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We benchmark the time resources needed to execute the adiabatic quantum optimization (AQO),
and to run the Quantum Approximate Optimization Algorithm (QAOA), for the vertex coloring
problem. This is done via a numerical simulation of 20 Erdős-Rény random graphs for different
cases ranging from 8 to 21 qubits. With this comparison, we explore two of the most important
algorithms of the analog and gate-based quantum computing paradigms, respectively. We apply the
canonical implementation for both algorithms, so their initial Hamiltonian is the same, the one with
the typical sum of Pauli-X matrices. In this line, we consider linear scheduling time for the AQO. For
final adiabatic time T = 100 ns, the AQO achieves an overlap with the degenerate solutions over 0.9
in all cases. Meanwhile, the QAOA using the Powell classical optimizer, 5 layers and thousands of
iterations has an overlap around 0.5 for the 8 qubits case and below 0.25 for the other cases. So, our
results for the given task and idealized conditions indicate that the AQO significantly outperforms
the QAOA in terms of time and success probability.

I. INTRODUCTION

The recent improvements in quantum computation
hardware has led to the noisy intermediate-scale quan-
tum (NISQ) era. In this context, an increasing number
of variational quantum algorithms (VQAs) have arisen
[1] with the target of solving combinatorial optimization
problems (COPs) and evaluating the potential to achieve
a quantum advantage. The main idea of VQAs is to run
a parameterized quantum circuit in a model gate-based
quantum computer and optimize the parameters with the
aid of classical optimizers.

A promising prospect is the QAOA, introduced by
Farhi et al. in 2014 [2], which is inspired by a Trotter-
ized adiabatic transformation of the adiabatic evolution
applied to the gate-based model. In contrast, the Quan-
tum Adiabatic Algorithm (QAA) (Farhi et al. [3]) is a
continuous-time algorithm based on the adiabatic the-
orem of quantum mechanics [4], which requires analog
quantum computers for its implementation.

There is a strong link between these two algorithms.
In fact, an important achievement for QAOA is the proof
of its convergence [5], which is based on the convergence
of QAA. Therefore, it is interesting to compare these two
schemes’ performance in actual quantum computers [6],
since both approaches have different strengths.

It is worth mentioning that quantum annealing (QA),
as well as VQAs, was conceived as a heuristic approach
to solve COPs, especially the ones that can be expressed
as binary optimization problems with Boolean variables
xi ∈ {0, 1}. In this work, for implementing the QAA
we will deal with adiabatic quantum computing (AQC)
[7]. Note that AQC is a restricted case of QA, as it
only considers adiabatic evolution, while QA is a broader
concept enabling non-ideal and diabatic processes.
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Nowadays due to the technical complexity that sup-
poses to develop an annealer, this kind of quantum
computer is restricted to solving only QUBO problems
with 2-local interactions, with HQUBO(x⃗) =

∑
i hixi +∑

ij Qijxixj as the cost function.

Those might seem like strong restrictions, however,
lots of problems of interest not only for industry but for
academia as well, fall into this category. Most of them
are contained in Karp’s 21 NP-complete problems, with
a close connection to Ising spin models and QUBO for-
mulation, as many other NP-hard problems [8].

In this work, we propose a comparison between AQO
and QAOA applied to the vertex coloring problem which
is an NP-complete problem contained in the class of
graph coloring problems (GCP). The GCP class has dif-
ferent types, methods, and applications within real-life
problems, [9], such as scheduling problems including as-
signing frequencies for radio stations or for a mobile
phone network, job shop scheduling, resource allocation,
or flight-gate assignments. The latter use case has been
explored in [10] using QAOA and in [11] using AQO.

The work is organized as follows, in Section II the em-
bedding of a COP problem into a quantum computer is
described. Section III provides a brief explanation of the
inner workings of AQO. Similarly, Section IV does the
same for the QAOA. In Section V we present the formu-
lation for the vertex coloring problem. Finally, in Section
VI the results of the simulations of AQO and QAOA are
presented and analyzed using time metrics, leading to the
conclusions and future work in Section VII.

II. COP ENCODING ON QUANTUM
COMPUTER

When dealing with generic COPs of size N usually one
have to either minimize (or maximize) a cost function,
also known as objective or loss function, f : Z(N) −→ R,
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where Z(N) is the set of bit strings with length N ,

min
z∈S

f(z), S ⊆ Z(N), (1)

where S is the set of feasible bit strings. Then, Smin is
defined as the subset of all solutions minimizing f . If
S = Z(N), it is said that the problem is unconstrained.

To work with a quantum computer we have to express
each bit string, z, in the computational basis, |z⟩ of the
N-qubit space, H = C2N . This means that each bit, zi =
0, 1 of the bit string z is replaced by a spin-1/2 qubit la-
beled by |zi⟩, in a way that |z⟩ is the Kronecker product of
all the qubit states. These are eigenstates of the z compo-

nent of the i-th spin, |0⟩ , |1⟩, so 1
2 (1− σ

(i)
z ) |zi⟩ = zi |zi⟩,

where σ
(i)
z is the corresponding Pauli matrix. Lastly, the

Hamiltonian that embeds the cost function can be con-
structed as, C =

∑
z∈Z(N) f(z) |z⟩ ⟨z|. Therefore, the

optimal solution of the problem in Smin is encoded in
the ground state of the problem Hamiltonian, which cor-
responds to the state (or Hilbert subspace in case of de-
generate solutions) that has the minimum energy.

III. ADIABATIC QUANTUM OPTIMIZATION

The main idea of AQO is to reach the ground state of
the problem Hamiltonian, Hp, which codifies the problem
constraints, by adiabatically evolving the system dur-
ing a time, T , from the easy-to-prepare ground state of
a Hamiltonian, H0, known as driving or easy Hamilto-
nian. Then the quantum system evolves according to the
Schrödinger equation,

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ , (2)

where the time-dependent Hamiltonian must be,

H(t) = (1− s(t))H0 + s(t)Hp, (3)

defining the scheduling time, 0 ≤ s(t) ≤ 1, in a way that
T controls the rate at which the interpolation is done.
This scheme is based on the adiabatic theorem of quan-
tum mechanics, so since the system is initialized in the
easy-to-prepare ground state, it will remain in the ground
state for infinitely slow evolution. Thus for a T large
enough, the system will remain close to the ground state
and we will be able to find the solution when H(T ) = Hp.
The order of T is approximately determined by the

minimum gap energy, gmin, as T ∼ g−2
min. The gmin is

the minimum necessary energy to excite the ground state
to the first excited state, which is not necessarily their
energy difference when it comes to degenerate states, as
it is further discussed in-depth in Section VIA.

It is also worth noting that the s(t) is usually a polyno-
mial function of (t/T ) in a way that the closer it gets to
the minimum gap, the more slowly it varies, so the evo-
lution can be performed faster in other points and save
time. Unfortunately, estimating the value of the gap is an
NP-hard problem by itself, so finding the optimal func-
tion s(t) is a very complex task.

IV. QAOA

QAOA is a VQA that iteratively applies a parame-
terized quantum circuit of p layers applied to a fixed
initial quantum state, |s⟩. Each layer contains a pair
of parameter-dependent unitary operators, the mixer,
UB(β) = e−iβB , which depends on an initial Hamilto-
nian, B, and a parameter β ∈ [0, π]; and, the phase sep-
arator, UC(γ) = e−iγC , which depends on the problem
Hamiltonian, C, and a parameter γ ∈ [0, 2π].
Thus, a parameterized trial state is constructed,∣∣∣β⃗, γ⃗〉 = V (β⃗, γ⃗) |s⟩ =

(
p∏

q=1

UB(βq)UC(γq)

)
|s⟩ , (4)

where p is the number of layers.
The trial state parameters β and γ are optimized by

minimizing the value of Fp(β⃗, γ⃗) =
〈
β⃗, γ⃗

∣∣∣C ∣∣∣β⃗, γ⃗〉, i.e.

the expected value of the cost Hamiltonian, using a clas-
sical optimizer. Once this process converges to the final

state,
∣∣∣ ⃗βout, ⃗γout

〉
, one can obtain a solution to the prob-

lem by measuring the state in the computational basis.
If properly optimized, the success probability improves
with p, eventually reaching the solution [2, 5].

V. VERTEX COLORING PROBLEM

Solving the vertex coloring problem consists in check-
ing if a considered undirected graph, G = (V,E), can
have its vertices colored such that no edge is connect-
ing two vertices with the same color. It is expressed
mathematically in graph theory as the proper mapping
f : V (G) −→ N such that,

∀vi,vj∈V (G),i̸=j∃(ei, ej) =⇒ f(i) ̸= f(j), (5)

where vi is a vertex contained in the vertices set V , and
(ei, ej) is an edge connecting vi and vj .
Note that for any case there are several degenerate

solutions due to all color permutations, and there is a
minimum number of colors needed to meet the vertex col-
oring problem constraints, called the chromatic number,
χ(G). Determining χ(G) is an NP-hard problem because
it means adding a constraint to the cost function that has
to be minimized, instead of verified. An easy-to-solve ex-
ample is a fully connected graph, as χ(G) is equal to the
number of vertices.

A. QUBO formulation and implementation

Consider the undirected graph G = (V,E) and several
different colors c. The number of vertices and edges is
given by w = |V | and m = |E|, respectively. Next, define
the binary variable, xv,i, which is 1 if vertex v is colored
with the color i, and 0 otherwise. So, we find the total
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number of binary variables (qubits), N = w× c, and the
cost function,

H = A

w∑
v=1

(
1−

c∑
i=1

xv,i

)2

+A
∑

(uv)∈E

c∑
i=1

xu,ixv,i, (6)

whose ground state (with energy 0) encodes the degener-
ate solutions of the problem. The first term ensures that
each vertex has only one color assigned, and the second
term penalizes two adjacent vertices xv,i and xu,i (v ̸= u)
with the same color.

The cost function (6) is translated to a quantum
Hamiltonian by mapping each binary variable, xv,i, to

the operator Ẑv,i =
I−σz

v,i

2 , with σz
v,i being the Pauli-Z

operator acting on the v, ith qubit in a Hilbert space of
N qubits. This transformation has eigenvectors |0⟩ and
|1⟩ with eigenvalues 0 and 1, respectively, as desired.

Then for both AQO and QAOA, the initial Hamilto-

nian is B = H0 =
∑N

i=1
Ii−σx

i

2 , in order to have as a
ground and initial state with energy 0 the superposition
of all computational basis states, |s⟩ = 1√

2N

∑
z∈Z(N) |z⟩,

so all the bit strings are examined, because it is an un-
constrained problem.

VI. NUMERICAL RESULTS

In this work, we simulate both algorithms using a clas-
sical computer and extrapolate known data from state-
of-the-art quantum computers to add to our benchmark
metrics. The evolution operator is computed each step of
time, U(t) = e−iH(t)δt, using the open-source program-
ming framework for quantum computersQibo. The clas-
sical optimizer used for the QAOA study is the gradient-
free Powell’s method, and the QAOA parameters β and
γ are random with uniform probability from 0 to their
respective highest possible value, π and 2π.

A. Minimum gap study

As we already know every vertex coloring problem has
D = c! degenerate solutions, which means that finding
the minimum gap in AQO is not straightforward.

In Figure 1 can be seen the energy spectrum of the 2
possible ground states (GSs) and the first excited state
(FES) of the problem Hamiltonian, Hp, and the mini-
mum energy to get excited from GS 0 to the FES, ∆, for
the problem connecting 2 vertices with 2 different col-
ors. As we can see, it would be misleading to consider
that ∆ is equal to the instantaneous energy difference be-
tween the initial state GS 0 and the FES, as it is done in
a non-degenerate problem. Although one indeed starts
with the GS 0, which is also the ground state of H0, it
can get excited to the GS 1 and then to the FES with
less energy than the difference between the GS 0 and the
FES energies, which must be accounted to compute ∆.

FIG. 1: Instantaneous energies of the Hp ground states (GSs)
and first excited state (FES), Ei, (top), and instantaneous gap
energy, ∆, (bottom), evolution during the scheduling time,
s(t). The studied case has w = 2 connected vertices colorable
with c = 2 colors. The colored area is the allowed ∆ for
adiabatic evolution and the dashed vertical line marks where
the minimum gap happens.

B. Simulation and comparison between the AQO
and the QAOA

To analyze the quality of the outcome of our simula-
tions, firstly, we have to define the probability of success,
which, for a degenerate system, is the sum of the final
state overlap with each possible solution,

D∑
s=1

| ⟨ψs|ψf ⟩ |2, (7)

where ψs is a targeted solution that in our case is a state
of the computational basis, and ψf is the final state of
the optimization process either for AQO or QAOA.
With this in mind, we performed 20 Erdős-Rény ran-

dom graphs [12] simulations for both algorithms and sev-
eral cases of v vertices and c colors, using an edge prob-
ability of p = 0.5.
We consider superconducting flux qubits as the hard-

ware implementation from which we draw the data for
our benchmark metrics, as they are a widespread kind
of qubits used for both AQO and QAOA. According to
[13], the energy between the ground state and first ex-
cited state is around ω/2π = 1 GHz which leads to a
time scale in the order of ns for AQO. This might be a
good approximation for an idealized case of no more than
3 or 4 qubits in a real annealer implementation, but for a
larger number of qubits, it actually should be taken into
account the graph topology and embedding, plus all the
interactions that come along. Although in this work we
are considering an idealized case, just to have an idea, ac-
cording to DWave API, it leads to actual annealing times
between 1 and 2000 µs.
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On the one hand, we have to determine the annealing
time for AQO which is mainly ruled by the minimum
gap. Unfortunately, this is not studied because it is not
possible due to computational limitations for the cases
considered. Instead, we compare the solution quality of
the algorithm while increasing the annealing time.

FIG. 2: Failure probability for AQO process depending on
the adiabatic time, T , for several cases of w and c.

In Figure 2 we show how the failure probability for
AQO and different cases diminishes with the increase of
T tending to 0 for all the cases considered. Although it
considerably performs worse with the number of qubits
increase, as expected, and as we can see in the inset it
varies by orders of magnitude.

On the other hand, the time for each QAOA layer is re-
lated to the circuit depth and the time each native gate in
the quantum computer needs to be applied. Each layer
is applied p times (equivalent to one circuit execution)
and the outcome is evaluated nfev times in order to run
the classical optimization (we neglect the classical opti-
mization time).

Note that both the mixer and phase separator need to
be compiled into a set of native gates of the quantum
computer. How optimal is this compilation depends on
whether these gates can be applied in parallel and this,
along with the specific application times of each native
gate, determines the runtime of each layer.

Each term of (6) can be compiled as,

eσ
z⊗σz

=

Rz(θ)

following the Staircase Algorithm, [14]. The CNOT gates
require a much larger implementing time compared with
the rotation, as terms eσ

z

are assigned to gates T , which
their application time can be neglected.

For the mixer Hamiltonian,

e−iσx

= He−iσz

H = HTH,

the gate application time of T can still be neglected, but

FIG. 3: Failure probability for the QAOA depending on the
number of layers (which ranges from 1 to 5) times the number
of function evaluations, p × nfev, for several cases of w and
c. Note that to obtain the total execution time one needs
to define the compilation procedure used, which determines
Tlayer.

the two Hadamards are considerable in comparison with
the CNOT.
In the first term of (6), the only one that will be

hardware costly is the quadratic one, as the other ones
just represent phases and rotations that are negligible in
terms of estimating the runtime. Setting A = 1 without
loss of generality, it can be seen that,(

c∑
i=1

σz
v,i

)2

=

c∑
i,j=1

σz
v,iσ

z
v,j . (8)

The QAOA runtime grows as TQAOA = Tlayer(p ×
nfev), and for the worst-case scenario without paralleliz-
ing any gates in the aforementioned compilation,

TQAOA ≈
[
(w × c2 +m× c)× (2 tCNOT )

+ (w × c)× (2 tH)
]
× (p× nfev)

(9)

where tCNOT is the application time for the CNOT gate,
which is around 20 ns, and tH = 6 ns for the Hadamard
gate, according to [15].
In Figure 3 is shown how the failure probability slowly

decreases for QAOA depending on the number of times a
layer is applied, p×nfev, for different cases. As the num-
ber of qubits increases means worse performance again,
but in comparison with the AQO, for the simplest case
of 8 qubits, QAOA already struggles to reach a 0.5 over-
lap for 5 layers. Even assuming the best-case scenario,
it is clear that the total runtime for QAOA, TQAOA, is
much larger than the time to run the AQO process, T ,
as for all cases, the final convergence value of p× nfev is
already larger than T , without taking into account the
proportionality with the layer time, Tlayer, which is in
the order of at least 100 ns. Just to have an idea of how
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this grows (without optimizing the gates compilation),
for the 8 qubits case, w = 4, c = 2, and considering
approximately m = [(w − 1) × w]/4 as the number of
possible vertices pairs (edges) divided by 2 due to the
0.5 of an edge appears, according to (9) the runtime for
QAOA grows as TQAOA ≈ 976× (p× nfev) ns.

VII. CONCLUSIONS

From the previous results, it is clear that the AQO sig-
nificantly outperforms the QAOA in terms of time and
performance in the idealized conditions considered, even
if a suitable compilation procedure is designed. Despite
both the classical optimizer and the compilation proce-
dure can be more competitive, the AQO schedule can
also be improved. Using the simplest implementation of
both algorithms, the AQO achieves an overlap with the
ground state of over 0.9 at T = 100 ns, for all cases
ranging from 8 to 21 qubits. The QAOA with five layers
can roughly surpass an overlap of 0.5 for 8 qubits with
the performance decreasing below 0.25 as the number of
qubits grows. However, its performance mainly improves
with the number of layers, p, as expected.
Another important feature is that we are not consider-

ing temperature for the adiabatic evolution and the con-
nectivity of the quantum chip. If these phenomena were
taken into account, the AQO on current hardware would
require an embedding process, which is an NP-hard prob-
lem in itself, forcing us to use many more ancillary qubits

and therefore increasing the likelihood of errors. Along
these lines, a more realistic comparison would take into
account the existence of errors, both random and system-
atic, in the application of gates or analog Hamiltonians.
For all these reasons, a future direction for this research

would be to implement both algorithms in actual quan-
tum computers instead of simulating them and bench-
mark the current state of the art of current hardware. By
implementing the algorithms in real quantum hardware
we also expect to be able to perform a scaling analysis of
the time to get a solution for both approaches as more
qubits could be used, as we are limited in the number of
qubits we can simulate with classical computers. Nev-
ertheless, the preliminary simulations of this study are
sound and suggest that for optimization problems the
analog model of computation might have clear advan-
tages over the digital algorithms, in different quantum
computing platforms.
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APPENDIX: Erdős-Rény random graphs
distribution

The error bar in Figures 2 and 3 measure the distribu-
tion of the Erdős-Rény random graphs, because there are
no systematical errors because we are considering ideal
conditions for both cases. In this appendix study, we
perform a simulation and analysis of a particular case
for AQO and a larger number of graphs, specifically 100
random graphs, instead of 20. These simulations are very
time expensive, so this is the reason why just one case is
explored, and this is not applied throughout the whole
work.

FIG. 4: Frequency for 100 hundred Erdős-Rény random
graphs failure probability of logarithmic width boxes in the
x-axis. The case considered is a AQO process of, T = 100 ns
and w = 6 and c = 3.

The frequencies of the failure probability are plotted
in a histogram in Figure 4. This refers to a T = 100
ns case of AQO with w = 6 and c = 3, so it consti-
tutes a 18 qubits problem. We can appreciate that most
colorable graphs are located in the same zone around a
failure probability of 0.1%, which constitute the low and
medium complexity graphs with less edges. Then, there
are a few more graphs of higher failure probability be-
tween 1% and 10% that are expected to contain more
edges, thus it is likely to be more complex. This distri-
bution is due to the probability of 0.5 to create an edge
makes it more likely to find graphs around (w−1)×w/2
edges, but they have to be colorable, so this is lean to
fewer edges as the more edges and complexity, the less
colorable graphs.
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