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Bin/Amphiphysin/Rvs superfamily proteins and other curvature-inducing proteins have anisotropic
shapes and anisotropically bend biomembrane. Here, we report how the anisotropic proteins bind
the membrane tube and are orientationally ordered using mean-field theory including an orientation-
dependent excluded volume. The proteins exhibit a second-order or first-order nematic transition with
increasing protein density depending on the radius of the membrane tube. The tube curvatures for the
maximum protein binding and orientational order are different and varied by the protein density and
rigidity. As the external force along the tube axis increases, a first-order transition from a large tube
radius with low protein density to a small radius with high density occurs once, and subsequently, the
protein orientation tilts to the tube-axis direction. When an isotropic bending energy is used for the
proteins with an elliptic shape, the force-dependence curves become symmetric and the first-order
transition occurs twice. This theory quantitatively reproduces the results of meshless membrane
simulation for short proteins, whereas deviations are seen for long proteins owing to the formation
of protein clusters.

1 Introduction

In living cells, numerous types of proteins work together to reg-
ulate biomembrane shapes of cells and organelles1–8. Proteins
are also involved in dynamic processes such as endo-/exocytosis,
vesicle transport, cell locomotion, and cell division. Clathrin and
coat protein complex (COPI and COPII) bend membranes in a lat-
erally isotropic manner and generate spherical buds3–6. On the
contrary, Bin/Amphiphysin/Rvs (BAR) superfamily proteins bend
the membrane anisotropically and generate cylindrical membrane
tubes1–3,9–16. The BAR domains consist of a banana-shaped
dimer and bend the membrane along its axis. Dysfunctions of the
BAR proteins are considered to be implicated in neurodegenera-
tive, cardiovascular, and neoplastic diseases. Thus, understand-
ing the mechanism of the curvature generation by these proteins
is important.

The curvature-inducing proteins can sense the membrane cur-
vature, i.e., they are concentrated in membranes that have their
preferred curvatures. The sensing of curvature-inducing proteins,
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such as BAR proteins7,8,13,17,18, dynamin19, and G-protein cou-
pled receptors20, has been examined using a tethered vesicle
pulled by optical tweezers and a micropipette. They typically bind
more onto the membrane tube than the remaining spherical com-
ponent.

Theoretically, the bending energy of a single-component fluid
membrane is well described by the second-order expansion to the
curvature (Canham–Helfrich energy)21,22. The binding of pro-
teins with a laterally isotropic spontaneous curvature is consid-
ered to locally change the coefficients of the Canham–Helfrich
energy (the bending rigidity and spontaneous curvature). Bud-
ding23–28 and other shape deformations29,30 induced by protein
binding have been well explained by mean-field theories using
this bending energy. Moreover, traveling waves of membrane
deformation can be reproduced by the coupling with reaction-
diffusion of multiple types of proteins31–34. In contrast, the ef-
fects of the anisotropic spontaneous curvature of proteins have
been much less explored. Instead, the bending energy for
isotropic spontaneous curvature has been often used for the anal-
ysis of BAR proteins17,18,32. A few approaches have been ex-
amined for the anisotropy of the protein binding. The Canham–
Helfrich energy was extended for anisotropic spontaneous cur-
vature35,36 and membrane-mediated interactions between non-
deformable anisotropic objects have been investigated37–40. For
cylindrical membranes, the axis of banana-shaped proteins were
assumed aligned in the azimuthal direction to derive a force–
extension curve41. However, the entropic interaction of the pro-
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Fig. 1 Schematic of the theoretical model. (a) An elliptic protein on
a membrane tube. The angles between the nematic direction S, the
azimuthal direction, and/or and protein axis. (b) Excluded-volume in-
teractions between proteins. A perpendicular protein pair has a larger
excluded area (represented by thick dashed lines) than a parallel pair,
leading to a nematic order at a high density.

tein orientation has not been considered in these studies.
Recently, this entropic interaction was taken into account by

two of us and co-workers42,43 based on Nascimentos’ theory for
three-dimensional liquid-crystals44. An isotropic-to-nematic tran-
sition was obtained on a fixed membrane shape. In this study, we
examine the binding of the anisotropic proteins to a cylindrical
membrane tube in detail. The axial force along the membrane
tube and equilibrium of protein binding/unbinding are consid-
ered. Moreover, we clearly show the difference from the binding
of isotropic proteins30. The tube part of a tethered vesicle is well
approximated by this tube with no volume constraint, when tube
radius is much smaller than the vesicle radius30.

Several types of membrane models have been developed for
coarse-grained simulations45–47. The protein binding has been
investigated using molecular simulations48–54, dynamically tri-
angulated membrane simulations55,56, and meshless membrane
simulations40,41,57–61. Among them, however, the binding effects
on the axial force of a membrane tube have been investigated only
by the meshless simulations41,57,59; a characteristic force depen-
dence on the protein curvature was reported for homogeneous
states at low protein curvatures, in addition to the protein as-
sembly accompanied by membrane shape transformation at high
protein curvatures. Here, we compare our theoretical results with
those of the meshless simulations.

The mean-field theory is described in Sec. 2. Simulations of
membrane tubes are described in Sec. 3. The simulation results
are compared with the theoretical results in Sec. 3.2. Finally, a
summary and discussion are presented in Sec. 4.

2 Theoretical analysis

2.1 Theory

Protein binding on a cylindrical membrane tube is considered as
depicted in Fig. 1(a). The membrane is in a fluid phase and the
surface area A is fixed. The radius and length of the tube are Rcy

and Lcy: A = 2πRcyLcy. The tube volume can be freely changed.
This corresponds to the tubular region of a tethered vesicle in
the limit condition, in which the tube volume is negligibly small
(πR2

cyLcy ≪ V , where V is the vesicle volume)30,62. Proteins can
align in the membrane surface. To quantify it, the degree of the

orientational order is calculated as

S = 2⟨sp(θps)⟩, (1)

sp(θps) = cos2(θps)−
1
2
, (2)

where ⟨...⟩ is the ensemble average, and θps is the angle between
the major protein axis and the ordered direction. The angles be-
tween the ordered direction and the azimuthal direction of the
cylinder and between the major protein axis and azimuthal di-
rection are θsc and θpc, respectively, with θps = θpc + θsc (see
Fig. 1(a)). Experimentally, the oritational order Sz along the tube
(z) axis is more easily measured: for θsc = 0 and π/2, Sz =−S and
Sz = S, respectively.

The bound protein is approximated to have laterally an elliptic
shape with an aspect ratio of del = ℓ1/ℓ2 and area ap = πℓ1ℓ2/4,
where ℓ1 are ℓ2 are the lengths in the major and minor axes,
respectively. An orientation-dependent excluded-volume inter-
action is considered between proteins. When two proteins are
perpendicularly oriented, the excluded area Aexc between them
is larger than the parallel pairs, as shown in Fig. 1(b). This area
Aexc is expressed as Aexc = B0 +B2(cos2(θpp)−1/2)+O(cos4(θpp))

by a Taylor expansion, where θpp is the angle between the ma-
jor axes of two ellipses. In our previous study42, the values of
B0 and B2 are calculated by a two-parameter fit. In this study,
the one-parameter fit of Aexc = [4−bexc(cos2(θpp)−1)]ap is used,
since the minimum value Amin

exc = 4ap is obtained at the parallel
pairs (θpp = 0) for any ratio of del: bexc = 0.840, 1.98, 3.44, and
7.61 at del = 2, 3, 4, and 7, respectively. The effective excluded
area is represented by Aeff = λAexc. The parameter λ is a function
of the protein density and λ = 1/2 at a low-density limit44. At the
close-packed condition, the area fraction φ of the bound protein
has the maximum: φmax = ap/λAmin

exc = 1/4λ = π/2
√

3 ≈ 0.907 in
two-dimensional space63. For simplicity, we use a constant value,
λ = 1/3, as in our previous study42,43, i.e., φmax = 0.75. In this
study, we consider no attractive interactions between the proteins
and focus on isotropic and nematic phases, such that smectic and
crystal phases are not in the scope.

The bending energy of the bare (unbound) membrane is given
by

Umb =
∫

κd

2
(C1 +C2)

2dA =
κdA
2R2

cy
, (3)

where C1 and C2 are the principal curvatures (C1 = 1/Rcy and
C2 = 0 for the cylinder). The unbound membrane has a bending
rigidity κd and zero spontaneous curvature. The tubular mem-
brane is connected to a large lipid reservoir, and the area differ-
ence elasticity64,65 is negligible. The bound protein gives an ad-
ditional bending energy as ⟨U⟩=Umb+Np⟨Up⟩, where Np = φA/ap

is the number of the bound protein and Up is the bending energy
of one protein. The protein has an anisotropic bending energy:

Up =
κpap

2
(Cℓ1 −Cp)

2 +
κsideap

2
(Cℓ2 −Cside)

2, (4)

Cℓ1 = C1 cos2(θpc)+C2 sin2(θpc), (5)

Cℓ2 = C1 sin2(θpc)+C2 cos2(θpc), (6)

2 | 1–12Journal Name, [year], [vol.],

Page 2 of 12Soft Matter



where Cℓ1 and Cℓ2 are curvatures along the major and minor axes
of the proteins, respectively. κp and Cp are the bending rigidity
and spontaneous curvature along the major protein axis, respec-
tively, and κside and Cside are those along the minor axis (side
direction). Here, κside = 0 is used unless otherwise specified.

The free energy Fp of the bound proteins is expressed as

Fp =
∫

fp dA, (7)

fp =
φkBT

ap

[
ln(φ)+

SΨ

2
− ln

(∫
π/2

−π/2
w(θps) dθps

)]
, (8)

w(θps) = gexp[Ψsp(θps)+ Ψ̄sin(θps)cos(θps)−βUp]Θ(g),(9)

g = 1−φ(b0 −b2Ssp(θps)), (10)

where Θ(x) denotes the unit step function, kBT is the thermal en-
ergy, and β = 1/kBT . The factor g expresses the effect of the
orientation-dependent excluded volume, where b0 = B0λ/ap =

(4+bexc/2)λ and b2 =−B2λ/ap = bexcλ . Unoverlapped states ex-
ist at g > 0. Since w(θps) is the weight of each protein orientation,
the ensemble average of a quantity χ is given by

⟨χ⟩=

∫ π/2
−π/2 χw(θps) dθps∫ π/2
−π/2 w(θps) dθps

. (11)

The quantities Ψ and Ψ̄ are the symmetric and asymmetric com-
ponents of the nematic tensor, respectively, and are determined
by eqn (1) and ⟨sin(θps)cos(θps)⟩ = 0 using eqn (11). When the
nematic order is parallel to one of the directions of the membrane
principal curvatures (θsc = 0 or π/2), Ψ̄ = 0. The free energy min-
imum is calculated from ∂ fp/∂S = ∂ fp/∂θsc = 0. More detail is
described in Ref. 42.

In this study, we examine the axial force fex and the equilibrium
of the protein binding and unbinding. In experiments, an external
force fex is imposed by optical tweezers and micropipette in order
to extend a membrane tube from a liposome. The free energy is
give by F = Fp +Umb − fexLcy. This force fex is balanced with the
membrane axial force and is obtained by ∂F/∂Lcy = 0 as

fex = 2π
∂ fp

∂ (1/Rcy)
+ fmb. (12)

The last term fmb represents the force of the bare membrane tube
(φ = 0),

fmb =
2πκd

Rcy
=

f0
RcyCp

, (13)

where f0 = 2πκdCp is the force at RcyCp = 1 and is used as the unit
hereafter.

The proteins bind and unbind the membrane with the binding
chemical potential µ. The equilibrium of the binding and unbind-
ing is obtained by minimizing F − µNp. Hence, the equilibrium
protein density is calculated from µ = ap∂ fp/∂φ . Here, the num-
ber Nlip of the lipids and the area A remain constant, so that the
ensemble is changed from the NpNlipAT ensemble to µNlipAT en-
semble.

Unless otherwise specified, we use del = 3 and apC2
p = 0.26,
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Fig. 2 Orientational degree S of the proteins for 1/RcyCp = 0 (flat mem-
brane), 0.1, 1, 1.25, and 1.5 at κp/kBT = 40 and del = 3. The solid and
dashed lines represent the data of stable and metastable states, respec-
tively. The right line in (a) represents the maximum density φlim(S) given
by eqn (14).

which correspond to the N-BAR domain (ℓ1 = 7.5 nm ℓ2 = 2.5 nm,
and 1/Cp = 15 nm)43. Another area ratio apC2

cy = 0.26 is used to
examine Cp dependence. The detail of the numerical methods is
described in Appendix A.

2.2 Theoretical results
For flat membranes, the proteins exhibit a first-order transition
from a randomly oriented state (S = 0) to an ordered state (S > 0)
with increasing protein density φ , as shown in Fig. 2(a). This
transition density decreases as the elliptic ratio del increases, and
the same behavior is obtained for spherical membranes42. For
cylindrical membranes, the proteins are oriented on average even
at φ → 0 (see Figs. 2(b)–(e)). The maximum density φlim(S) is
given by

φlim(S) =
1

b0 −b2S/2
, (14)
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Fig. 3 Effects of (a) the bending rigidity κp and (b) elliptic ratio del of
the proteins on the density φ dependence of the orientational degree S
at 1/RcyCp = 1. (a) From top to bottom, κp/kBT = 80, 60, 40, 20, and 10
at del = 3. (b) From top to bottom, del = 7, 4, 3, and 2 at κp/kBT = 40.
The metastable states at φ ≃ φlim(0) are not shown.

that is independent of the membrane curvature (φmax = φlim(1)).
The straight line (S = 0) for 0 < φ < φlim(0) in Fig. 2(a) is divided
into two, and the right branch remains even at large tube curva-
tures, 1/Rcy, although it has a high energy with a narrow width
of φ (see dashed lines at φ ≃ 0.6 in Figs. 2(b)–(e)). Meanwhile,
the left branch connects to the upper branch at 1/RcyCp ≳ 0.1
(see Fig. 2(b)). Note that it is separated at 1/RcyCp = 0.01 (data
not shown). At 1/RcyCp ≤ 1, the proteins prefer to align to the az-
imuthal direction (θpc = 0), while the thermal fluctuations disturb
it. Hence, the proteins are more ordered (higher S) at higher κp

(see Fig. 3(a)). At high density φ (close to φmax), S is dominantly
determined by the orientation-dependent excluded volume and
the effects increase with increasing del (see Fig. 3).

At 1/RcyCp > 1, the protein preferred direction is tilted either to
a positive or negative angle of θpc =±arccos(

√
RcyCp). At low φ ,

the positive and negative angles simultaneously exist, so that the
proteins exhibit a symmetric distribution with θsc = 0 (see Fig. 4).
In contrast, at high φ , these two angles cannot coexist at the same
time owing to the large excluded-volume interactions between
them (see the right distributions in Figs. 4(c) and (d)). The tran-
sitions between these two states are the second order and first or-
der for 1/RcyCp ≤ 1.3 and 1/RcyCp ≥ 1.35 (see Figs. 4(a) and (b)),
respectively. The two states coexist at φ ≃ 0.55 and 1/RcyCp = 1.5
as shown in Fig. 4(d). Correspondingly, the S–φ curves exhibit
discrete changes of the slope and position (see Figs. 2(d) and
(e)), respectively. In the case of the second-order transition, the
excluded-volume interactions push the protein into the azimuthal
direction leading to the angular distribution of a single peak near
the transition point (see the data at φ = 0.6 in Fig. 4(c)), so that
the symmetric peak continuously changes to an asymmetric peak
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Fig. 4 Angles θsc and θpc for 1/RcyCp = 1.25 and 1.5 at κp/kBT = 40 and
del = 3. Second order and first order transitions occur for 1/RcyCp = 1.25
and 1.5, respectively. The solid lines in (a),(b) and dashed lines in (b)
represent the data of stable and metastable states, respectively. (d)
Two states coexist at φ = 0.55 and 1/RcyCp = 1.5. In the inset of (b),
the protein states are schematically depicted for low and high protein
densities φ .
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at the transition.
Figure 5 shows the tube curvature 1/Rcy dependence of the ori-

entational degree Sz along the tube axis, protein free-energy, and
axial force fex. The preferred orientation changes from θsc = 0
to π/2 at 1/RcyCp = 2, so that Sz changes from negative values
(Sz = −S) to positive values (Sz = S). Interestingly, the orienta-
tional order (S = |Sz|) has a maximum at 1/2 < 1/RcyCp < 1, i.e.,
less than the matching curvature 1/RcyCp = 1 (see Figs. 5(a) and
2). Oppositely, the curvature Ce of the free-energy minimum is
higher than the matching curvature (see Fig. 5(b)). These are
determined by the competition between the orientational entropy
and bending energy. The curvature (Corder) of the maximum order
and Ce decrease with increasing φ and κp (see Fig. 6); at κp → ∞,
Corder → 1/2Rcy, in which the strength of the approximately har-
monic potential of Up for θpc ≪ 1 (i.e., ∂ 2Up/∂θ 2

pc|θpc=0) is maxi-
mum. The amplitudes of the order and the depth of free-energy
minimum increase with increasing κp (see Figs. 5(a) and (b), re-
spectively). Corresponding to the larger energy change in fp, the
axial force fex deviates more from the value of the bare mem-
brane ( fmb given by eqn (13)) at higher κp (see Fig. 5(c)). Spon-
taneously formed membrane tubes require no axial force (i.e.,
fex = 0). The generation curvature Cg of this spontaneous tube
increases with increasing κp and φ (see the inset of Fig. 5(c)),
i.e., a narrower tube is generated. Note that Cg also depends on
the bending rigidity κd of the bare membrane in contrast to Corder

and Ce.
Next, we examine the effects of the protein bending energy

in the side direction (see Fig. 7). At zero side spontaneous curva-
ture (Cside = 0), the proteins more align in the azimuthal direction

with increasing κside, since the curvature Cℓ2 in the side direc-
tion becomes closer to Cside. This effect is pronounced at narrow
tubes, whereas it is negligible for 1/RcyCp < 1. For a negative
value of Cside, Corder and Ce become close to Cp, and the proteins
more align in a wider range of 1/Rcy. For a positive value of Cside,
Corder and Ce become deviated from Cp, and the proteins less align.
The generation curvature slightly increases with increasing Cside:
Cg = 0.412, 0.421, and 0.448 at Cside = −1, 0, and 1, respectively,
for the condition used in Fig. 7.

We have fixed the protein curvature Cp until here. Figure 8
shows the effects of Cp variation with maintaining the other pa-
rameters. As Cp changes from null to 1/Rcy, the nematic orienta-
tion changes from the axial direction (θsc = π/2) to the azimuthal
direction (θsc = 0) (see the left half of Fig. 8(c)). This change
becomes steeper at higher κp. During this change, the axial force
fex is almost constant, although a small peak appears for high κp

and/or high φ (see the left regions of Figs. 8(a) and (b)). This is
due to little change in the bending energy, because the proteins
can find their preferred curvature by adjusting their orientation.
For Cp ≳ 1/Rcy, fex almost linearly decreases, and the slope in-
creases with increasing κp and φ (see the right region of Figs. 8(a)
and (b)). These dependencies qualitatively agree with the results
of our previous meshless membrane simulations41,57,59. A quan-
titative comparison is described in Sec. 3.2.

Finally, we examine the equilibrium of the protein binding and
unbinding. As the binding chemical potential µ increases, more
proteins bind onto the membrane. The protein binding exhibits
a first-order transition from a wide tube with low φ to a narrow
tube with high φ at small force, fex < f0 (see Fig. 9). This transi-
tion agrees with the observation of the coexistence of two tubes
with different Rcy and φ in the experiments of an I-BAR protein17.
The force-dependence curves shown in Fig. 9 are asymmetric and
exhibit weak dependence at fex > f0, owing to the adjustment of
the protein orientation that reduces a change in the protein bend-
ing energy (see Fig. 9(c)). These behaviors are different from the
binding of proteins with an isotropic spontaneous curvature30,
where the fex–1/Rcy and fex–φ curves are point symmetric and re-
flection symmetric to fex = f0, respectively.

The protein binding has a maximum in the variation of the
tube curvature (compare Figs. 9(a) and (b)). This curvature is
called sensing curvature (denoted Cs) and can be calculated from
∂φ/∂ (1/Rcy) = 0. Interestingly, Cs is varied by µ and κp (see
Fig. 6). For low φ at low µ, Cs approach Ce, since the excluded
volume gives negligible effects. For high µ (φ ≳ 0.5 in Fig. 6(a)),
Cs becomes lower than Cp, and φ has a broad peak. A similar Cs

dependence on the tube curvature has been reported in the ex-
periments of the BAR proteins17,18. It indicates the anisotropic
interaction of the BAR proteins.

The asymmetry of the force-dependence curves is caused not by
the orientation-dependent excluded volume but by the anisotropy
of the protein bending energy. To clearly show it, the force-
dependence curves for the elliptic proteins with an isotropic spon-
taneous curvature Ciso are plotted in Fig. 10. The proteins have a
bending energy

Uiso =
κisoap

2
(C1 +C2 −Ciso)

2, (15)
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instead of Up. Note that the anisotropic bending energy Up with
κp = κside and Cp = Cside does not coincide to Uiso except for the
case of θpc = 0 or π/2. The fex–1/Rcy and fex–φ curves become
point symmetric and reflection symmetric to fex = f0, respectively,
and the first-order transitions occur both at small and large forces
symmetrically. The transition points are almost constant for a
variation in µ. This is due to the excluded-volume dependence on
the protein orientation, since the transition points move outwards
in the case of orientation-independent excluded volume30.

3 Simulation

3.1 Simulation model

A fluid membrane is represented by a self-assembled single-layer
sheet of N particles. The position and orientational vectors of the
i-th particle are rrri and uuui, respectively. The membrane particles in-
teract with each other via a potential U =Urep+Uatt+Ubend+Utilt.
The potential Urep is an excluded volume interaction with diame-
ter σ for all pairs of particles. The solvent is implicitly accounted
for by an effective attractive potential Uatt. The details of the
meshless membrane model and protein rods are described in Ref.
66 and Refs. 57,59, respectively. We employ the parameter sets
used in Ref. 59.

The bending and tilt potentials are given by
Ubend/kBT = (kbend/2)∑i< j(uuui − uuu j − Cbdr̂rri, j)

2wcv(ri, j) and
Utilt/kBT = (ktilt/2)∑i< j[(uuui · r̂rri, j)

2 + (uuu j · r̂rri, j)
2]wcv(ri, j), respec-

tively, where rrri, j = rrri − rrr j, ri, j = |rrri, j|, r̂rri, j = rrri, j/ri, j, wcv(ri, j)

is a weight function. The spontaneous curvature C0 of the
membrane is given by C0σ = Cbd/2.66 In this study, C0 = 0 and
kbend = ktilt = 10 are used except for the membrane particles
belonging to the protein rods.

An anisotropic protein and membrane underneath it are to-
gether modeled as a rod that is a linear chain of Nsg mem-
brane particles57. We use Nsg = 5 and 10 with the density
φ = NsgNrod/N = 0.167. The protein rods have spontaneous curva-
tures Crod along the rod axis and have no spontaneous (side) cur-
vatures perpendicular to the rod axis. The protein-bound mem-
brane are more rigid than the bare membrane: the values of kbend

and ktilt are kr times higher than those of the bare membrane.

The membrane has mechanical properties that are typical of
lipid membranes: the bare membrane has a bending rigid-
ity κ/kBT = 16.1 ± 0.02, area of the tensionless membrane per
particle a0/σ2 = 1.2778 ± 0.0002, area compression modulus
KAσ2/kBT = 83.1±0.4, edge line tension Γσ/kBT = 5.73±0.0457,
and the Gaussian modulus κ̄/κ =−0.9±0.167. The bending rigid-
ity is calculated by eqn (13), which is slightly greater than the
value (15±1) estimated by thermal undulation66. The membrane
tube with a length of Lcy is connected by the periodic boundary,
and the tube volume can be freely varied. Molecular dynamics
with a Langevin thermostat is employed66,68. The dependence on
the rod curvature Crod was calculated at Lcy = 48σ and N = 2400
in Ref. 59 using the replica-exchange method69,70. The depen-
dence on the tube radius was calculated at kr = 4 and N = 4800 in
this study.

Fig. 11 Membrane simulations of the short protein rods of Nsg = 5 at kr =

4. (a),(b) Snapshots for (a) Crodσ = 0.1 and (b) Crodσ = 0.25 at Lcy/σ = 96
(Rcy/σ = 9.92 and 9.91, respectively). A protein rod is displayed as a
chain of spheres whose halves are colored in red and in yellow. The
orientational vector ui lies along the direction from the yellow to red
hemispheres. Transparent gray particles represent membrane particles.
(c),(d) Dependence of (c) the axial force fex and (d) orientational order
⟨Sz⟩ along the membrane tube on the tube radius Rcy for Crodσ = 0.1, 0.15,
0.2, and 0.25. The symbols with dashed lines represent the simulation
data. The black solid lines represent the theoretical results.

8 | 1–12Journal Name, [year], [vol.],

Page 8 of 12Soft Matter



Fig. 12 Membrane simulations of the long protein rods of Nsg = 10 at
kr = 4. (a)–(c) Snapshots for (a),(b) Crodσ = 0.1 and (c) Crodσ = 0.25.
(a) Lcy/σ = 160 (Rcy/σ = 6.05). (b),(c) Lcy/σ = 48 (Rcy/σ = 19.66 and
18.37, respectively). The front and side views are displayed in (c). (d),(e)
Dependence of (d) the axial force fex and (e) orientational order ⟨Sz⟩ along
the membrane tube on the tube radius Rcy for Crodσ = 0.1, 0.15, 0.2, and
0.25. The symbols with dashed lines represent the simulation data. The
black solid lines represent the theoretical results for Crodσ = 0.1, 0.15, and
0.2.
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Fig. 13 (a),(b) Dependence of (a) the axial force fex and (b) orientational
order ⟨Sz⟩ along the membrane tube on the rod curvature Crod for the
bending rigidity ratio kr = 2, 4, 8, and 12 at Nsg = 10 and Rcy/σ = 9.89.
The solid lines represent the simulation data. The black dashed lines
represent the theoretical results. The force generated by the proteins is
normalized as ( fex − fmb)Rcy/2πkBT , where fmb is the force of the bare
membrane. The simulation data (solid lines) are reproduced from Ref.
59.

3.2 Comparison of simulation and theoretical results
Figure 11 and Figs. 12,13 show the simulation and theoretical
results for the short and long protein rods (Nsg = 5 and 10), re-
spectively. Since the simulated proteins do not have an elliptic
shape and are flexible, the protein parameters are adjusted as fol-
lows. For the short rods, we used the orientational degree Sz at
Crodσ = 0.15 (the second line from the top in Fig. 11(d)) for a
fit and obtained κp = 30kBT and Crod/Cp = 2 for ap = Nsga0 and
del = 3. This parameter set reproduces the simulation data of Sz

and fex at different values of Crod very well. Thus, this theory can
quantitatively describe the behavior of the short proteins.

However, less agreement is obtained for the long rods of Nsg =

10 (see Figs. 12 and 13). It is due to the protein assembly in-
duced by the membrane-mediated attractive interactions between
the proteins (see the snapshots in Figs. 12(a)–(c)). At a high rod
curvature (Crodσ = 0.25), the proteins assemble in the azimuthal
direction, and the membrane deforms into an elliptic tube, as
shown in Fig. 12(c). For longer (narrower) and shorter (wider)
tubes, cylindrical and triangular shapes are formed (see Movie 1
in ESI). Thus, large negative values of Sz (Fig. 12(e)) and non-
monotonic dependence of fex for CrodRcy ≳ 2.5 (Crodσ ≳ 0.25) at
kr = 4 (Fig. 13(a)) are obtained. In the elliptic and triangular
membranes, the proteins align in the azimuthal direction, so that
their stabilities can be analyzed by assuming a fixed protein ori-
entation as reported in Ref. 41. More detail of this assembly is
described in Refs. 41,57,59.

For a lower rod curvature (Crodσ ≤ 0.2) of the long rods at
kr = 4, the azimuthal assembly does not occur, but clusters of a

Journal Name, [year], [vol.],1–12 | 9

Page 9 of 12 Soft Matter



few proteins appear as shown in Figs. 12(a) and (b). We fit-
ted the linear-decrease region of the force-dependence curve in
Fig. 13(a) at CrodRcy > 1 and obtained κp/kBT = 60, 90, 120, and
150 with Crod/Cp = 2.5, 2.05, 1.7, and 1.5 for kr = 2, 4, 8, and 12,
respectively, at ap = Nsga0 and del = 7. The orientational orders
Sz calculated by these parameter sets show quantitative deviation
from the simulation data, although they capture qualitative be-
havior (see Figs. 12(e) and 13(b)). Moreover, the other regions
of the force-dependence curves have quantitative differences: the
heights of peaks at CrodRcy < 1 in Fig. 13(a) deviate from the sim-
ulation values, and the slopes at σ/Rcy < 0.1 in Fig. 12(d) are
different. Although the present theory assumes the uniform lat-
eral distribution of the proteins, the protein clusters can bend the
membrane more strongly as demonstrated by the formation of the
elliptic tube. Therefore, we consider that the clusters effectively
work as large or rigid proteins. The greater values of κp and Cp

obtained by the fits support this mechanism. Thus, for a quanti-
tative prediction of a long protein (i.e., a large elliptic ratio del),
it is significant to include the effects of the protein clusters.

4 Summary and discussions
We have studied the equilibrium states of the anisotropic
curvature-inducing proteins theoretically and compared them
with the simulation results. The protein is assumed to have an
elliptic shape with a bending rigidity and spontaneous curvature
mainly along the major axis of the protein. On narrow membrane
tubes, the proteins exhibit a first-order nematic transition with
increasing protein density as reported in our previous paper42.
Here, we found that this transition becomes the second order on
the tubes with intermediate radii. In our previous study, the pro-
teins on a membrane with a fixed shape have been considered. In
this study, we extended the theory to proteins on membrane tubes
which radius is not fixed and in the binding/unbinding equilib-
rium. We found that the protein binding affects the membrane
axial force differently for wide and narrow tubes. For wide tubes,
the force is reduced by the binding. In contrast, it is only slightly
modified for narrow tubes, on which the proteins are tilted from
the azimuthal direction. With increasing binding chemical poten-
tial, a first-order transition between two tube radii with different
protein densities occurs only once at the wide tubes, whereas the
proteins with an isotropic bending energy exhibit the transition
twice. For the short proteins, this theory reproduces the protein
orientation and axial force obtained by the meshless simulations
very well. In contrast, the long proteins have large membrane-
mediated attractive interactions so that resultant protein clusters
modify the mean orientation and axial force. However, the theory
still holds qualitative dependency.

Moreover, we found that the tube curvatures for the maximum
protein binding (sensing) and orientational order are different
from the protein spontaneous curvature Cp. The sensing curva-
ture is higher than Cp at low protein density and coincides to
the curvature of the free energy minimum. This is contrast to
isotropic proteins30 which sensing curvature is constant. The or-
der curvature is lower than Cp and decreases with increasing pro-
tein density and bending rigidity. These dependencies are caused
by the variation in the protein orientation. Previously, the pro-

teins are often assumed to orient to the azimuthal direction. Even
at the tube curvature close to Cp, the orientational fluctuations
modify the average protein behavior. Thus, it is important to take
the orientational degree of freedom into account.

Since the theory for the isotropic bending energy has been well
established, it has been employed even in the analysis for the ex-
periments of the BAR proteins17,18,32. In this study, however, we
have clarified that the anisotropy of the bending energy largely
changes the membrane–protein interactions such as the sensing
curvature. Therefore, the effects of the protein orientation should
be included for more quantitative analysis.

We also showed that the protein side curvature (spontaneous
curvature along the protein minor axis) modifies the protein bind-
ing. The proteins are oriented less or more strongly in the az-
imuthal direction for a positive or negative side curvature, respec-
tively. It has been reported that the side curvature of the opposite
sign to Cp can induce the formation of an egg-carton shape37,38

and network structures58. However, in many previous studies,
the side curvature has not been considered. When the proteins or
objects strongly bind the membrane as in coarse-grained molecu-
lar simulations50,52, the proteins effectively have a large negative
side curvature. Such a large side curvature can change the orien-
tation direction perpendicularly leading to the tip-to-tip protein
assembly as discussed in Ref. 40.

In the present theory, we consider only an excluded-volume in-
teraction between proteins. Bound proteins can attract each other
via direct and/or membrane-mediated interactions. In particular,
BAR proteins typically form helical alignments in dense-packed
conditions. Such a chiral interaction can largely modify the pro-
tein assembly and membrane shape56,61. To reproduce them, ad-
ditional interactions are required to account for. However, for a
sufficiently low protein density, such additional interactions are
negligibly weak. Hence, the present theory can be used to es-
timate the bending rigidity and curvature of bound proteins in
experiments and atomistic simulations. These mechanical param-
eters are keys to quantitatively understand the curvature sensing
and generation of proteins.
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A Calculation method for the present theory

The quantities Ψ and Ψ̄ are single-valued functions of S, so that
they can be calculated by root-finding algorithms such as the bi-
section method. Alternatively, for φ ≤ 1/(b0 +b2/2), where g > 0
for any value of S, S can be calculated by solving the quadratic
equation of S = (q0 +q1S)/(p0 + p1S) for given Ψ and Ψ̄ as

S =
q1 − p0 +

√
(q1 − p0)2 +4q0 p1

2p1
, (16)

where

p0 =
∫

π/2

−π/2
w0 dθps, p1 =

∫
π/2

−π/2
w1 dθps,

q0 =
∫

π/2

−π/2
2sp(θps)w0 dθps, q1 =

∫
π/2

−π/2
2sp(θps)w1 dθps,

w0 = (1−b0φ)exp[Ψsp(θps)+ Ψ̄sin(θps)cos(θps)−βUp],

w1 = b2φsp(θps)exp[Ψsp(θps)+ Ψ̄sin(θps)cos(θps)−βUp].

At φ ≃ 1/b0, S can be a multivalued function of Ψ. For 1/(b0 +

b2/2) < φ < φmax, large values of S can be calculated by the iter-
ation of eqn (1) by updating S. However, the smaller values of S
should be calculated by the former method (Ψ(S)). In this study,
∂ fp/∂ (1/Rcy) and ∂ fp/∂φ are calculated by the central difference
method.
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