a more finer
cover than counting blocks from an static grid over (t) dimension.

Now we define a list of shifts ϵ0, ...ϵp. We will compute nδ(i, j, k) after shift-
ing the block ϵq voxels (we will call this value nϵq

δ (i, j, k)) and we will consider
nδ(i, j, k) = maxp

1=0 nϵ1
δ (i, j, k).

Considering contributions from all blocks, Nr is counted for different values of
δ as

Nδ = ∑ nδ(i, j, k) (2.9)

Then dimBF can be estimated from the slope of the least squares linear fit of
log(Nδ) versus log(1/δ). The algorithm is exposed in pseudocode in algorithm
1. Some notes are presented bellow:

• volume is the n-dimensional grey level image.

• q is a parameter and represents the number of offsets that we will use during
box-counting dimension computation.



2.2 Box-counting dimension 21

Algorithm 1: Differential Box Counting algorithm
Input: volume
Data: q
[P, Q, R]← size(volume);
divisors← divisors(min {P, Q, R});
foreach δ ∈ divisors do

δ′ ← 255 · δ/ min {P, Q, R};
o f f sets← equidistants(δ, q);
gird← grid(r, volume);
Nδ ← 0;
foreach block ∈ grid do

nmax
δ = 0;

foreach ϵ ∈ o f f sets do
b← shi f t(block, ϵ);
nmax

δ = max{nmax
δ , nδ(b)};

end
Nδ ← Nδ + nmax

δ ;
end

end
f it(log Nδ, log(δ−1));

• divisors(n) is a function that returns the divisors of a given number n.

• equidistants(r, n) is a function that returns a list of unique rounded integer
points that divide the interval [0, n] in r equal intervals.

• grid(r, volume) is a function that returns a list of blocks that result of parti-
tioning volume (3D finite space) into blocks of size r.

• shi f t(block, ϵ) is a function that shifts all points of block ϵ voxels. Blocks are
translated in every axis. For each axis, shift is done in the positive direction
of the axis if shifted block is still inside volume original shape. Otherwise
block is shifted in negative direction of the axis.

• f it(x, y) is a function that performs the least square lineal fit.

For this project the code is implemented in python3 and has strong dependence
of numpy library4, that is used to perform the complex calculations.

4Official documentation can be found at https://numpy.org/doc/stable/

https://numpy.org/doc/stable/
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(a) (b)

Figure 2.4: Results computing BCD for Sierpinski carpet. In (a) accuracy is calcu-
lated with the difference of expected dimension ( log 8

log 3 ) and computed dimension.
In (b) execution time in seconds is ploted depending on the recursive steps. Note
that in (b) y axis uses logarithmic scale.

Algorithm accuracy

In order to analyse the accuracy of box-counting dimension computations we
must take into account the problem of memory size. The set used for accuracy
estimation is self similar, because it is easy to generate and escalate and because
we can compute precisely its box-counting dimension.

We expect to see an improvement in precision as we increase the number of
points in the set. For this purpose we generated a 2-dimensional array containing
the points of the set. The size of the array increases as we increase the number of
steps used to generate it. This sense of improving accuracy comes from the fact
that if we have more steps, the generated set will cover the fractal set with less
surface, thus will be more similar the set. Also, as we have bigger images, we
can perform more iterations for windows size, so we would have a more accurate
regression estimation.

We have made computations for Sierpinski carpet (Figure 2.3). In order to
improve memory usage an implementation of the algorithm for 2-dimensional
images has been done. We expect memory usage and execution time to increase
exponentially.

We have see that dimension has a better approximation when more recursive
steps are used (see Figure 2.4). Although, approximation is not accurate as it
gives an error of 0.062798 in the tenth iteration. Time, as memory usage, increases
exponentially.
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The technical limit for this experiment has been the memory usage. As we
increase the size of the image it reserves more size in computer memory and when
memory is exceeded we can not compute bigger images. A possible approach for
this problem will be to free the memory during computation and looking to the
image by parts. All in all, for our purposes, does not make sense to implement this
dynamic algorithm as images used in CMR problem do not exceed the memory
even for low profile computers.

2.3 Lacunarity

As we have seen in Theorem 2.12, Haussdorff dimension for self-similar sets can
be computed directly from the contraction ratios of the similitudes that generate
the fractal and the number of similitudes. So it is not difficult to generate sets with
same kind of generators and exactly the same dimension.

For a more generalised cantor set, we can take n similarities with contraction
ratios r1 = ... = rn = n−2 and remove the even partitions in the [0, 1] interval. With
this construction, different cantor sets Cj with same Haussdorff dimension are gen-
erated and dimH(Cj) = log n/ log n2 = 1/2 for all j. At a glance, we can see that
these sets are different, as they have different "holes". This example shows us that
there is more information of the set that is not given by Haussdorff dimension. With
the purpose of obtaining this information, B. B. Mandelbrot introduced the con-
cept of fractal lacunarity in The Fractal Geometry of Nature [27] in order to represent
the sense of how homogeneous was the set in relation to its holes. He extended
this concept and provided an analytical approach in a later article [28] introducing
some different definitions of the sense of lacunarity. In this section, we will focus
on the defined as shell lacunarity as it has an efficient and intuitive computational
approach introduced by C. Allain and M. Cloitre [2]. We will note it as the Brute
Force Gliding-Box Lacunarity (BF GBL) and its domain are binary images. It was
extended in [15] calling it Differential Gliding-Box Lacunarity (DGBL) with grey-
level textured images domain. BF GBL was refined in [45] where Gliding-Box
Lacunarity algorithm (GBL) is proposed. GBL provides a more efficient approach
for n-dimensional sets. Finally, the Differential Lacunarity algorithm with fixed
grid (DFGL) was proposed in [4].

As lacunarity depends on scale, objects that are heterogeneous at small scales
can be homogeneous when examined at larger scales or vice versa. Thus, lacunar-
ity can be considered a scale dependent measure of heterogeneity [32].
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2.3.1 Lacunarity

Lacunarity is defined as a fluctuation of the mass distribution of a set. Given
a set F ⊂ Rn, we consider a δ-mesh U in Rn. We define mF : U → R the mass
application. This application should provide us a sense of how filled are the
intersection of elements of U and F. Given a set F we define the mass application
for u ∈ U as mF(u) = #(u ∩ F) where # represents cardinality.

Let us define the distribution of mass of set F as n(M, δ), the number of δ-
mesh cubes with mass M. With the mass application defined before, n(M, δ) is
the number of elements u ∈ U with M = #(u ∩ F). This distribution can be
converted into a probability distribution, Q(M, δ), dividing by #U, i.e. number of
cubes that cover F. Q(M, δ) represents the probability for a cube u ∈ U of having
mass M.

Now we compute the first and second moment of the mass probability distri-
bution

Z(1)
Q = ∑

M
M ·Q(M, δ)

Z(2)
Q = ∑

M
M2 ·Q(M, δ)

Definition 2.21. We define shell lacunarity of a set F at scale δ, Λ(δ) as the mean-square
deviation of the fluctuations of mass distribution probability Q(M, δ) divided by its square
mean

Λ(δ) =
Z(2)

Q

[Z(1)
Q ]2

(2.10)

From this definition, shell lacunarity takes a probability meaning since it can
be interpreted as the width of the mass distribution function Q(M, δ). Note that
for homogeneous sets Λ(δ) = 1 and it is independent of δ. Sets with voids of all
sizes are expected to be very lacunar with lacunarity much grater than 1, while sets
with single-sized voids have low lacunarities close to 1 [2]. For textured images,
homogeneous textures would have low lacunarities, close to 1, while lacunarity
would increase as heterogeneity increases.

2.3.2 Computing lacunarity

This subsection will contain an explanation of the used algorithm (with pseu-
docode) and how we deal with dependence on δ.
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Algorithm description

For this project we decided to employ an extended version of Gliding-Box La-
cunarity algorithm (GBL). The algorithm was enhanced to enable computation of
lacunarity within the context of 3-dimensional structures.

Consider an image of size P × Q × R as a 4-dimensional spatial surface with
(x, y, z) denoting voxel position on the image space, and the forth coordinate (t)
denoting the voxel grey level. The (x, y, z) space is partitioned into overlapping
blocks of size δ× δ× δ, where δ is a divisor of min (P, Q, R). As in DBC, P, Q, R
are required to be multiples of 2, so δ = 2i for some r > 1, r ∈ N. We will
consider a distance of ϵ voxels between the overlapping blocks. On each grid we
define boxes of size δ× δ× δ× δ′ where G · δ = δ ·min(P, Q, R) and G is the total
number of grey levels i.e. G = 255.

Now we want to compute the mass of each block. Consider the (i, j, k)th block
and let Imin, Imax be the minimum and maximum intensity grey level within this
block. We define the mass function mδ as done in section 2.2.3:

mδ(i, j, k) =

{
ceil( Imax−Imin+1

δ′ ), Imax ̸= Imin

1, Imax = Imin
(2.11)

Now we will compute the first and second order moments of the mas prob-
ability distribution. As all blocks cover the image, we consider n to be the total
number of blocks. Note that

Z(2)
Q = ∑

M
M2 ·Q(M, δ) =

∑M M2 · n(M, δ)

n
=

∑i,j,k mδ(i, j, k)2

n

Z(1)
Q = ∑

M
M ·Q(M, δ) =

∑M M · n(M, δ)

n
=

∑i,j,k mδ(i, j, k)
n

Note that in the last equality we changed summation ranges to iterate all blocks
in the grid. Using the right hand equality we will compute the moments and
applying (2.10) we have the lacunarity for a given δ.

Unlike the calculation of box-counting dimension, for lacunarity, we cannot
apply a linear regression because it is scale dependent. To avoid this problem, in
order to have a single value of lacunarity for every object, we computed the mean
of lacunarity at different scales and considered this value as the lacunarity of the
object.

The algorithm is presented in pseudocode in algorithm 2. Some notes are
presented bellow:

• volume is the n-dimensional grey level image.
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Algorithm 2: Differential Lacunarity algorithm
Input: volume
Data: ϵ

[P, Q, R]← size(volume);
divisors← divisors(min {P, Q, R});
foreach δ ∈ divisors do

δ′ ← 255 · δ/ min {P, Q, R};
gird← overlapped_grid(r, volume, ϵ);

Λ(δ)← n·∑(i,j,k)∈grid mδ(i,j,k)2

(∑(i,j,k)∈grid mδ(i,j,k))2 ;

end
mean(Λ(δ));

• ϵ is a parameter and represents the distance between two blocks of the over-
lapped grid. In our case ϵ = 2.

• divisors(n) is a function that returns the divisors of a given number n.

• overlapped_grid(r, volume, ϵ) is a function that returns a list of blocks that
result in partitioning volume (3D finite space) into overlapping blocks of
size r with distance ϵ between blocks.

• mean(X) is a function that computes the mean for a set X.

For this project the code is implemented in python3. Complex computations
such as overlapped_grid use numpy library, so it has a strong dependence on this
library.



Chapter 3

Classification models

In this section the classification models employed in this work are presented
offering the reader an in-depth comprehension of the working principles behind
the adopted machine learning models. Furthermore, the concept of explainabil-
ity in machine learning is introduced in this section. We provide an intuitive
overview overview of SHapley Additive exPlanations (SHAP), a state-of-the-art
intrepretability approach.

3.1 Support Vector Machines

Support Vector Machine (SVM) is a classification model that separates data of
different classes using hyperplanes. The first approach demonstrated poor gen-
eralisation as it attempted to classify all the training data points without error.
Further implementations presented by Cortes and Vapnik [13] suggested a soft-
margin hyperplane that allows controlled error avoiding data overfit. Also, to
encourage data separation there exists a non linear version based on "the kernel
trick" [6]. In this kind of approach data is transferred to a higher dimensional
space using a kernel function. In this new space we expect data to be linearly
separable so we can use a hyperplane in the new space. This non linear approach
is covered in this section.

The following description of the SVM model can be found with more detail in
[5] (chapter 7). Extend used of Lagrange multiplier is used in this section, for an
introduction on Lagrange multipliers see Appendix B or the reference book [5].

We consider a linear model to face the classification problem

y(x) = wTΦ(x) + b

where Φ(x) denotes the feature space transformation, Φ : Rp → Rq, b ∈ R is a

27
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bias parameter and w ∈ Rq determines the direction of the hyperplane. In general
in order to improve data separation p < q. N input vectors x1, ..., xn, xi ∈ Rp

are considered with corresponding target values t1, ..., tN where tn ∈ {−1, 1} and
new data points x are classified according to the sign of y(x). We define margin
to be the smallest distance between the decision boundary (i.e. the hyperplane
0 = wTΦ(x) + b) and any of the samples. The objective is to maximise this margin.
The distance of any point x to the hyperplane is given by |y(x)|/|w|. As we want
to classify correctly all points tny(xn) > 0 for all n, thus distance is given by

tn(wTΦ(xn) + b)
|w|

We wish to optimise w and b to maximise the distance. Thus the maximum margin
is found by

arg max
w,b
{ 1
|w| min

n
[tn(wTΦ(xn) + b)]}

Now the problem is reformulated to an easier equivalent problem. Parameters are
rescaled as w → κw and b → κb and the distance function keeps unaltered. We
can use this freedom to set tny(xn) = 1 for the closest point to the surface and
tny(xn) ≥ 1 for the others. Now the problem is reduced to maximise |w−1| which
is minimising |w2| subject with the constraint tny(xn) ≥ 1.

As we do not want to do an exactly classification to avoid overfit, slack vari-
ables ξn ≥ 0 are introduced. These are defined by ξn = 0 for points that are
correctly classified, and ξn = |tn − y(xn)| for other points (including the margin).
Now the non-exact classification constraints are

tny(xn) ≥ 1− ξn (3.1)

This is known as a soft margin, as allows points to be miss classified. Our goal
is to maximise the margin while penalising points that lie on the wrong side of
the margin boundary. We minimise

C
N

∑
n=1

ξn +
1
2
|w|2 (3.2)

where C > 0 controls the trade-off between the slack variable penalty and the
margin. We want to minimise (3.2) with constraints (3.1) and ξn ≥ 0. Lagrange
multipliers are used and results into

L(w, b, ξ, a, µ) =
1
2
|w|2 + C

N

∑
n=1

ξn −
N

∑
n=1

an[tny(xn)− 1 + ξn]−
N

∑
n−1

µnξn
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where an ≥ 0 and µn ≥ 0 are Lagrange multipliers. The corresponding set of
Karush-Kuhn-Tucker conditions (KKT conditions) are

an ≥ 0
tny(xn)− 1 + ξn ≥ 0

an(tny(xn)− 1 + ξn) = 0
µn ≥ 0
ξn ≥ 0

µnξn = 0

where n = 1, ..., N. We now optimise out w, b, and {ξn} making use of the defini-
tion of y(x)

∂L
∂w = 0 =⇒ w = ∑N

n=1 antnΦ(xn)
∂L
∂b = 0 =⇒ ∑N

n=1 antn = 0
∂L
∂ξn

= 0 =⇒ an = C− µn

Using this results to eliminate w, b, {ξn} from the Lagrangian, we obtain

L̃(x) =
N

∑
n=1

an −
1
2

N

∑
n=1

N

∑
m=1

anamtntmk(xn, xm)

where k(x, x′) = Φ(x)TΦ(x′) is called the kernel function. Constraints for this
problem are 0 ≤ an ≤ C, and ∑N

n=1 antn = 0 for n = 1, ..., N. This is again a
quadratic programming problem. Now we minimise with respect to {an}.

With the given results, substituting into the original prediction formula, we
have

y(x) =
N

∑
n=1

antnk(x, xn) + b

This results are now interpreted as follows. Points that have an = 0 do not con-
tribute to the predictive model. The remaining data points (known as support
vectors) have an > 0 and hence must satisfy

tny(xn) = 1− ξn

If an < C then µn > 0 which requires from KKT conditions ξn = 0 and hence such
points are on the margin. If an = C points are inside the margin and can be miss
classifieds or not depending on ξn > 1.

To determine b we note that support vectors for which 0 < an < C have ξn = 0
so that tny(xn) = 1 and hence will satisfy

tn( ∑
m∈S

amtmk(xn, xm) + b) = 1
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where S denotes the indexes of the support vectors.
Note that parameter C determines how soft is our margin. If C → ∞ we have

the case where all points must be correctly classified while if C = 0 we have no
penalisation.

For this project the sklearn implementation of SVM classifier is used1.

3.2 Random forest

Random forests were first introduced by L. Breiman in 2001 [7]. The aim of
this ensemble method was to avoid problems given by decision trees. These are
known to be unstable in the sense that if the data is perturbed slightly, the tree
can change substantially [14]. Intuitively a bunch of trees are trained with a sub-
sample of the data and a sub-sample of the features. Then the prediction is given
by the aggregation of classifications of the different trees. This procedure solves
the overfitting problem of the single tree classifier. It is also shown that adding
more trees to the forest does not produce overfit [7].

Consider a p-dimensional random vector X = (X1, ..., Xp)T representing the
real-value input and a random variable Y representing the real-value response, we
assume an unknown join distribution PXY(X, Y). The goal is to find a prediction
function f (X) for predicting Y. f is determined by a loss function L(Y, f (X))

and defined to minimise the expected value of the loss EXY(L(Y, f (X))) where
the subscripts denote expectation with respect to the join distribution of X and
Y. Intuitively , L is a measure of how close f (X) is to Y. It penalises values of
f (X) that are a long way from Y. A typical choice for classification is zero-one loss
function

L(Y, f (X)) = I(Y ̸= f (X)) =

{
0, Y = f (X)

1, otherwise

If the set of possible values of Y is denoted by Y , minimising EXY(L(Y, f (x))) for
zero-one loss gives

f (x) = arg max
y∈Y

P(Y = y|X = x)

also known as the Bayes rule [14].
In Random Forests f is constructed in terms of a collection of "base learners"

h1(x), ..., hJ(x) they are combined as follows:

f (x) = arg max
y∈Y

J

∑
j=1

I(y = hj(x))

1Official scikit-learn documentation can be found at https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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Base learners are fitted using different training sets. The first step on training the
Random Forest is to generate J independent samples form the original training
data. This samples are known as bootstrap sample and each sample is used to train
a different base learner. With this technique we introduce the first randomisation
of the algorithm. As training data is different for every learner, the fitted trees will
be different too.

The second randomisation is introduced when doing the split of a node. This
split is performed in order to minimise the impurity of the child nodes (i.e. prob-
ability of each class in the sample nodes). This impurity can be computed using
measures such as entropy and gini, E and G respectively, defined as

E = −∑j qjlog2(qj) G = 1−∑j q2
j

where qj is the probability if the class j.
For classification trees, we start with a root node. This node contains all ob-

servations. We select m features randomly from the p available features. The best
binary split among all binary splits on the m predictors is found. Then the obser-
vations of the node are split using the best split found before and two child nodes
are generated with this observations. The process is repeated recursively for all
nodes until a stopping criterion is met.

For predictions, given a new point and based on the splits, for each tree in the
forest, it follows the corresponding branch until a leaf node is reached. The leaf
node will return as predicted label the majority label of its observations. Predicted
label is, the majority class predicted by all trees in the forest.

About stopping criterion, we consider that it should stop when all the observa-
tions have the same label. This measure is known as purity of the node. Note that
a node with a single observation is always pure so the iterated splitting is finite.
In the worst case we will have as many leaf nodes as observations.

For this project the sklearn implementation of random forest classifier is used.

3.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGB) is a classification model introduced by T.
Chen and C. Guestrin [12]. This model is based on tree ensemble. Unlike random
forest, in XGB trees are combined one before each other, the tth tree improves
learns from previous trees.

In this model, predictions are made by adding the prediction of base learners
hi. Consider a set with n observations and m features D = {(xi, yi)} where |D| =
n, xi ∈ Rm, yi ∈ R. The tree ensemble model uses K additive function to predict
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the output

ŷi = ϕ(xi) =
K

∑
k=1

fk(xi), fk ∈ F

where F = { f (x) = wq(x)} (q : Rn → T, w ∈ RT) is the space of classification
trees. q represents the structure of each tree that maps an observation to the cor-
responding leaf index. T is the number of leaves in the tree. Each fk corresponds
to an independent tree structure. We will use q to, given an observation, classify
it into the corresponding leaf and calculate the final prediction by summing up
the score of all trees. Note that for regression trees, leaf nodes contain continuous
scores, unlike decision trees exposed in section 3.2.

The loss function minimised is the following regularised objective.

L(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (3.3)

where Ω( f ) = γT + 1
2 λ|w|2, γ ∈ R, δ ∈ R, and l is a differentiable convex loss

function that measures difference between the prediction and the target. Ω pe-
nalises the complexity of the model. Intuitively, the regularised objective will tend
to select a model employing simple and predictive functions [12]. γ intuitively
penalises the depth of trees as it is related to the number of leaves. λ penalises
high weight values in leafs. This regularisation on trees can also be done using
parameters on trees such as maximum depth.

The model includes functions as parameters in equation (3.3) and cannot be
optimised using traditional methods. Instead the model is trained in an additive
manner. Let ŷi

(t) be the prediction of the i-th instance at the t-th iteration, the
function ft is added to minimise

L(t) =
n

∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω( ft)

Second order approximation is used to quickly optimise the objective. The result
is simplified by removing the constant terms. The following objective function at
step t is obtained

L̃(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi ft(xi)] + Ω( ft) (3.4)

where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷi

(t−1)) are first and second order
gradient statistics of the loss function. Define Ij = {i|q(xi) = j} as the instance set
of leaf j. We can rewrite (3.4) by expanding Ω as follows

L̃(t) =
n

∑
i=1

[gi ft(xi)+
1
2

hi ft(xi)]+γT+
1
2

T

∑
j=1

w2
j =

T

∑
j=1

[(∑
i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j ]+γT
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For a fixed structure q(x), we can compute the optimal weight w∗j of leaf j by

w∗j = − ∑i ∈ Ijgi

∑i∈Ij
hi + λ

and calculate the corresponding optimal value by

L̃(t)(q) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT

This last equation can be used as scoring function to measure the quality of a tree
structure q, like impurity score for decision trees.

As it is impossible to enumerate all the possible tree structures q it employs
a similar method as seen in section 3.2, but with the difference that it utilises the
difference of loss between the child nodes and the parent node instead of impurity.

In order to avoid overfitting two additional techniques are used. The first is
shrinkage. It scales newly added weights by a factor of η after each step of the
tree boosting. Similar to a learning rate it reduces the influence of each individual
tree and leaves space for future trees to improve the model. The second technique
is feature sub sampling, as seen for random forests (section 3.2).

For this project the xgboost implementation of XGB classifier is used2.

3.4 Explainability: SHAP

Machine learning models, use to be called "black box AI", referring to the fact
that these models learn complex functions that are inaccessible and often incom-
prehensible to humans. The lack of explainability and transparency is hindering
the implementation of machine learning in clinical workflows as artificial intel-
ligence solutions can not be accepted without understanding of the underlying
principles, even if the algorithms outperform experts [22]. For this reason ma-
chine learning model analysis should contain an explainability analysis.

SHAP (SHapley Additive exPlanations) is a game theory approach to explain
the output of any machine learning model. It is based on Shapley values [39]
from game theory and introduced in S. M. Lundberg et al. [26]. This method
was proposed to provide explanations to the machine learning models. For each
feature a sense of the classification impact is given. This method is implemented
in a open library for multiple programming languages, in particular for python
under the name shap3.

2Official documentation can be found at https://xgboost.readthedocs.io/en/stable/
3Official library documentation can be found at https://shap.readthedocs.io/en/latest/

https://xgboost.readthedocs.io/en/stable/
https://shap.readthedocs.io/en/latest/
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The idea of this method is to compute Shapley values for all test observations
(or at least a subset that gives us confidence). This values can be aggregated to give
a general view of the model or displayed individually. Computations are done
using only the classifier interface and making modifications on the observation
values.

Other explainability metrics, such as node impurity in tree bases model, de-
pend exclusively to the model. Moreover, several studies have pointed out that
node impurity might lack stability and be biased towards variables with many
categories or numerical variables [43] [8]. This kind of metrics do not allow fair
comparison among different models as they depend on internal model details.
One advantage of SHAP method is that is agnostic to the model. Shapley values
depend only on samples and its classification. For this reason internal implemen-
tation of model is ignored. This allow us to reproduce same analysis over different
models with comparable results. To tackle these limitations, in this work SHAP
was used to identify the most influential features in model’s decision.



Chapter 4

Image feature extraction

In this section we will see the process of extracting features from the CMR
images. The pipeline for data preprocessing follows the diagram of Figure 4.1.
The first step is to understand and read the provided raw data. The next step is to
deal with voxel anisotropy observed in CMR imaging. We conducted a study to
evaluate the potential added value of interpolating the data. After interpolating
(or not) data is normalised. The last step is to use the algorithms described in
section 2.2.3 and 2.3.2 to compute the final features.

4.1 Dataset

In this study we used data from the United Kingdom Biobank (UKBB). UKBB
is a large cohort study with over 500000 participants requited between 2006 and
2010 from across United Kingdom [35]. UKBB includes detailed CMR imaging of a
subset of participants. Data from around 32K participants available to the Artificial
Intelligence in Medicine laboratory of the Universitat de Barcelona where used in
this study. Each patient’s CMR images are provided as a 4-dimensional matrix
consisting of 8-bit values. The three dimensions of the matrix represent spatial

Read Data Interpolate Normalise Compute Features

Normalise Compute Features

Figure 4.1: Flow diagram for feature extraction
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coordinates, while the fourth dimension represents time.
UKBB CMR images are provided with segmentation of the three regions of

interest (ROI): the left ventricular (LV), the right ventricular (RV) and the my-
ocardium (M), as depicted in Figure 4.2. Segmentations are provided only for two
specific time points end-diastole and end-systole, which are the two time-frames
that cardiologists traditionally focus on. Segmentations were obtained manually
for the first 5000 CMR scans using the protocol described in Peterson et al. [31].
This ground truth manual analysis data set was then used to develop a fully auto-
mated image analysis pipeline with inbuilt quality control, which has been applied
to the remaining 27000 images. More details on the segmentation algorithm can
be found at [3].

CMR data is provided in .nii.gz format, along with its metadata. Segmenta-
tion information is also provided in separate .nii.gz files. Information regarding
which frame is end-systole and end-diastole has been provided by medical doctors
from Queen Mary University.

4.2 Interpolation

4.2.1 The anisotropy problem

Due to the physical limitations involved in acquiring CMR data, discrepancies
arise in the scaling of the various axes. In the spatial dimensions, each voxel at the
x and y axes represents the same distance. However, voxels along z-axis represent
higher physical distances. It should be noted that we refer to each plane in the x-y
axes as a "slice" (see Figure 4.3a for slice model of segmentation). We consider an
ordered set of slices as a "volume". For example, we have that a voxel represents
1, 82692311mm in x, y dimension but represents 10mm in z dimension (as we can
see in Figure 4.3a).

We considered two ways to approach this problem. Calculate the fractal fea-
tures with anisotropic voxels, i.e. do not perform any transformation on the data,
or generate the missing slices in z dimension with the aim that every voxel repre-
sents the same real-world distance along z as along x and y axis.

As we can see in figure 4.3b interpolating images and segmentation provide
higher degree of smoothness, making it visually appealing to human observers.

4.2.2 Interpolating images

Let f : N3 → R be the function that defines the grey level value for a given
voxel. We consider (x0, y0) ∈ N2. Now we define g : N → R as g(z) :=
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(a) (b)

(c) (d)

Figure 4.2: CMR slices and segmentation slices. (a) slice of end-diastole, (b) cor-
responding end-diastole segmentation. (c) slice of end-systole, (d) corresponding
end-systole segmentation. All CMR images are from the same patient. For seg-
mentation we have indicated RV (white), M (light grey) and LV (dark grey).
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(a) (b)

Figure 4.3: Reconstructions of 3D cardiac segmentations. (a) is an anisotropic
segmentation, (b) is an interpolated segmentation. We have indicated RV (white),
M (light grey) and LV (dark grey).

f (x0, y0, z). We will interpolate g in order to compute the extra slices between
two consecutive slices.

For solving this problem, we used Picewise Cubic Hermite Interpolating Poly-
nomial, for 1-D and monotonic interpolation. This method was chosen because its
minimum and maximum matches the minimum and maximum of the data and is
monotonic over intervals where data is monotonic [34]. As we are working with
images we do not want grey level values to exceed its domain, so interpolated
points should no be larger or smaller than original maximum or minimum respec-
tively.

To implement the Picewise Cubic Hermite Interpolation (PCHIP), we used the
scipy.interpolation library1. This library provides us with a high-level interface
that made it easier to work with this method. Given an image of size P× Q× R,
for every pair (x, y) ∈ P×Q it will interpolate the function g using Cubic Hermite
Splines matching zk, g(zk) and g′(zk) where R = {z0, ..., zn}, k = 0, ..., n. g′(zk) are
determined by the following method.

Let hk = zk+1− zk, and dk = (gk+1− gk)/hk. dk are the slopes at internal points
zk. If the signs of dk and dk−1 are different or either of them equals zero, then

1Official library documentation can be found at https://docs.scipy.org/doc/scipy/
reference/interpolate.html

https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
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g′k = 0. Otherwise, it is given by the weighted harmonic mean

w1 + w2

g′k
=

w1

dk−1
+

w2

dk

where w1 = 2 · hk + hk−1 and w2 = hk + 2 · hk−1.
Once derivatives are computed we interpolate each interval with a polynomial

of degree three.
First of all, we should see how harmonic mean approximates the derivative.

In our particular case we have equal distance between zi for all i. So we can say
hk = h, k = 0, ..., n . Given z ∈ z0, ..., zk, from weighted harmonic mean formula,
we have

ĝ′(z) =
2(g(z)− g(z− h))(g(z + h)− g(z))

h(g(z + h)− g(z− h))
(4.1)

Now we want see how does this ĝ′(z) behave when h is near 0. We start computing
the Taylor expansion of g in z + h and z− h.

g(z + h) = g(z) + h · g′(z) + h2

2
g′′(z) +

h3

6
g′′′(z) + O(h4)

g(z− h) = g(z)− h · g′(z) + h2

2
g′′(z)− h3

6
g′′′(z) + O(h4)

We make the difference so we have

g(z + h)− g(z− h) = 2h · g′(z) + h3

3
g′′′(z) + O(h4)

With the obtained results we compute the following operation

2(g(z)− g(z− h))(g(z + h)− g(z))
h · (g(z + h)− g(z− h))

=
2h2g′(z)2 + h4(g′(z)g′′′(z)− g′′(z)) + O(h5)

2h2g′(z) + h4

3 g′′′(z) + O(h5)

=
2h2g′(z)2 + h4(g′(z)g′′′(z)− g′′(z)) + O(h5)

(2h2g′(z) + h4

3 g′′′(z))(1 + O(h5))

Using the Taylor expansion 1
1+x = 1− x + x2 + ... we obtain

2h2g′(z)2 + h4(g′(z)g′′′(z)− g′′(z)) + O(h5)

2h2g′(z) + h4

3 g′′′(z)
=

2h2g′(z)2 + h4(g′(z)g′′′(z)− g′′(z)) + O(h5)

2h2g′(z)(1 + h2

6
g′′′(z)
g′(z) )

Using again the previous Taylor expansion results into

2h2g′(z)2 + h4(g′(z)g′′′(z)− g′′(z)) + O(h5)

2h2g′(z)
· ((1 + h2

6
g′′′(z)
g′(z)

) + O(h4))
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= g′(z) + h2(
g′′′(z)

6
− g′′(z)2

g′(z)
) + O(h3)

Thus

ĝ′(z)− g′(z) = h2(
g′′′(z)

6
− g′′(z)2

g′(z)
) + O(h3)

|ĝ′(z)− g′(z)| ≤ C · h2, C ∈ R

As in the left hand we have the difference of (4.1) and the derivative, we can say
that the approximation decreases at least as h2 when h→ 0.

On the other hand we have the problem about extreme values, as derivative
g′(zk) requires information about zk−1 and zk+1. For this cases the slopes are
computed using the following one-side scheme. We want to compute g′(z0) and
g′(zn), we will give the example for g′(z0), the other is analogous. First, we take
q = (2h1+h2)d1−h1d2

h1+h2
, if the sign of q and d1 are different, we will take g′(z0) = 0

as we want zeros of derivative to be in no-interpolated points. If d1 and d2 have
different sign and |q| > |3d1| we will take g′(z0) = 3d1, otherwise g′(z0) = q.

4.3 Normalisation

In order to minimise the variation in image signal intensities caused by the
acquisition process, we conducted intensity normalisation on CMR images, within
the heart region, using histogram matching [17] . For this purpose, we used one
of the CMR from the data set as the reference.

4.4 Computing box-counting dimension and lacunarity

Before computing box-counting dimension and lacunarity, three volumes con-
taining the texture of every ROI are created by using the hadamard product be-
tween CMR image and the corresponding cardiac structure segmentation(see Fig-
ure 4.4). Once ROIs are segmented from image, all non interest voxels are removed
using the minimum box that contains this regions. With this method we reduce
the voxels of every image to process so the used algorithms can perform faster.
Therefore, for every CMR image in total we have six different volumes to pro-
cess. This volumes correspond to RV, LF and M in end-systole and end-diastole
frames. For each volume two features, box-counting dimension and lacunarity, are
computed using algorithms explained in sections 2.2.3 and 2.3.2 respectively.

This process results in twelve different features for each patient. This set of
features will be referenced in this thesis as fractal features (FF).
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(a) (b) (c)

Figure 4.4: Slice of segmented ROIs in end-diastole. (a) RV , (b) M, (c) LV. Note
that (c) axis is smaller than (a), (b).

The average time consumed for calculating all fractal-based features is 17.727
(±5.498)s. For the anisotropic features, the average time is 1.938(±0.462)s. There-
fore, the calculation of anisotropic features is ten 9.143 faster. Algorithms 1 and 2
take much more time because grids will contain more blocks to be iterated. Also
the number of used δ increases when the z axis has more resolution and hence
min{P, Q, R} is larger. Thus will have, potentially, more divisors.
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Chapter 5

Methodology

In this section we will explain the selection of our study sample, provide a
comprehensive description of the the features used in the study for comparison
purposes and perform an exploratory data analysis. Additionally, this section
includes the details of the proposed machine learning pipeline.

5.1 Definition of the study sample

The first step was to assign each patient, whose CMR image was available, in
the disease or control group.

In this study, we focused in the diagnostic1 scenario of IHD as an illustrative
example. However, it is important to note that the proposed pipeline is adaptable
and applicableto the diagnosis of other diseases but also to disease prognosis.
Table C.1 presents a summary of diagnosed diseases over the data set.

To define participants with a diagnosis of IHD we used ICD102 codes I20, I21,
I22, I23, I24 and I25.

The diseased group includes all individuals who were diagnosed with one of
the aforementioned code up until the date of imaging. As a control group of the
study, we used all patients that have not had received a diagnose of IHD at the
time of the imaging. Note that the union of this sets is equal to all the data set, so
if a patient has diagnosis for a different disease is also added to control group. In
plain words, control group does not contain only healthy patients.

1We encounter a diagnostic scenario when the CMR image is acquired after disease is diagnosed.
In this scenario we can potentially find if a patient its currently suffering from a disease.

2International Classification of Diseases 10th revision.
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5.2 Feature classification

We define three sets of features:

• Demographic features (DF): DF are demographic information. This features
are age and sex.

• Vascular risk factors (VRF): VRFs features are selected based on biological
plausibility and reported associations in the literature [33]. This set includes:
current smoking, town send deprivation score, body mass index, body sur-
face area, IPAQ score3, alcohol intake and IPAQ group.

• Conventional CMR measures (CMR): This set contains features related to in-
formation extracted from CMR images and where provided by the group of
Prof. Steffen Petersen from Queen Mary University, UK. This features have
relation with the shape of the cardiac structures. The following conventional
CMR indices were considered: LV end-diastolic volume (LVEDV), LV end-
systolic volume (LVESV), LV stroke volume 4 (LVSV), LV ejection fraction 5

(LVEF), LV mass (LVM), RV end-diastolic volume (RVEDV), RV end-systolic
volume (RVESV), RV stroke volume (RVSV), RV ejection fraction (RVEF),
LV end-diastolic volume index6 (LVEDVi), LV end-systolic volume index
(LVESVi), LV stroke volume index (LVSVi), LV mass index (LVMi), RV end-
diastolic volume index (RVEDVi), RV end-systolic volume index (RVESVi)
and RV stroke volume index (RVSVi).

• Fractal features (FF): FF contains all features computed as described in sec-
tion 4.4. Our fractal features have relation with the texture of the CMR
images and thus with the tissue of cardiac estructures. The following fea-
tures are considered: LV end-systolic BCD (LVESD), LV end-diastolic BCD
(LVEDD), LV end-systolic lacunarity (LVESL), LV end-diastolic lacunarity
(LVEDL), M end-systolic BCD (MESD), M end-diastolic BCD (MEDD), M
end-systolic lacunarity (MESL), M end-diastolic lacunarity (MEDL), RV end-
systolic BCD (RVESD), RV end-diastolic BCD (RVEDD), RV end-systolic la-
cunarity (RVESL) and RV end-diastolic lacunarity (RVEDL).

3International Physical Activity Questionnaire.
4Stroke volume is the volume of blood pumped from a ventricle per beat.
5Ejection fraction is the fraction of chamber volume ejected in systole in relation to the volume

of the blood in the ventricle at the end of diastole.
6This index represents the relations among LVEDV and body surface area.
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5.2.1 Feature combinations

In order to see if our novel fractal-based features add more information and
improve classification models, we performed a detailed ablation study. More pre-
cisely, each of the models exposed in section 5.4 are trained using different feature
combinations. It should be noted that DF features are always added as inputs
as these variables impact the size and shape of the heart and are important for
the models to know in order to provide a medical diagnosis. In summary we
studied six feature combinations: DF+CMR, DF+FF, DF+VRF+CMR, DF+VRF+FF,
DF+CMR+FF, DF+VRF+CMR+FF. DF+VRF are not considered as a features com-
bination because these risk factors would not provide reliable information for CDV
diagnose, although it could train a good performance model for this particular
data set.

By performing this ablation study, we are able study the influence of each
feature group in classification performance. In particular, we take special consid-
eration on models where data is extended by FF comparing them to models that
do not include fractal-based features to evaluate the potential added value of the
inclusion of fractal-based features.

For the rest of the thesis we consider that all feature combinations contain DF
although it is not written explicitly.

5.3 Exploratory analysis

5.3.1 Vascular Risk Factors and CMR measures

Subjects’ characteristics are summarised in Appendix C.2. For the entire imag-
ing data set, the average age was 63.27 (±7.54) while52% of the study participants
are women. The sample consists of 32,096 participants, out of which 1592 have
been diagnosed with IHD. Note the high imbalance in data set, participants with
IHD diagnosis represent the 5.0% of all participants.

From CMR information, we can see that patients diagnosed with IHD have on
average statistically significant higher LV volume index both in end-systole and
end-diastole phase. However, LVSV index does not show a significant difference
compared to the total population. For the RV, although average volume index in
end-systole phase is higher, we can observe a lower mean for stroke volume index,
which could mean that RV is not contracting as much as it should do.

5.3.2 Fractal Features

Subjects’ fractal features are summarised in the Table 5.1.
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As fractal features are computed from tissue texture, we will consider that
dimension and lacunarity will give information about the complexity and ho-
mogeneity (respectively) of the tissue of the cardiac chambers of interest at the
different timepoints of study.

LV tissue is more complex for participants in IHD group at end-systolic time.
Nevertheless, it is also more homogeneous. The opposite behaviour is seen in
end-diastole.

For the myocardium the opposite behaviour is observed. The tissue is on
average less complex and more heterogeneous in end-systole and the inverse for
end-diastole.

Despite differences on LV and M, RV features do not present significant differ-
ence in all cases. These differences are only observed for end-systolic box-counting
dimension and for end-diastolic lacunarity. An interesting behaviour can be ob-
served, mean end-systolic box-counting dimension is higher for the IHD group,
while end-diastolic lacunarity decreases, not as LV and M.

LV appears to have the most complex tissue in both frames. Also show to be
the less heterogeneous tissue.

The correlation among the features was studied using the PearsonÂ´s correlation
coefficient. The results are provided in Figure 5.1. We observe that fractal features
have a negative correlation among box-dimension and lacunarity for the same ROI
at the same time. The reverse relationship between morphological complexity
and heterogeneity has been previously described [20] [19]. Box-dimension and
lacunarity of right ventricle at end-systole stands out with box-dimension and
lacunarity of myocardium at end-diastole for being the most correlated pairs of
fractal features.

About relation with CMR features, is seen that LVESD has positive correlation
with all volume measures of LV and RV in both phases. It also has negative
correlation with LVEF which means that as more complex is the LV end-systolic
tissue less proportion of blood in LV is ejected.

In order to evaluate the impact of CMR image interpolation on fractal-based, we
performed a Wilcoxon rank-sum test. The null hypothesis of the test is that two
sets of measurements are drawn from the same distribution.

The statistical tests were performed using α = 0.05 and it rejected the null
hypothesis for almost all features pointing out the significant differences among
fractal-based features when image is processed as explained in section 4.2.2. LV
end-systolic lacunarity did not show statistical differences. All other features are
statistically drawn from different distributions in the interpolated and anisotropic
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Characteristics WIS (n=32,096) IHD (n=1592)

Anisotropic
LVESD, mean (std) 2.26 (±0.13) 2.30 (±0.14)*
LVEDD, mean (std) 2.57 (±0.16) 2.54 (±0.17)*
LVESL, mean (std) 4.36 (±1.60) 4.25 (±2.07)*
LVEDL, mean (std) 3.65 (±2.27) 4.01 (±2.39)*
MESD, mean (std) 2.25 (±0.19) 2.22 (±0.21)*
MEDD, mean (std) 1.95 (±0.14) 1.97 (±0.12)*
MESL, mean (std) 4.92 (±3.53) 5.61 (±3.20)*
MEDL, mean (std) 7.06 (±2.19) 6.88 (±2.22)*
RVESD, mean (std) 2.08 (±0.18) 2.09 (±0.18)*
RVEDD, mean (std) 2.20 (±0.12) 2.20 (±0.12)
RVESL, mean (std) 7.11 (±4.45) 7.20 (±4.33)
RVEDL, mean (std) 6.37 (±1.80) 6.31 (±1.72)*

Interpolated
LVESD, mean (std) 2.56 (±0.11) 2.58 (±0.11)*
LVEDD, mean (std) 2.82 (±0.11) 2.81 (±0.11)*
LVESL, mean (std) 4.34 (±1.49) 4.21 (±1.81)*
LVEDL, mean (std) 3.18 (±1.60) 3.42 (±1.73)*
MESD, mean (std) 2.66 (±0.11) 2.66 (±0.12)*
MEDD, mean (std) 2.41 (±0.10) 2.45 (±0.10)*
MESL, mean (std) 4.74 (±2.34) 5.32 (±2.69)*
MEDL, mean (std) 6.96 (±1.94) 6.77 (±1.97)*
RVESD, mean (std) 2.43 (±0.11) 2.45 (±0.11)*
RVEDD, mean (std) 2.61 (±0.07) 2.61 (±0.07)
RVESL, mean (std) 7.88 (±4.34) 7.91 (±4.31)
RVEDL, mean (std) 5.73 (±1.49) 5.69 (±1.47)*

"*" indicate statistical differences between the two populations using rank sum test
for continuous values and chi-squared test for categorical variables (α < 0.05).

Abbreviations: WIS Whole imaging set, IHD Ischaemic Heart Disease.

Table 5.1: Statistics of data comparing whole image set and population with Isca-
hemical Heart Disease for no-interpolated FF.
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Figure 5.1: Correlation matrix for anisotropic fractal features and other used fea-
tures.

cases. For this reason we will compute the experiments for both sets of features to
ensure whether there is any difference during the classification step.

Although both samples are drawn from different distributions, the observed
relation between all patients and diseased patients does not change. Neverthe-
less, the box-counting dimension provides higher values for interpolated images.
Again, as expected from the feature correlation, lacunarity decreased when inter-
polation was performed.

5.4 Models

Three different models were trained and analysed: a SVM model, a Random
Forest model and a XGB model. For all models hyper parameter tuning performed
automatically by means of exhaustive search over predefined parameters and eval-
uated using a 5-fold cross validation (see section 5.4.1 for more detail). Over sam-
pling and under sampling techniques have been tested. We tested SMOTE for over
sampling, no balancing and random under sampling. Finally, the best results were
achieved by random under sampling technique. This technique is present in the
machine learning pipeline used in our study.

5.4.1 K-Fold Cross Validation

This technique is used to avoid overfitting and used to compute an averaged
evaluation of the model for each parameter combination.

Given the learning set, it is split into k disjoint subsets of approximately equal
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Figure 5.2: 5-fold cross validation schema. Training data is split into 5 folds. In
each split black fold represents validation fold and white folds represent training
folds.

size called folds. Now the model is trained using k− 1 of the folds as training data.
The resulting model is validated on the remaining fold and metrics are computed
using this fold (see Figure 5.2). This process is repeated for each of the k folds.

This process is repeated for each parameter combination. With this technique
we obtain an averaged metric for every combination so we can chose the optimal
combination with less dependency on initial data split. 5-fold cross validation is
only used for hyper parameter tuning.

Our study has a train/test split with relation 70/30 respectively. So 30% of the
data set is used to asses models performance.

Note k-fold technique is only used for splitting training data into training and
validation sets for hyper parameter tuning. Testing data set remains unaltered.

Split and train process is repeated seven times in order to obtain stable evalu-
ation of the models.

5.4.2 Model A: SVM

This model uses Support Vector Machine (see section 3.1). The used kernel is
the Radial Basis Function (RBF), this function is defined as follows:

rb f (x, x′) = exp(−γ|x− x′|2)

Two parameters are considered for hyper parameter tuning: C and γ.
C represents the weight of penalisation for miss classified points as explained

in section 3.1.
γ is a kernel parameter. Intuitively defines how far the influence of a single

training example reaches, with low values meaning far and high values meaning
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close.

The values considered for each parameter can be found in Table 5.2.

C {0.1, 0.5, 1, 5}

γ {1, 0.5, 0.1}

Table 5.2: Values of SVM possible parameters. In each row presents the parameter
and the set of possible values.

5.4.3 Model B: RF

This model uses Random Forests (see section 3.2). 100 base learners (J = 100)
are used for each parameter combination. The parameters considered for hyper
parameter tuning are: max_depth, min_samples_split and bootstrap.

max_depth represents the maximum depth of the trees. If None, nodes are
expanded until stopping criterion is met.

min_samples_split parameter means the minimum number of samples re-
quired to split an internal node. If the number of samples of the node is less than
min_samples_split it is considered that a stopping condition is met.

bootstrap indicates if bootstrap technique is used or not. If false, then the
whole dataset is used to build each tree.

The values considered for each parameter can be found in the Table 5.3.

max_depth {9, 5, 3, 2, None}

min_samples_split {2, 3, 5, 7, 10}

bootstrap {true, f alse}

Table 5.3: Values of Random Forest possible parameters. In each row presents the
parameter and the set of possible values.

5.4.4 Model C: XGB

This model uses Extreme Gradient Boosting (see section 3.3). The parameters
considered for hyper parameter tuning are: learning_rate, min_child_weight,
gamma, subsample, colsample_bytree and max_depth.
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learning_rate represents the factor η in section 3.3. It represents how feature
weights shrinks after every boosting step.

min_child_weight for features of internal nodes, if the sum of weights is less
than this value it is considered that a stopping condition is met.

gamma this value defines the minimum loss reduction required to make a fur-
ther partition on a leaf node of the tree. If best loss reduction is smaller that this
value a stopping condition is met.

subsample is the ratio of the training instances taken during bootstraping.
colsample_bytree is the ratio of features selected for training a new tree dur-

ing the feature sub sample phase.
max_depth represents the maximum depth of the trees.

The values considered for each parameter can be found in the Table 5.4.

learning_rate {0.01, 0.005, 0.1, 0.2}

min_child_weight {1, 5, 10}

gamma {0.5, 1, 5}

subsample {0.6, 0.8, 1.0}

colsample_bytree {0.6, 0.8, 1.0}

max_depth {3, 4, 5}

Table 5.4: Values of XGB possible parameters. In each row presents the parameter
and the set of possible values.
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Chapter 6

Results

In this section experiment results are presented. At first we will define the
used metrics in order to have a general view of which information they give. The
obtained metrics of our experiments are summarised and analysed in this section.
Finally feature impact in best model is discussed having special focus on impact
of the introduced fractal features.

6.1 Evaluation metrics

In this section we will define the metrics used to evaluate and compare our
models.

The prediction results of a models can be summarised in a confusion matrix.
There results are presented in four sections: True positive (TP), true negatives
(TN), false positives (FP) and false negatives (FN), see Figure (6.1).

The following metrics are used for assessment:

• Balanced accuracy: The balanced accuracy ratio 1
2 (

TP
TP+FN + TN

TN+FP ). This
metric is an arithmetic mean of true positive rate and true negative rate. It is
used to deal with imbalanced data sets. If classifier performs equally well on

Predicted label

Positive Negative

Real label
Positive TP FN

Negative FP TN

Figure 6.1: Template of a confusion matrix. The following notation is used: True
positive (TP), true negatives (TN), false positives (FP), false negatives (FN).
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either class, this term reduces to the conventional accuracy (i.e. the number
of correct predictions divided by total predictions).

• Recall or True Positive Rate (TPR): The recall is the ratio TP
TP+FN . It is,

intuitively, the ability of the classifier to find all the positive samples.

• Precision: The precision is the ratio TP
TP+FP . It is, intuitively, the ability of the

classifier not to label as positive a sample that is negative.

• F1 score: The F1 score can be interpreted as a harmonic mean of the precision
and recall. Relative contribution of precision and recall to the F1 score are
equal. The formula is: 2 · precision·recall

precision+recall .

During training F1 score was optimised because it contains information of
recall and precision. Has in consideration the ratio of well classified diseased
patients and the ratio of wrong classified control patients. Nevertheless, we will
also check those ratios independently. Finally we will also evaluate the general
behaviour of our classifier by balanced accuracy metric.

During all the performance analysis sklearn.metrics library was used. It
contains high level methods for computing desired metrics.

6.2 Models performances

In this section, detailed results on the performance of models are presented and
analysed. The evaluation metrics are computed as exposed in section 6.1. For all
models, experiments where conducted both for interpolated and no-interpolated
features in order to determine if there is a feature extraction method that provides
better performance on classification. All models have been trained seven times
with different train/test split and results are summarised in terms of mean and
standard deviation.

Data imbalance must be considered in order to interpret the obtained results.
When dealing with imbalance results on precision can be very low [1].

6.2.1 Model A

The obtained results for model A are provided in Table 6.1.
We observe that overall balanced accuracy has values between 0.650 and 0.666.

On the other hand we observe a poor performance with respect to precision. This
is a normal behaviour in an imbalanced scenario because there are a lot of false
cases that can lead to false positive classification. Finally we observe recall to reach
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CMR FF VRF+CMR VRF+FF CMR+FF VRF+CMR+FF

Interpolated FF
B. acc. 0.665 (±0.012) 0.656 (±0.013) 0.666 (±0.016) 0.666 (±0.015) 0.650 (±0.012) 0.657 (±0.016)
Rec. 0.686 (±0.030) 0.650 (±0.039) 0.691 (±0.031) 0.701 (±0.035) 0.680 (±0.031) 0.704 (±0.033)
Prec. 0.094 (±0.004) 0.095 (±0.004) 0.094 (±0.005) 0.093 (±0.005) 0.088 (±0.005)* 0.089 (±0.004)*

F1 0.166 (±0.007) 0.165 (±0.007) 0.166 (±0.008) 0.164 (±0.007) 0.156 (±0.008)* 0.158 (±0.007)*

Anisotropic FF
B. acc. 0.665 (±0.012) 0.654 (±0.014) 0.666 (±0.016) 0.664 (±0.017) 0.650 (±0.012) 0.657 (±0.014)
Rec. 0.686 (±0.030) 0.648 (±0.040) 0.691 (±0.031) 0.701 (±0.047) 0.673 (±0.040) 0.702 (±0.031)
Prec. 0.094 (±0.004) 0.094 (±0.004) 0.094 (±0.005) 0.093 (±0.004) 0.089 (±0.005)* 0.089 (±0.004)*

F1 0.166 (±0.007) 0.164 (±0.007) 0.166 (±0.008) 0.164 (±0.007) 0.158 (±0.008)* 0.158 (±0.007)*

"*" indicate statistical differences between two populations using rank sum test (α < 0.1). Populations
compared are: CMR with CMR+FF and VRF+CMR with VRF+CMR+FF.
Abbreviations: VRF, vascular risk factors; CMR, cardio magnetic resonance; FF, fractal features.

Table 6.1: Ablation study for model A. Model is trained using different combina-
tion of features. Results, mean (std), are provided rounded to 3 decimals. Demo-
graphic features are considered in all feature combinations.

values between 0.648 and 0.704. This outcome does provide the sense that, in the
best scenario, 70% of patients with IHD will be correctly classified.

In combinations with a single feature set, CMR has the best performance in
both balanced accuracy and recall. We observe that shape related features and
texture related features have similar performances regarding to balanced accuracy.

Significantly differences have been found in CMR compared to CMR+FF re-
sults for precision and F1 score. CMR+FF combination yield the poorest perfor-
mance and represents the worst results in all feature combination. Extending the
feature set might be reducing the separability of classes.

Recall has been incremented in VRF+CRM+FF without significant results, but
the mean performance decreased significantly by 5.6% in precision and by 4.8%
in F1 score. As for CMR+FF feature extensin might be reducing separability of
features.

Relation among interpolated and anisotropic FF, VRF+FF, CMR+FF and VRF+CMR+FF
does not show statistical differences (α < 0.1).

6.2.2 Model B

The obtained results for model B are provided in Table 6.2.
We observe that balanced accuracy has values between 0.660 and 0.672, im-

proving the model A minimum and maximum of this metric. As observed in
model A, performance with respect to precision is poor. Best recall performance
(0.687 for VRF+CMR) does not reach the maximum recall of model A (0.704 for
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CMR FF VRF+CMR VRF+FF CMR+FF VRF+CMR+FF

Interpolated FF
B. acc. 0.662 (±0.013) 0.662 (±0.015) 0.672 (±0.014) 0.669 (±0.013) 0.663 (±0.013) 0.668 (±0.017)
Rec. 0.662 (±0.040) 0.654 (±0.033) 0.687 (±0.030) 0.683 (±0.032) 0.670 (±0.029) 0.681 (±0.031)
Prec. 0.096 (±0.006) 0.097 (±0.004) 0.098 (±0.006) 0.097 (±0.005) 0.096 (±0.005) 0.097 (±0.006)

F1 0.168 (±0.008) 0.169 (±0.006) 0.172 (±0.009) 0.170 (±0.008) 0.167 (±0.007) 0.169 (±0.009)

Anisotropic FF
B. acc. 0.664 (±0.012) 0.660 (±0.009) 0.671 (±0.014) 0.667 (±0.010) 0.664 (±0.013) 0.667 (±0.012)
Rec. 0.673 (±0.030) 0.661 (±0.028) 0.682 (±0.032) 0.675 (±0.026) 0.673 (±0.028) 0.683 (±0.036)
Prec. 0.096 (±0.007) 0.095 (±0.003) 0.098 (±0.004) 0.097 (±0.003) 0.096 (±0.005) 0.096 (±0.004)

F1 0.168 (±0.010) 0.166 (±0.004) 0.171 (±0.007) 0.170 (±0.004) 0.168 (±0.008) 0.168 (±0.007)

"*" indicate statistical differences between two populations using rank sum test (α < 0.1). Populations
compared are: CMR with CMR+FF and VRF+CMR with VRF+CMR+FF.
Abbreviations: VRF, vascular risk factors; CMR, cardio magnetic resonance; FF, fractal features.

Table 6.2: Ablation study for model B. Model is trained using different combina-
tion of features. Results, mean (std), are provided rounded to 3 decimals. Demo-
graphic features are considered in all feature combinations.

VRF+CMR+FF).
For combinations of one feature set, CMR has slightly better performance than

FF. CMR has improved FF balanced accuracy by 0.6%. This result suggests that
similar information can be found during classification for shape and texture re-
lated features.

Extending CMR features with FF results has almost same performance of CMR
model. Nevertheless, this combination achieved better performance than FF. No
significant differences where found among CMR and CMR+FF.

VRF+CMR feature combination yielded the overall best performance, in this
model and in the whole experiment, in terms of balanced accuracy, with value of
0.672.

Extending VRF+CMR with FF do not show any significant improvement for
this model.

As observed in model A, interpolation only produce slight changes when com-
pared to anisotropic data, without statistically significant differences (α < 0.1).

6.2.3 Model C

The obtained results for model C can be found in the Table 6.3.
We observe that balanced accuracy has values between 0.662 and 0.672. Thus

this model has improved the minimum balanced accuracy when compared to
model A and B.

CMR and FF feature sets have almost the same performance both in interpo-
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CMR FF VRF+CMR VRF+FF CMR+FF VRF+CMR+FF

Interpolated FF
B. acc. 0.664 (±0.011) 0.664 (±0.014) 0.671 (±0.010) 0.669 (±0.013) 0.662 (±0.014) 0.671 (±0.014)
Rec. 0.673 (±0.030) 0.667 (±0.042) 0.681 (±0.031) 0.679 (±0.026) 0.663 (±0.033) 0.687 (±0.026)
Prec. 0.096 (±0.005) 0.096 (±0.006) 0.098 (±0.005) 0.098 (±0.006) 0.096 (±0.006) 0.097 (±0.006)

F1 0.168 (±0.007) 0.168 (±0.009) 0.171 (±0.007) 0.171 (±0.010) 0.167 (±0.009) 0.170 (±0.009)

Anisotropic FF
B. acc. 0.664 (±0.011) 0.662 (±0.012) 0.671 (±0.010) 0.670 (±0.017) 0.663 (±0.012) 0.672 (±0.013)
Rec. 0.673 (±0.030) 0.660 (±0.035) 0.681 (±0.031) 0.680 (±0.030) 0.666 (±0.033) 0.679 (± 0.036)
Prec. 0.096 (±0.005) 0.096 (±0.004) 0.098 (±0.005) 0.098 (±0.006) 0.096 (±0.004) 0.099 (±0.005)

F1 0.168 (±0.007) 0.168 (±0.006) 0.171 (±0.007) 0.171 (±0.009) 0.167 (±0.006) 0.172 (±0.008)

"*" indicate statistical differences between two populations using rank sum test (α < 0.1). Populations
compared are: CMR with CMR+FF and VRF+CMR with VRF+CMR+FF.
Abbreviations: VRF, vascular risk factors; CMR, cardio magnetic resonance; FF, fractal features.

Table 6.3: Ablation study for model C. Model is trained using different combina-
tion of features. Results, mean (std), are provided rounded to 3 decimals. Demo-
graphic features are considered in all feature combinations.

lated and anisotropic fractal-based features. Combination of these features does
not improve performance.

Among the various models tested, model C demonstrates the highest perfor-
mance when using the FF feature set in conjunction with VRF and CMR, em-
ploying anisotropic fractal-based features. This model has 0.672 score in balanced
accuracy, the same value obtained by the other best model found in model B. This
model is thoroughly analyzed in the section 6.3.

Results of VRF+CMR+FF with anisotropic FF slightly improve VRF+CMR re-
sults in balanced accuracy, precision and F1 score, but no statistically significant
differences where found among their metrics.

Analogously to the previous models, interpolation of features does not result
in statistically significant changes (α < 0.1).

6.3 Explainability analysis

In this section SHAP (see section 3.4) analysis for model C using VRF+CMR+FF
with anisotropic FF is exposed. We selected this model for further analysis as it is
the model with best performance that contains fractal-based features.

For this analysis shapley values are calculated for all participants in test splits
and classified using its corresponding classifier. Summary plots are created us-
ing mean shapley values of each participant independently to the classifier where
shapley values come from.
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Figure 6.2: Top five feature contribution for model C trained with VRF+CMR+FF.
Feature contribution is considered using mean of absolute value of shapley values.

Analysing shapley values for VRF+CMR+FF feature set we observe that both de-
mographic features, age and sex, are the most important with huge difference (see
Figure 6.2). The third feature in order of influence is BMI, from VRF. This feature
has 37.8% more influence than the next feature in order of mean shapley values.
These three feature are with huge difference the more influential features, and for
this reason models including VRF have a good performance.

For CMR features, LVM has the fourth position in order of importance. The
rankings in positions six, eight and ten pertain to LVMi, LVESVi and RVEDVi,
respectively.

The fifth feature in order of importance is MEDD, form the fractal-based fea-
ture set. This fact suggests that myocardium tissue during end-diastole has an
important impact in diagnose of IHD. We already know that myocardium geome-
try and tissue have an important role in IHD diagnose [36] and our results make
sense with this previous observation.

Considering the influence of a feature during the prediction depending to its
value, we can observe (Figure 6.3) that low complexity of myocardial end-diastolic
tissue has a negative shapley value. This can be interpreted as low MEDD pro-
duces non-diseased classification. This fact seem coherent with exploratory analy-
sis from section 5.3.2 where we observed that IHD group has significantly higher
mean for this feature. Average and high values tend to have influence on positive
class (i.e. classify as diseased of IHD).

Shapley values have been grouped by feature sets to see the impact of every set in
the classification task compared with other feature groups. Results are presented
in Figure 6.4. From observations of top five features, dominance of demographic
features was expected because these features were the most important for the clas-
sifier. Similarly VRF has a huge impact because BMI is the third feature with more
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Figure 6.3: Top five feature contribution for model C trained with VRF+CMR+FF.
Shap values are represented as a dot for each participant. Horizontal axis rep-
resent the shap value and colour represents the values of the feature for each
observation.

Figure 6.4: Overall contribution of demographic features (DF), vascular risk factors
(VRF), cardio magnetic resonance indexes (CMR) and fractal-based features (FF).

influence. BMI importance has a huge difference with LVM and less important
features.

Fractal-based features are the less important features. It represents a 35, 3%
less influence than CMR features. Then we conclude that aggregated fractal-based
features are not as influential as aggregated CMR features.

As suggested in Rauseo et. al [36] left ventricle and myocardium plays an
important role in IHD classification. Similar behaviour has been observed in our
experiment (Figure 6.5). We observed that myocardium-related fractal-based fea-
tures have higher aggregated impact than LV or RV. We also observed that tissue
complexity and homogeneity of LV has more impact than RV.

Tissue complexity was observed to be more influential than homogeneity. Box-
counting dimension has, aggregated, 72.0% more impact in classification than la-
cunarity (see Figure 6.6).
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Figure 6.5: Overall contribution of fractal-based features grouped by cardiac struc-
ture. Abbreviations: Myocardial, M; left ventricle, LV; right ventricle, RV.

Figure 6.6: Overall contribution of fractal-based features grouped by fractal metric.
Abbreviations: Box-counting dimension, BCD.



Chapter 7

Conclusions

This section is divided into two parts. First, the conclusions gathered during
the process of elaborating the work are summarised. In the second part, possible
extensions to the work are presented.

7.1 Project conclusions

The aims of this project included presenting a novel set of CMR texture fea-
tures based on fractal theory that allow us to describe the cardiovascular tissue
and implementing algorithms to extract this information from CMR, the reference
modality in the evaluation of the cardiac function and structure. Furthermore, they
also included the study, development and validation of machine learning models
that allow us to assess the potential contribution of fractal analysis of CMR images
to the diagnosis of IHD.

We successfully achieved these objectives by devising a two-step process. Firstly,
we extracted the features from a given CMR image set. To this end, we imple-
mented efficient algorithms (less than 2s to process a 3D CMR) that can be applied
in large databases. On second step, these features were employed, along with
other image parameters and clinical information of the patient, to train machine
learning models for diagnostic purposes. Although for this thesis we focused in
IHD, this two-step process provides a framework for further investigations, cover-
ing different CVDs.

Regarding to the feature extraction, we provided methods that quantify from tex-
ture of CMR images. Related studies use to work with shape related fractal-based
features [10][18][20]. We contributed with texture information to complement tra-
ditional CMR index, which focus only on shape.
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In addition, a comparative analysis between anisotropic and interpolated fractal-
based features has been conducted. As detailed in section 4.4, it is evident that the
computation of interpolated features needs significantly more time. However, the
results presented in section 6 indicate no significant differences between these two
approaches. Consequently, we conclude that interpolation is unnecessary, and the
calculation of fractal-based features in anisotropic form is advantageous in terms
of time efficiency during the feature extraction process.

As outlined in section 6, one of the models that yielded the best classification
results incorporates fractal information. Statistical differences where not observed
in the performance of models combining VRF, CMR and FF so we can not deter-
mine if there is a significantly better combination. Differences between models are
very small and a more extended amount of experiments should be performed in
order to find this differences, if they exist.

We observe that shape related features (CMR) and texture related features (FF)
yield similar performances in classification with slight better outcomes for shape
related features. All in all, results suggest that fractal-based features might have
similar performance as traditional CMR indexes.

For our best fractal-based model, and through our analysis, we were able to as-
sess the contribution of fractal analysis to the task of patient classification, and it
was observed that the set of fractal parameters has lower influence on this task
compared to CMR indexes.

A notable result from the study is that myocardial end-diastolic tissue com-
plexity is on of the top five influential characteristics for IHD diagnose. We ob-
served that low complexity tissues in this region of interest tends to indicate non-
diseased patients. MEDD has more importance in classification than the other
used CMR indexes (except form LVM). This suggests that could be a potential
novel biomarker for IHD diagnose.

7.2 Further work

The present work leaves open several lines of research that are yet to be ex-
plored. Some are suggested for future work on this field:

• Exploring the Relationship between Fractal Features and Radiomics [47]. The
term Radiomics include shape and texture-related features. Future work
will involve a detailed study of Radiomics versus and in combination with
fractal-based features for disease diagnosis.



7.2 Further work 63

• Investigate the potential of the propsoed pipeline based on machine learning
and fractals in ischemic disease prognosis. In contast with the diagnostic
scenario studied in this work, prognosis involves the identification of people
potential at risk of developing the diasese

• Study if fractal features can provide more relevant information on tissues
with different diseases (in diagnostic or prognostic scenario) such as atrial
fibrillation, heart failure, myocardial infarction or stroke.

• Perform a more detailed analysis of distribution of heart fractal-based fea-
tures among different samples of population clustering by sex, age, country,
ethnic background, ... to obtain better insights into the characteristics of
those sub-populations in terms of cardiac complexity and heterogeneity.
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Appendix A

Fractal sets

Figure A.1: Sierpinski triangle.

Figure A.2: Construction of von Koch’s snowflake. k represents the recursive step
of the iteration.
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Appendix B

Lagrange multipliers

This section introduces the use of Lagrange multipliers. Concepts on this sec-
tion are from [5] (Appendix E).

Lagrange multipliers are used to find the stationary points of a function of
several variables subject to one or more constraints. Consider the problem of
finding the maximum of a function f (x1, x2) subject to a constraint relating x1 and
x2, written in the form g(x1, x2) = 0.

To solve this problem we introduce the parameterλ, called Lagrange multiplier.
Consider a n-dimensional variable x with components x1, ..., xn. The constraint
equation g(x) = 0 then represents a (n− 1)-dimensional surface in x-space.

Note that for any point on the constraint surface, the gradient ∇g(x) will be
orthogonal to the surface. Consider x such that g(x) = 0, and consider a nearby
point x + ϵ that also lies on the surface. If we make Taylor expansion around x,
we have

g(x + ϵ) ≃ g(x) + ϵT∇g(x)

Because both x and x + ϵ lie on the constraint surface, we have g(x) = g(x + ϵ)

and hence ϵT∇g(x) ≃ 0. In the limit |ϵ| → 0 we have ϵT∇g(x) = 0, and because
ϵ is then parallel to the constraint surface, we see that the vector ∇g is normal to
the surface.

We seek for a point x∗ on the constraint surface such that f (x) is maximised.
Such point must have ∇ f (x∗) orthogonal to the constraint surface, otherwise we
could increase the value of f (x) by moving a short distance along the surface.
Thus ∇ f and ∇g are parallel vector there must exist λ such that

∇ f + λ∇g = 0

where λ ̸= 0.
We introduce then the Lagrangian function L(x, λ) = f (x) + λg(x). (B) is

obtained by setting ∇xL = 0 and g(x) = 0 is obtained by setting ∂L
∂λ = 0. To find
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the maximum of f (x) with g(x) = 0 we find the stationary point of L(x, λ) with
respect both x and λ. It leads to n + 1 equations.

Consider now the problem for inequality constraint g(x) ≥ 0. There are to
kind of solutions, whether the stationary points lie in the region g(x) > 0 or in
g(x) = 0.

If g(x) > 0, then ∇ f (x) = 0, hence λ = 0. If g(x) = 0 we are in the previous
case. Note that the sign of λ plays a crucial role as ∇ f (x) must be oriented
away from the region g(x) > 0 to be a maximum. Therefore, we have ∇ f (X) =

−λ∇g(x) for λ > 0. In both cases λg(x) ≥ 0 so the conditions for optimising are
g(x) ≥ 0, λ ≥ 0 and λg(x) = 0. These are knows as the Karush-Kuhn-Tucker
(KKT) conditions.

Note that if we are seeking for minimisation of f (x) we can apply the same
method using Lagrange function L(x, λ) = f (x)− λg(x).

This method can be extended to multiple equality and inequality constraints.
Consider we want to maximise f (X) subject to gj(x) = 0, j = 1, ..., J and hk(x) ≥
0, k = 1, ..., K. The we introduce Lagrange multipliers {λj} and {µk} and optimise
the function

L(x, {λj}, {µk}) = f (x) +
J

∑
j=1

λjgj(x) +
K

∑
k=1

µkhk(x)

subject to µk ≥ 0, µkhk = 0 for k = 1, ..., K.



Appendix C

Tables

C.1 Population’s disease summary

In this appendix population’s disease is summarised in a table. The number
of patients classified for each ICD10 code are shown separated in two scenarios,
prognostic and diagnostic. The patients are not unique, which means that if a
patient has suffered a heart failure and myocardial infarction, which correspond
to I50 and I21 respectively, he/she will be counted in both rows.

C.2 Subjects’ characteristics

In this appendix subjects’ characteristics are summarised in a table. Shown
data correspond to demographic features, vascular risk factors (Table C.2) and
CMR features (Table C.3). This table complements information given in Table 5.1.
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Disease ICD10 code Count Diagnostic Count Prognostic

Ischemic heart disease

I20 917 375
I21 440 217
I22 38 0
I23 3 0
I24 92 74
I25 1197 663

Healthy - 28146 28146

Table C.1: Counting patients table. Patient count is not unique among ICD10
codes. Healthy patients are considered to be patients without any of the listed
ICD10 code in diagnostic or prognostic scenario.



C.2 Subjects’ characteristics 71

Characteristics Whole imaging set
(n=32,096)

IHD (n=1592)

Demographic features
Age, mean (std) 63.27 (±7.54) 67.62 (±6.44)*
Sex female, n (%) 16591 (52%) 440 (28%)*

VRF
No smoker, n(%) 29977 (94%) 1458 (92%)*
Deprivation, mean (std) -1.96 (±2.67) -1.81 (±2.80)
BMI (kg/m2), mean (std) 26.61 (±4.24) 28.09 (±4.30)*
BSA (m2), mean (std) 1.87 (±0.20) 1.95 (±0.20)*
IPAQ score, mean (std) 2278.94 (±2357.40) 2278.83 (±2380.65)
Alcohol intake, n (%)
Never 1521 (5%) 97 (6%)
Special occasions only 2633 (8%) 141 (9%)
One to three times a month 3439 (11%) 169 (11%)
Once or twice a week 8254 (26%) 403 (25%)
Three or four times a week 9058 (28%) 426 (27%)
Daily or almost daily 7080 (22%) 356 (22%)

IPAQ group, n (%)
Group 1 7293 (23%) 396 (25%)*
Group 2 16539 (52%) 775 (49%)*
Group 3 8076 (25%) 415 (26%)*

"*" indicate statistical differences between the two populations using rank
sum test for continuous values and chi-squared test for categorical variables
(α < 0.05).

Table C.2: Statistics of data comparing whole image set and population with Isca-
hemical Heart Disease for DF, VRF features.
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Characteristics Whole imaging set
(n=32,096)

IHD (n=1592)

CMR
LVEDV (ml), mean (std) 148.01 (±33.82) 158.62 (±38.85)*
LVESV (ml), mean (std) 60.58 (±19.41) 68.42 (±27.11)*
LVSV (ml), mean (std) 87.42 (±19.22) 90.20 (±19.41)*
LVEF (%), mean (std) 59.48 (±6.12) 57.72 (±7.61)*
LVM (g), mean (std) 86.39 (±22.47) 95.77 (±23.75)*
RVEDV (ml), mean (std) 156.49 (±37.23) 161.92 (±35.50)*
RVESV (ml), mean (std) 67.68 (±21.35) 70.95 (±20.73)*
RVSV (ml), mean (std) 88.81 (±20.21) 90.97 (±20.29)*
RVEF (ml), mean (std) 57.20 (±6.16) 56.52 (±6.54)*
LVEDVi (ml/m2), mean (std) 78.63 (±13.89) 81.22 (±16.93)*
LVESVi (ml/m2), mean (std) 32.08 (±8.68) 34.92 (±12.67)*
LVSVi (ml/m2), mean (std) 46.55 (±8.34) 46.30 (±8.62)
LVMi (g/m2), mean (std) 45.66 (±8.70) 48.85 (±9.53)*
RVEDVi (ml/m2), mean (std) 83.04 (±15.20) 82.90 (±14.81)
RVESVi (ml/m2), mean (std) 35.78 (±9.35) 36.22 (±9.17)*
RVSVi (ml/m2), mean (std) 47.26 (±8.76) 46.67 (±8.98)*

"*" indicate statistical differences between the two populations using rank
sum test for continuous values and chi-squared test for categorical variables
(α < 0.05).

Table C.3: Statistics of data comparing whole image set and population with Isca-
hemical Heart Disease for CRM features.
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Statistical tests

D.1 Rank sum test

During the experiments rank sum test is used for determining if two sam-
ples are drawn from the same distribution. We used this test because it is a non
parametric test, which means that we do not have to assume a fixed distribution
for our data. During experiments and analysis, scipy.stats.ranksum feature of
scipy library1 was used as it provides a high level methods that implement this
test.

In this section rank sum test will be introduced and its computation explained.
Test definition comes from S. M. Ross’ statistics book [37] chapter 12.

Let X1, ..., Xn, Y1, ..., Ym denote two independent samples. F and G, assumed
to be continuous, are the distribution functions of the two samples respectively.
Then the null hypothesis is H0 : F = G.

The rank sum test (also known as the Mann-Whitney test or Wilcoxon test)
consists of ordering the n + m values. Since we are assuming that F and G are
continuous, this ranking will be unique. Once ordered we will give a rank for
every value, which mean that the rank for the fist values is 1, for the second value
2 and so on. For i = 1, .., n we define Ri the rank of the value Xi.

The rank sum test used the test statistic T equal to the sum of the ranks from
the first sample

T =
n

∑
i=1

Ri

We consider a significance level of α for H0. If we observed T = t, then H0 is

1Official documentation can be found at https://docs.scipy.org/doc/scipy/reference/
stats.html
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rejected if

PH0(T ≤ t) ≤ α

2
or PH0(T ≥ t) ≤ α

2
This means that we reject the hypothesis if the sum of ranks from the first hypoth-
esis is either too small or too large to be explained by chance.

This probabilities are equal to

PH0(T ≤ t) ≤ α

2
or PH0(T ≤ t− 1) ≥ 1− α

2
(D.1)

To compute these probabilities we use a recursive method. Let P(N, M, K) be the
probability that the sum of the ranks of the first sample will be less than or equal
to K when samples have sizes N and M and H0 is true. The probabilities in D.1
are P(n, m, t) and P(n, m, t− 1).

Consider the larges of the N + M data values belong to the first sample, then
T is the N + M plus the sum of ranks of the other N − 1. Then T ≤ K if the
sum of ranks of the other N − 1 is less or equal to K − (N + M). But since the
remaining N − 1 + M all come from the same distribution (H0 is true) it follows
that the sum of ranks of the N − 1 is less or equal to K−M− N with probability
P(N − 1, M, K − N − M). With similar argument, if the larges values belongs to
the second distribution we get that the sum of ranks of the first sample will be
less than or equal to K with probability P(N, M− 1, K). Also as the larges values
is one of the X1, ..., Xn, Y1, ..., Ym it will belong to first sample with probability
N/(N + M). Putting this together we get

P(N, M, K) =
N

N + M
P(N − 1, M, K− N −M) +

M
N + M

P(N, M− 1, K)

Starting from the condition

P(1, 0, K) =

{
0 K ≤ 0

1 K > 0
, P(0, 1, K) =

{
0 K < 0

1 K ≥ 0

The equation can be solved recursively to obtain P(n, m, t− 1) and P(n, m, t).
As test rejects the hypothesis when

2P(n, m, t ≤ α) or α ≥ 2[1− P(n, m, t− 1)]

it follows that the p-value of the test statistic when T = t is

2 min{P(n, m, t), 1− P(n, m, t− 1)}
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