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Abstract: Phenolic compounds in peanuts may moderate inflammation and endothelial function.
Thus, the aim of this study was to evaluate the association of urinary phenolic metabolites (UPMs)
with vascular biomarkers after peanut product consumption. A three-arm parallel-group random-
ized controlled trial was conducted in 63 healthy young adults who consumed 25 g/day of skin
roasted peanuts (SRP), 32 g/day of peanut butter (PB), or 32 g/day of a control butter for six months.
UPMs were analyzed by liquid chromatography coupled to mass spectrometry. Additionally, urinary
eicosanoids, prostacyclin I2 (PGI2), and thromboxane A2 (TXA2) were determined using two compet-
itive enzyme-linked immunosorbent assay kits. Consumers of SRP and PB presented significantly
higher excretion of UPMs (enterodiol glucuronide (p = 0.018 and p = 0.031), 3-hydroxybenzoic acid
(p = 0.002 and p < 0.001), vanillic acid sulfate (p = 0.048 and p = 0.006), p-coumaric acid (p = 0.046
and p = 0.016), coumaric acid glucuronide I (p = 0.001 and p = 0.030) and II (p = 0.003 and p = 0.036),
and isoferulic acid (p = 0.013 and p = 0.015) in comparison with the control group. An improvement
in PGI2 (p = 0.037) levels and the TXA2:PGI2 ratio (p = 0.008) was also observed after the peanut
interventions compared to the control. Interestingly, UPMs with significantly higher post-intervention
levels were correlated with an improvement in vascular biomarkers, lower TXA2 (r from −0.25 to
−0.48, p < 0.050) and TXA2:PGI2 ratio (r from −0.25 to −0.43, p < 0.050) and higher PGI2 (r from 0.24
to 0.36, p < 0.050). These findings suggest that the UPMs with higher excretion after peanut product
consumption could have a positive impact on vascular health.
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1. Introduction

The regular consumption of nuts and peanuts has been associated with a reduced risk
of developing cardiovascular diseases [1–3] and diabetes [4–6], with improvements in the
lipid profile, inflammation markers, and preservation of endothelial function [7–10]. How-
ever, the results of studies evaluating the impact of nut consumption on inflammation are
discrepant, as clinical trials have not been able to consistently verify the anti-inflammatory
effects found in observational studies [8,11,12].

Peanuts are edible seeds classified as legumes, nevertheless, they are frequently include
in the nuts group, since they share a similar nutritional composition, being nutrient-
dense and rich in monounsaturated fatty acids [13,14]. They are the most consumed nuts
worldwide [15], and are regarded as a convenient, tasty, and easy snack that contributes
to a healthy lifestyle [14]. The wide range of nutrients and bioactive compounds found in
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peanuts include fiber, folate, and arginine [13,16], and also, they are a well-known source
of antioxidants such as polyphenols, whose concentration have been reported to be highest
in their skins [17,18]. Phenolic acids, mainly p-coumaric and isoferulic acids, were the most
abundant polyphenols found in skin roasted peanuts and peanut butter with skin added,
representing more than 60–70% of the total polyphenols [19].

Polyphenols represent the main antioxidants and anti-inflammatory compounds in
our diet and have been related to antithrombotic and vasodilatory effects [20]. They are
also reported to play a beneficial role in the prevention of inflammation-related chronic
diseases such as type 2 diabetes, obesity, cancers, and neurodegenerative and cardiovascular
diseases [21–23]. Phenolic compounds appear to regulate the expression of several pro-
and anti-inflammatory genes and cytokines through MAPK, NF-kB, and arachidonic acid
pathways, contributing to the inhibition of enzymes involved in eicosanoid production
and enhancing anti-inflammatory activities [24,25]. However, the role of polyphenols in
modulating inflammatory pathways needs further investigation. It is believed that the
immunoprotective and anti-inflammatory activities of polyphenols are initiated in the gut,
with subsequent systemic effects [21].

The eicosanoids prostacyclin I2 (PGI2) and thromboxane A2 (TXA2) are the major
arachidonic acid products in the vascular endothelium and platelets, respectively [26–28].
TXA2 has prothrombotic and vasoconstrictor properties, as it stimulates inflammation and
platelet aggregation [28]. In contrast, PGI2 acts as a potent vasodilator and inhibitor of
platelet aggregation [26,29], counteracting the activities of TXA2 and playing an important
role in preventing atherosclerosis and thrombosis [28,30]. Despite being well-known
vascular biomarkers, the association of PGI2 and TXA2 with peanut consumption and
urinary phenolic metabolites (UPMs) has not been studied to date. Thus, the aim of
the present study was to evaluate UPMs’ concentrations after daily intake of peanuts
or peanut butter and their potential effect on vascular health through the analysis of
urinary eicosanoids.

2. Materials and Methods
2.1. Study Population and Recruitment

Healthy young adults aged 18–33 years were recruited into the ARISTOTLE study
from the Food and Nutrition Torribera Campus at the University of Barcelona and the
surrounding area through poster boards in different settings, flyer distribution, and word
of mouth. Potential participants were screened using the following exclusion criteria:
body mass index (BMI) over 25 kg/m2, history of chronic diseases (cardiovascular diseases,
cancer, diabetes, and others), peanut allergy, active smoking, excessive alcohol consumption,
and other toxic habits.

2.2. Study Design

The present study includes data from a three-arm randomized controlled trial (ARIS-
TOTLE study), described elsewhere [31]. All participants signed an informed consent form
and were randomized to one of three intervention groups, consuming either 25 g/day of
skin roasted peanuts (SRP) or two tablespoons (32 g)/day of peanut butter (PB) or two
tablespoons (32 g)/day of a control butter (CB) based on peanut oil and free of fiber and
polyphenols. Prior to the baseline visit they followed a two-week peanut-free run-in period.
The intervention lasted 6 months, extended in some cases to 7 months due to the COVID-19
pandemic. To facilitate the intervention compliance, the participants were supplied with
the three intervention products and requested to follow their habitual diet, excluding wine,
grapes, dark chocolate (>70% cocoa), berries, and nuts.

The study was conducted in compliance with the principles of the Declaration of
Helsinki. Ethical approval for the involvement of human subjects was granted by the Ethics
Committee of Clinical Investigation of the University of Barcelona (Barcelona, Spain) and
the clinical trial was registered at https://register.clinicaltrials.gov (NCT04324749).

https://register.clinicaltrials.gov
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2.3. Measurements and Outcome Assessment
2.3.1. Anthropometric and Clinical Measurements

Anthropometric and clinical measurements were obtained in fasting conditions at
the beginning and end of the trial. Height was measured in the standing position using
a portable stadiometer. Weight and body composition (body fat and muscle percentages)
were measured using a tetrapolar OMRON BF511 bioelectrical device, with the participants
wearing light clothes and no shoes. BMI was calculated as weight divided by height
squared (kg/m2). Using an inelastic flexible tape, waist circumference was measured at
the midpoint between the lower margin of the last rib and the top of the iliac crest, and
hip circumference on the upper trochanters. Both measurements were used to calculate
the waist-to-hip ratio, dividing waist circumference by hip circumference. Diastolic and
systolic blood pressure (DBP and SBP, respectively) were measured in triplicate using an
OMRON M6 digital monitor with the volunteer in a sitting position.

2.3.2. Sample Collection and Biochemical Analysis

Blood and urine samples were collected at baseline and at the end of the intervention.
Overnight fasting blood was obtained from the arm via venipuncture into tubes containing
ethylenediaminetetraacetic acid (EDTA) to separate serum after centrifugation at 3000 g for
10 min at 4 ◦C. Urine from 24 h before each visit was provided by participants. All samples
were aliquoted and stored at −80 ◦C until analysis. Biochemical markers in serum (lipid
profile) were measured in an external laboratory (Cerba international, Barcelona, Spain)
using enzymatic methods.

2.3.3. Dietary Intake and Physical Activity

Diet and physical activity were recorded by professional staff members using validated
questionnaires. Dietary intake was quantified using a semi-quantitative 151-item food
frequency questionnaire (FFQ) and Spanish food composition tables [32]. Physical activity
was measured as the metabolic equivalent of task-minutes per week (MET/week) using
the Spanish version of the Minnesota Leisure-Time Physical Activity Questionnaire [33].

2.4. Urinary Phenolic Metabolites Analysis
2.4.1. Standards and Reagents

Protocatechuic acid, 4-hydroxybenzoic acid, o-coumaric acid, m-coumaric acid, p-
coumaric acid, enterodiol, urolithin-A, and urolithin-B were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Dihydroresveratrol and the internal standard (+) cis, trans-abscisic
acid D6 were obtained from Santa Cruz (Santa Cruz Biotechnology, Santa Cruz, CA),
and 3-hydroxybenzoic acid, vanillic acid, syringic acid, and enterolactone from Fluka (St.
Louis, MO, USA). The reagents were purchased from the following commercial suppliers:
methanol and acetonitrile of HPLC grade from Sigma-Aldrich, formic acid (≥98%) from
Panreac Química S.A. (Barcelona, Spain), and ultrapure water (Milli-Q) generated by a
Millipore system (Bedford, MA, USA).

2.4.2. Urine Treatment for Phenolic Metabolite Analysis

In each visit, 24 h urine samples were collected and stored at −80 ◦C until analysis.
All samples and standards were always handled under filtered light and cool conditions
to prevent phenolic oxidation. UPMs were determined following a validated method
developed by our research group [34]. Briefly, 50 µL of urine was diluted with ultrapure
water to 1 mL, acidified with 2 µL of formic acid and centrifuged at 15,000 g at 4 ◦C for
4 min. The acidified urines underwent a solid-phase extraction in Water Oasis HLB 96-well
plates (30 µm) (Water Oasis, Milford, MA, USA). The 96-well plate was activated with 1 mL
of methanol and 1 mL of 1.5 M formic acid, added consecutively. Then, 1 mL of sample was
loaded onto the plates together with 100 µL of the internal standard. Sample clean-up was
performed with 500 µL of 1.5 M formic acid and 0.5% methanol, and elution was achieved
using 1 mL of methanol acidified with 1.5 M formic acid. After evaporation under nitrogen
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stream, it was reconstituted with 100 µL of 0.05% formic acid and the extract was filtered
with a 0.22 µm polytetrafluoroethylene 96-well plate filter (Millipore, MA, USA).

2.4.3. Chromatographic Conditions

The analysis was performed by liquid chromatography coupled to linear trap quadrupole
Orbitrap high-resolution mass spectrometry (LC-LTQ-Orbitrap-HRMS) (Thermo Scientific,
Hemel Hempstead, UK) equipped with electrospray ionization and working in negative
mode, as previously described by Laveriano-Santos et al. [34]. Chromatographic separation
was performed using a Kinetex F5 100A (50 × 4.6 mm × 2.6 µm) from Phenomenex
(Torrance, CA, USA). The gradient elution was performed with two mobile phases, A,
water (0.05% formic acid), and B, acetonitrile (0.05% formic acid), using the following
non-linear gradient: 0 min, 2% B; 1 min, 2% B; 2.5 min, 8% B; 7 min, 20% B; 9 min, 30% B;
11 min, 50% B; 12 min, 70% B; 15 min, 100% B; 16 min, 100% B; 16.5 min, 2% B; and 21.5 min,
2% B. The flow rate was set at 0.5 mL/min and the injection volume was 5 µL.

2.4.4. Identification and Quantification of Urinary Phenolic Metabolites

Aglycones were identified by comparing retention times with those of available stan-
dards and phase II metabolites by comparison with accurate mass MS/MS spectra with an
error of 5 ppm found in the literature. As standards for glucuronidated and sulfated UPMs
were unavailable, these metabolites were quantified with their respective aglycone equiv-
alents. Xcalibur 3.0 and Trace Finder version 4.1 (Thermo Fisher Scientific, San Jose, CA,
USA) software were used for the instrument control and chromatographic data analysis. In
this study, 38 UPMs were identified and quantified (aglycones and phase II metabolites
in glucuronide and sulfate form). Values below the limit of detection were replaced by
half the limit of detection, and values below the limit of quantitation were replaced by the
midpoint between the limit of detection and the limit of quantitation.

2.5. Determination of Eicosanoids in Urine

The concentration of urinary PGI2 and TXA2 was indirectly quantified by measur-
ing the prostaglandin I metabolite and 11-dehydro thromboxane B2, respectively. Both
molecules were determined in urine using two competitive enzyme-linked immunosorbent
assay (ELISA) kits acquired from Cayman Chem. Co. (Ann Arbor, MI, USA, ref. 501,100 and
519,510). The PGIM assay has a range from 39 to 5000 pg/mL and a sensitivity (80% B/B0)
of approximately 120 pg/mL. The 11-dehydro thromboxane B2 assay has a range from
15.6 to 2000 pg/mL and a sensitivity (80% B/B0) of approximately 34 pg/mL. The urine
samples were diluted 1:10 and 1:3, respectively, and assayed in triplicate. The TXA2:PGI2
ratio was also calculated. Concentrations are expressed as pg/mL.

2.6. Statistical Analyses

Continuous variables are expressed as mean ± standard deviation (SD) and categorical
variables are expressed as number (n) and proportion (%). Normality of distribution was
assessed by the Shapiro–Wilk test. Non-parametric tests were used due to the non-normality
of most variables and the small sample size (<30 in each group). Differences between groups
in the general characteristics of participants at baseline were measured by the chi-square
test for categorical variables and the Kruskal–Wallis test for continuous variables. The effect
of peanut and peanut butter interventions on UPMs and eicosanoids was estimated by
performing a generalized estimating equation on Poisson regression models for repeated
measures. Identity link function, autoregressive correlation, and robust standard error
parameters were specified due to the low number of clusters and the nature of the variables.
Analyses were adjusted for age, sex, and physical activity. Finally, Spearman’s correlation
coefficient was estimated to study linear associations between UPMs and eicosanoids. All
statistical analyses were conducted using the Stata statistical software package version 16.0
(StataCorp, College Station, TX, USA). Differences were considered significant when the
p-value was lower than 0.050.
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3. Results
3.1. Baseline Characteristics

Among the 90 subjects who enrolled and were randomized to each arm, 63 participants
(19 males and 44 females) completed the study. Table 1 shows their general characteristics.
The average age was 22.71 ± 3.13 years; around 70% were female and 46% had graduated
from a 4-year degree course. The mean physical activity was higher than 4000 METs/week.
At baseline, no significant differences between groups were found, except in the level
of plasmatic high-density lipoprotein cholesterol (HDL-c) (p = 0.006) and urinary con-
centrations of urolithin B and dihydroresveratrol glucuronide II (p = 0.022 and p = 0.008
respectively, data not shown).

Table 1. General characteristics of the study population at baseline.

SRP
(n = 21)

PB
(n = 23)

CB
(n = 19) p-Value

Female, n (%) 14 (66) 18 (78) 12 (63) 0.528
Age (years) 22.28 ± 3.20 23.43 ± 2.90 22.42 ± 3.29 0.247

Education level, n (%) 0.512
University students 11 (52%) 11 (48%) 12 (63%)

Graduated 10 (48%) 12 (52%) 7 (37%)
Physical activity

(METs/week) 4850 ± 2124 4703 ± 2381 4607 ± 1728 0.954

Anthropometric measurements

Weight (kg) 63.26 ± 10.12 60.10 ± 7.72 63.78 ± 10.04 0.412
BMI (kg/m2) 22.12 ± 3.52 22.19 ± 2.60 22.59 ± 2.67 0.679

Waist circumference (cm) 72.73 ± 8.31 71.28 ± 5.53 74.68 ± 5.99 0.228
Waist to hip ratio 0.74 ± 0.06 0.74 ± 0.05 0.77 ± 0.05 0.130

Body fat (%) 26.66 ± 8.07 28.45 ± 7.88 26.22 ± 7.99 0.628

Lipid profile

TG (mmol/L) 0.71 ± 0.20 0.85 ± 0.35 0.80 ± 0.25 0.341
TC (mmol/L) 4.33 ± 0.52 4.60 ± 0.88 4.09 ± 0.64 0.137

LDL-c (mmol/L) 2.22 ± 0.39 2.60 ± 0.69 2.30 ± 0.50 0.142
HDL-c (mmol/L) 1.75 ± 0.30 1.59 ± 0.53 1.50 ± 0.30 0.006

Blood pressure

SBP (mmHg) 111 ± 7.34 109 ± 8.87 110 ± 11.83 0.451
DBP (mmHg) 72 ± 7.63 72 ± 6.20 70 ± 8.73 0.415

Dietary intake

Energy (kcal/day) 2770 ± 594.50 2705 ± 602.17 2596 ± 477.97 0.588
Carbohydrates (g/day) 257.43 ± 80.73 241.26 ± 73.92 246.74 ± 59.49 0.867

Sugar (g/day) 115.86 ± 34.83 111.65 ± 35.04 113.89 ± 41.02 0.906
Fiber (g/day) 45.17 ± 21.95 42.12 ± 14.65 38.93 ± 15.07 0.768

Protein (g/day) 103.72 ± 29.47 110.17 ± 31.86 107.75 ± 27.51 0.598
Total fat (g/day) 144.55 ± 29.17 141.83± 35.35 129.53 ± 28.96 0.249

SFAs (g/day) 37.61 ± 10.00 38.18 ± 11.04 36.81 ± 13.02 0.871
MUFAs (g/day) 70.37 ± 16.12 69.06 ± 17.17 59.46 ± 15.87 0.093
PUFAs (g/day) 25.91 ± 6.76 23.99 ± 7.25 23.59 ± 6.59 0.541

Urinary phenolic metabolites (mg/day)

Lignans 26.63 ± 12.05 27.18 ± 7.19 29.01 ± 15.26 0.140
Hydroxybenzoic acids 56.05 ± 24.91 67.74 ± 59.66 71.71 ± 49.26 0.755

Hydroxycinnamic acids 2.93 ± 3.55 2.23 ± 1.99 2.17 ± 1.92 0.960
Stilbenes 0.49 ± 0.74 1.88 ± 1.90 1.82 ± 1.75 0974

Hydroxycoumarins 7.99 ± 5.93 7.26 ± 4.17 7.25 ± 5.84 0.732

Eicosanoids

TXA2 (pg/mL) 1409 ± 31.96 1297 ± 65.81 1315 ± 53.55 0.673
PGI2 (pg/mL) 10,997 ± 57.57 10,495 ± 47.39 7927 ± 42.01 0.150

TXA2:PGI2 ratio 0.21 ± 0.19 0.14 ± 0.07 0.17 ± 0.10 0.681
Data are expressed as mean ± SD. CB: control butter; SRP: skin roasted peanuts; PB: peanut butter; BMI: body
mass index; TG: triglyceride; TC: total cholesterol; LDL-c: LDL-cholesterol; HDL-c: HDL-cholesterol; DBP:
diastolic blood pressure; SBP: systolic blood pressure; SFAs: saturated fatty acids; MUFAs: monounsaturated fatty
acids; PUFAs: polyunsaturated fatty acids; PGI2: prostacyclin I2; TXA2: thromboxane A2. The p column refers
to differences between groups at baseline; p-values < 0.05 are statistically significant and were calculated by the
chi-square test for categorical variables and the Kruskal–Wallis test for continuous variables.

3.2. Effect of the Intervention on Urinary Phenolic Metabolite Levels

The concentration of UPMs by polyphenol class (lignans, hydroxybenzoic acids, hy-
droxycinnamic acids, stilbenes, and hydroxycoumarins) is presented in Table 2. A total
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of 38 metabolites were identified in urine and many of them were detected in the form of
glucuronides and sulfates. Overall, the most abundant UPMs were hydroxybenzoic acids,
and the least abundant were stilbenes. After adjustment for sex and age, the excretion of
some UPMs was found to be higher after peanut or peanut butter consumption compared
with the control butter.

Table 2. Urinary phenolic metabolite concentrations in healthy young adults from the ARISTOTLE
study before and after the intervention.

SRP (n = 21) PB (n = 22) CB (n = 19) p-Value
Pre-

Intervention
Post-

Intervention
Pre-

Intervention
Post-

Intervention
Pre-

Intervention
Post-

Intervention
SRP vs.

CB
PB vs.

CB

Lignans-Lignans 26.63 ± 12.05 34.17 ± 19.55 27.18 ± 7.19 35.60 ± 18.74 29.01 ± 15.26 26.36 ± 11.34 0.084 0.038
Enterodiol 18.26 ± 8.16 17.49 ± 8.42 19.89 ± 4.95 19.97 ± 7.51 19.75 ± 7.89 18.83 ± 7.95 0.836 0.824
Enterodiol

glucuronide 1.78 ± 3.75 2.99 ± 3.07 0.83 ± 1.18 2.64 ± 5.07 1.47 ± 3.69 0.66 ± 0.97 0.018 0.031
Enterodiol sulfate 0.11 ± 0.14 0.23 ± 0.31 0.11 ± 0.11 0.11 ± 0.08 0.31 ± 0.65 0.29 ± 0.40 0.373 0.901

Enterolactone 0.27 ± 0.86 1.05 ± 3.63 0.09 ± 0.04 0.21 ± 0.26 0.10 ± 0.06 0.16 ± 0.23 0.206 0.545
Enterolactone
glucuronide 6.11 ± 4.38 12.91 ± 11.99 6.17 ± 3.96 12.72 ± 10.04 7.27 ± 8.00 8.66 ± 10.78 0.045 0.032

Enterolactone
diglucuronide 0.06 ± 0.04 0.05 ± 0.05 0.06 ± 0.03 0.05 ± 0.04 0.07 ± 0.05 0.08 ± 0.06 0.100 0.054

Enterolactone sulfate 0.03 ± 0.05 0.07 ± 0.05 0.04 ± 0.04 0.06 ± 0.04 0.05 ± 0.06 0.04 ± 0.05 0.020 0.086
Hydroxybenzoic

acids 56.05 ± 24.91 76.87 ± 40.28 67.74 ± 59.66 99.87 ± 77.31 71.71 ± 49.26 71.51 ± 49.34 0.169 0.059

3-Hydroxybenzoic
acid 3.95 ± 3.73 7.29 + 4.25 2.90 ± 1.72 6.46 ± 3.75 4.18 ± 2.00 3.87 ± 2.52 0.002 <0.001

4-Hydroxybenzoic
acid 0.25 ± 0.40 0.69 ± 1.29 0.07 ± 0.07 0.38 ± 0.75 0.12 ± 0.18 0.39 ± 1.25 0.631 0.914

Hydroxybenzoic acid
glucuronide 0.20 ± 0.23 0.53 ± 0.64 0.13 ± 0.16 0.37 ± 0.39 0.38 ± 0.58 0.57 ± 1.62 0.832 0.958

Hydroxybenzoic acid
sulfate 3.17 ± 5.06 6.36 ± 4.04 3.83 ± 3.30 10.44 ± 7.21 4.69 ± 3.24 5.59 ± 6.43 0.090 0.004

Protocatechuic acid 1.13 ± 0.86 1.10 ± 1.14 2.08 ± 1.80 1.72 ± 1.71 1.30 ± 0.82 1.92 ± 3.18 0.331 0.335
Protocatechuic acid

glucuronide I 0.72 ± 0.49 1.08 ±1.03 1.06 ± 1.18 1.44 ± 2.06 0.69 ± 0.47 0.63 ± 0.58 0.157 0.291

Protocatechuic acid
glucuronide II 0.24 ± 0.11 0.19 ± 0.16 0.21 ± 0.19 0.25 ± 0.26 0.21 ± 0.17 0.20 ± 0.17 0.083 0.921

Protocatechuic acid
sulfate 0.40 ± 0.20 1.55 ± 1.31 0.71 ± 0.73 2.58 ± 2.72 0.80 ± 0.75 2.82 ± 4.45 0.354 0.885

Vanillic acid 8.10 ± 6.02 6.63 ± 5.78 16.69 ± 25.82 13.69 ± 21.19 9.46 ± 12.23 10.27 ± 9.38 0.079 0.177
Vanillic acid

glucuronide I 6.42 ± 3.92 5.52 ± 3.57 10.65 ± 16.93 10.24 ± 13.70 10.58 ± 14.43 10.52 ± 14.02 0.146 0.515

Vanillic acid
glucuronide II 10.84 ± 9.96 11.55 ± 10.07 11.83 ± 12.70 18.90 ± 25.36 10.32 ±9.84 12.53 ± 12.50 0.112 0.976

Vanillic acid sulfate 12.96 ± 13.58 16.02 ± 18.58 12.13 ± 12.01 17.72 ± 14.94 16.50 ± 16.34 10.24 ± 11.58 0.048 0.006
Syringic acid 1.22 ± 1.35 2.56 ± 2.37 1.04 ± 0.16 1.79 ± 1.28 1.93 ± 1.84 2.07 ± 3.97 0.083 0.149
Syringic acid
glucuronide I 1.14 ± 0.69 2.34 ± 3.25 0.93 ± 0.69 2.02 ± 2.95 1.08 ± 1.57 1.38 ± 2.07 0.267 0.165

Syringic acid
glucuronide II 1.96 ± 2.24 2.35 ± 2.76 1.63 ± 2.78 2.52 ± 3.41 4.58 ± 6.83 1.28 ± 1.45 0.052 0.023

Syringic acid sulfate 3.33 ± 1.93 11.08 ± 9.85 4.85 ± 5.39 10.46 ± 6.09 4.88 ± 4.33 7.22 ± 10.23 0.041 0.208
Hydroxycinnamic

acids 2.93 ± 3.55 3.75 ± 2.68 2.23 ± 1.99 5.47 ± 5.08 2.17 ± 1.92 1.29 ± 0.99 0.040 0.001
p-Coumaric acid 0.54 ± 1.34 0.37 ± 0.33 0.18 ± 0.21 0.43 ± 0.47 0.41 ± 0.74 0.17 ± 0.16 0.046 0.016
m-Coumaric acid 0.53 ± 0.95 0.36 ± 0.57 0.39 ± 1.12 0.40 ± 0.49 0.32 ± 0.38 0.35 ± 0.43 0.454 0.919
o-Coumaric acid 0.33 ± 0.84 0.12 ± 0.14 0.19 ± 0.22 0.22 ± 0.30 0.20 ± 0.18 0.15 ± 0.18 0.127 0.054
Coumaric acid
glucuronide I 0.32 ± 0.83 0.48 ± 0.78 0.15 ± 0.17 0.33 ± 0.39 0.19 ± 0.34 0.12 ± 0.17 0.001 0.040
Coumaric acid
glucuronide II 0.08 ± 0.18 0.15 ± 0.21 0.06 ± 0.05 0.13 ± 0.17 0.05 ± 0.06 0.06 ± 0.05 0.003 0.036
Coumaric acid
glucuronide III 0.24 ± 0.28 0.43 ± 0.82 0.28 ± 0.46 0.67 ± 1.06 0.17 ± 0.15 0.28 ± 0.38 0.672 0.095

Coumaric acid
glucuronide IV 0.12 ± 0.16 0.35 ± 0.49 0.22 ± 0.47 0.39 ± 0.45 0.10 ± 0.24 0.16 ± 0.22 0.673 0.493

Isoferulic acid 0.78 ± 0.64 1.49 ± 1.22 * 0.79 ± 0.53 2.95 ± 4.32 * 0.74 ± 1.08 0.02 ± 0.01 0.013 0.015
Stilbenes 2.04 ± 3.18 3.37 ± 4.86 1.88 ± 1.90 3.55 ± 3.84 1.82 ± 1.75 2.22 ± 3.59 0.371 0.882

Dihydroresveratrol
glucuronide I 0.49 ± 0.74 1.17 ± 3.78 0.64 ± 1.18 1.42 ± 2.79 1.03 ± 1.34 0.66 ± 0.51 0.274 0.146

Dihydroresveratrol
glucuronide II 1.26 ± 3.18 1.80 ± 2.95 0.98 ± 1.33 1.69 ± 2.07 0.56 ± 0.85 1.26 ± 3.50 0.068 0.004

Dihydroresveratrol
glucuronide III 0.28 ± 0.19 0.38 ± 0.33 0.26 ± 0.14 0.43 ± 0.61 0.22 ± 0.17 0.30 ± 0.24 0.506 0.508

Hydroxycoumarins 7.99 ± 5.93 12.77 ± 14.88 7.26 ± 4.17 12.73 ± 10.14 7.25 ± 5.84 11.65 ± 21.63 0.791 0.694
Urolithin A 0.77 ± 1.68 0.13 ± 0.15 0.50 ± 1.69 0.21 ± 0.34 0.19 ± 0.40 0.08 ± 0.09 0.123 0.572
Urolithin A
glucuronide 6.96 ± 5.67 12.24 ± 14.70 6.50 ± 3.92 12.06 ± 9.71 6.79 ± 5.82 11.25 ± 21.51 0.768 0.720

Urolithin A sulfate 0.16 ± 0.17 0.25 ± 0.17 0.22 ± 0.20 0.30 ± 0.29 0.25 ± 0.14 0.27 ± 0.26 0.268 0.466
Urolithin B 0.10 ± 0.16 0.15 ± 0.50 0.04 ± 0.06 0.20 ± 0.79 0.02 ± 0.03 0.04 ± 0.06 0.807 0.425

Data are expressed as mean (mg/day) ± SD. CB: control butter; SRP: skin roasted peanuts; PB: peanut butter. The
p-value columns refer to differences adjusted by age and sex between SRP and PB vs. CB at 6 months and were
calculated by a generalized estimating equation; p-values < 0.05 were considered significant.
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Compared to the CB group, lignan excretion was significantly higher in the SRP
group (enterodiol glucuronide, p = 0.018; enterolactone glucuronide, p = 0.045; and en-
terolactone sulfate, p = 0.020) and the PB group (enterodiol glucuronide, p = 0.031, and
enterolactone glucuronide, p = 0.032) after full adjustment (Table 2). In regard to the hydrox-
ybenzoic acids, higher excretion levels after the consumption of PB (3-hydroxybenzoic acid,
p < 0.001; hydroxybenzoic acid sulfate, p = 0.014; vanillic acid sulfate, p = 0.006; and syringic
acid glucuronide II, p = 0.023) and SRP (3-hydroxybenzoic acid, p = 0.002; vanillic acid
sulfate, p = 0.048; and syringic acid sulfate, p = 0.041) were found compared to the CB
group. Interestingly, post-intervention levels of hydroxycinnamic acids such as p-coumaric
acid, coumaric acid glucuronide I, coumaric acid glucuronide II, and isoferulic acid were
significantly higher in both the PB (p = 0.016, p = 0.030, p = 0.036, and p = 0.015, respectively)
and SRP groups (p = 0.046, p = 0.001, p = 0.003, and p = 0.013, respectively) in comparison
with the control. Regarding stilbenes, the only increase observed was in dihydroresveratrol
glucuronide II after PB consumption versus CB (p = 0.004) (models of adjustment are shown
in Table A1).

3.3. Effect of the Intervention on Eicosanoid Levels in Urine

The urinary levels of eicosanoids are presented in Table 3. Compared to the control, a
significant change in PGI2 levels was observed after SRP consumption (p = 0.037), whereas
the TXA2:PGI2 ratio decreased after both SRP and PB interventions (p = 0.021 and p = 0.047,
respectively) after adjustment. However, no change in TXA2 levels was observed after
6 months or between groups (models of adjustment are shown in Table A2).

Table 3. Urinary eicosanoid levels in healthy adults from the ARISTOTLE study before and after
the intervention.

SRP (n = 21) PB (n = 22) CB (n = 19) p-Value
Pre-

Intervention
Post-

Intervention
Pre-

Intervention
Post-

Intervention
Pre-

Intervention
Post-

Intervention
SRP

vs. CB
PB vs.

CB

TXA2 (pg/mL) 1409 ± 31.96 1428 ± 81.76 1297 ± 65.81 1139 ± 53.39 1315 ± 53.55 1410 ± 59.59 0.456 0.414
PGI2 (pg/mL) 10,997 ± 57.57 14,607 ± 73.13 10,495 ± 47.39 13,773 ± 74.30 7927 ± 42.01 8548 ± 61.70 0.037 0.070

TXA2:PGI2 ratio 0.21 ± 0.19 0.13 ± 0.10 0.14 ± 0.07 0.10 ± 0.05 0.17 ± 0.10 0.22 ± 0.16 0.008 0.047

Data are expressed as mean (pg/mL) ± standard deviation (SD). SRP: skin roasted peanuts; PB: peanut butter; CB:
control butter; PGI2: prostacyclin I2; TXA2: thromboxane A2. The p-value columns refer to adjusted differences
by age, sex, and physical activity between SRP and PB vs. CB at 6 months and were calculated by a generalized
estimating equation; p-values < 0.05 were considered significant.

3.4. Relationship between Urinary Phenolic Metabolites and Eicosanoids

Correlations were generated to evaluate the association between UPM and eicosanoid
levels. Of the 38 quantified metabolites, 17 showed a significant correlation with one or two
of the vascular biomarkers (Figure 1). The participants with a higher excretion of entero-
diol, enterolactone, enterolactone glucuronide, enterolactone diglucuronide, enterolactone
sulfate, syringic acid glucuronide I, syringic acid sulfate, dihydroresveratrol glucuronide II,
urolithin A, and urolithin B presented lower levels of TXA2 (r = −0.44, p < 0.001; r = −0.36,
p = 0.003; r = −0.25, p = 0.045; r = −0.41, p < 0.001; r = −0.36, p = 0.005; r = −0.31, p = 0.015;
r = −0.28, p = 0.029; r = −0.25, p = 0.046; r = −0.48, p <0.001; and r = −0.38, p = 0.002,
respectively). Moreover, significant direct correlations were observed between levels of
PGI2 and enterodiol glucuronide, 3-hydroxybenzoic acid, vanillic acid, p-coumaric acid,
coumaric acid glucuronide II, and isoferulic acid (r = 0.26, p = 0.045; r = 0.26, p = 0.042;
r = 0.36, p = 0.006; r = 0.27, p = 0.032; r = 0.24, p = 0.046; and r = 0.31, p = 0.014, respectively).
Similarly, higher levels of enterodiol, enterolactone, enterolactone sulfate, 3-hydroxybenzoic
acid, vanillic acid sulfate, p-coumaric acid, o-coumaric acid, coumaric acid glucuronide III,
isoferulic acid, dihydroresveratrol glucuronide II, and urolithin A were associated with
a lower TXA2:PGI2 ratio (r = −0.26, p = 0.042; r = −0.29, p = 0.019; r = −0.28, p = 0.023;
r = −0.27, p = 0.031; r = −0.25, p = 0.046; r = −0.27, p = 0.038; r = −0.30, p = 0.017; r = −0.29,
p <0.022; r = −0.43, p <0.001; r = −0.28, p = 0.027; and r = −0.41, p = 0.001; respectively).
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Figure 1. Heatmap of correlations between urinary phenolic metabolites and eicosanoids. The value
of the correlation coefficient (r) ranging from −1 to 1 is expressed in green and yellow, respectively,
in the bar bellow. *: refers to significant Spearman correlations p < 0.005.

4. Discussion

In this randomized controlled trial, a significant increase in urinary UPMs was ob-
served in healthy young adults who consumed SRP and PB daily for 6 months compared
to those who consumed CB (a cream without fiber or polyphenols). Similarly, the ra-
tio between the eicosanoids TXA2 and PGI2 improved in the consumers of SRP or PB
compared to CB. Interestingly, we found that several UPMs with significantly higher post-
intervention levels were associated with improvements in vascular biomarkers (lower
TXA2 and TXA2:PGI2 ratio and higher PGI2).

Compared to the control group, participants consuming SRP and PB were found to
excrete higher levels of lignans (enterodiol glucuronide, enterolactone glucuronide, and
enterolactone sulfate), hydroxybenzoic acids (3-hydroxybenzoic acid vanillic acid sulfate,
hydroxybenzoic acid sulfate, syringic acid glucuronide II, and syringic acid sulfate), hydrox-
ycinnamic acids (p-coumaric acid, coumaric acid glucuronides I and II, and isoferulic acid),
and stilbenes (dihydroresveratrol glucuronide II). To date, few studies have investigated
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the bioavailability of peanut polyphenols. In a recent study published by our group, we
showed that the most abundant polyphenols in the two intervention products (SRP and PB)
are p-coumaric and isoferulic acid [19]. In a comparative study with tree nuts, Rocchetti
et al. found the total phenolic content was highest in peanuts, especially phenolic acids such
as 3,4-dihydroxyphenylacetic, 4-hydroxybenzoic, and protocatechuic acids, after in vitro
fecal fermentation [35].

In vitro and in vivo studies have provided evidence for the anti-inflammatory, antiadi-
pogenic, and antidiabetic potential of nut polyphenols [36–38]. Nevertheless, the biological
properties of these phytochemicals are highly dependent on their bioavailability. After
ingestion, 85–90% of dietary polyphenols reach the large intestine, where they become
fermentable substrates for bacterial enzymes, leading to the breakdown of their original
structures into several smaller absorbable metabolites [39–41]. These compounds reach
the bloodstream and can have a biological effect on target organs. [39]. Maintaining a
healthy gut microbiota has emerged as a key factor for protection against inflammatory-
related diseases. Polyphenol activity is thought to principally take place in the gut, where
phenolic immunoprotective and anti-inflammatory effects are initiated before acting at
a systemic level [21]. Regarding microbial metabolites, participants in the present study
who consumed SRP or PB presented a higher excretion of enterolactone glucuronide and
enterodiol glucuronide, both important biomarkers of microbiota diversity [42]. In previous
studies, higher post-intervention levels of phenolic metabolites have been associated with
beneficial health effects. For example, hydroxycinnamic acids were related with lower
odds of depression in an Italian cohort [43] and of developing metabolic syndrome in a
Polish cohort [44]. Hydroxybenzoic acids were inversely associated with cardiovascular
disease in a Spanish study [45]. In addition, associations have also been found between
urinary lignan metabolites and a lower risk of type 2 diabetes (enterolactone) and diabetes
mortality (enterodiol) [46,47].

The eicosanoids PGI2 and TXA2 are the major arachidonic acid products in the vascular
endothelium and platelets, synthesized by cyclooxygenase isoforms [26–28]. As PGI2
counteracts the pro-aggregatory and vasoconstrictor activities of TXA2 [29,31], the ratio
of the two molecules is an important regulator of the interaction between platelets and
vessel walls in vivo, and crucial for vascular health [48,49]. Previous research indicates
that peanut consumption may have a positive effect on cardiometabolic risk factors and
reduce the risk of developing cardiovascular diseases [3,5,50,51]. However, this is the
first study to report an improvement in vascular biomarkers related to antithrombotic
and vasodilatory effects in healthy young adults after peanut product consumption. We
found a significant reduction in the TXA2:PGI2 ratio in participants who daily consumed
SRP and PB compared to the control group. Regarding PGI2, a higher level was found in
the SRP group and an increasing tendency in PB consumers, whereas no changes were
observed in TXA2 levels after the intervention compared to the control. Our results agree
with those of Canales et al., who reported an increase in PGI2 serum levels and a decrease
in the TXB2:PGI2 ratio after consumption of walnut-paste-enriched meat [52]. Similarly, a
long-term decrease in inflammatory markers was observed in healthy volunteers after the
consumption of 20 g and 50 g of Brazil nuts [53].

The role of phenolic compounds in anti-inflammatory reactions and the modula-
tion of enzymatic activities related to eicosanoid synthesis and degradation has been
reported [54,55]. They are thought to be involved in the expression of several pro- and
anti-inflammatory genes and cytokines through different pathways (MAPK, NF-kB, and
arachidonic acid) [24,25]. To shed light on the vascular effects of polyphenols, we correlated
UPM with eicosanoid levels and found that participants who excreted more p-coumaric
acid, o-coumaric acid, coumaric acid glucuronide III, and isoferulic acid (the major polyphe-
nols in peanuts) presented higher levels of PGI2 and a lower TXA2:PGI2 ratio. In addition,
those who excreted more enterodiol, enterodiol glucuronide, enterolactone, enterolactone
sulfate and glucuronide, and urolithins A and B (microbial phenolic metabolites) presented
a lower TXA2:PGI2 ratio and TXA2 levels. These results suggest that an improvement in
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vascular function is associated with a higher excretion of UPMs from a dietary source (in
this case peanut consumption) or from the gut microbiota.

In line with our results, it has been demonstrated that plant polyphenols can en-
hance PGI2 release from endothelial cells [56], and the consumption of high-procyanidin
chocolate was related to an increase in plasma PGI2 [55]. Additionally, a reduction in
serum TXA2 was determined in healthy subjects after the consumption of extra virgin
olive oil, a typical polyphenol-rich product of the Mediterranean diet [57]. After an in-
tervention with cranberry juice, Rodriguez-Mateos et al. found that twelve polyphenol
metabolites, including ferulic and caffeic acid sulfates, quercetin-3-O-ß-D glucuronide,
and γ-valerolactone sulfate, were significantly correlated with improved vascular function
in healthy volunteers [58]. They also observed an amelioration of endothelial function
after the acute intake of blueberry drinks containing different levels of polyphenols [59]
and raspberries [60]. Additionally, metabolites such as caffeic acid, ferulic acid, isoferulic
acid, vanillic acid, and 2-hydroxybenzoic acid, measured in plasma after the intake of a
whole-grain biscuit rich in phenolic acids, were associated with a reduced inflammatory
status in overweight subjects [61]. Moreover, after consumption of a low-polyphenol diet
by healthy young men, a higher ratio of TXA2:PGI2 versus a usual diet (Mediterranean
diet) was observed [62]. Nevertheless, conflicting results have also been published. For
example, no changes in TXA2 levels were found in healthy subjects who consumed 40 g
of dark chocolate [63]. Moreover, no effects on TXA2 and PGI2 metabolites in urine, or
the ratio of both molecules, were found in healthy subjects consuming an American diet
supplemented with procyanidin-enriched cacao [64].

Strengths and Limitations

To our knowledge, this is the first study to analyze UPMs after peanut consumption
and to provide promising results regarding the effect of peanut consumption on vascular
function in healthy young adults. Another strong point of the present study is the random-
ized and controlled design, as well as the use of a precise extraction of phenolic metabolites
from urine samples and the novel method based on liquid chromatography coupled to mass
spectrometry used for the accurate identification and quantification of UPMs. However,
several limitations should also be acknowledged, including the small sample size for each
intervention group and the lack of blinding. The sample size was calculated to ensure
80% of statistical power, but this value decreased to 60% due to dropouts. Finally, the
scope of the study did not include the elucidation of molecular mechanisms underlying the
observed associations, and hence, causality cannot be determined.

5. Conclusions

In conclusion, the present study shows for the first time that regular peanut and
peanut butter consumption could have a positive impact on vascular biomarkers in healthy
young adults. Our results suggest that the urinary phenolic metabolites whose production
increased after peanut product consumption, especially hydroxycinnamic acids, may con-
tribute to the maintenance of vascular health, as could microbial phenolic metabolites such
as enterolignans and hydroxycoumarins. However, further studies, mainly clinical trials,
are needed to elucidate the association between metabolites and vascular function, as well
as to understand the plausible mechanisms.
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Appendix A

Table A1. Intervention effect on the levels of urinary phenolic metabolites at 6 months.

SRP vs. CB PB vs. CB

Models Difference Time-
Exposure (95% CI) p-Value Difference Time-

Exposure (95% CI) p-Value

Urinary phenolic metabolites
Model 1 8.23 (−0.80, 17.27) 0.074 9.12 (0.63, 17.62) 0.035Lignans-Lignans
Model 2 7.77 (−1.03, 16.57) 0.084 9.11 (0.49, 17.73) 0.038

Enterodiol
Model 1 −0.40 (−5.63, 4.83) 0.881 0.41 (−3.59, 4.43) 0.839
Model 2 −0.57 (−5.91, 4.78) 0.836 0.46 (−3.62, 4.55) 0.824
Model 1 2.02 (0.22, 3.81) 0.028 2.62 (0.14, 5.06) 0.038Enterodiol glucuronide
Model 2 2.27 (0.39, 4.15) 0.018 2.94 (0.28, 5.61) 0.031

Enterodiol sulfate
Model 1 0.14 (−0.17, 0.45) 0.373 0.02 (−0.26, 0.30) 0.901
Model 2 0.14 (−0.16, 0.44) 0.373 0.01 (−0.26, 0.29) 0.914
Model 1 0.73 (−0.45, 1.90) 0.224 0.06 (−0.08, 0.20) 0.388

Enterolactone Model 2 0.72 (−0.40, 1.86) 0.206 0.05 (−0.12, 0.24) 0.545

Enterolactone glucuronide Model 1 5.52 (0.06, 10.97) 0.047 5.17 (0.46, 9.88) 0.032
Model 2 6.05 (0.04, 12.56) 0.045 5.19 (0.45, 9.94) 0.032
Model 1 −0.03 (−0.05, 0.00) 0.083 −0.03 (0.05, 0.00) 0.028Enterolactone diglucuronide
Model 2 −0.03 (−0.06, 0.01) 0.100 −0.04 (−0.09, 0.00) 0.054

Enterolactone sulfate
Model 1 0.05 (0.01, 0.09) 0.022 0.03 (−0.01, 0.07) 0.126
Model 2 0.02 (0.02, 0.07) 0.020 0.04 (−0.11, 0.06) 0.086
Model 1 21.08 (−3.87, 45.91) 0.098 32.33 (1.46, 63.19) 0.040Hydroxybenzoic acids
Model 2 15.16 (−7.60, 33.93) 0.169 25.35 (−0.99, 51.69) 0.059

3-Hydroxybenzoic acid Model 1 3.66 (1.09, 6.23) 0.005 3.88 (2.03, 5.72) <0.001
Model 2 3.67 (1.34, 6.00) 0.002 3.64 (1.91, 5.38) <0.001

https://clinicaltrials.gov/ct2/show/NCT04324749
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Table A1. Cont.

SRP vs. CB PB vs. CB

Models Difference Time-
Exposure (95% CI) p-Value Difference Time-

Exposure (95% CI) p-Value

Urinary phenolic metabolites
Model 1 0.17 (−0.63, 0.97) 0.673 0.04 (−0.58, 0.65) 0.9034-Hydroxybenzoic acid
Model 2 0.20 (−0.62, 1.01) 0.631 0.03 (−0.59, 0.66) 0.914

Hydroxybenzoic acid
glucuronide

Model 1 0.14 (−0.67, 0.94) 0.737 0.04 (−0.72, 0.81) 0.910
Model 2 0.09 (−0.76, 0.94) 0.832 0.02 (−0.79, 0.84) 0.958
Model 1 2.28 (−0.86, 5.43) 0.155 5.71 (1.93, 9.49) 0.003Hydroxybenzoic acid sulfate
Model 2 2.34 (−0.69, 5.38) 0.090 5.55 (1.72, 9.37) 0.004

Protocatechuic acid
Model 1 −0.64 (−2.05, 0.77) 0.371 −0.97 (−2.56, 0.62) 0.234
Model 2 −0.66 (−1.99, 0.67) 0.331 −0.77 (−2.33, 0.80) 0.335
Model 1 0.41 (−0.12, 0.93) 0.127 0.43 (−0.36, 1.21) 0.289Protocatechuic acid

glucuronide I Model 2 0.32 (−0.13, 0.76) 0.157 0.41 (−0.35, 1.17) 0.291
Protocatechuic acid

glucuronide II
Model 1 −0.04 (−0.15, 0.06) 0.420 0.04 (−0.11, 0.19) 0.613
Model 2 −0.08 (−0.17, 0.01) 0.083 −0.01 (−0.17, 0.15) 0.921
Model 1 −0.87 (−2.69, 0.95) 0.351 −0.15 (−2.10, 1.81) 0.884

Protocatechuic acid sulfate Model 2 −0.86 (−2.68, 0.96) 0.354 −0.14 (−2.10, 1.81) 0.885

Vanillic acid
Model 1 −2.27 (−8.41, 3.87) 0.469 −1.93 (−11.52, 7.64) 0.692
Model 2 −4.40 (−8.08, 0.72) 0.079 −3.47 (−8.52, 1.57) 0.177
Model 1 −0.84 (−8.46, 6.77) 0.828 −0.35 (−9.47, 8.77) 0.940Vanillic acid glucuronide I
Model 2 −2.23 (−5.25, 0.78) 0.146 −1.71 (−6.87, 3.44) 0.515

Vanillic acid glucuronide II Model 1 −1.51 (−8.77, 5.75) 0.684 4.85 (−5.47, 15.17) 0.357
Model 2 −5.92 (−13.22, 1.39) 0.112 −0.15 (−10.44, 10.13) 0.976
Model 1 9.32 (−1.49, 20.11) 0.091 11.86 (3.43, 20.31) 0.006

Vanillic acid sulfate Model 2 8.77 (1.10, 17.65) 0.048 11.54 (3.24, 19.84) 0.006

Syringic acid Model 1 1.21 (−0.49, 2.91) 0.163 0.62 (−0.81, 2.06) 0.394
Model 2 1.20 (−0.16, 2.56) 0.083 0.84 (−0.30, 1.99) 0.149
Model 1 0.90 (−0.45, 2.26) 0.192 0.79 (−0.30, 1.87) 0.155Syringic acid glucuronide I
Model 2 0.64 (−0.49, 1.77) 0.267 0.79 (−0.32, 1.90) 0.165

Syringic acid glucuronide II Model 1 3.70 (0.38, 7.01) 0.029 4.19 (0.89, 7.48) 0.013
Model 2 2.59 (−0.02, 5.21) 0.052 3.51 (0.47, 6.54) 0.023
Model 1 5.41 (−0.99, 11.81) 0.098 3.28 (−2.92, 9.47) 0.300Syringic acid sulfate
Model 2 5.66 (0.23, 11.09) 0.041 3.49 (−1.95, 8.93) 0.208

Hydroxycinnamic acids Model 1 1.69 (0.14, 3.26) 0.033 4.12 (1.90, 6.34) <0.001
Model 2 1.40 (0.38, 3.18) 0.040 3.91 (1.54, 6.27) 0.001
Model 1 0.16 (0.01, 0.68) 0.042 0.47 (0.10, 0.83) 0.012p-Coumaric acid
Model 2 0.18 (0.01, 0.58) 0.046 0.46 (0.09, 0.83) 0.016

m-Coumaric acid
Model 1 −0.19 (−0.59, 0.19) 0.322 −0.02 (−0.56, 0.52) 0.945
Model 2 −0.17 (−0.60, 0.27) 0.454 −0.05 (−0.91, 0.82) 0.919
Model 1 −0.16 (−0.51, 0.20) 0.389 0.08 (−0.03, 0.19) 0.147

o-Coumaric acid Model 2 −0.15 (−0.54, 0.23) 0.127 0.09 (−0.00, 0.18) 0.054

Coumaric acid glucuronide I Model 1 0.23 (0.05, 0.41) 0.011 0.25 (0.01, 0.48) 0.041
Model 2 0.13 (0.05, 0.21) 0.001 0.12 (0.00, 0.33) 0.040
Model 1 0.07 (0.02, 0.13) 0.012 0.07 (0.00, 0.14) 0.043Coumaric acid glucuronide II
Model 2 0.05 (0.02, 0.09) 0.003 0.04 (0.00, 0.10) 0.036

Coumaric acid glucuronide III Model 1 0.09 (−0.33, 0.50) 0.677 0.28 (−0.05, 0.61) 0.101
Model 2 0.09 (−0.33, 0.52) 0.672 0.28 (−0.05, 0.61) 0.095
Model 1 0.17 (−0.06, 0.40) 0.156 0.11 (−0.12, 0.34) 0.365Coumaric acid glucuronide IV
Model 2 0.05 (−0.19, 0.29) 0.673 0.07 (−0.14, 0.28) 0.493

Isoferulic acid
Model 1 1.43 (0.76, 2.09) <0.001 2.89 (1.11, 4.67) 0.001
Model 2 1.07 (0.15, 1.27) 0.013 2.17 (0.43, 3.92) 0.015
Model 1 0.92 (−2.07, 3.91) 0.546 1.26 (−0.99, 3.51) 0.273

Stilbenes Model 2 1.23 (−1.55, 4.00) 0.371 0.13 (−1.28, 1.55) 0.882
Dihydroresveratrol

glucuronide I
Model 1 1.06 (−0.63, 2.74) 0.219 1.14 (−0.23, 2.51) 0.103
Model 2 1.21 (−0.96, 3.38) 0.274 0.85 (−0.30, 2.01) 0.146
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Table A1. Cont.

SRP vs. CB PB vs. CB

Models Difference Time-
Exposure (95% CI) p-Value Difference Time-

Exposure (95% CI) p-Value

Urinary phenolic metabolites
Model 1 −0.16 (−2.64, 2.31) 0.897 0.01 (−1.80, 1.82) 0.987Dihydroresveratrol

glucuronide II Model 2 0.87 (−0.07, 1.81) 0.068 0.51 (0.16, 0.86) 0.004
Dihydroresveratrol

glucuronide III
Model 1 0.03 (−0.14, 0.20) 0.730 0.10 (−0.18, 0.37) 0.490
Model 2 0.06 (−0.11, 0.22) 0.506 0.07 (−0.13, 0.27) 0.508
Model 1 0.55 (−10.76, 11.86) 0.924 1.22 (−9.41, 11.86) 0.822Hydroxycoumarins
Model 2 1.38 (−8.83, 11.58) 0.791 1.73 (−6.92, 10.38) 0.694

Urolithin A
Model 1 −0.52 (−1.21, 0.17) 0.137 −0.17 (−0.88, 0.54) 0.635
Model 2 −0.42 (−0.99, 0.15) 0.153 0.00 (−0.32, 0.32) 0.572
Model 1 0.98 (−10.40, 12.35) 0.866 1.25 (−9.43, 11.93) 0.819Urolithin A glucuronide
Model 2 1.56 (−8.79, 11.90) 0.768 1.64 (−7.32, 10.59) 0.720

Urolithin A sulfate
Model 1 0.07 (−0.10, 0.23) 0.430 0.06 (−0.14, 4.25) 0.550
Model 2 0.09 (−0.07, 0.26) 0.268 0.07 (−0.12, 0.25) 0.466
Model 1 0.03 (−0.19, 0.25) 0.789 0.14 (−0.18, 0.46) 0.393

Urolithin B Model 2 0.03 (−0.18, 0.23) 0.807 0.12 (−0.19, 0.42) 0.425

SRP: skin roasted peanuts; PB: peanut butter; CB: control butter. Generalized estimating equation models were
used to estimate the effect (difference) of the intervention among study groups. Model 1, unadjusted, and Model
2, adjusted by sex and age; p-values < 0.050 are statistically significant.

Table A2. Intervention effect on the levels of urinary eicosanoids at 6 months.

SRP vs. CB PB vs. CB

Models Difference Time-
Exposure (95% CI) p-Value Difference Time-

Exposure (95% CI) p-Value

Eicosanoids
Model 1 −192 (−686, 538) 0.448 −253 (−747, 241) 0.316TXA2 (pg/mL)
Model 2 −152 (−664, 361) 0.456 −198 (−711, 315) 0.414

PGI2 (pg/mL) Model 1 2989 (−757, 5735) 0.090 2657 (−1098, 6812) 0.139
Model 2 3844 (516, 6982) 0.037 3046 (−989, 7080) 0.070
Model 1 −0.15 (−0.26, −0.04) 0.007 −0.09 (−0.17, −0.01) 0.042TXA2:PGI2 ratio
Model 2 −0.15 (−0.27, −0.04) 0.008 −0.08 (−0.18, −0.00) 0.047

SRP: skin roasted peanuts; PB: peanut butter; CB: control butter; PGI2: prostacyclin I2; TXA2: thromboxane A2.
Generalized estimating equation models were used to estimate the effect (difference) of the intervention among
study groups. Model 1, unadjusted, and Model 2, adjusted by sex, age, and physical activity; p-value < 0.050 are
statistically significant.
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