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Positive feedback induces switch between
distributive and processive phosphorylation
of Hog1

Maximilian Mosbacher1,2, Sung Sik Lee 1,3, Gilad Yaakov 4,8,
Mariona Nadal-Ribelles 4,5, Eulàlia de Nadal 4,5, Frank van Drogen1,
Francesc Posas4,5, Matthias Peter 1 & Manfred Claassen2,6,7,9

Cellular decision making often builds on ultrasensitive MAPK pathways. The
phosphorylationmechanism ofMAP kinase has so far been described as either
distributive or processive, with distributive mechanisms generating ultra-
sensitivity in theoretical analyses. However, the in vivo mechanism of MAP
kinase phosphorylation and its activation dynamics remain unclear. Here, we
characterize the regulation of the MAP kinase Hog1 in Saccharomyces cerevi-
siae via topologically different ODE models, parameterized on multimodal
activation data. Interestingly, our best fitting model switches between dis-
tributive and processive phosphorylation behavior regulated via a positive
feedback loop composedof an affinity and a catalytic component targeting the
MAP kinase-kinase Pbs2. Indeed, we show that Hog1 directly phosphorylates
Pbs2 on serine 248 (S248), that cells expressing a non-phosphorylatable
(S248A) or phosphomimetic (S248E) mutant show behavior that is consistent
with simulations of disruptedor constitutively active affinity feedback and that
Pbs2-S248E shows significantly increased affinity to Hog1 in vitro. Simulations
further suggest that this mixed Hog1 activation mechanism is required for full
sensitivity to stimuli and to ensure robustness to different perturbations.

Pathways integrating extracellular inputs often display an ultra-
sensitive response, in which beyond an input threshold, small changes
in the input lead to large changes in the output. This behavior results in
an essentially binary response, acting as a switch in the overall sig-
naling cascade (Fig. 1a)1. Ultrasensitivity has been experimentally
observed in various signaling systems and plays an important role in
cellular decision-making2. Theoretical studies suggest thatmulti-tiered
multisite phosphorylation cascades are inherently able to create
ultrasensitivity3, with even single multisite phosphorylation resulting

in ultrasensitivity and bistability4. In particular, the specific type of
phosphorylation mechanism can alter signal response dynamics5. For
dual phosphorylation, two distinct mechanisms are recognized
(Fig. 1b). A distributive mechanism involves two consecutive reaction
events, with kinase and substrate dissociating after each phosphor-
ylation step, while for a processive mechanism, two phosphorylation
reactions are induced in a single concerted reaction event5. Dual
phosphorylation is a particularly widespread mechanism involved in
activating mitogen-activated protein (MAP) kinases, which regulate
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the cellular responses to many intra- and extracellular signals. How-
ever, investigating the impact of different phosphorylation mechan-
isms is challenging and normally relies on mathematical models
integrating typically difficult-to-measure temporal dynamics of spe-
cific protein species. The majority of theoretical studies have reduced
to a dichotomyof assumptions - either distributive or processive - with
distributive mechanisms associated with ultrasensitivity and proces-
sive mechanisms with a graded, non-ultrasensitive response6. Thus, to
date, theoretical studies generally suggest that ultrasensitive kinase
phosphorylation events in vivo should be governed by a distributive
phosphorylation mechanism3,7, and some experimental data from
mammalian cells support this hypothesis8,9. However, in more com-
plex cases of multisite phosphorylation with more than two phospho-
sites, behaviors have been observed that are not well explained by
either a processive or distributive mechanism10. Some of these multi-
site phosphorylation events involve different kinases with distinct
kinetic properties, which may complicate the analysis11. Altogether,
understanding phosphorylation mechanisms governing ultrasensitive
responses has proven particularly challenging in cases of multisite
phosphorylation and the presence of positive feedback12,13. Additional
studies are required to understand the degree to which different
mechanisms interact, as well as the theoretical potential and experi-
mental validation of a mixed phosphorylation mechanism.

To address these questions, we choose to investigate the
mechanisms conferring ultrasensitivity in the High Osmolarity Glycerol
(HOG) pathway in Saccharomyces cerevisiae, a well-studied MAP-kinase
pathway which requires dual phosphorylation of the MAP kinase Hog1.
Hog1 activation is needed to re-establish the balance between internal
and external pressures upon osmotic shock. Upon exposure of cells to
high osmolarity conditions, the twomembrane-localized osmo-sensors
Sho1 and Sln1 activate either the MAPKKKs Ste11 or Ssk2 and Ssk22,

which converge on the MAPKK Pbs2 (Fig. 1c). Activated Sho1 recruits
Pbs2, which acts both as a MAPKK to phosphorylate the MAP kinase
Hog1 and as a scaffold recruiting other upstream kinases including its
own activator Ste11. Additionally, Ste50 triggers full Ste11 activation by
recruiting various co-stimulators to the cell membrane14,15. The partially
redundant Sln1 branch uses a histidine phospho-relay system, which
inhibits the kinase Ssk2 in the absence of osmotic stress through the
intermediate histidine phosphate transfer protein Ypd116. Upon Sln1
inactivation in response to osmotic stress, Ssk1 induces the auto-
phosphorylation of the MAPKKKs Ssk2 and Ssk22. Like Ste11, these
interact and phosphorylate Pbs2, which in turn doubly phosphorylates
Hog1, leading to its rapid translocation into the nucleus to launch a
transcriptional program. In addition to altered gene expression, parti-
cularly induction of Gpd117, Hog1-mediated cytoplasmic changes such
as the closure of water channels are of great importance to rapidly
reestablish osmotic balance18. Dephosphorylation and inactivation of
Hog1 is carried out by an array of phosphatases that includes the tyr-
osine phosphatases Ptp2 and Ptp3 in the nucleus and cytoplasm
respectively, and the Ser/Thr phosphatases Ptc1 and Ptc2/319–24.

The HOG pathway has previously been used to study MAPK cas-
cades as the topology andmolecular functions of its components have
largely been established25. Hog1 activation can be measured by a
variety of methodologies including western blot26, fluorescence
microscopy27,28 and mass spectrometry29,30. Taking advantage of such
data sets, previous studies established mechanistic models of the
whole HOG pathway31 or the role of different sub-branches in
homeostasis32, and analyzed the impact of upstreamphosphorylation33

or glycerol accumulation34 on pathway adaptation. However, experi-
mental data and modeling approaches mechanistically describing
Hog1 dual phosphorylation and the relevance of feedback loops for
Hog1 activation are still scarce.

Fig. 1 | Generation of an overcomplete model of the Hog1 pathway and para-
meter optimization. a A Hill function quantifies input-output behavior as highly
ultrasensitive (black line, Hill coefficient = 10), mildly ultrasensitive (green line, Hill
coefficient = 3), or strictly Michaelian (red line, Hill coefficient = 1). EC50 value
(dashed line) indicates the input strength at which 50% of the maximal output is
reached.bThe choiceofHog1 phosphorylationmechanismhas a significant impact
on the resulting input-output behavior and can be mainly processive or dis-
tributive. For the processive mechanism, the second phosphorylation step imme-
diately follows the first without Hog1 disassociating from Pbs2. For the distributive
mechanism Hog1 disassociates from Pbs2 after every phosphorylation step and
needs to re-bind for further phosphorylation to take place. c Simplified scheme of

the workflow to distinguish between different Hog1 phosphorylation mechanisms.
The overcomplete ODE model allows enumeration of varying model topologies
that differ in negative and positive feedback mechanisms, and Hog1 phosphoryla-
tionmechanism (such asdescribed in Fig. 1b).Multimodal datawere collected from
literature or was newly self-generated, including fluorescence microscopy, mass
spectrometry andwesternblot experiments. Thedata reflects various experimental
conditions such as different salt concentrations and pulse frequencies, deletion
mutants and kinase inhibition. Data sets were used to optimize the different sub-
models parameter values of the overcomplete model, thus giving rise to refined
models from which the best fitting was selected.
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In this study,we examined themolecularmechanisms responsible
for ultrasensitivity in the HOG pathway. We used an integrative mod-
eling approach taking advantage of various data sources and experi-
mental parameters to compare Hog1 activity and its phosphorylation
status under multiple environmental conditions such as varying salt
concentrations and salt pulses, and different genetic mutations that
specifically perturbHog1 activation kinetics. Interestingly, our findings
support amixeddistributive and processive phosphorylationmodel as
the best fit for the observed experimental behavior, with a critical
positive feedback loop targeting the MAPKK Pbs2.

Results
Constructionof aHOGpathwayODEmodel comprising putative
negative and positive feedback, with different mechanisms of
Hog1 activation by double phosphorylation
To understand the molecular mechanism responsible for ultra-
sensitivity in theHOGpathway (Fig. 1a),we examinedwhether theMAP
kinase Hog1 is activated by a distributive or processive phosphoryla-
tion mechanism (Fig. 1b). When a basic, three-tiered MAPK module
without additional feedback mechanisms is fitted on MAPK activity
input-output data ranging from graded to ultrasensitive with uncon-
strained parameter ranges, we found that parameter sets could be
identified that recapitulate the bi-stable behavior irrespective of the
phosphorylation mechanism used (Supp Fig. S1). We thus constructed
an overcomplete, deterministic model based on ordinary differential
equations (ODEs) for the ultrasensitive, osmostress-induced Hog1
phosphorylation that allowed evaluating various submodel topologies
differing in Hog1 phosphorylation and feedback mechanisms (Fig. 1c).
Taking advantage of previous studies28, we started from a set of
reactions termed the cell volume module. The module links intracel-
lular glycerol concentration, which includes retention and production
of glycerol, to pressure parameters, describing external osmotic
pressure and internal turgor pressure, which in turn determine cellular
volume changes (Fig. 1c, description in Supp Table S7). Downstream
effector mechanisms that lead to increased glycerol production and
volume adaptation were simplified compared to previous modeling
approaches31 to reduce complexity in areas of the model that are not
relevant to explain ultrasensitivity. Themodel considers both Sho1 and
Sln1 branches of the HOG pathway, and the shuttling of Hog1 between
a cytosolic and a nuclear compartment. Moreover, it takes into
account known and putative feedback regulation, including Hog1-
mediated phosphorylation of the upstream components Sln1, Ssk1,
Ssk2 and the scaffolding kinase Pbs235. Importantly, themodel includes
both mono- and bi-phosphorylated species of Hog1, and thus allows
distinguishing processive and distributive mechanisms for Hog1 acti-
vation. In theprocessivemodel, the secondHog1phosphorylation step
immediately follows the first without Hog1 dissociating from its scaf-
fold Pbs2, while in the distributive activation model Hog1 detaches
fromPbs2after thefirstphosphorylation step and thus needs to rebind
to allow the formation of the doubly phosphorylated, active species
(Fig. 1b, Supp Box 1). Phosphatases responsible for Hog1 depho-
sphorylation (Ptp2, Ptp3, Ptc1, and Ptc2/3) and their mechanisms were
implemented19–24 to account for their possible impact on Hog1 acti-
vation kinetics. The resulting model thus not only provides a detailed
representation of the topology and assembly intermediates upstream
of Hog1, but also accounts for different Hog1 activation mechanisms
and for positive and negative feedback regulation.

Multimodal data integration and model selection favor dis-
tributive over processive mechanism of Hog1 phosphorylation
modulated by both positive and negative feedback loops
To infer topology and parameters of the reaction model, we con-
sidered experimental data from multiple literature sources, as well as
own measurements in wild-type and mutant strains exposed to step-
wise increase of NaCl of varying concentrations (Fig. 1c). The data

includepopulation- and single-cellmeasurements directly or indirectly
reporting on Hog1 activity at different time points after stimulation
(see Supp Tables S1 and S2 for a list and description of considered
datasets). For example, mass spectrometry measurements inform
about relative changes in double phosphorylated Hog1 within the first
60 s of the signaling response as well as at later time points29,30. These
data were complemented by western blot measurements with anti-
bodies recognizing doubly phosphorylated Hog1 with conditions
including strains lacking different upstream components or the Ptp2
and Ptp3 phosphatases, as well as inhibition of Hog1 activity by small
molecule inhibitors20,26,36. Moreover, Hog1 activity correlates with its
nuclear translocation, which can be quantified by fluorescence
microscopy in single cells27. Using a microfluidic platform, we per-
formed extensive Hog1 activity measurements in wild-type and pbs2Δ
cells exposed to various NaCl concentrations and NaCl ramping per-
turbations. Finally, the volume module was independently para-
meterizedwith cell areameasurements upon various salt treatments of
wild-type and pbs2Δ cells. The latter provides information on Hog1
independent mechanisms that lead to volume adaptation that are also
considered in the model (Supp Fig. S2).

We used 533 data points across the different conditions and
perturbations to estimate the relevant model parameters. We enum-
erated eight models with distinct topologies varying in Hog1 phos-
phorylation mechanism and absence or presence of positive and
negative feedback loops (Fig. 2a). Between 63 and 86 parameters were
undetermined in the considered models and thus fitted via likelihood
optimization (see Method section for details).

We first aimed to determine the mechanism of Hog1 activation
and evaluate the importance of positive and negative feedback loops.
Thus, we performed parameter optimization followed by selection of
model variants comprising all combinations of distributive or pro-
cessive mechanisms of Hog1 phosphorylation, and the presence or
absence of positive and negative feedback regulation. The Akaike
Information Criterion (AIC) was used to compare and rank the results
(Fig. 2a, Supp Box 2). In general, an AIC difference between two
competing models of greater than ten is considered highly
significant37. The overall best fit was achieved with distributive Hog1
phosphorylation and positive and negative feedbackmechanisms, and
the AIC difference was significant compared to a processive mechan-
ism. Accordingly, we defined a refined model (Fig. 2b). The AIC dif-
ference between models utilizing distributive or processive
mechanism was most readily apparent in cells deleted for Ptp2 and
Ptp3 (Fig. 2c). In this case the processive model was unable to reca-
pitulate the full increase in basal signaling as well as the complete
activation upon salt stress.

On theother hand, certain temporal patterns such as thedynamics
of double phosphorylatedHog1 inwild-type cells in the first 60 s of salt
stress, were better approximated by a model employing a processive
phosphorylation mechanism (Fig. 2d). This observation suggests that
properties such as the regulation of basal activation levels and main-
tenance of the full range of activation need a more distributive Hog1
phosphorylationmechanism,whereas certain dynamic properties such
as the aforementioned rapid double phosphorylation of Hog1 could
more easily be achieved by a processive mechanism.

Simulations of mono-phosphorylated Hog1 dynamics revealed
significant qualitative differences upon simulation with different
phosphorylation mechanisms. Simulations with a distributive phos-
phorylation mechanism resulted in a temporal profile marked by a
double peak, with a first activity peak during the initial minutes and a
second, lower increase towards the end of the response (Fig. 2e). In
contrast the processive model simulation displayed monopho-
sphorylated Hog1 dynamics with a single peak reminiscent of the
behavior of doubly phosphorylated Hog1. Importantly, comparison
with an experimental test data set of monophosphorylated Hog1 cor-
roborated the distributive nature of the reaction (Fig. 2e).
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A mixed phosphorylation mechanism best explains Hog1 acti-
vation kinetics by integrating favorable dynamic properties of
both distributive and processive mechanisms
While distributive Hog1 activation leads to a significantly better
goodness-of-fit, the processive mechanism better recapitulates some
data such as speed and degree of double phosphorylated Hog1 accu-
mulation. Thus, we next evaluated a mixed phosphorylation mechan-
ism that incorporates characteristics from both the processive and
distributive mechanisms. This mixed mechanism allows for both pro-
cessive double phosphorylation anddistributive dissociation ofmono-
phosphorylated species (Fig. 3a; Box 1). Thus, mono-phosphorylated
Hog1 has a certain propensity, defined by the kinetic rate constant, to
remain Pbs2 bound and immediately undergo a second phosphoryla-
tion step, in which case we observe processive characteristics.

Alternatively, mono-phosphorylated Hog1 can dissociate from Pbs2
resembling a distributive mechanism. To assess whether such a mixed
model would indeed recapitulate the above-mentioned temporal
patterns of Hog1 activation, we repeated the parameter optimization
procedure by including mass spectrometry data sets of monopho-
sphorylated Hog1, the results of which we defined as best-fitting
models29,30 (Supp Fig. S3). Interestingly, AIC measurements revealed
that the optimized model employing a mixed phosphorylation
mechanism showed significantly better goodness-of-fit compared to
either the distributive or processive variants, with all models incor-
porating positive and negative feedback (Fig. 3b).

We simulated the best fitting distributive, processive or mixed
models to predict Hog1 activation upon a linear ramping increase of
NaCl concentration, comparing simulation output to an independent

Fig. 2 | Refined model employs negative and positive feedback and favors a
distributive over a processive phosphorylation mechanism. a Eight different
topologies were enumerated with different combinations of negative feedback
(orange), positive feedback (green) and distributive (blue) or processive (red)Hog1
phosphorylation mechanism. Akaike Information Criterion (AIC) of the best model
fits are displayed. b Scheme of refined model (according to pipeline described in
Fig. 1c) with topology one. Negative feedback on Ssk2 and positive feedback on
Pbs2 are indicated in orange and green respectively. The distributive phosphor-
ylation mechanism of Hog1 by Pbs2 is visualized in blue. Simulations of selected
species of the two best-fitting models employing distributive or processive Hog1
phosphorylation (Topology Nr 1 and 2) are shown in response to salt stimulation
(0.4M NaCl). Graphs show experimental data points used for parameter optimi-
zation (red square), experimental data points used for testing (blue square),
simulation results from the best-fitting distributive mechanism (blue) and

simulationdata from thebest-fittingprocessivemechanisms (red). cTimecourse of
the total phosphorylationof Hog1 in percent (%) in a Ptp2/3 deleted condition. Data
by Jacoby et al. are presented as quantified values ± computational estimate of SEM
of n = 1 independent experiment20. d Time course of the relative ratio between
stimulated and basal levels of dual phosphorylated Hog1 in wild type (WT) cells
exposed to 0.4M NaCl. Data by Kanshin et al. are presented as values of peptide
fold change± computational estimate of SEM of n = 1 independent experiment30.
e Time course of relative ratio between stimulated and basal levels of mono-
phosphorylated Hog1-P176 in a WT cells exposed to 0.4M NaCl. Data for the first
60 s by Kanshin et al. are presented as values of peptide fold change and data by
Vaga et al are presented asmean valuesof peptide fold change± standarddeviation
of n = 3 independent experiments29,30. Data were not used for fitting. Note that the
processivemechanismdoes not show the double peak in the data, characteristic of
the distributive mechanism. Source data are provided as a Source Data file.
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data set not used for parameter optimization (Fig. 3c). Monitoring
Hog1 nuclear translocation dynamics to approximate Hog1 activation,
the processive mechanism leads to premature Hog1 translocation and
displays an inappropriate oscillating behavior, while the distributive
mechanism results in a delay of Hog1 translocation. Only the mixed
model was able to fine-tune the Hog1 nuclear translocation kinetics
with an appropriately rapid yet stable response.

Indeed, the processive mechanism produces simulations with
premature accumulation of activated Hog1 manifested by the
appearance of doubly phosphorylated Hog1 in the first 60 s after salt
addition (Fig. 3d). We assume that this behavior addresses the need to
compensate direct mono-phosphorylation by employing faster accu-
mulation of double phosphorylated Hog1 that can then undergo
dephosphorylation to generate the pool of mono-phosphorylated
species. Case in point, the simulated accumulation of mono-
phosphorylated Hog1 by the processive model was slower and not as
high as expected from experimental data (Fig. 3e). On the other hand,
the distributive model resulted in faster accumulation of mono-
phosphorylated species than measured experimentally and its decay
began earlier than expected (Fig. 3e). However, the mixed phosphor-
ylation mechanism shows a significantly better fit and is situated
between the two extreme cases, and thus as predicted compensates
for both premature accumulation and decay observed with dis-
tributive Hog1 activation and the delay of the processive mechanism
(Fig. 3d, e). Upon fitting Hill functions to our simulated input-output

curves, we observed that increase in processivity led to lower EC50
values, with the mixed mechanism achieving a lower value than a
distributive and a processive mechanism. We also quantified ultra-
sensitivity using the Hill coefficient (Fig. 3f). Interestingly, the pro-
cessive mechanism resulted in the highest Hill coefficient, while as
expected, the mixed mechanism showed lower ultrasensitivity than
the distributive mechanism.

We further considered physiological parameter boundaries more
closely reflecting known parameter values of general yeast kinases and
phosphatases. Within these boundaries the mixed phosphorylation
mechanism resulted in an even more significant difference in AIC
compared with the extreme mechanisms (Fig. 3b). For example, with
physiological parameter boundaries, the processive mechanism was
once again unable to recapitulate the double peak behavior of mono-
phosphorylated Hog1 and experimental data specific to the Sho1 sub-
branch of the pathway (Supp Fig. S4).

Hog1-dependent positive feedback increases processivity of the
Hog1 phosphorylation reaction
Next, we investigated in more depth the mechanism, effects and
potential targets of the positive feedback, and their relationship to the
mixed mechanism of Hog1 phosphorylation. Indeed, phosphopro-
teomic measurements revealed that eight out of eleven components
involved in the Hog1 pathway undergo phosphorylation upon
salt exposure29. We focused on putative feedback loops that

Fig. 3 | Temporal dynamics ofmonophosphorylatedHog1 supportmodelswith
partially distributive phosphorylation. a A mixed phosphorylation mechanism
generates a phosphorylation reaction with both distributive and processive char-
acter.bAkaike information criterion (AIC) of the best fits after the optimization and
fitting with unconstrained parameter values or stricter boundaries that approx-
imate physiological conditions (see Supp Fig. S4). Note, that in contrast to the
refinedmodel of Fig. 2b, data frommono-phosphorylatedHog1 specieswas used in
the fitting and the resulting fit thus the best fitting model on all data. Simulations
are shown of selected Hog1 species from the three best fitting models in which all
models incorporate positive and negative feedback in wild-type cells (WT). Graphs
show experimental data points used for parameter optimization (red square) and
testing (blue square), aswell as simulation results from the best fittingmixed (black
line), processive (red line) or distributive (blue line) Hog1 phosphorylation
mechanism in response to salt stimulation. c Time course of Hog1 nuclear to

cytosolic ratio in cells exposed to linear ramping up to 0.2M NaCl. Data are pre-
sented as mean values ± standard deviation of n = 95 cells over 2 independent
experiments. Note that the experimental data (blue squares) was not used in the
fitting procedure. Time course following salt stimulation (0.4M NaCl) of mono-
phosphorylatedHog1-P176 (d) and dual phosphorylatedHog1-PP (e) expressed as a
relative ratio between stimulated and basal levels. Data by Kanshin et al are pre-
sented as values of peptide fold change ± computational estimate of SEM of n = 1
independent experiment30. f Fit of a Hill function to the simulated input–output
curves of the best fitting mixed (black line), processive (red line) or distributive
(blue line)Hog1 phosphorylationmechanismwith aHill coefficient of 2.39, 3.03and
2.77, respectively. EC50 values of 0.11M, 0.13M, and 0.15M for processive, mixed,
anddistributivemechanism respectively, are indicatedbydashed lines. Sourcedata
are provided as a Source Data file.
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phosphorylate targets upstream of Hog1. In the Sln1 sub-branch, the
data suggests that Ssk1 and Ssk2 are potential Hog1 substrates,while in
the Sho1 sub-branch Hog1 phosphorylates Ste50 and Ste20. However,
phosphorylation of Ssk235 and Ste5038 interfere with Hog1 activation,
making them unlikely physiological candidates. Moreover, positive
feedbackmust target both sub-branches simultaneously to explain the
experimental data. Only Hog1-dependent phosphorylation of Pbs2
would fulfill this requirement, as Pbs2 integrates the information of
both sub-branches (Fig. 4a). Alternatively, we considered Ste20 and
either Sln1 or Ssk1 as potential targets of positive feedback. However, a
mixed model that incorporates positive feedback of Hog1 on
Pbs2 showed significantly better results than topologies in which Hog1
targets Sln1 and Ste20 or Ssk1 and Ste20 (Fig. 4b).

Positive feedbackmediated via Pbs2 has twodistinct components.
First, it affects the kinetic rates of Hog1 phosphorylation, which we
refer to as catalytic feedback, and second, it controls the affinity of the
Hog1-Pbs2 association, an effect we refer to as affinity feedback
(Fig. 4c). Importantly, this two-component feedbackmechanism leads
to significantly better fitting results compared to a single component
catalytic feedbackmodel, and suggest that small changes inHog1-Pbs2
association of the affinity feedback are important to explain the data
(Supp Fig. S5). In part due to this dichotomy the positive feedback has
two interesting effects. Firstly, it increases the number of Hog1 phos-
phorylation events per unit of time, as expected for positive feedback.

Secondly, it also leads to increased processivity of the Hog1 phos-
phorylation reaction by enhancing the speed of the second Hog1
phosphorylation reaction via the changes in the Hog1-Pbs2 affinity,
with comparatively minor effects on the first phosphorylation reac-
tion. Processivity in the mixed Hog1 activation model is formally
defined by the ratio between the rate of the second phosphorylation
step and the rate of dissociation ofmono-phosphorylated Hog1 bound
to activated Pbs2. To assess processivity over the course of the
response we introduced a processivity score (see Method section),
which quantifies the rate of an immediate second phosphorylation
step compared to dissociation of the Hog1-Pbs2 complex. Interest-
ingly, the simulations showed that in the best fitting model with
positive feedback on Pbs2, this score is low before and after the
response to salt stimulation and theHog1 phosphorylationmechanism
displays a behavior mimicking a distributive mechanism (Fig. 4d). The
onset of positive feedback activity during the response leads to a sig-
nificant increase in the score, meaning the reaction becomes highly
processive. In comparison, the best-fitting result of the model target-
ing Sln1 does not result in significant changes of processivity. The Ssk1
model displayed increased processivity along the course of the reac-
tion but the basal level of processivity was orders of magnitude higher
than the better-fitting model targeting Pbs2.

Taken together, these results indicate that a mixed Hog1 phos-
phorylation mechanism enables a switch from amore distributive to a

Fig. 4 | Two-component positive feedback to Pbs2 gives best goodness of fit
and results in increaseofprocessivity. aSchematicof threemodelswithpotential
targets for positive feedback upstream of Hog1, showing the positive feedback
highlighted in red for models where activated Hog1 phosphorylates either Pbs2
(left), Sln1 and Sho1 (middle), or Ssk1 or Sho1 (right). bAkaike information criterion
(AIC) was used to order optimized models with the indicated positive feedback
targets, in which all models include negative feedback and a mixed Hog1 phos-
phorylationmechanism. Positive feedback targeting Pbs2 achieves best AIC among
other putative targets. c Positive feedback of activated Hog1 to Pbs2 results in an

increase of the kinetic rate constant for the activation of Hog1 (catalytic feedback)
and an increase in the association ofHog1 to Pbs2 (affinity feedback).dTime course
upon salt stimulation showing a processivity score that quantifies the ratio between
the rate of the second Hog1 phosphorylation step and its dissociation from Pbs2. A
low processivity score indicates distributive-like phosphorylation, while a high
processivity score indicates a processive-like mechanism. Note that before starting
the reaction the processivity score is low, but the onset of Hog1 signaling intro-
ducespositive feedback (t =0),which increases the scoreuntil the reactionbehaves
like a processive mechanism.
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more processive activation mechanism. Importantly, this switch is
most likely regulated by affinity feedback at the level of Pbs2,
increasing Hog1-Pbs2 association.

Pbs2-S248 is phosphorylated by Hog1 in vitro and S248mutants
affect the affinity feedback of Hog1 activation
Next, we attempted to determine the target of the positive feedback
and to find out what effect its disruption might have on the two
putative effects, the change in Hog1 processivity and the significant
increase in reaction speed. Pbs2 has a number of phosphorylation sites
that could act as potential sites of regulation, including S248 which is
phosphorylated in response to high osmolarity29,30. Importantly, this
serine is followed by a proline residue and thus conforms to the
minimal MAPK consensus motif (S/TP). Using autoradiography, we
could indeed establish that Pbs2 is directly phosphorylated on Ser248
by activated Hog1 in vitro (Fig. 5a, Supp Fig. S6).

To exclude that phosphorylation of Pbs2 on S248 by Hog1 is
essential for Pbs2 activity, we stably integratedwild-type Pbs2or a non-
phosphorylatable Pbs2-S248A mutant in a pbs2Δ strain (yHS206). In
contrast to pbs2Δ controls, both strains were able to grow on plates
containing 0.4M NaCl, indicating that Hog1-dependent feedback on
S248 is not essential for viability under these conditions (Supp Fig. S7).
We then used simulations and kinetic experiments to validate that
Pbs2-S248 phosphorylation is at least in part responsible for the
positive feedback of Hog1 on Pbs2 suggested in the mixed model.
Interestingly, maximal levels of doubly phosphorylated Hog1 were
slightly or strongly reduced, respectively, when simulating Hog1 acti-
vation time courses upon salt treatment using the best-fitting mixed
model with either the affinity or catalytic component of the positive
feedback disrupted (Fig. 5b). Quantifying Hog1-RFP localization in salt-
treated pbs2-S248A cells monitored in microfluidic devices revealed
that its nuclear to cytoplasmic ratio was only slightly lower compared
to WT controls (Fig. 5c), consistent with simulations in which Hog1-
Pbs2 affinity feedback is disabled. While the effect on maximal Hog1
activity seems small, the difference is significant as highlighted by
plotting thedifferenceof themeanand standarderror between theWT
and the Pbs2-S248A mutant. The lower panel shows the difference of
the mean of ΔPbs2WT and ΔPbs2S248A and the standard error of the
mean. Conversely, we also investigated Hog1 activation dynamics in
the case of constitutive activation of the affinity feedback, mimicked
by a phosphomimetic Pbs2-S248Emutant. Corresponding simulations
predict a minimal reduction of the peak level of doubly phosphory-
lated Hog1 but higher basal levels after the response compared to WT
controls (Fig. 5d). Indeed, the nuclear to cytosolic ratio of Hog1-RFP in
the Pbs2-S248E mutant strain confirmed higher basal levels of Hog1
activity after salt response (Fig. 5e), consistent with simulations in
which Hog1-Pbs2 affinity feedback is constitutive. To further corro-
borate this microscopy analysis, we also assessed Hog1 double phos-
phorylation after addition of 0.4M NaCl by immunoblotting in wild-
type and Pbs2-S248A and Pbs2-S248E mutant strains, respectively
(Fig. 5f, Supp Fig. S8). As expected, Hog1 double phosphorylation was
slightlydiminished after 10min in Pbs2-S248Amutant cells,while basal
activation levels remained slightly higher in Pbs2-S248E cells during
salt adaptation (Fig. 5g).

Finally, to directly assess the impact of Hog1-dependent feedback
phosphorylation of Pbs2-S248 on the processivity of the reaction, we
performed pull-down assays tomonitor the affinity between Hog1 and
Pbs2-S248 mutants (Fig. 5h, Supp Fig. S9). Consistent with our pre-
dicted increase in processivity upon phosphorylation, phosphomi-
metic Pbs2-S248E showed significantly increased binding to Hog1
compared to WT Pbs2.

Taken together, although as predicted by the in silico simulations
the effect of disrupting this affinity feedback for Hog1 activation
dynamics is modest, both population and kinetic single-cell measure-
ments, as well as affinity measurements via pull-down assays confirm

that phosphorylation of Pbs2 on serine 248 is involved in switching
Hog1 activation from a distributive to a processive mechanism.

Mixed mechanism conveys robustness to protein-level
fluctuations
Wenextmore thoroughly evaluated robustness of the newly described
Hog1 activation mechanism. Robustness is of particular importance in
the case of Hog1 phosphorylation since its hyperactivation leads to
severe growth defects, observed for example upon overexpression of
Pbs239. Indeed, 10x in silico overexpression of Pbs2 revealed that Hog1
was almost fully doubly phosphorylated and thus hyperactivated in the
best fitting distributive and mixed models (Supp Fig. S10A). In con-
trast, overexpression of Pbs2 in the processive model prevented
double phosphorylation of Hog1 (Supp Fig. S10B).

We can visualize the robustness of the response by analyzing
potential differences in the population distribution ofmaximal Hog1
activity asmeasured for individual cells at a specific time point. Supp
Fig. S11 illustrates how such differences in distribution manifest
themselves via a hypothetical example, which ultimately can be
assessed by so-called quantile shift functions (see Methods for
details). Using this approach, we looked at the distribution of max-
imal Hog1 activation as the result of a response to 0.4M NaCl mea-
sured in single cells via ratio of nuclear to cytosolic Hog1
fluorescence. Surprisingly, the distribution shows small but sig-
nificant differences between wild type and Pbs2-S248 mutant cells
with an increase of cells showing only intermediate activation
(Fig. 6a). The statistical significance was determined and visualized
using the well-established quantile shift function that captures the
degree and location of the difference of two distributions by pro-
viding the quantile differences plotted against the quantile of the
wild type distribution (Fig. 6a, Supp Fig. S12A)40.

To corroborate these results, we conducted in silico experi-
ments in which expression levels of proteins in the Sln1 sub-branch
and phosphatases (Sln1, Ssk1, Ssk2, Ste20, Pbs2, Ptp2, and Ptp3)
were varied between half to twice their original concentration,
mimicking the natural fluctuations of protein expression in single
cells and providing a distribution of Hog1 activation. We performed
2000 simulations of a single-step addition of 0.4M NaCl and noted
the resulting maximal Hog1 double phosphorylation. This was car-
ried out for wild-type cells with functioning feedback loops and
repeated for a model in which the affinity feedback on Pbs2 was
abolished. Consistent with the experimental results, loss of affinity
feedback in the Pbs2-S248A mutant showed an increase in bimod-
ality with a higher proportion of the cell population showing inter-
mediate Hog1 activation between 20 and 60 percent Hog1 double
phosphorylation, the significance of which was again quantified and
visualized using a quantile shift function (Fig. 6b).

The absence of the affinity feedback reduces the processivity of
the reaction making it more distributive. To generalize this behavior,
we also simulated maximal Hog1 double phosphorylation upon 500
randomized perturbation schemes for the previously described best-
fitting distributive, processive and mixed models. With no perturba-
tion (0M) or low NaCl concentrations (0.1M), the processive
mechanism resulted in slightly bimodaldistributionswith 2.4 times the
number of perturbations generating complete activation (>70% Hog1
double phosphorylation) than themixedmechanism, and themajority
showing no activation. The distributive mechanism led to an accu-
mulation of activation at an intermediate level (20%), while the mixed
model distributed more around the unperturbed activation level
(Fig. 6c, d). At higher levels of NaCl input (0.3M), the processive
mechanism failed to reach the maximal level of activation and dis-
played a disproportionate number of simulations that led to only very
minimal activation. The distributive mechanism on the other hand,
shows a more uniform distribution between 30 and 90% Hog1 activa-
tion. Strikingly, however, only the mixed mechanism predicted low
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basal levels of Hog1 activity, with reliable rapid and high activation
upon exposure to the different NaCl conditions (Fig. 6e).

We thus conclude that the mixed Hog1 activation mechanism
displays a unique and favorable system’s behavior that leads to
increased robustness in the input-output relations, leading to
decreased sensitivity of its output to initial intracellular conditions.
This behavior is at least partially distinct from positive feedback that
increases the overall reaction speed.

Discussion
Effective processing of external information via subsequent intracel-
lular response is of vital importance for every cell. From a systems-
engineering perspective, it is desirable for this process to be robust
towards external and internal state fluctuations. Similarly, the actual
input threshold to induce a cellular response should be carefully
chosen to avoid unnecessary energy expenditure. In the S. cerevisiae
HOG pathway, Hog1 is activated by dual phosphorylation and thus the

Fig. 5 | Pbs2-S248 is phosphorylated by Hog1 in vitro and affects affinity feed-
back of Hog1 activation in vivo. a Pbs2 is phosphorylated in vitro by Hog1 at
Ser248. Recombinant catalytically inactive GST-Pbs2 K/M proteins were purified
from E. coli and incubatedwithGST-Hog1purified fromNaCl treatedwild type yeast
(where indicated) in kinase buffer containing ATP. Pbs2 K/M or Pbs2 K/MS248A was
then added in the presence of radioactive ATP. Phosphorylated proteins were
resolved by SDS–PAGE, stained (lower panel) and dried before detection by auto-
radiography (upper panel). b Simulated time lapse of the double phosphorylation
of Hog1 upon addition of 0.4M NaCl after 500 s. The dynamics simulated by the
best fitting model with mixed phosphorylation mechanism (black line) were
declared as wild type and compared to the simulated time course by the same
model with either the affinity component (blue line) or the catalytic component
(yellow line) of the positive feedback on Pbs2 abolished. c Data are presented as
mean Hog1 nuclear to cytosolic ratio ± SEM of a ΔPbs2WT strain (black line) with
n = 4620 cells over three independent experiments and a ΔPbs2S248A strain (blue
line) with n = 5103 cells over three independent experiments upon addition of
0.4M NaCl at time point 0. The lower panel shows the difference of the mean of
ΔPbs2WT and ΔPbs2S248A and the standard error of themean. d Simulated time lapse

of the double phosphorylation of Hog1 upon addition of 0.4MNaCl at timepoint 0.
The dynamics simulated by the best fitting model with mixed phosphorylation
mechanism (black line) were declared as wild type and compared to the simulated
time course by the samemodelwith the affinity component constitutively activated
(red line). e Data are presented as mean Hog1 nuclear to cytosolic ratio ± SEM of a
ΔPbs2WT strain (black line) with n = 3279 cells over three independent experiments
and a ΔPbs2S248E strain (red line) with n = 1158 over three independent experiments
upon addition of 0.4M NaCl at timepoint 0. Lower panel shows the difference of
the mean of ΔPbs2WT and ΔPbs2S248E and the standard error of the mean. f Hog1
phosphorylation was assessed by western blot using extracts prepared from the
indicated strains exposed to 0.4M NaCl after 0, 10, and 15min. Data are presented
as mean values ± standard deviation with n = 3 independent experiments. g Hog1-
HIS was purified from E. coli and retained in HIS beads followed by incubation with
NaCl-stressed yeast extracts carrying Pbs2 (WT), Pbs2 S248A (A), Pbs2 S248E (E) or
pbs2Δ (Δ) in a hog1Δ background (10min 0.4M NaCl). Pbs2-Hog1 interaction was
monitored via Western Blot. h Data are presented as mean of fold changemutants
respect toWT (S248)whichwas set to 1 as a reference± standarddeviation of seven
independent experiments. Source data are provided as a Source Data file.
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choice and kinetics of this phosphorylation mechanism can greatly
affect signaling dynamics. A multitude of previous, mostly theoretical,
work has focused on the extreme cases of distributive or processive
mechanisms. Interestingly, however, our combined experimental and
modeling analysis revealed that a mixed control mechanism regulated
by positive feedback best explains the observed phosphorylation and
signaling dynamics.

Previous theoretical analyses of a simple three-tiered MAPK cas-
cade predicted that such a mixed mechanism may enhance the tun-
ability of the response41. In particular, increased processivity can
enhance the sensitivity to the external signal and lower ultrasensitivity.
Indeed, increasingprocessivity diminishedEC50values,with themixed
mechanism achieving a lower value than distributive and processive
mechanisms (Fig. 3f). Moreover, measurements of the Hill coefficient
confirmed that the mixed mechanism showed lower ultrasensitivity
than distributive Hog1 activation. This is probably due to the proces-
sivemechanismplateauing earlierwith a lowermaximal activation than
the two other mechanisms. This would indicate that while a processive
mechanism can guarantee ultrasensitivity, the range of dynamics is
lower than what can be achieved by a distributive mechanism.

A second impact of the different phosphorylation mechanisms
was observed when evaluating the robustness of the pathway output.
The mixed mechanism was more robust towards perturbation of
protein concentrations, and also less prone to exaggerated activation
at lower salt concentrations. We speculate that the distributive nature
of Hog1 phosphorylation at basal levels or low salt stress serves as an
additional checkpoint, where mono-phosphorylated Hog1 species are
dephosphorylated faster than the second phosphorylation step and
thus full Hog1 activation can occur. However, after a certain input
threshold has been crossed at higher salt concentrations, the positive
feedback increases the processivity of the reaction, reliably promoting
maximal Hog1 activation and increasing robustness compared to a
solely distributive mechanism. Mechanistically, increased and

erroneousdoublephosphorylationofHog1 due toperturbations could
be dampened as heightened association with Pbs2 sequesters the
MAPKK and thus prevents further activation. At the same time, the
increase in processivity also serves as positive feedback, leading to
efficient Hog1 activation even in the case of internal noise such as
reduced Hog1 concentration. Reflecting this potential mechanism,
distributing Hog1 activation of a perturbed distributive model lacking
the new mechanism, shows both a population of abnormally high
activation as well as a population of abnormally low activation com-
pared to a mixed model (Fig. 6d). Thus, the change in processivity
could be interpreted as an example of “reversible complex formation”,
a network motif found at the core of mammalian and yeast stress
response pathways implicated in conveying robustness42.

According to our modeling efforts, corroborated by pull down
assays, this switch in processivity is in part due to increased binding
of phosphorylated Hog1 to Pbs2, that we termed affinity feedback.
Based on the congruency between model prediction and experi-
mental data, we postulate that phosphorylation of S248 on Pbs2 by
Hog1 constitutes a plausible mechanism by which the higher affinity
is achieved. Available data, however, cannot exclude that lower
diffusion rates caused by cell shrinkage may contribute to increased
processivity43,44. Indeed, it has been argued that molecular crowding
might affect processivity in HeLa cells45. However, since the possi-
bility of tuning MAPK activation results in specific and emergent
systems output, regulated switching between a distributive and
processive phosphorylation mechanism is best explained by an
active feedback mechanism.

In addition to affinity feedback, our modeling approach also
predicts that a second, catalytic feedback mechanism drastically
increases the reaction rate. Interestingly, recent experiments confirm
osmostress-mediated enhancement of the reaction between Pbs2 and
Hog146, and suggest that a new downstream osmosensor could fulfill
the role of positive feedback.However, furtherworkwill be required to

Fig. 6 | Mixed mechanism with positive feedback is more robust to protein
concentration perturbations. a Histograms of the distribution of the maximal
Hog1 nuclear to cytosolic ratio as a proxy for Hog1 activity for ΔPbs2WT (black) and
ΔPbs2S248A strains (blue). Data are presented as percent of total cell population ±
standard deviations computed using a bootstrap procedure. The difference in the
distribution and its significance was assessed using a quantile shift function, plot-
ting thedifferenceof 5% to95%quantiles of theHog1 activationwith a spacing of 5%
against the quantile values of the ΔPbs2WT strain. 95% confidence intervals com-
puted via percentile bootstrap are indicated. b Histograms of the distribution of
2000 simulations of the best fittingmodel withmixed phosphorylationmechanism
with starting protein concentrations randomly varied. The maximal percentage of

double phosphorylated Hog1 after addition of 0.4M NaCl is depicted for the WT
model (black) and the same model with the affinity component of the positive
feedback onPbs2 abolished (blue). Data are presented aspercent of total simulated
runs ± standard deviations computed using a bootstrap procedure. As in (a) sig-
nificance of the difference was established using a quantile shift function. Dis-
tribution of themaximal activation of Hog1 under different salt concentrations as a
result of 500 simulations of the best fitting models of mixed (red), distributive
(green) or processive (blue) phosphorylationmechanismwith the involved protein
species randomly varied in concentration by 0.5 to two times their physiological
concentration. Simulation results without salt perturbation (c), with 0.1M NaCl (d)
or 0.3M NaCl (e) added. Source data are provided as a Source Data file.
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experimentally validate catalytic feedback mechanisms regulating
HOG signaling.

Our findings on the processivity of Hog1 phosphorylation may
have important implications to explain dynamic properties of MAPK
pathways in mammalian systems. For example, the mammalian Hog1
homolog p38 was recently shown to be phosphorylated in a semi-
processivemanner47,whichmaybebest explainedbyamixedactivation
model. Likewise, mammalian ERK shows context-specific differences in
its ratio of single and double phosphorylated species48. In even broader
context, other switch-like transitions such as cell cycle progression or
cell differentiation use an increasing number of phospho-sites of
effector proteins as a strategy to alleviate the need for a cascade. For
example, degradation of the S. cerevisiae cyclin-dependent kinase
inhibitor Sic1 requires phosphorylation of at least six residues to allow S
phase entry49. It has been argued that a distributive mechanism to
phosphorylate these sites results in a highly ultrasensitive, switch-like
response. Sic1 is phosphorylated by two distinct kinase complexes,
Cln2-Cdk1 and Clb5-Cdk1, which bind and first phosphorylate priming
phospho-sites on Sic1, which in turn triggers processive phosphoryla-
tion of the entire phospho-degron11. This systems behavior could thus
be viewed as an extreme case of a mixed phosphorylation mechanism,
switching from a distributive to a processive mode of activation. The-
oretical analyses predicted that increasing the number of phosphor-
ylation sites sharpens the threshold, but might only allow for a graded
increasebeyond the threshold50. However, a theoretical frameworkwith
a mixed mechanisms confirms its potential for additional behavior
already in a system with three phosphorylation sites51. Indeed, experi-
mental evidence for a mixed mechanism termed semi-processive
phosphorylation was described for the multisite phosphorylation of
Pho410. It is thus tempting to speculate that the here described tunable
phosphorylation mechanism in combination with regulatory feedback
could be utilized not only to activate MAPK’s but may more generally
apply to many multisite phosphorylation systems, as it confers
increased robustness and the ability to finetune ultrasensitive signaling
dynamics such as efficient switching and threshold adaption.

Methods
Yeast strain construction
Yeast strains and plasmids are listed in Supplementary Tables S3 and
S4. For strains used in live cell imaging, yMU49 containing the nuclear
HTA2-CFP marker was used as a starting strain. HOG1-YFP was ampli-
fied by PCR from yMU19, and a simple transformation protocol using
lithium acetate, polyethylene glycol and heat shock induced trans-
formation was utilized to create yMM001. The SKARS sensor52 or
dPSTR53 were transformed into yMM001 after cutting of plasmids
pED45 or pDA183 with corresponding restriction enzymes to create
yMM003 or yMM004 respectively. The Pbs2 deleted strain was cre-
ated by transformation of the PCR amplification product of the NAT
cassette from pSP135 with primers containing sequences 1000 bp up-
or downstreamof the gene of interest. Successful plasmid cut and PCR
product length were confirmed by gel electrophoresis.

Strains for in vitro kinase assays were constructed as follows. The
wild type allele of Hog1 was cloned into p426TEG1 (PTEF1-GST, URA31,
2µ) to yield pRS426 GST-Hog1 (pEN133)54. Catalytically inactive GST-
Pbs2 K/M (Lys389 to Met55) (pGY75), was cloned into pGEX46P1 by
EcoRI-XhoI. GST-Pbs2 K/MS248A (PBS2 with Ser248 to Ala mutation)
(pGY77) were generated by site directed mutagenesis and verified by
sanger sequencing. As a control, GST-Sic1 was also purified from E. coli
as previously described56. Plasmids were incorporated into a pbs2Δ
strain (yHS206) via homologous recombination.

For strains used inwesternblot experiments, Pbs2mutationswere
introduced with a pop-in pop-out approach from the original YMN455
(HOG1-6HA::HIS PBS2::URA), the different Pbs2 alleles were PCR
amplified from (pGY86,87, 88 for WT, Pbs2S248A and Pbs2S248E,
respectively). Transformants were selected by FOA counterselection.

Point mutations for YMN457 (Pbs2S248E), YMN459 (Pbs2S248A) and
YMN460 (Pbs2WT) were verified by Sanger sequencing.

Strains used for Pbs2 interaction experiments were derived from
YMN455, 457, 459 and 460 by PCR mediate integration of KAN resis-
tance cassette to the HOG1 locus. The resulting strains are YMN551
(BY4741 PBS2::URA HOG1::KAN), YMN552 (BY4741 HOG1::KAN
Pbs2S248E), YMN552 (BY4741 HOG1::KAN Pbs2S248A), and YMN553
(BY4741 HOG1::KAN Pbs2WT).

Live cell imaging
For live cell imaging experiments, yeast cells were grown in Synthetic
Defined (SD) media with 2% glucose. Exponentially-growing cells were
transferred to amicrofluidic device (Y04C, MerckMillipore) or 96 well
plate and live cell imaging was carried out at 30 °C using a fully-
automated inverted epi-fluorescencemicroscope (Ti-Eclipse, Nikon) in
an incubation chamber. Osmotic stress was induced with the pressure
controller (ONIX, Merck Millipore) or by manual pipetting by
exchanging the medium with media containing NaCl at the specified
concentrations. Images were taken with a high numerical aperture oil
immersion objective lens (CFI Plan Apo 60X, Nikon; N.A. = 1.4), and
controlled usingmicro-manager. Each framewas imagedwith relevant
fluorescent set-up (CFP, YFP, mCherry and Cy5 fluorescent filters with
LED illumination). Cell segmentation, tracking and feature extraction
were done using the MATLAB-based YeastQuant software57, using
Alexa 680 fluorescent dye for cell segmentation57. The CFP channel
was used to define cytosolic and nuclear regions based on Hta2-CFP
images, by defining a certain intensity threshold. Individual cells dur-
ing time-lapse imaging were followed by tracking the nucleus. The
cytosol and nucleus of individual cells was segmented and various
properties including cell area and average intensity of fluorescent
signals in the segmented objects were quantified.

In vitro kinase assays
The GST fusion protein encoding Pbs2K/M and Pbs2K/M S248A (pGY75 and
pGY77 respectively) were expressed in E. coli and purified using
glutathione-Sepharose beads (GE Healthcare) and STET buffer (10mM
Tris pH 8.0, 100mM NaCl, 1mM EDTA pH 8.0, 5% Triton X-100, 2mM
dithiothreitol (DTT), 1mM phenylmethylsulfonyl fluoride (PMSF),
1mM benzamidine, 2μg/ml leupeptin, 2 g/ml of pepstatin). Active
GST-Hog1 was purified fromNaCl treated (0.4MNaCl for 10min) wild-
type cells harboring a multicopy vector (pEN133, pRS426 TEG1-Hog1).

For kinase assays, 0.5μg of GST-Hog1 was incubated with 0.25μg
of Pbs2K/M or Pbs2K/M S248A in the presence of kinase buffer (50mM
Tris–HCl pH 7.5, 10mM MgCl2, 2mM DTT) and 50μM ATP together
with [γ-32P]ATP (0.1μCi/μl) and incubated for 15min at 30 °C. The
reaction was terminated by the addition of 5 × SDS loading buffer.
Labeled proteins were resolved by SDS-PAGE, stained, dried and
detected by autoradiography with Fujifilm BAS-5000 phosphoimager.

Western blot measurements
Yeast cells were grown to mid-exponential log phase (OD660=0.7)
before being subjected to osmostress (0.4M NaCl) for the indicated
times. Samples were fixed with 20% tricholoracetic acid, resolved with
SDS-polyacrylamide gel electrophoresis and proteins transferred to
PVDF membranes (Immobilon FL, IPFL85R). Total or phosphorylated
Hog1 was detected using either primary antibody for phospho-Hog1
(Cell Signaling, 9215 S) or total Hog1 (Santa Cruz, SC-165978) with a
final concentration of 0.2μg/ml and visualized by secondary anti-
bodies for mouse (LI-COR 926-32212) and rabbit (LI-COR, 926-68073).
Incubations were done in PBS-BSA 5% (Sigma, A7906). Blocking and
antibodies were diluted using Intercept blocking buffer (LI-COR, 927-
60001) and fluorescencewas detected with a LI-COROdyssey Infrared
Imaging System 9120. Western blot quantification was done using
Image J and a paired t-Test (Paired Two Sample for Means was
calculated).
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Pull down assays
Hog1 ORF was cloned into pSECT vector with BamHI (pEN111) and
transformed into BL21. ExpressedHog1-HISwas purified using 500μl of
Complete His-Tag purification resin (Roche, 5893682001) for each
500ml of E. coli pellet, following the manufacturer’s protocol. An
overnight preculture (25ml LB +Chloramphenicol 50 µg/ml) was
inoculated into 1 L of LB for 2 h at 37 °C before addition of IPTG (1mM)
for 8 h at 20 °C. Cells were pelleted by centrifugation (5min 5200 g) and
pellets were stored at −80 °C. Yeast extracts were obtained by growing
hog1::KAN Pbs2 (WT, S248A and S248E or pbs2::URA) until mid-
exponential phase before applying mild osmotic stress (0.4M NaCl).
Cell lysates were obtained by thawing cells in sonication buffer (50mM
Sodium Phosphate, 30mM NaCl and 0.5% NP-40) with protease inhi-
bitor (PMSF 1mM, Benzamidine 1mM, and Leupeptin 2 µg/ml).

Purified bead-bound Hog1 HIS was evenly split into columns
(Mo Bi Tec, M1002S) and incubated for 2 h at 4 °C with 5mg of total
protein obtained from NaCl-stressed yeast extracts diluted in kinase
buffer (50mM TrisHCL pH 7.5, 10mM MgCl2, ATP 50 µM). Samples
werewashed twice in the columns (1min80 g)with 500 µl of sonication
buffer 100mMNaCl and sonication buffer 200mM. Finally, beadswere
resuspended in sample buffer and boiled before loading onto 10% SDS
PAGE. Detection of Pbs2 was done by incubating the membranes with
anti-Pbs2 antibody (Santa Cruz, sc-6813) with a final concentration of
2 µg/ml and total Hog1 (Santa Cruz, sc-165978) with a final concentra-
tion of 0.2μg/ml. Incubations were done in PBS-BSA 5% (Sigma,
A7906). Images from chemiluminescence were obtained using Claity
ECL (Bio-Rad, 1705061) and a chemiluminescence program (Odyssey
Fc Imager). Image quantifications were done with Image J (Fiji).

Data sources and incorporation into model definition
The experimental data were collected from multiple sources. If not
otherwise noted the BY4741 yeast strain exposed to 0.4M NaCl stress
was used. Importantly mass spectrometry measurements analyzing
long term29 and very short-term changes in phospho-site abundance
were included. Since the relative phospho-site change 60 s after NaCl
addition varies slightly between these two studies, the mean of both
values was taken for this time point.

To determine the degree of Hog1 phosphorylation, the maximal
values determinedbywesternblotmeasurementswere used26. Data for
Hog1 phosphorylation upon inhibition of Hog1 with or without addi-
tion of salt were taken from the same experimental set. Even though
the authors used a different strain with a different perturbation agent
(KCl instead of NaCl) the qualitative dynamics of the Hog1 response
were essentially identical34. Moreover, the switch-like response result-
ing in full Hog1 phosphorylation for all salt concentrations above a
certain, low threshold justified inclusion of these data.

Additional western blot measurements were utilized for different
phosphatase mutants. Compared to mass spectrometry measure-
ments, quantification of western blots is complex and these results
often reveal more qualitative than quantitative results58. For example,
different antibodies are known to have different binding properties59.
As a consequence, measurements of Hog1 phosphorylation in Ptp2/
Ptp3 mutants in the literature revealed quite varying results19–21,26,60.
However, despite these differences, the data largely agree that dele-
tion of Ptp2 results in increased basal levels and prolonged Hog1
phosphorylation, while deletionof Ptp3 shows onlyminute differences
compared to wild-type controls. To account for this variability, we
utilized the data from ref. 20, but allowed the parameters for the error
model of these measurements to be sufficiently big and independent
from other western blot data sets. Furthermore, as the antibody used
detects phosphorylated tyrosine, the corresponding output species of
the model was set to be Hog1 doubly phosphorylated or mono-
phosphorylated at tyrosine 176.

Microscopy measurements of Hog1 relocation to the nucleus
report on Hog1 activity, and such data was used to quantify the

response of single branch and phospho-site mutants. Similarly,
microscopy-based measurements of cell size were used to fit the
volume module. Information on Hog1 activation at 0.2M NaCl stimu-
lation with varying frequency (2, 4, 8, 16min) were extracted from
ref. 61. Volume and Hog1 relocation measurements in cells deleted for
SLN1 or SHO1 were taken from ref. 62. Although the authors used
sorbitol instead of NaCl for their experiments, own measurements
confirmed that the response of cells to 0.6M sorbitol is quantitatively
and qualitatively nearly identical to perturbations with 0.4M NaCl. To
assess negative feedback of Hog1 on Ssk2, we used published Hog1
relocationmeasurements35. Due to the fact that non-phosphorylatable
Ssk2 mutant exhibit reduced cell shrinkage and thus a lower maximal
Hog1 nuclear to cytosolic ratio, only data from later time points were
included, which correct for the increased time it takes for the Hog1
ratio to reach basal levels. Data for Gpd1 expression changes were
selected from ref. 63, and information about Ptp2 and Ptp3 mRNA
levels were extracted from ref. 19. Western blot measurements of total
Hog1 phosphorylation upon inhibition with small-molecule inhibitors
in wild type and ssk2Δ strains were taken from refs. 36 for basal activity
and26 for activity upon increase of osmolarity. Asmost antibodies used
to measure Hog1 phosphorylation bind to both the doubly and mono-
phosphorylated species26, these western blot measurements were
considered as total amount of phosphorylated Hog1 irrespective of
phosphorylation grade.

The observables in these data were incorporated as model vari-
ables by defining observables that correspond to the experimentally
measured quantity. We defined the relative ratio between the current
absolute number of a protein species and its absolute number at the
very start, the phosphorylated percentage as the absolute number of
phosphorylated protein divided by the total number of the protein,
and the concentration ratio of Hog1 in the nucleus compared to the
cytosol, for the mass spectrometry, western blot, and fluorescence
ratio data sets respectively. Further details on how the observables and
their corresponding data set were encoded in the model can be
gathered from Supp Table S6: Observables.

Modeling
All modeling was performed using the Data2Dynamics modeling
environment64 and computation was carried out on the Euler cluster
provided by ETH Zurich accessed via BASH scripts. Parameter opti-
mizationwas carriedout bymultistart followedby adeterministic trust
region algorithm. The goodness of fit was evaluated by Goodness-of-
fit = −2* log(Likelihood). For parameter optimization, parameters were
considered on a log-scale. In a first step, 10,000 starting parameter
vectorswere created. Samplingwasdone uniformly between the lower
andupper boundaries of eachparameter. Lower andupper boundaries
were first set to be minus three to three, respectively, spanning six
orders of magnitude. After successful parameter estimation (after
either 400 iterations or if the value of the objective function changes
by less than 1e-6) the 100 best-fitting parameter vectors were taken
and their correlation coefficient determined. 10,000 starting vectors
for the next optimization run were generated by sampling from a
multivariate normal distribution whose parameters were determined
by the 100 best fitting parameter vectors of the previous run. This
procedure was repeated until the best goodness of fit of the latest run
turned out as good or worse than the run before.

To minimize the risk of the optimization procedure redundantly
reproducing solution clusters with very similar values, we included
additional steps, such as optimization of crucial model topologies
being redone up to eight times with different starting parameters, and
ensuring that the relative ordering of the fits was consistent over var-
ious conditions, such as leaving out of data points, or changing of
parameter boundaries. In general, parameter identifiability was not a
major concern, as some model topologies were not able to recapitu-
late the data and we were primarily interested in the relative quality
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difference of each topology prediction. The size of the model and its
complicated nature also impeded identifiability analysis by profile
likelihoods. Instead, we simulated species concentration from amodel
with known parameters. From these simulations, we sampled data
points equivalent in number and time points to the experimental
dataset, and performed the parameter optimization procedure
described above. All but twelve of the 82 newly fitted parameters were
within one order of magnitude from the parameters used to generate
the data, with a median of 0.11.

In all ourmodels, certain parameters of the Sho1 sub-branch (Sho1
binding to Ste11, phosphorylation of Pbs2 by Sho1 and dissociation of
activated Pbs2 from Sho1) assumed valuesmuch higher than expected
(up to 10^6) after parameter optimization. We speculate that this
reflects a stable complex that forms at the cell membrane which
incorporates all involved species (Sho1, Ste11, Ste50, Ste20, the scaf-
folding protein Ahk1, and more) and brings them into close proximity
so that reactions occur faster thanexpected by simple diffusion65–67. As
this was observed with all model topologies, we feel confident to
compare the different topologies relative to one another even if the
models do not fully capture the Sho1 sub-branch. Similarly, we did not
incorporate the latest information that describes how Ste11 only
phosphorylates one phospho-site on Pbs246.

Comparison of different models was done using the AIC.

AIC= 2k � 2lnðLmaxÞ ð1Þ

With “k” being the number of fitted parameters and Lmax the
maximal likelihood.

Detailed information on the best fitting mixed model can be
found in Supp Tables S6–S10.

Processivity score
We introduced a score (2) to quantify the change in processivity of the
Hog1-Pbs2 reaction over the course of the response.

½Pbs2PPHog1P�*kphospho + ½Pbs2PPHog1Pfeedback�*kphosphof eed

½Pbs2PPHog1P�*kof f + ½Pbs2PPHog1Pfeedback�*kof f
ð2Þ

It is defined as the probability of a monophosphorylated Hog1
bound to activated Pbs2 undergoing a second phosphorylation step
against the probability of the proteins dissociating. Feedback on Pbs2
is reflected in a higher rate of phosphorylation of Hog1 while the dis-
sociation constant is kept constant.

Modeling distributive or processive MAPK phosphorylation
mechanisms in a basic three-tiered MAPK cascade
Weutilized the paradigmof Huang and Ferrell, whichmodels the basic
three-tieredMAPK cascade.We collected or generated datameasuring
activation of MAP kinases from both yeast and mammalian cells that
display different degrees of ultrasensitivity quantified by their Hill-
coefficient. We found that Hog1 activation in S. cerevisiae by NaCl sti-
mulation occurs with a hill-coefficient of 3.3, while its mammalian
counterpart p38 in HeLa cells is stimulated by anisomycin with a hill-
coefficient of 345. In comparison, the highly ultrasensitive activation of
p38 via sorbitol in Xenopus oocytes occurs with a hill-coefficient of
14.413, and the graded response of Erk2 in HeLa cells stimulated by EGF
with a hill-coefficient of 1.245.

The parameters of the basic model were optimized according to
our described protocol and the best overall fit determined according
to log-likelihood criteria. This was done for a distributive and a pro-
cessive topology of MAPK activation. For Hog1 and both p38 data sets
it was not possible to distinguish between a purely distributive or
purely processive mechanism. Both models were able to fit the data
equally well (difference in AIC was smaller than ten) and the utilized
parameters still range within biologically feasible boundaries (Supp

Fig. S1C)13,68. In contrast, the graded activation of Erk2 showed a clear
preference for processive phosphorylation with significantly better
fitting results, consistent with experimental evidence45. Experimental
measurements also corroborate the possibility that mild ultrasensitive
behavior can be achieved in nature using purely processive mechan-
isms. Thus, a processivemechanismwith the correctparameters is also
able to recapitulate even highly ultrasensitive behavior and thus can-
not be readily discarded.

Statistical analysis
All data were analyzed and visualized using MATLAB software. Error
bars in histograms denote the standard deviation of the proportion of
measurements within specific bin limits computed from 200 resam-
ples. A MATLAB implementation of Wilcox quantile shift function was
used to quantify and plot the difference between different distribu-
tions. The implementation computes quantiles using Harrel-Davis
quantile estimator, performs 200 resamples for a bootstrap estimation
of 95% confidence intervals and controls for multiple testing69. Multi-
ple linear regression to determine whether a linear relationship
between concentration changes of different proteins and maximal
Hog1PP percentage exists was performed using built-in MATLAB
functions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided in this paper. The fluorescence microscopy
data generated in this study have been deposited in the ETH Research
Collection database under the title “Positive feedback induces switch
between distributive and processive phosphorylation of Hog1”
(https://doi.org/10.3929/ethz-b-000597634). Source data are pro-
vided with this paper.

Code availability
The models and best-fitting parameter values generated in this study
have been deposited in the BioModels database under accession code
MODEL2206230001.
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