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Abstract

The Brownian motion is a stochastic process that models the motion of particles
suspended in a liquid or a gas. In mathematics, it also plays a vital role in stochastic
calculus.

This thesis consists in the proving of three different results of convergence towards
the Brownian motion.

The first one is proving the Donsker’s theorem, for which different notions of conver-
gence, such as weakly convergence or convergence in distribution, are introduced.

The second result consists in the proving of a certain type of stochastic processes
converging in distribution towards the Brownian motion.

For the last result, uniform transport processes are presented and then it is showed
that they converge almost surely to the Brownian motion. In addition, a couple of
results that extend this almost sure convergence are mentioned.
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1 Introduction

I first got interest in stochastic processes when I was an undergraduate student and
I took a subject on, precisely, an introduction to stochastic processes.

After doing this subject, I felt like I needed to do some more work related on this
area of mathematics so I did my bachelor’s thesis on renewal stochastic processes.
While studying this processes, I enrolled to the Advanced Mathematics master in
order to be able to extend my knowledge in stochastic analysis as my first priority.

Therefore, it made sense to do this master’s thesis about some topic related to
stochastic calculus.

Then, I talked with my tutor, Carles Rovira, about what to do and one of the topics
that we discussed as a possible master’s thesis was the one that we finally commit
to: proving different results on the convergence to the Brownian motion.

The project

During the 19th century, scientists started developing the discipline of statistical
mechanics. Basically, they started treating physical systems mathematically. For
example, they regarded containers filled with gas as collections of many moving
particles.

In 1859, James Clerk Maxwell presented a work on the kinetic theory of gases where
he assumed that the gas particles move in random directions at random velocities.

This was the starting point for the development of the statistical physics during the
second half of the 19th century. During this period of time, Thorvald N. Thiele, in
1880, published a paper where he described the mathematics behind the Brownian
motion.

The Brownian motion describes the random movement of particles suspended in a
liquid or a gas. It was first described by the botanist Robert Brown, in 1827, while
he was looking at pollen particles through a microscope.

Despite he described it, as we have said previously, the mathematics behind this
motion were not addressed until the end of the 19th century. Furthermore, it was
not until 1900 when Louis Bachelier modeled for the first time, and under the
supervision of Henri Poincaré, the stochastic process that we now know as the
Brownian motion or the Wiener process.

This Brownian motion will be the protagonist of this thesis.

What we will do is prove different results regarding some type of convergence to-
wards this Brownian motion.

One of the results that we are going to see is a classical result which is the Donsker’s
theorem. For this result we will follow the first chapter, and part of the second, of
the book Convergence of Probability Measures by Patrick Billingsley [2].
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In order to state and prove this result we are going to discuss about different notions
of convergence such as the weak convergence, the convergence in distribution or the
convergence in probability.

We will also define the concept of tightness. Moreover, we will discuss this concept
of tightness, and also the notion of weak convergence, in the set of continuous
functions on [0, 1].

Finally, we will see the definitions of the Wiener measure and the Brownian motion.

With all this, we will be able to state the Donsker’s theorem and prove that the
stochastic processes that it defines converge towards the Brownian motion in dis-
tribution.

Notice that, for all the previous concepts, we will use the book Curs de Probabili-
tats by David Nualart and Marta Sanz [10] to reinforce these two chapters of the
Convergence of Probability Measures book.

Another result that we will prove is the convergence in distribution of a particular
type of stochastic processes. This processes that we will define were presented by
Mark Kac but was Daniel Stroock who explicitly proved their convergence. This re-
sult can be found in the work of Stroock, Topics in Stochastic Differential Equations
[13]. Even so, we will follow a presentation made by Xavier Bardina on December
18, 2014 at Bucuresti called On the Kac-Stroock Approximations.

The last result that we will see is the almost sure convergence of the uniform
transport processes towards the Brownian motion.

In order to prove this result we will follow the paper written by Richard J. Griego,
David Heath and Alberto Ruiz-Moncayo, Almost Sure Convergence of Uniform
Transport Processes to Brownian Motion [5].

We will use classical books as An Introduction to Probability Theory and its Appli-
cations by William Feller [3] and Studies in the Theory of Random Processes by
Anatoliy V. Skorokhod [12] to complement the proof of the main paper [5].

Furthermore, we will see a couple of results that extend the result of almost sure
convergence. To do so we will use some results that we can find in the paper Rate of
Convergence of Uniform Transport Processes to Brownian Motion and Application
to Stochastic Integrals by Luis G. Gorostiza and Richard J. Griego [4] and in the
paper On the Convergence of Ordinary Integrals to Stochastic Integrals by Eugene
Wong and Moshe Zakai [14].

Structure

This thesis consists of three parts without taking into account the Introduction and
the Appendices.

In the first part we are going to prove the Donsker’s theorem. We will discuss about
the different notions of convergence that we have said before and we will also see
concepts as tightness, the Wiener measure or the Brownian motion.
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The second and the third part are both in the same section, under the name of
Uniform Transport Processes.

What we are going to do in these sections is to prove two different results of different
types of convergence towards the Brownian motion.

In the second part we are proving the convergence in distribution of a certain type
of stochastic processes that were discussed by Kac and Stroock. We will basically
study the construction of the processes they studied and then we will prove that
they converge in distribution to the Brownian motion.

In the third part we are going to prove a stronger result which involves a generaliza-
tion of the processes studied in the second part. We will prove that they converge
almost surely towards the Brownian motion.

To finish, we will see a couple of results that are an extension of this last notion of
almost sure convergence to the Brownian motion.

At the end of the thesis we will find a section of Appendices that contain different
sections which complement the topics that we study during this work. Their purpose
will be to fill the gaps that we may leave during the thesis.
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2 The Donsker’s Theorem

We start the thesis with this first part where the objective is to state and prove
the Donsker’s theorem. In order to achieve this goal, we will first work on some
preliminaries to be able to understand everything involved in the theorem.

For the whole section we will denote the set of continuous functions on [0, 1] by
C := C([0, 1]). Also, we will define the following distance:

ρ(x, y) := sup
t

|x(t)− y(t)| . (2.1)

2.1 Weak Convergence

The first thing that we want to study is the notion of weak convergence in proba-
bility. We extract the definition from the book of David Nualart and Marta Sanz,
Curs de Probabilitats [10].

Definition 2.1. Let {Pn}n≥1 be a sequence of probabilities in R. We will say that
this sequence converges weakly to a probability P, Pn ⇒ P, if

lim
n

∫
R
f dPn =

∫
R
f dP,

for every function f : R → R continuous and bounded.

Instead of studying the convergence with probabilities in R, we want to see how
can we translate this definition but considering a metric space and considering the
probabilities on the class of Borel sets in S.

Let S be a metric space and P be the smallest σ-field containing all the open sets.
We will say that P is a probability measure on P if it is a non-negative, countably
additive set function2 with P(S) = 1.

Now, we can define the notion of weak convergence.

Definition 2.2. Let {Pn}n≥1 be a sequence of probabilities in P and let P also be
a probability measure in P. We will say that this sequence converges weakly to
P, i.e. Pn ⇒ P, if

lim
n

∫
S

f dPn =

∫
S

f dP,

for f a real, continuous and bounded function on S.

The following theorem provides us equivalent ways to state the notion of weak
convergence. To state the theorem we first need to define the notion of P-continuity
sets.

2A set function is a function mapping sets to numbers where the value for the union of two
disjoint sets is the sum of its values on these sets, i.e. f(A∪B) = f(A) + f(B). This set function
f is countably additive if for any given collection of sets {Ek}nk=1 where f is defined, then

f

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

f(Ek).
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Definition 2.3. We will say that A in P is a P-continuity set if its boundary,
∂A, satisfies P(∂A) = 0.

With that being said, we can state the following theorem.

Theorem 2.4. Let Pn, P be probability measures on (S,P). Then, the following
conditions are equivalent:

(i) Pn ⇒ P.

(ii) lim
n

∫
f dPn =

∫
dP for every f real, bounded and uniformly continuous.

(iii) lim sup
n

Pn(F ) ≤ P(F ) for all closed F .

(iv) lim inf
n

Pn(G) ≥ P(G) for all open G.

(v) lim
n

Pn(A) = P(A) for all P-continuity sets A.

Proof. Notice first that (i) =⇒ (ii) is trivial because of the definition that we have
given for weakly convergence.

Let us prove now (ii) =⇒ (iii).

We assume (ii) and suppose that we have F closed.

For every δ we can find an ε > 0 small enough such that G := {x : ρ(x, F ) < ε},
where ρ is the distance we have previously defined, satisfies P(G) < P(F )+ δ, since
the sets G decrease to F as ε ↓ 0.

Let us define now the function f(x) = φ
(
1
ε
ρ(x, F )

)
where φ(t) is the continuous

real function defined as it follows:

φ(t) :=


1 if t ≤ 0,

1− t if 0 ≤ t ≤ 1,

0 if 1 ≤ t.

Then, f satisfies:

• f is uniformly continuous on S,

• f(x) = 1 if x ∈ F ,

• f(x) = 0 if x ∈ Gc,

• 0 ≤ f(x) ≤ 1, ∀x.

Notice that we have the following relations:

Pn(F ) =

∫
F

f dPn ≤
∫
f dPn,

and ∫
f dP =

∫
G

f dP ≤ P(G) ≤ P(F ) + δ.
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Then, using these relations and combining them with the condition (ii), which we
are assuming, we obtain that

lim sup
n

Pn(F ) ≤ lim
n

∫
f dPn =

∫
f dP < P(F ) + δ.

Hence, since δ is arbitrary, we have proved (iii).

To continue, we are going to prove (iii) =⇒ (i).

Let us assume (iii) and that f is continuous and bounded on S.

We want to prove first that

lim sup
n

∫
f dPn ≤

∫
f dP. (2.2)

If we linearly transform f with a positive coefficient for the first-degree term, i.e.
f̄ = af + b with a > 0, then we can reduce to the case where 0 < f̄(x) < 1 for all
x by choosing proper coefficients. We will abuse notation and use f as f̄ .

Now, let us fix k ∈ N and define Fi :=
{
x : i

k
≤ f(x)

}
for i = 0, . . . , k.

Since 0 < f(x) < 1,

k∑
i=1

i− 1

k
P
[{

x :
i− 1

k
≤ f(x) ≤ i

k

}]
≤
∫
f dP <

k∑
i=1

i

k
P
[{

x :
i− 1

k
≤ f(x) ≤ i

k

}]
.

Notice that those sums, in fact, are

k∑
i=1

i− 1

k
P
[{

x :
i− 1

k
≤ f(x) ≤ i

k

}]
=

k∑
i=1

i− 1

k
[P(Fi−1 − Fi)] =

1

k

k∑
i=1

P (Fi),

and

k∑
i=1

i

k
P
[{

x :
i− 1

k
≤ f(x) ≤ i

k

}]
=

k∑
i=1

i

k
[P(Fi−1 − Fi)] =

1

k
+

1

k

k∑
i=1

P(Fi).

Hence, the previous inequalities become

1

k

k∑
i=1

P (Fi) ≤
∫
f dP <

1

k
+

1

k

k∑
i=1

P(Fi). (2.3)

Also, since (iii) holds, we have that lim sup
n

Pn(Fi) ≤ P(Fi) for every i. Hence,

applying (2.3) we obtain that

lim sup
n

∫
f dPn ≤ 1

k
+

∫
f dP.

Letting k → ∞ we obtain (2.2).
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If we apply (2.2) to −f we can get lim inf
n

∫
f dP ≥

∫
f dP. This, jointly with

(2.2), proves the weak convergence.

The prove of (iii) ⇐⇒ (iv) can be done by complementation.

For example, let us assume (iii). Notice that, for each F closed, there exists a
G = S\F open and, therefore, P(F ) = 1− P(G) and Pn(F ) = 1− Pn(G).

Hence, we have that
lim sup

n
Pn(F ) ≤ 1− P(G).

Moreover,

lim sup
n

Pn(F ) = lim sup
n

(1− Pn(G)) ≥ lim inf
n

(1− Pn(G)) .

Therefore,

lim inf
n

(1− Pn(G)) ≤ 1− P(G) ⇐⇒ 1− lim inf
n

Pn(G) ≤ 1− P(G)

⇐⇒ P(G) ≤ lim inf
n

Pn(G).

With a similar argument, we can prove the other implication.

Now, it just remains to prove (iii) ⇐⇒ (v).

We first assume (iii) (and hence, (iv)) . Let A ∈ S be a P-continuity set and let Å
be its interior and Ā its closure.

Then, for each A, we have the following inequalities:

P(Ā) ≥ lim sup
n

Pn(Ā) ≥ lim sup
n

Pn(A) ≥ lim inf
n

Pn(A) ≥ lim inf
n

Pn(Å) ≥ P(Å).

Since we are assuming that A is a P-continuity set, we have that P(∂A) = 0, where
∂A is the boundary of A. Then, P(Ā) = P(Å) and, therefore,

lim
n

Pn(A) = P(A).

Finally, let us assume (v).

We have that
∂ {x : ρ(x, F ) ≤ δ} ⊆ {x : ρ(x, F ) = δ} .

Then, these boundaries are disjoint for distinct δ. This means that at most count-
ably many of them can have positive P-measure.

Hence, for some sequence {δk}k≥0 such that δk → 0, the sets Fk := {x : ρ(x, F ) ≤ δk}
are P-continuity sets.

Since (v) holds by assumption,

lim sup
n

Pn(F ) ≤ lim
n

Pn(Fk) = P(Fk) for each k.

Then, if F is closed, Fk ↓ F and hence, (iii) holds.

□
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With all that being said, we are going to define a notion which is useful when we
are dealing with weak convergence. This is the notion of tightness.

Definition 2.5. We will say that a probability measure P in (S,P) is tight if for
each ε > 0 there exists a compact set K such that P(K) > 1− ε.

Another way to characterize tightness is using the following theorem.

Theorem 2.6. If S is separable3 and complete4, then each probability measure on
(S,P) is tight.

In order to prove this result, we need the following theorem, whose proof is in the
Appendices (Appendix B).

Theorem 2.7. For an arbitrary set A in S these three conditions are equivalent:

(i) Ā is compact.

(ii) Each sequence in A has a convergent subsequence, the limit of which neces-
sarily lies in Ā.

(iii) A is totally bounded5 and Ā is complete.

Proof of Theorem 2.6. Since S is separable, for each n, there exists a sequence of
1
n
-spheres covering S, let us say An1 , An2 , . . ..

Let us choose an in = i(n) so that

P

(⋃
i≤in

Ani

)
> 1− ε

2n
.

Using Theorem 2.7, since we are assuming that S is complete, by this technical

result we have that the totally bounded set
⋂
n≥1

⋃
i≤in

Ani
has compact closure K.

Therefore, P (K) > 1− ε, which proves the tightness.

□

2.2 Weak Convergence and Tightness in C
Since we will work with functions in C, we want to see some results related to the
notions of weak convergence and tightness on C.

The first thing that we are going to see is a theorem which gives us the notion of
weak convergence in C using the weak convergence that we have already studied.

3S is separable if it contains a countable, dense subset. That is that there exists a sequence
{xn}n≥1 of elements of S such that every nonempty open subset contains at least one element of
the sequence.

4A S set is complete if every Cauchy sequence of points in S has its limit also in S.
5A set A in a metric space S is totally bounded if there is a finite collection of open spheres

with radius ε such that its centers are in A and the union of these balls contains A.
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Theorem 2.8. Let Pn, P be probability measures on (C,C ). If the finite-dimensional
distributions of Pn converge weakly to those of P, and if {Pn} is tight, then Pn ⇒ P.

Remark 2.9. Notice that C is the class of Borel sets of C.

The proof of this theorem follows from Prokhorov’s Theorem, which says that
the compactness of a family of probability measures on (C,C ) is equivalent to the
tightness of the family (see Appendix D).

Now, let us see the notion of tightness in C. First we define the modulus of
continuity of an element x of C as

wx(δ) = w(x, δ) = sup
|s−t|<δ

|x(s)− x(t)| , 0 < δ ≤ 1. (2.4)

For the following theorems, let {Pn} be a sequence of probability measures on (C,C ).

Theorem 2.10. The sequence {Pn} is tight if and only if the following two condi-
tions hold:

(i) For each positive η there exists an a such that

Pn [{x : |x(0)| > a}] ≤ η, for all n ≥ 1. (2.5)

(ii) For each ε, η > 0 there exist 0 < δ < 1 and n0 ∈ N such that

Pn [{x : wx(δ) ≥ ε}] ≤ η, for all n ≥ n0. (2.6)

Remark 2.11. Notice that, since w(·, δ) is continuous then it is measurable .
Hence, we can rewrite (2.6) as

lim
δ→0

lim sup
n→∞

Pn [{x : wx(δ) ≥ ε}] = 0

Proof. We first suppose that {Pn} is tight. With ε and η fixed we choose K a
compact set such that Pn(K) > 1− η for all n. By the Arzelà-Ascoli theorem6 we
have that K ⊂ {x : |x(0)| ≤ a} for a large enough and K ⊂ {x : wx(δ) < ε} for δ
small enough. Therefore, we have (i) and (ii) (setting n0 = 1 for (ii)).

Notice that, since a single probability measure P in (C,C ) is tight, it follows by the
necessity of (ii) that for each ε, η there is a δ such that Pn [{x : wx(δ) ≥ ε}] ≤ η.
Hence, if {Pn} satisfies (ii), we may ensure that (2.6) holds for the finitely many
n preceding n0 by decreasing δ if necessary. Thus, we can assume, for sufficiency,
that n0 is always 1.

For the other implication, let us assume that {Pn} satisfies (i) and (ii), with n0 = 1.

6Arzelà-Ascoli Thm: A subset A ⊂ C has compact closure iff sup
x∈A

|x(0)| < ∞ and

lim
δ→0

sup
x∈A

wx(δ) = 0.
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Then, given η, let us choose a such that if A = {x : |x(0)| ≤ a} then Pn(A) ≥ 1− 1
2
η

for all n. Also, choose δk such that if Ak =
{
x : wx(δk) <

1
k

}
then Pn(Ak) ≥ 1− η

2k+1

for all n.

If K is the closure of A =
∞⋂
k=1

Ak, then Pn(K) ≥ 1 − η for all n and K is compact

(by Arzelà-Ascoli theorem). Therefore, {Pn} is tight.

□

The next theorem goes a step beyond this previous theorem to characterize the
tightness in C.

Theorem 2.12. The sequence {Pn} is tight if these two conditions are satisfied:

(i) For each η > 0 there exists an a such that

Pn [{x : |x(0)| > a}] ≤ η, for all n ≥ 1. (2.7)

(ii) For each ε, η > 0 there exist 0 < δ < 1 and n0 ∈ N such that

1

δ
Pn

[{
x : sup

t≤s≤t+δ
|x(s)− x(t)| ≥ ε

}]
≤ η, for all n ≥ n0, (2.8)

for all t.

Remark 2.13. On (ii) we restrict t to 0 ≤ t ≤ 1. Also, if t > 1− δ, we restrict s
to t ≤ s ≤ 1.

Note also that (2 .8 ) is formally satisfied if δ > 1
η
but we require δ < 1.

Proof. Let us fix δ and let

At :=

{
x : sup

t≤s≤t+δ
|x(s)− x(t)| ≥ ε

}
.

Now, let s and t lie in intervals of the form [iδ, (i+ 1)δ].

If |s− t| < δ, then these intervals either coincide or abut. Hence, it follows that

Pn [{x : wx(δ) ≥ 3ε}] ≤ Pn

⋃
i< 1

δ

Aiδ

 .
Now, since

Pn

⋃
i< 1

δ

Aiδ

 ≤
∑
i< 1

δ

Pn(Aiδ),

we have that (2.8) implies that Pn [x : wx(δ) ≥ 3ε] ≤ (1 +
[
1
δ

]
)δη < 2η.

Therefore, (ii) implies the condition (ii) on Theorem 2.10. Moreover, since (i) is
the same as in Theorem 2.10, we have the double implication proved.

□
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2.3 Convergence in Distribution

Now that we have seen the definition of weak convergence, we are able to define the
notion of convergence in distribution.

The first thing we are going to do is to describe what are the random elements in
a probability space and what are the probability distributions.

From now on, on this section, we will consider (Ω,B,P) a probability space and S
a metric space.

Definition 2.14. Let X be a mapping from (Ω,B,P) to S. If X is measurable
then we say that it is a random element.

Remark 2.15. We say that X is defined on its domain Ω (or the probability space
(Ω,B,P)) and that is defined in its range S. We can also call X a random element
of S.

For example, if S = R we will say that X is a random variable; but if S = Rk,
then X is a random vector; and lastly, if S = C, then we will say that X is a
random function. In fact, we see these functions depending on time and we call
them stochastic processes. Those random functions are the ones that we will
work with when proving the Donsker’s theorem.

Before defining the notion of convergence in distribution we need to define what a
distribution is.

Definition 2.16. The distribution of X is the probability measure P = PX−1 on
(S,P). That is:

P(A) = P
[
X−1A

]
= P [{ω : X(ω) ∈ A}] = P [{X ∈ A}] , A ∈ P.

Note that P is a probability measure on a space of an arbitrary nature and, on the
other hand, P is always defined on a metric space.

The distribution P contains all relevant information about the random element X.
If h is a measurable function on S, then,∫

h(X) dP =

∫
h dP,

in the sense that both integrals exist, or not, together and have the same value.
Then,

E (h(X)) =

∫
h dP.

Notice also that each probability measure on each metric space is the distribution of
some random element on some probability space. Therefore, given P on (S,P), if
we take (Ω,B,P) = (S,P,P) and X as the identity, i.e. X(ω) = ω for ω ∈ Ω = S,
then X is a random element on Ω with values in S and distribution P. Thus,
the class of distributions coincides with the class of probability measures on metric
spaces but we will call a measure on a metric space a distribution only when it is
the distribution of some random element already under discussion.
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Definition 2.17. Let {Xn}n≥0 be a sequence of random elements. We say that this
sequence converges in distribution to the random element X,

Xn
D−→ X,

if the distributions of the Xn’s, say Pn, converge weakly to the distribution of X,
say P, i.e. Pn ⇒ P.

Notice that this definition only makes sense if the image space S and its topology
are the same for all the random elements but the underlying probability spaces may
be distinct.

We usually do not mention this underlying spaces because their structures enter
into the argument only by way of the distributions on S they induce. Therefore, we
write P [Xn ∈ A] when we should write Pn [Xn ∈ A] and we write E (f(Xn)) where

we should write

∫
f(Xn)dPn or En (f(Xn)).

Hence, since

∫
S

f(x)P(dx) =
∫
Ω

f(X)dP , and similarly for

∫
f(Xn)dPn, we have

that:
Xn

D−→ X ⇐⇒ lim
n

E (f(Xn)) = E (f(X)) ,

for every f real, continuous and bounded on S.

As we have seen for weak convergence, on Theorem 2.4, we can also find different
ways to state the convergence in distribution. To do so, we just have to define the
equivalent notion of P-continuity sets but for distributions.

Definition 2.18. Let A ∈ P. We will say that A is an X-continuity set if

P [{X ∈ ∂A}] = 0.

Thus, we can state the following theorem.

Theorem 2.19. Let {Xn} be a sequence of random elements and let X be a random
element too. Then, the following conditions are equivalent:

(i) Xn
D−→ X.

(ii) lim
n

E (f(Xn)) = E (f(X)) for all f real, bounded and uniformly continuous

function.

(iii) lim sup
n

P [{Xn ∈ F}] ≤ P [{X ∈ F}] for all F closed.

(iv) lim inf
n

P [{Xn ∈ G}] ≥ P [{X ∈ G}] for all G open.

(v) lim
n

P [{Xn ∈ A}] = P [{X ∈ A}] for all X-continuity sets A.

All these equivalences follow by Theorem 2.4.

To close this section of Convergence in Distribution, let us see an hybrid way to
state this convergence.

12



If Xn are random elements of S with corresponding distributions Pn and if P is a
probability measure (S,P), we say that Xn converges in distribution to P, i.e.,

Xn
D−→ P,

in case that Pn ⇒ P.

Notice now that, if h : S → S ′ is a measurable mapping between two metric spaces,
then each probability measure P on (S,P) induces a unique probability measure
on (S ′,P ′), Ph−1, defined by Ph−1(A) = P(h−1(A)) for A ∈ P ′.

If we assume that h is continuous, then we have that f(h(x)) is continuous and
bounded on S whenever f(y) is continuous and bounded on S ′. Therefore, Pn ⇒ P
implies that ∫

f(h(x))Pn(dx) −→
∫
f(h(x))P(dx)

which becomes ∫
f(y)Pnh

−1(dy) −→
∫
f(y)Ph−1(dy),

and, therefore, Pnh
−1 ⇒ Ph−1.

We can even weaken the continuity assumption to obtain a similar result.

If we assume only that h is measurable and let Dh be the set of discontinuities of h
(Dh ∈ P) then we have this theorem.

Theorem 2.20. If Pn ⇒ P and P(Dh) = 0, then Pnh
−1 ⇒ Ph−1.

Proof. We will show that if F is a closed subset of S ′, then

lim sup
n→∞

Pnh
−1(F ) ≤ Ph−1(F ).

Since Pn ⇒ P, we have that

lim sup
n

Pn(h
−1F ) ≤ lim sup

n
Pn

(
h−1F

)
≤ P

(
h−1F

)
.

Then, it suffices to prove P
(
h−1F

)
= P(h−1F ). But this follows from the assump-

tion P(Dh) = 0 and the fact that h−1F ⊂ Dh ∪ h−1F .

□

An immediate corollary of this theorem is:

Corollary 2.21. If Xn
D−→ X and P [{X ∈ Dh}] = 0, then h(Xn)

D−→ h(X).

13



2.4 Convergence in Probability

In this section we want to introduce briefly the notion of convergence in probability
and see a result that will let us prove the Donsker’s Theorem.

First, recall that we define the distance

ρ(x, y) = sup
t

|x(t)− y(t)| .

We say that the random elements Xn converge in probability to a ∈ S if for
each ε > 0,

P [{ρ(Xn, a) ≥ ε}] → 0.

We will write Xn
P−→ a.

Note that if a is a constant-valued random element, then Xn
P−→ a is equivalent to

say that Xn
D−→ a.

Also, without assumptions on a, we can say that Xn
P−→ a if and only if Xn converges

weakly to the probability measure corresponding to a mass of 1 at the point a.

Now, if Xn and Yn have a common domain, we can consider the distance between
them, ρ(Xn, Yn), which has value ρ(Xn(ω), Yn(ω)) at ω. If S is separable, then
ρ(Xn, Yn) is a random variable.

For the following result we assume that Xn and Yn have a common domain for every
n and that S is separable.

Theorem 2.22. If Xn
D−→ X and ρ(Xn, Yn)

P−→ 0, then Yn
D−→ X.

Proof. Let F be a set and Fε := {x : ρ(x, F ) ≤ ε}.

Then,
P [{Yn ∈ F}] ≤ P [{ρ(Xn, Yn) ≥ ε}] + P [{Xn ∈ Fε}] .

Since Fε is closed, the hypothesis of the theorem implies that

lim sup
n

P [{Yn ∈ F}] = lim sup
n

P [{Xn ∈ Fε}] ≤ P [{X ∈ Fε}] .

If F is closed, F ↓ Fε as ε ↓ 0 and therefore, using Theorem 2.4 we obtain the result
we wanted.

□

2.5 The Donsker’s Theorem

In this section we will, finally, state and prove the Donsker’s theorem. Before we
do so, we are going to discuss a couple of things that are involved in the statement
and proof of the theorem.

The first thing that we want to discuss involves a particular type of stochastic
processes. These are random functions defined as it follows.
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Let ξ1, ξ2, . . . be random variables on the probability space (Ω,B,P). For the
moment we do not require them to be independent but later, on the theorem, we
will see which characteristics we need them to satisfy.

To continue, we define the sequence of partial sums Sn = ξ1 + · · ·+ ξn with S0 = 0.
Then, we construct Xn as it follows.

Considering the points i
n
∈ [0, 1], for i = 1, . . . , n, the values of Xn will be

Xn

(
i

n
, ω

)
:=

1

σ
√
n
Si(ω). (2.9)

On the other hand, for the remaining points t ∈ [0, 1], we define Xn(t, ω) by linear
interpolation:

If t ∈
[
i−1
n
, i
n

]
, then

Xn(t, ω) =
i
n
− t
1
n

Xn

(
i− 1

n

)
+
t− i−1

n
1
n

Xn

(
i

n

)

=
1

σ
√
n
Si−1(ω) + n

(
t− i− 1

n

)
1

σ
√
n
ξi(ω).

(2.10)

Furthermore, since i− 1 = [nt], if t ∈
[
i−1
n
, i
n

]
we can define Xn as

Xn(t, ω) :=
1

σ
√
n
S[nt](ω) + (nt− [nt])

1

σ
√
n
ξ[nt]+1(ω). (2.11)

With this definition we obtain a function defined on [0, 1] which at the points
1
n
, . . . , n−1

n
, 1 has the values defined at (2.9) and that it is linear on each interval

[ i−1
n
, i
n
] for i = 1, . . . , n. An example of such processes is the one we have in the

next figure.

0 0.2 0.4 0.6 0.8 1

−2

0

2

Time (t)

X
n
(t
,ω

)

Figure 1: Representation of Xn(t, ω)
with ξi ∼ N(0, σ2), σ =

√
2 and n = 20.
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Notice that Xn(t) is a random variable for each t since the ξi’s (and therefore the
Si’s) are random variables. Thus, the Xn are stochastic processes.

Moreover, we are interested in studying if these sequences of random functions are
tight or not. Notice that, since X0 = 0, the sequence {Xn(0)} is tight.

Now, we can recast the Theorem 2.12 in the following way:

{Xn} is tight if and only if {Xn(0)} is tight and if for each ε, η > 0 there exist
0 < δ < 1 and n0 ∈ N such that

1

δ
P
[

sup
t≤s≤t+δ

|Xn(s)−Xn(t)| ≥ ε

]
≤ η, n0 ≥ n, 0 ≤ t ≤ 1. (2.12)

Moreover, if t = k
n
and t+ δ = j

n
, k, j ∈ Z, we obtain

1

δ
P
[

sup
t≤s≤t+δ

|Xn(s)−Xn(t)| ≥ ε

]
≤ η ⇐⇒

⇐⇒ 1

δ
P
[

sup
t≤s≤t+δ

∣∣∣∣ 1

σ
√
n
S[ns] + (ns− [ns])

1

σ
√
n
ξ[ns]+1 −

1

σ
√
n
S[nt]−

− (nt− [nt])
1

σ
√
n
ξ[nt]+1

∣∣∣∣ ≥ ε

]
≤ η

⇐⇒ 1

δ
P

[
sup

k
n
≤s≤ j

n

∣∣∣∣ 1

σ
√
n
S[ns] + (ns− [ns])

1

σ
√
n
ξ[ns]+1 −

1

σ
√
n
S[k]−

− (k − [k])
1

σ
√
n
ξ[k]+1

∣∣∣∣ ≥ ε

]
≤ η

⇐⇒ 1

δ
P

[
sup

k
n
≤s≤ j

n

∣∣∣∣ 1

σ
√
n
S[ns] + (ns− [ns])

1

σ
√
n
ξ[ns]+1 −

1

σ
√
n
Sk−

− (k − k)
1

σ
√
n
ξk+1

∣∣∣∣ ≥ ε

]
≤ η

⇐⇒ 1

δ
P

[
sup

k
n
≤s≤ j

n

∣∣∣∣ 1

σ
√
n
S[ns] + (ns− [ns])

1

σ
√
n
ξ[ns]+1 −

1

σ
√
n
Sk

∣∣∣∣ ≥ ε

]
≤ η.

Since we are taking t = k
n
, we have that the s in the supremum satisfies the condition

k
n
≤ s ≤ k+nδ

n
. Therefore, we can take an i ∈ Z such that s = k+i

n
where i is, at

most, nδ. Then, instead of taking the supremum with the condition t ≤ s ≤ t + δ
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we can take the maximum with the condition i ≤ nδ. Hence,

1

δ
P

[
sup

k
n
≤s≤ k+nδ

n

∣∣∣∣ 1

σ
√
n
S[ns] + (ns− [ns])

1

σ
√
n
ξ[ns]+1 −

1

σ
√
n
Sk

∣∣∣∣ ≥ ε

]
≤ η

⇐⇒ 1

δ
P
[
max
i≤nδ

∣∣∣∣ 1

σ
√
n
S[k+i] + (k + i− [k + i])

1

σ
√
n
ξ[k+i]+1 −

1

σ
√
n
Sk

∣∣∣∣ ≥ ε

]
≤ η

⇐⇒ 1

δ
P
[
max
i≤nδ

∣∣∣∣ 1

σ
√
n
Sk+i + (k + i− (k + i))

1

σ
√
n
ξk+i+1 −

1

σ
√
n
Sk

∣∣∣∣ ≥ ε

]
≤ η

⇐⇒ 1

δ
P
[
max
i≤nδ

∣∣∣∣ 1

σ
√
n
Sk+i −

1

σ
√
n
Sk

∣∣∣∣ ≥ ε

]
≤ η.

Therefore, (2.12) is reduced to

1

δ
P
[
max
i≤nδ

1

σ
√
n
|Sk+i − Sk| ≥ ε

]
≤ η. (2.13)

This will help us proving the following result.

Theorem 2.23. Suppose {Xn} is defined by (2.11). Then, the sequence is tight if
for each ε > 0 there exist λ > 1 and n0 ∈ N such that, if n ≥ n0, then

P
[
max
i≤n

|Sk+i − Sk| ≥ λσ
√
n

]
≤ ε

λ2
(2.14)

holds for all k.

Remark 2.24. Requiring λ > 1 corresponds to the requirement of δ < 1 that we
did on Theorem 2.12.

Proof. Given ε and η we want to produce 0 < δ < 1 and n0 for which (2.13) holds
for all k if n ≥ n0. Since (2.13) becomes more stringent as ε and η decrease, we
may assume ε > 0 and η < 1.

By hypothesis, with ηε2 in place of ε, there exists λ > 1 and n1 such that

P
[
max
i≤n

|Sk+i − Sk| ≥ λσ
√
n

]
≤ ηε2

λ2
, for n ≥ n1, k ≥ 1. (2.15)

Let us take δ = ε2

λ2 . Since λ > 1 > ε, we obtain 0 < δ < 1.

Let n0 ∈ N such that n0 ≥ n1

δ
. Notice that, if n ≥ n0, then [nδ] ≥ n1. Hence, it

follows from (2.15) that

P
[
max
i≤[nδ]

|Sk+i − Sk| ≥ λσ
√
[nδ]

]
≤ ηε2

λ2
.

Finally, since λ
√
[nδ] ≤ ε

√
n and ηε2

λ2 = ηδ, (2.13) holds for all k if n ≥ n0.

Therefore,we have proved the theorem.

□
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The second thing we need to discuss is to define what the Wiener Measure is.

We will denote it with W and basically it is a probability measure on (C,C ) which
satisfies the following two properties.

Properties 2.25.

(i) For each t, the random variable xt is normally distributed under W with zero
mean and variance t. That is:

W [xt ≤ α] =
1√
2πt

∫ α

−∞
e

−u2

2t du. (2.16)

Note that if t = 0 we interpret W [x0 = 0] = 1.

(ii) The stochastic process {xt : 0 ≤ t ≤ 1} has independent increments under W .
That is that, if 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ 1, then the random variables

xt1 − xt0 , xt2 − xt1 , . . . , xtk − xtk−1

are independent under W .

Notice that, if W has these two properties and we take s ≤ t, then we have that
xt ∼ N(0, t) and xs ∼ N(0, s). Moreover, xt has to be the sum of the independent
random variables xs and xt − xs. Therefore, xt − xs has to be normally distributed
with zero mean and variance t− s. Thus, when (2.16) holds, we have

W
[
xti − xti−1

≤ αi, i = 1, . . . , k
]
=

k∏
i=1

1√
2π(ti − ti−1)

∫ αi

−∞
e

−u2

2(ti−ti−1)du. (2.17)

In particular, the increments are independent (i.e. for t1 < t2 < · · · < tk, k ≥ 1,
xt2 − xt1 , . . . , xtk − xtk−1

are independent) and stationary (i.e. the distribution of
xt − xs under W depends only on the difference t − s and not on the particular
values of t or s).

If we interpret xt = x(t) as the position of a moving particle at time t, then x gives
the history of the particle’s motion from the time t = 0 to the time t = 1. What
the Wiener measure W does is give to these paths x a distribution which allows us
to describe the Brownian motion. We can formalize the definition of the Brownian
motion as it follows.

Definition 2.26. A stochastic process {xt, t ≥ 0} is a standard Brownian mo-
tion if the following properties are satisfied:

(i) x0 = 0, almost surely.

(ii) It has stationary and independent increments.

(iii) For all 0 ≤ s < t, xt − xs ∼ N(0, t− s).

The appearance of the standard Brownian motion is the one we can find in the
following figure.
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Figure 2: Trajectory of a Standard Brownian Motion.

With all that being said, we finally are able to state the Donsker’s theorem.

Theorem 2.27 (Donsker). Let ξ1, . . . , ξn, . . . be independent identically distributed
random variables with zero mean and positive variance σ2. Define Sn = ξ1+ · · ·+ξn
the partial sums of the ξi’s and define a random element Xn of C as it follows:

Xn (t, ω) :=
1

σ
√
n
S[nt] + (nt− [nt])

1

σ
√
n
ξ[nt]+1(ω). (2.18)

Then, these random functions satisfy

Xn
D−→ W.

Remark 2.28. Notice that by saying Xn
D−→ W we are just stating that the stochas-

tic process Xn converges in distribution towards the standard Brownian motion.

Before proving the theorem, we may recall the Central Limit Theorem of Lévy-
Lindeberg [10]:

Theorem 2.29. Let {ξn, n ≥ 1} a sequence of independent identically distributed
random variables with mean m and variance σ2 <∞. If Sn = ξ1 + · · ·+ ξn, then

Sn − nm

σ
√
n

D−−−→
n→∞

N(0, 1).

Also, we need two more results that we will use during the prove. These are the
following theorem and lemma.
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Theorem 2.30. Let P′
n and P′ be probability measures on (S ′,P ′) and P′′

n and P′′ be
probability measures on (S ′′,P ′′). If S = S ′×S ′′ is separable, then P′

n×P′′
n ⇒ P′×P′′

if and only if P′
n ⇒ P′ and P′′

n ⇒ P′′.

We will prove this result on the Appendix C.

Lemma 2.31. Let ξ1, . . . , ξm be independent random variables with zero mean and
finite variances σ2

1, . . . , σ
2
m respectively. Set Si = ξ1+ · · ·+ξi and s2i = σ2

1+ · · ·+σ2
i .

Then,

P
[
max
i≤m

|Si| ≥ λsm

]
≤ 2P

[
|Sm| ≥ (λ−

√
2)sm

]
. (2.19)

Notice that for λ ≤
√
2 the result is trivial.

Proof of the Lemma. Let us consider the following sets,

Ei :=

{
max
j<i

|Sj| < λsm ≤ |Si|
}
.

Clearly, we have that

P
[
max
i≤m

|Si| ≥ λsm

]
≤ P

[
|Sm| ≥ (λ−

√
2)sm

]
+

m−1∑
i=1

P
[
Ei ∩

{
|Sm| < (λ−

√
2)sm

}]
.

Notice that |Si| ≥ λsm and |Sm| < (λ−
√
2)sm imply that |Sm−Si| ≥

√
2sm. Then,

by the independence of the ξi and by Chebyshev’s inequality7, we have that the
sum in the previous inequality is, at most,

m−1∑
i=1

P
[
Ei ∩

{
|Sm| < (λ−

√
2)sm

}]
≤

m−1∑
i=1

P (Ei)P
[
|Sm − Si| ≥

√
2sm

]

≤
m−1∑
i=1

P (Ei)
1

2s2m

m∑
k=i+1

σ2
k

≤ 1

2

m−1∑
i=1

P (Ei)

≤ 1

2
P
[
max
i≤m

|Si| ≥ λsm

]
.

Hence, combining this inequality and the previous one, we obtain (2.19).

□

We have everything we need to prove the Donsker’s Theorem so let us proceed with
the proof.

7Chebyshev’s Inequality: P [|Xn −X| > ε] ≤ 1

εp
E [|Xn −X|p].
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Proof of the Donsker’s Theorem. Our objective is to use Theorem 2.8 to prove the
convergence.

The first thing we are going to do is to see that the finite-dimensional distributions
of the Xn converge to those of W .

We first consider a single time s. Then, we want to prove

Xn(s)
D−→ Ws. (2.20)

Notice that we have∣∣∣Xn(s)− 1
σ
√
n
S[ns]

∣∣∣ =
∣∣∣ 1
σ
√
n
S[ns] + (ns− [ns]) 1

σ
√
n
ξ[ns]+1 − 1

σ
√
n
S[ns]

∣∣∣
=

∣∣∣(ns− [ns]) 1
σ
√
n
ξ[ns]+1

∣∣∣
≤ 1

σ
√
n
ξ[ns]+1,

since |ns− [ns]| ≤ 1.

Then, we can apply the Chebyshev’s inequality to obtain the following:

P
[

1
σ
√
n
ξ[ns]+1 > ε

]
≤ 1

ε2
E

(∣∣∣∣ 1

σ
√
n
ξ[ns]+1

∣∣∣∣2
)

=
1

ε2
E
(

1

σ2n

∣∣ξ[ns]+1

∣∣2) −−−→
n→∞

0.

Hence,
1

σ
√
n
ξ[ns]+1

P−−→ 0.

Therefore, (2.20) will follow from Theorem 2.22 if we prove that

1

σ
√
n
S[ns]

D−−−→
n→∞

Ws.

Let us prove it then.

By the Central Limit Theorem of Lévy-Lindeberg (Theorem 2.29) we have that

1

σ
√
[ns]

S[ns]
D−−−→

n→∞
N(0, 1),

where we are using that the ξ’s have zero mean. To continue, we can work with
this expression and obtain the following:

1

σ
√
[ns]

S[ns] =

√
nS[ns]

σ
√

[ns]
√
n
=

S[ns]

σ
√

[ns]
n

√
n

D−−−→
n→∞

N(0, 1).
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Therefore, √
s

σ
√

[ns]
n

√
n
S[ns]

D−−−→
n→∞

N(0, s) ∼ Ws.

Now, since [ns]
n

−−−→
n→∞

s, we obtain that

√
s

σ
√

[ns]
n

√
n
S[ns] −−−→

n→∞

√
s

σ
√
s
√
n
S[ns] =

1

σ
√
n
S[ns].

Hence,
1

σ
√
n
S[ns]

D−−→ Ws,

as we wanted to see. Thus, we have proved that

Xn
D−−→Ws.

What we are going to do, in order to continue with the proof, is to see that, for two
times s, t such that s < t,

(Xn(s), Xn(t))
D−−→ (Ws,Wt).

Note that if we prove that

(Xn(s), Xn(t)−Xn(s))
D−−→ (Ws,Wt −Ws)

then, by Corollary 2.21, we will have the result. Let us prove it then.

Notice that, using the relation∣∣∣∣Xn(s)−
1

σ
√
n
S[ns]

∣∣∣∣ ≤ 1

σ
√
n
ξ[ns]+1

P−−→ 0,

as we did before, we can reduce the problem into proving(
1

σ
√
n
S[ns],

1

σ
√
n
(S[nt] − S[ns])

)
D−−→ (Ws,Wt −Ws).

Again, by Theorem 2.29, we have, separately,

S[ns]

σ
√
n

D−−→ Ws and
S[nt] − S[ns]

σ
√
n

D−−→Wt−s.

Notice that, since the ξi’s are independent, the components on the left are indepen-
dent. Then, by the Theorem 2.30, we have proved the result for two time points.

We have seen the convergence of the finite-dimensional distributions for one and
two time points. For three or more time points we can work as we have done it for
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two time points. Therefore, we have seen that the finite-dimensional distributions
of the Xn’s converge weakly to those of W .

Note that, now, it just remains to prove tightness. To do so, we will use the
Lemma 2.31. We can apply it to the random variables on Donsker’s Theorem.
Therefore, by Lemma 2.31, we have that

P
[
max
i≤n

|Si| ≥ λσ
√
n

]
≤ 2P

[
|Sn| ≥ (λ−

√
2)σ

√
n
]
.

Moreover, for λ > 2
√
2, we have that λ

2
< λ−

√
2. Hence, to simplify the previous

inequality, we can take

P
[
max
i≤n

|Si| ≥ λσ
√
n

]
≤ 2P

[
|Sn| ≥

1

2
λσ

√
n

]
.

By Theorem 2.29 and Chebyshev’s inequality (with p = 3), we have that

P
[
|Sn| ≥

1

2
λσ

√
n

]
= P

[
|Sn|
σ
√
n
≥ 1

2
λ

]
D−−→ P

[
|N | ≥ 1

2
λ

]
<

8

λ3
E
(
|N |3

)
,

where N is a random variable with standard normal distribution, N ∼ N(0, 1).

Hence, we have that

P
[
max
i≤n

|Si| ≥ λσ
√
n

]
< 2 · 8

λ3
E
(
|N |3

)
=

16

λ3
E
(
|N |3

)
.

Therefore, for a fixed ε > 0 and for a λ big enough, we have that

lim sup
n→∞

P
[
max
i≤n

|Si| ≥ λσ
√
n

]
≤ lim sup

n→∞
2P
[
|Sn| ≥

1

2
λσ

√
n

]
≤ 16

λ3
E
(
|N |3

)
<

ε

λ2
.

We can use this last bound because, for ε fixed, since E (|N |3) is just a value, we
have

16

λ
E
(
|N |3

)
< ε.

Then, we just have to take λ such that

λ >
16E (|N |3)

ε
.

Therefore, for fixed ε and λ big enough, we have

lim sup
n→∞

P
[
max
i≤n

|Si| ≥ λσ
√
n

]
<

ε

λ2
.

Thus, by Theorem 2.6 we obtain tightness and hence, by Theorem 2.8, we have
proved the Donsker’s Theorem.

□
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3 Uniform Tansport Processes

We have proved a classical result which shows the convergence to the Brownian
motion of a certain type of stochastic processes. What we want to do now is to
study another type of stochastic processes which also converge to the Brownian
motion. In fact, our aim is to prove a notion of weaker convergence (convergence
in distribution) and also a stronger convergence (an almost sure convergence).

But, before talking about the convergences, let us see what are these stochastic
processes.

We can find a definition of the uniform transport processes in the introduction of
[1] but, as it says in itself, the origin of such processes can be found in [7], where
Kac, trying to obtain a solution of the telegrapher’s equation

1

v

∂2F

∂t2
= v

∂2F

∂x2
− 2a

v

∂F

∂t
, (3.1)

with a, v > 0 and where F (x, 0) = φ(x) with φ(x) a smooth enough function such
that

(
∂F
∂t

)
t=0

= 0, introduced the processes

x(t) = v

∫ t

0

(−1)Na(r)dr, (3.2)

where Na = {Na(t), t ≤ 0} is a Poisson process of intensity a.

Furthermore, he noticed that if, in (3.1), the parameters a and v tend to infinity
with 2a

v2
= 1

D
constant, then the solution of the equation converges to the solution

of what we know as the heat equation:

1

D

∂F

∂t
=
∂2F

∂x2
. (3.3)

Stroock, in [13], proved that a modification of the processes in (3.2) converges in
law (or in distribution) to a standard Brownian motion. Such modification is of the
following form:

xn =

{
xn(t) :=

1√
n

∫ nt

0

(−1)N(u)du, t ∈ [0, T ]

}
, ∀n ∈ N, (3.4)

where {N(t), t ≥ 0} is a standard Poisson process.

If we look at these processes, we can obtain

xn(t) =
1√
n

∫ nt

0

(−1)N(u)du =
√
n

∫ t

0

(−1)N(ns)ds =
√
n

∫ t

0

(−1)Nn(s)ds.

Then, these xn(t) are the processes that Kac considered with a = n and v =
√
n

and, also, the constant satisfyng 2a
v2

= 1
D

is D = 1
2
.
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The fact that xn converges in law to a standard Brownian motion is that if we
consider its image law, {Pn}, in the Banach space of continuous functions on [0, T ],
C([0, T ]), then {Pn} converges weakly, as n ↑ ∞, towards to the Wiener measure.

This result of convergence in law to the Brownian motion is the first one that we
will prove.

But we will not stay here, we will go further. We can find, in mathematical litera-
ture, generalizations of this result of convergence of Stroock. A way of generalizing
it is to see a stronger way of convergence. We will study a paper written by Griego,
Heath and Ruiz-Moncayo which proves that a modification of the processes in (3.4)
converges strongly and uniformly on bounded time intervals to a Brownian motion.

These modifications that Griego, Heath and Ruiz-Moncayo consider for this stronger
result are what we call uniform transport processes. These can be represented
as

x̃n(t) :=
1√
n
(−1)A

∫ nt

0

(−1)N(u)du, (3.5)

where A ∼ Bernoulli(1
2
) is independent of the Poisson process N .

With all that being said, let us start with the result of convergence in distribution
proved by Stroock.

3.1 Convergence in Distribution

In this section we will prove the first result that we have commented. To do so, we
will first analyze the processes we have defined on (3.4).

Notice that such processes have a Poisson process involved on its definition. There-
fore, we are going to do first a brief introduction (based on [11]) on Poisson processes
and then we will continue analyzing these processes considered by Stroock.

Let us begin this introduction to the Poisson process by defining what counting
processes are.

Definition 3.1. We say that the stochastic process {N(t), t ≥ 0} is a counting
process if it satisfies:

(i) N(0) = 0.

(ii) N(t) is an integer for every t ≥ 0.

(iii) N(t) ≥ 0 for every t ≥ 0.

(iv) If s < t then N(s) < N(t).

Remark 3.2. In general, if s < t, we can interpret the increments N(t)−N(s) as
the number of events that have occurred during the time interval (s, t].

We are interested in these counting processes because the Poisson process is just a
counting process that satisfies some particular properties. Then, let us see how do
we define the Poisson process.
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Definition 3.3. The counting process {Nλ(t), t ≥ 0} is a Poisson process pa-
rameterized by λ, λ > 0, if it satisfies:

(i) Nλ(0) = 0 and Nλ(t) ≥ 0.

(ii) Nλ(t) is an integer for every t ≥ 0.

(iii) The process has independent increments, i.e., for all t1 < t2 < · · · < tm,
Nλ(t2)−Nλ(t1), . . . , Nλ(tm)−Nλ(tm−1) are independent.

(iv) For every t, s ≥ 0, Nλ(t+ s)−Nλ(t) ∼ Poiss(λs). That is,

P [Nλ(t+ s)−Nλ(t) = n] = e−λs (λs)
n

n!
.

Remark 3.4. When we have λ being a constant, we say that the Poisson process
is homogeneous. On the other hand, if the λ is a function depending on time, λ(t),
we say that it is non-homogeneous.

The following figure shows how the trajectory of a Poisson process looks like.

1

2

3

4

5

t

Figure 3: Trajectory of a Poisson process N(u).

Now that we have introduced what a Poisson process is, let us picture what those
processes that Stroock considered are.

We start with a Poisson process. We will consider the one that we have defined
before in Figure 3. Then, the representation of (−1)N(u) will be a process that is 1
whenever the value of the Poisson process is even and it is −1 whenever the value
of the Poisson process is odd. That is what the following figure represents.

−1

1

t

Figure 4: Trajectory of the process (−1)N(u).
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Then, if we consider the integral of this process, we obtain a new process which
looks like the graphic showed in Figure 5.

t

Figure 5: Trajectory of the process

∫ t

0

(−1)N(u)du.

Notice that, so far, we have been picturing how the processes

∫ t

0

(−1)N(u)du look

like. In order to have the processes considered by Stroock it just remains to multiply

these processes by
1√
n
. Basically what this multiplication by this term does is to

impose that the time passes faster on the process, so we have more ups and downs
in smaller time intervals.

With all this reasoning, we have pictured the processes that we need to consider.

The result that we want to prove in this section is the following theorem presented
by Stroock [13].

Theorem 3.5. Consider {N(t), t ≥ 0} a Poisson process and define, for all n ∈ N,
the continuous processes

xn =

{
xn(t) :

1√
n

∫ nt

0

(−1)N(u)du, t ∈ [0, T ]

}
. (3.6)

If {Pn} are the distributions of the xn in the Banach space C ([0, T ]) of continuous
functions on [0, T ], then the sequence {Pn} converges in distribution, as n ↑ ∞,
towards the Wiener measure.

Remark 3.6. To simplify the proof we will assume that the Poisson process has
intensity 1.

To prove the theorem, we will use Theorem 2.8, as we have done in the proof of the
Donsker’s theorem. Therefore, we have to see that the sequence of distributions of
the stochastic processes we are studying, {Pn}, is tight and converges weakly to the
law of a Brownian motion, let us say P.

Therefore, let us proceed with the proof of Theorem 3.5.
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3.1.1 Proof of tightness

To prove tightness we will use the Billingsley criterion for tightness (Theorem 12.3
in [2]). That is the following result.

Theorem 3.7 (Billingsley Criterion). Let (Ω,B,P) be a probability space. Let
{Xn} be a sequence of stochastic processes in C = C([0, 1]). The sequence {Xn} is
tight if it satisfies these two conditions:

(i) The sequence {Xn(0)} is tight.

(ii) There exist γ ≥ 0 and α > 1 constants and F a non-decreasing, continuous
function on [0, 1] such that

P [|Xn(t2)−Xn(t1)| ≥ λ] ≤ 1

λγ
|F (t2)− F (t1)|α (3.7)

holds for all t1, t2, for all n and for all positive λ.

Remark 3.8. Notice that, by the Markov’s inequality 8, the condition in (3.7) is
satisfied if

E (|Xn(t2)−Xn(t1)|γ) ≤ |F (t2)− F (t1)|α .

Then, using the Billingsley Criterion, we are going to prove tightness.

Because of the first condition in the criterion, notice that

xn(0) =
1√
n

∫ 0

0

(−1)N(u)du = 0.

Therefore, the sequence {xn(0)}n is constantly 0 and, hence, this sequence is tight.

On the other hand, by the second condition in the criterion, we just have to prove

(E (xn(t)− xn(s)))
4 ≤ C(t− s)2,

for C a constant.

Let us prove it. First of all, we have that

(E (xn(t)− xn(s)))
4 =

(
E
(

1√
n

∫ nt

0

(−1)N(u)du− 1√
n

∫ ns

0

(−1)N(u)du

))4

=
1

n2

(
E
(∫ nt

ns

(−1)N(u)du

))4

.

8Markov’s Inequality: If X is a non-negative random variable and a > 0, then, using higher

moments of X supported on values larger than 0, P [|X| ≥ a] ≤ E (|X|n)
an

.
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Now, if we work with this, we can obtain the following.

1

n2

(
E
(∫ nt

ns

(−1)N(u)du

))4

=
1

n2
E
(∫ nt

ns

∫ nt

ns

∫ nt

ns

∫ nt

ns

(−1)N(u1)+N(u2)+N(u3)+N(u4)du1du2du3du4

)

=
24

n2
E
(∫ nt

ns

∫ u4

ns

∫ u3

ns

∫ u2

ns

(−1)N(u4)−N(u3)+N(u2)−N(u1)du1du2du3du4

)

=
24

n2

(∫ nt

ns

∫ u4

ns

∫ u3

ns

∫ u2

ns

E
(
(−1)N(u4)−N(u3)

)
E
(
(−1)N(u2)−N(u1)

)
×

×du1du2du3du4
)
.

Then, using that if X ∼ Poiss(λ), then

E
(
(−1)X

)
= e−2λ,

we can obtain the following:

(E (xn(t)− xn(s)))
4 ≤ 24

n2

(∫ nt

ns

∫ u2

ns

E
(
(−1)N(u2)−N(u1)

)
du1du2

)2

=
24

n2

(∫ nt

ns

∫ u2

ns

e−2(u2−u1)du1du2

)2

.

To continue, let us compute these integrals. First of all,∫ u2

ns

e−2(u2−u1)du1 =
1

2

∫ u2

ns

2e2u1−2u2du1

=
1

2

[
e2u1−2u2

]u2

u1=ns

=
1

2

(
1− e−2(u2−ns)

)
.

Then, ∫ nt

ns

∫ u2

ns

e−2(u2−u1)du1du2 =

∫ nt

ns

1

2

(
1− e−2(u2−ns)

)
du2

=

∫ nt

ns

(
1

2
− 1

2
e−2(u2−ns)

)
du2

=
n(t− s)

2
− 1

2

∫ nt

ns

e−2(u2−ns)du2.
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Implementing the change of variables v = u2 − ns we obtain that

n(t− s)

2
− 1

2

∫ nt

ns

e−2(u2−ns)du2 =
n(t− s)

2
− 1

2

∫ nt−ns

0

e−2vdv

=
n(t− s)

2
+

1

4

∫ nt−ns

0

−2e−2vdv

=
n(t− s)

2
+

1

4

[
e−2v

]nt−ns

v=0

=
n(t− s)

2
+

1

4

(
e−2n(t−s) − 1

)
=

1

2

[
n(t− s) +

1

2

(
e−2n(t−s) − 1

)]
.

Then, doing the square of the integral,(∫ nt

ns

∫ u2

ns

e−2(u2−u1)du1du2

)2

=
1

4

[
n(t− s) +

1

2

(
e−2n(t−s) − 1

)]2

=
1

4

(
n2(t− s)2 + n(t− s)

(
e−2n(t−s) − 1

)
+

1

4

(
e−2n(t−s) − 1

)2)
.

Finally, if we multiply by the term
24

n2
, we obtain that

24

n2

(∫ nt

ns

∫ u2

ns

e−2(u2−u1)du1du2

)2

=
24

4n2

(
n2(t− s)2 + n(t− s)

(
e−2n(t−s) − 1

)
+

1

4

(
e−2n(t−s) − 1

)2)

=
6

n2

(
n2(t− s)2 + n(t− s)

(
e−2n(t−s) − 1

)
+

1

4

(
e−2n(t−s) − 1

)2)

= 6(t− s)2 +
6(t− s)

ne2n(t−s)
− 6(t− s)

n

+
3

2n2

((
e−2n(t−s)

)2 − 2e−2n(t−s) + 1
)
.

Note that

6(t−s)2+ 6(t− s)

ne2n(t−s)
− 6(t− s)

n
+

3

2n2

((
e−2n(t−s)

)2 − 2e−2n(t−s) + 1
)
−−−→
n→∞

6(t−s)2.
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Hence, we can say that

(E (xn(t)− xn(s)))
4 ≤ 6(t− s)2.

Therefore, we have seen that both conditions in the Billingsley criterion are satisfied
by the processes xn(t). Therefore, we can ensure that the sequence is tight.

With tightness being proved it just remains to see that the law of the processes
{xn(t)} converge weakly towards the law of a Brownian motion.

3.1.2 Identification of the limit law

In order to prove that the sequence of distributions {Pn} converges in distribution
to the law of a Brownian motion we will use the Paul Levy’s Theorem. This theorem
is a characterization of the Brownian motion. Lévy discussed it in [9]. We can also
find a more recent discussion by Le Gall in [8]. The theorem states the following.

Theorem 3.9 (Levy’s Theorem). Let X = {Xt, t ≥ 0} be a continuous stochas-
tic process adapted to the filtration (Ft)t≥0 taking values in R such that the process

Mt = Xt −X0, t ≥ 0,

is a continuous local martingale relative to (Ft)t≥0, and whose quadratic variation
is given by

⟨M,M⟩t = t.

Then X = {Xt, t ≥ 0} is a Brownian motion.

Let us assume that the distributions of the processes {xn(t)} converge to the dis-
tribution of the process Y = {Y (t), t ≥ 0}. Then, we just have to check, using
Theorem 3.9, that Y satisfies the martingale condition and the quadratic variation
condition.

3.1.2.1 Proof of the Martingale Condition

In order to prove that Y is a continuous martingale it is sufficient to prove that for
s1 ≤ s2 ≤ · · · ≤ sm ≤ s < t and for any bounded continuous function f : Rn → R,

E (f(Y (s1), . . . , Y (sm))(Y (t)− Y (s)))) = 0.

Since {xn(t)} converges in distribution towards Y , we have the following:

E (f(Y (s1), . . . , Y (sm))(Y (t)− Y (s)))) =

= lim
n→∞

E (f(xn(s1), . . . , xn(sm))(xn(t)− xn(s)))) .

Therefore, the condition that we want to prove can be translated to

lim
n→∞

E (f(xn(s1), . . . , xn(sm))(xn(t)− xn(s)))) = 0.
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Let us see this.

E (f (xn(s1), . . . , xn(sm)) (xn(t)− xn(s)))) =

=
1√
n
E
(
f(xn(s1), . . . , xn(sm))

∫ nt

ns

(−1)N(u)du

)

=
1√
n
E
(
f(xn(s1), . . . , xn(sm))(−1)N(ns)

∫ nt

ns

(−1)N(u)−N(ns)du

)

=
1√
n
E
(
f(xn(s1), . . . , xn(sm))(−1)N(ns)

)∫ nt

ns

E
(
(−1)N(u)−N(ns)

)
du

=
1√
n
E
(
f(xn(s1), . . . , xn(sm))(−1)N(ns)

)∫ nt

ns

e−2(u−ns)du.

Since f is bounded we can bound the expectation and obtain

1√
n
E
(
f(xn(s1), . . . , xn(sm))(−1)N(ns)

) ∫ nt

ns

e−2(u−ns)du ≤

≤ C√
n

∫ nt

ns

e−2(u−ns)du

=
C

−2
√
n

∫ nt

ns

−2e−2(u−ns)du

=
C

−2
√
n

[
e−2(u−ns)

]nt
u=ns

=
C

−2
√
n

(
e−2n(t−s) − 1

)
=

C

2
√
n

(
1− e−2n(t−s)

)
−−−→
n→∞

0.

Therefore,
lim
n→∞

E (f(xn(s1), . . . , xn(sm))(xn(t)− xn(s)))) = 0.

Thus, we have the martingale condition proved. Now, it just remains to prove the
other condition, the one involving the quadratic covariation.

3.1.2.2 Proof of the Quadratic Variation Condition

In this case, we want to see that Y follows the distribution of a Brownian motion.
To see so it is enough to prove that for s1 ≤ s2 ≤ · · · ≤ sm ≤ s < t and for any
bounded continuous function f : Rn → R,

E
(
f(Y (s1), . . . , Y (sm))(Y (t)− Y (s))2 − (t− s))

)
= 0.
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Notice that we can translate this condition, as we have done previously, using the
convergence of the xn(t)’s to the distribution of the Y (t)’s. Then, it is sufficient to
prove the following.

lim
n→∞

E
(
f(xn(s1), . . . , xn(sm)) (xn(t)− xn(s))

2 − (t− s)
)
= 0.

Let us prove it.

E
(
f(xn(s1), . . . , xn(sm)) (xn(t)− xn(s))

2) =
= E

(
f(xn(s1), . . . , xn(sm))

(
1

n

∫ nt

ns

(−1)N(u)du

)2
)

=
2

n
E
(
f(xn(s1), . . . , xn(sm))

∫ nt

ns

∫ u2

ns

(−1)N(u2)−N(u1)du1du2

)

=
2

n
E (f(xn(s1), . . . , xn(sm)))

∫ nt

ns

∫ u2

ns

e−2(u2−u1)du1du2

=
1

n
E (f(xn(s1), . . . , xn(sm)))

∫ nt

ns

∫ u2

ns

2e−2(u2−u1)du1du2

=
1

n
E (f(xn(s1), . . . , xn(sm)))

∫ nt

ns

[
e−2(u2−u1)

]u2

u1=ns
du2

=
1

n
E (f(xn(s1), . . . , xn(sm)))

∫ nt

ns

(
1− e−2(u2−ns)

)
du2

=
1

2n
E (f(xn(s1), . . . , xn(sm)))

∫ nt

ns

(
2− 2e−2(u2−ns)

)
du2

=
1

2n
E (f(xn(s1), . . . , xn(sm)))

[
2u2 − e−2(u2−ns)

]nt
u2=ns

=
1

2n
E (f(xn(s1), . . . , xn(sm)))

(
2nt− e−2n(t−s) − 2ns+ 1

)
=

1

2n
E (f(xn(s1), . . . , xn(sm)))

(
2nt− e−2n(t−s) − 2ns+ 1

)
=

1

2n
2nE (f(xn(s1), . . . , xn(sm)))

(
t− s+

1

2n
− 1

2n
e−2n(t−s)

)

= E (f(xn(s1), . . . , xn(sm)))

(
t− s+ o

(
1

n

))
.

Therefore,

lim
n→∞

E
(
f(xn(s1), . . . , xn(sm))(xn(t)− xn(s))

2 − (t− s))
)
= 0.
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Thus, we have proved the condition involving the quadratic variation.

With all that, we have seen both conditions in the Lévy’s Theorem (Theorem 3.9)
and, therefore, we have that the processes

xn(t) =
1√
n

∫ nt

0

(−1)N(u)du

converge in distribution to the Brownian motion.

3.2 Almost Sure Convergence

In this final part of the thesis we want to prove a stronger result than the one
that we have just proved. To do so, we will define a generalization of the processes
defined in (3.4).

Notice that, since the Poisson process always starts being N(0) = 0, the process

1√
n

∫ nt

0

(−1)N(u)du

always starts increasing. Therefore, if we want to get a more general result, we have
to solve this issue.

What we will do is what we have seen briefly in the beginning of this section. We
will consider a random variable, A, following a Bernoulli distribution.

A Bernoulli distribution is a discrete probability distribution of a random variable
which takes only two values: the random variable is either 1 with probability p or
is 0 with probability q = 1− p.

In our case, we will choose A ∼ Bernoulli(
1

2
). Therefore, A takes the values 1 and

0 with the same probability.

Then, if we add the term (−1)A multiplying the integral in xn(t), we obtain the
processes defined at (3.5),

x̃n(t) :=
1√
n
(−1)A

∫ nt

0

(−1)Nλ(u)du,

where Nλ(t) is a Poisson process of intensity λ > 0.

Note that this processes start increasing or decreasing with the same probability,
so we have solved the issue that we had with the processes considered by Stroock.
These new processes are what we call uniform transport processes.

The aim of this section is to prove that these uniform transport processes converge
almost surely to the Brownian motion. To see that, we will study the paper writ-
ten by Richard J. Griego, David Heath and Alberto Ruiz-Moncayo, ”Almost Sure
Convergence of Uniform Transport Processes to Brownian Motion” [5].
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In this paper, they present uniform transport processes using a Markov chain. In the
Appendix E we can find an introduction of Markov chains and Markov processes.
There, we use [11] to introduce these processes.

In this section of the Appendices we can see that the Poisson process is a Markov
process. This will be key to understand the way that Griego, Heath and Ruiz-
Moncayo define the uniform transport processes using a Markov process, because
they base their definition on the fact that the Poisson process can be pictured as a
Markov process.

Thus, let us focus on proving the result of almost sure convergence of the uniform
transport processes towards the Brownian motion.

3.2.1 Almost Sure Convergence of Uniform Transport Processes

Finally, we will analyse the paper written by Griego, Heath and Ruiz-Moncayo and
see how they prove the result of almost surely convergence towards the Brownian
motion.

The first thing that we have to do is to present how they define uniform transport
processes using a Markov process.

We just have to consider v(t) a Markov process such that it has stationary transition
probabilities (so we are working with a homogeneous Markov process), it has states
E = {1,−1} and that it has the following infinitesimal generator matrix:(

−1 1
1 −1

)
.

Then, we can define a sequence of uniform transport processes by

yn(t) := n

∫ t

0

v(n2s)ds (3.8)

for n = 1, 2, . . ..

Note that these processes represent the position of a particle at time t ≥ 0 in one
dimension that switches between the uniform velocities n and −n at the jump times
of a Poisson process with intensity n2, let us say Nn(t).

To simplify the proof, as we did in the previous section, we will take the Poisson
process with parameter 1.

To continue, we will proceed to prove the result of convergence. In order to do
so,we need a result of Skorokhod that we can find in [12] (page 163). The theorem
we need states the following:

Theorem 3.10 (Skorokhod Theorem). Suppose that ξ1, ξ2, . . . , ξn are random vari-
ables such that E (ξi) = 0 and V ar (ξi) < ∞ for every i. Suppose also that B(t) is
a Brownian motion. Then, there exist non-negative independent random variables
τ1, τ2, . . . , τn for which the variables

B (τ1) , B (τ1 + τ2)−B (τ1) , . . . , B (τ1 + τ2 + · · ·+ τn)−B (τ1 + τ2 + · · ·+ τn−1) ,
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have the same joint distribution as do ξ1, ξ2, . . . , ξn. Moreover, the following prop-
erties are satisfied:

(i) E (τk) = V ar (ξk) for every k.

(ii) There exists Lm a constant such that

(E (τk))
m ≤ Lm (E (ξk))

2m ,

for every k.

(iii) If |ξi| ≤ h, then∣∣∣∣∣B(s)−B

(
k∑

i=1

τi

)∣∣∣∣∣ ≤ h for s ∈

[
k∑

i=1

τi,

k+1∑
i=1

τi

]
.

We will not enter into the proof of this theorem.

Another result that we are going to use is the Borel-Cantelli lemma, that we can
find in [10]. This lemma states the following.

Lemma 3.11. Let {An, n ≥ 1} be a sequence of sets in the measurable space
(Ω,B). Then, the next properties are satisfied:

(i) P
[
lim sup

n
An

]
≥ lim sup

n
P [An].

(ii) P
[
lim inf

n
An

]
≤ lim inf

n
P [An].

Remark 3.12. Notice that we can define the limit superior and the limit inferior
as it follows. Let {xn} be a sequence. Then

• lim sup
n→∞

xn : = lim
n→∞

(
sup
m≥n

xm

)
• lim inf

n→∞
xn : = lim

n→∞

(
inf
m≥n

xm

)
Let us continue by writing the main result that we want to prove in this section.

Theorem 3.13. There exist realizations {yn(t), t ≥ 0} of the previous uniform
transport processes defined by (3.8) on the same probability space, (Ω,B,P), as a
standard Brownian motion {B(t), t ≥ 0}, with B(0) ≡ 0, so that we have

lim
n→∞

max
0≤t≤1

|yn(t)−B(t)| = 0, almost surely.

3.2.1.1 Proof of Theorem 3.13

3.2.1.1.1 Construction of Uniform Transport Processes

The first thing that we need to do is to construct, in an appropriate way, the uniform
transport processes.
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Therefore, let (Ω,B,P) be the probability space for a standard Brownian motion
{B(t), t ≥ 0} with B(0) ≡ 0.

In this same probability space we define, for each n = 1, 2, . . ., a sequence of indepen-

dent random variables
{
ξ
(n)
i

}
i≥1

, where each ξ
(n)
i follows an exponential distribution

with parameter 2n, ξ
(n)
i ∼ Exp(2n). That is

P
[
ξ
(n)
i > λ

]
= e−2nλ for λ ≥ 0.

We also assume that these random variables are independent of the Brownian mo-
tion B(t).

Moreover, let {kj}j≥1 be a sequence of independent random variables that satisfy
the following property:

P [ki = 1] = P [ki = −1] =
1

2

for each i. Again, we assume that these random variables are independent of the
Brownian motion and also that they are independent of the previous random vari-
ables we have defined, ξ

(n)
i ’s.

Notice that these ki’s have a Bernoulli distribution with parameter
1

2
. Therefore,

they will develop the role of the random variable A that we have defined at the
beginning of this section in order to randomise the start of the processes considered
by Stroock in the previous section. Hence, with these ki’s we will get this “starting
increasing” or “starting decreasing” with the same probability.

Also, notice that, in order to achieve all this independence between the different
random variables, we need to introduce a product space. For convenience, we will
still call this new space (Ω,B,P).

To continue, and involving all the random variables that we have defined, we con-

sider the sequence of independent identically distributed random variables
{
kiξ

(n)
i

}
i≥1

for each n ≥ 1.

Notice that

E
(
kiξ

(n)
i

)
= E (ki)E

(
ξ
(n)
i

)
=

(P [ki = 1] · 1 + P [ki = −1] · (−1))

2n
=

(
1

2
− 1

2

)
2n

= 0.

Moreover,

V ar
(
kiξ

(n)
i

)
= E

((
kiξ

(n)
i

)2)
−
(
E
(
kiξ

(n)
i

))2
= E

(
k2i

(
ξ
(n)
i

)2)
.

Since ki is 1 or −1, we have that k2i = 1. Hence,

V ar
(
kiξ

(n)
i

)
= E

((
ξ
(n)
i

)2)
.
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Using the formula of the moments for an exponential distribution Exp(λ),

E (Xn) =
n!

λn
,

we obtain that

V ar
(
kiξ

(n)
i

)
= E

((
ξ
(n)
i

)2)
=

2!

(2n)2
=

2

4n2
=

1

2n2
,

since ξ
(n)
i ∼ Exp(2n). Therefore, the random variables kiξ

(n)
i have zero mean and

variance
1

2n2
.

Now, by Theorem 3.10, we have that for each n ≥ 1 there exists a sequence of non-
negative independent identically distributed random variables on (Ω,B,P), let us

say
{
σ
(n)
i

}
i≥1

, such that the following is satisfied.

If we define the sequence of partial sums Si = σ
(n)
1 + · · · + σ

(n)
i , then the sequence

{B (Si)}i≥1 has the same distribution as the sequence of partial sums of the kiξ
(n)
i ’s,

let us say
{
S̃i

}
i≥1

with S̃i = k1ξ
(n)
1 + · · · + kiξ

(n)
i , and, furthermore, by the first

condition in Theorem 3.10,

E
(
σ
(n)
i

)
= V ar

(
kiξ

(n)
i

)
=

1

2n2
.

Now, we define, for a fixed n and for i = 1, 2, . . .,

γ
(n)
i :=

|B (Si)−B (Si−1)|
n

=

∣∣∣∣∣B
(

i∑
j=0

σ
(n)
j

)
−B

(
i−1∑
j=0

σ
(n)
j

)∣∣∣∣∣
n

, (3.9)

where we consider σ
(n)
0 ≡ 0.

Notice that the random variables
{
γ
(n)
i

}
i≥1

are independent and identically dis-

tributed, all following an exponential distribution with parameter 2n2. Therefore,

E
(
γ
(n)
i

)
=

1

2n2
.

To continue, we define a new stochastic process
{
B(n)(t), t ≥ 0

}
. We want it to

be polygonal in the same sense as the processes that we have defined in the first
section for the Donsker’s theorem. Furthermore, we want them to satisfy

B(n)

(
i∑

j=1

γ
(n)
j

)
= B

(
i∑

j=1

σ
(n)
j

)
, (3.10)

and B(n)(0) ≡ 0.
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Hence, with this definition, we have that B(n)(·) has slope n or −n.

Also, let τ
(n)
i be the time of the i-th discontinuity of the right-hand derivative

of B(n)(·). This means that the process B(n)(·) alternates linearly increasing and

linearly decreasing and the τ
(n)
i ’s are the points where it changes from increasing

to decreasing or vice versa. Since in each piece where it increases the process is
linear, and the same for every piece where it decreases, the derivative on the τ

(n)
i ’s

is discontinuous.

Now, what we do is claim that this B(n)(t) is a realization of the n-th uniform
transport process.

3.2.1.1.2 Independent Increments Exponentially Distributed

To show that this B(n)(t) is, indeed, a realization of the n-th uniform transport

process we need to check that the increments τ
(n)
i − τ

(n)
i−1, for i = 1, 2, . . ., are

independent and they all have an exponential distribution with parameter n2. Let
us check this.

First of all, we are going to see that the τ
(n)
1 follows an exponential distribution

with parameter n2.

Notice first that the probability of

B

(
i∑

j=0

σ
(n)
j

)
−B

(
i−1∑
j=0

σ
(n)
j

)

being positive is
1

2
, independent of the past up to time

i−1∑
j=0

σ
(n)
j . Therefore,

τ
(n)
1 = γ

(n)
1 + · · ·+ γ

(n)
N ,

where we have, for i = 1, 2, . . .,

P [N = i] =
1

2i
.

Then, to see the distribution of τ
(n)
1 , we will follow what William Feller does in [3]

(page 54, (5.6)).

In this example, William Feller discusses about the distribution of a random sum
of independent identically distributed random variables. Let us see what does he
say.

Let X1, . . . , Xn be independent identically distributed random variables with a
common density f . Then, he defines the density of the random variable Sn =
X1+ · · ·+Xn using the operation of convolution. Let us recall the definition of this
operation.
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Definition 3.14. Let X, Y be two independent random variables with densities f
and g respectively. The density of the random variable X + Y is the convolution
of the two densities:

f ∗ g(s) :=
∫ ∞

−∞
f(s− y)g(y)dy =

∫ ∞

−∞
f(y)g(s− y)dy. (3.11)

Moreover, if X, Y are positive random variables, then f and g are concentrated on
[0,+∞] and the convolution f ∗ g reduces to:

f ∗ g(s) :=
∫ s

0

f(s− y)g(y)dy =

∫ s

0

f(x)g(s− x)dx. (3.12)

Notice that, if we have k independent random variables with common density f ,
the density of the random sum Sk = X1 + · · · + Xk is the k-fold convolution of f

with itself, fk∗ = f ∗
k
⌣· · · ∗ f .

Then, what Feller does is randomize this number of terms k by doing

P [N = k] = pk.

Therefore, the density of the random sum SN with the random number of terms N
is

w =
∞∑
k=1

pkf
k∗.

Feller gives a particular example considering {pk}k≥1 geometric distributed (i.e.

pk = qpk−1) and considering f being an exponential density with parameter α.
Then,

fk∗(x) =
1

(k − 1)!
αkxk−1e−αx.

With this, the density of SN is

w(x) = qα−αx
∑
i=1

pi−1 (αx)
i−1

(i− 1)!
= qαe−αqx,

i.e., is exponentially distributed.

In our case, we are working with the random sum

τ
(n)
1 = γ

(n)
1 + · · ·+ γ

(n)
N

where the γ
(n)
i ’s are exponentially distributed with parameter 2n2 and the pk follow

a geometric distribution with parameter
1

2
, i.e. pk = 2−k.

Therefore, applying this example presented by Feller to our case, we obtain that
the density of τ

(n)
1 is the following one.
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w(x) =
∞∑
k=1

pkf
k∗(x)

=
∞∑
k=1

2−k 1

(k − 1)!
(2n2)kxk−1e−2n2x

= n2e−2n2x

∞∑
k=1

(n2x)k−1

(k − 1)!

= n2e−2n2xen
2x

= n2e−n2x.

This means that τ
(n)
1 is exponentially distributed with parameter n2, as we wanted to

see. Notice that the parameter of this exponential distribution is half the parameter
of the exponential distribution corresponding to the γ

(n)
i ’s.

Therefore, we have that the τ
(n)
i ’s have an exponential distribution with parameter

n2 and, hence, the increments τ
(n)
i − τ

(n)
i−1, for i = 1, 2, . . ., have such distribution

too.

Furthermore, since these increments are sums of disjoint blocks of the γ
(n)
i ’s, we

have that they are independent.

3.2.1.1.3 Proof of the Almost Sure Convergence

To finish, what we want to do is prove the almost sure convergence towards the
Brownian motion.

What we are going to do is apply the Kolmogorov inequality ([10] page 92), which
states the following.

Definition 3.15. Let X1, . . . , Xn be independent random variable with zero mean
and satisfying E (X2

i ) < ∞ for every i = 1, . . . , n. Let Sk = X1 + · · · + Xk for
1 ≤ k ≤ n. Then, for all ε > 0 the following is satisfied:

P
[
max
1≤k≤n

|Sk| > ε

]
≤ V ar (Sn)

ε2
. (3.13)

Applying this inequality to the random variables we are working with we obtain
that for all ε > 0 we have

P
[

max
1≤i≤2n2

∣∣∣γ(n)1 + · · ·+ γ
(n)
i

∣∣∣ ≥ ε

]
≤
V ar

(
γ
(n)
1 + · · ·+ γ

(n)

2n2

)
ε2

. (3.14)
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If we work on this a little bit, we can obtain the following.

P
[

max
1≤i≤2n2

∣∣∣γ(n)1 + · · ·+ γ
(n)
i

∣∣∣ ≥ ε

]
≤

V ar
(
γ
(n)
1 + · · ·+ γ

(n)

2n2

)
ε2

≡

2n2∑
i=1

V ar
(
γ
(n)
i

)
ε2

=

2n2∑
i=1

1

4n4

ε2
=

2n2

4n4

ε2
=

1

2n2ε2
.

Now, by applying the Borel-Cantelli lemma (Lemma 3.11), we can obtain that

lim
n→∞

max
1≤i≤2n2

∣∣∣∣γ(n)1 + · · ·+ γ
(n)
i − i

2n2

∣∣∣∣ = 0, almost surely. (3.15)

Similarly, we can say that

lim
n→∞

max
1≤i≤2n2

∣∣∣∣σ(n)
1 + · · ·+ σ

(n)
i − i

2n2

∣∣∣∣ = 0, almost surely. (3.16)

To finish, let γ
(n)
0 = σ

(n)
0 ≡ 0. Notice that we have∣∣B(n)(t)−B(t)

∣∣ =
= max

1≤i≤2n2
max
t∈Ii

∣∣∣∣∣B(n)(t)−B(n)

(
i∑

j=1

γ
(n)
j

)
+

+B(n)

(
i∑

j=1

γ
(n)
j

)
−B

(
i∑

j=1

γ
(n)
j

)
+B

(
i∑

j=1

γ
(n)
j

)
−B(t)

∣∣∣∣∣
≤ max

1≤i≤2n2
max
t∈Ii

∣∣∣∣∣B(n)(t)−B(n)

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣+
+

∣∣∣∣∣B(n)

(
i∑

j=1

γ
(n)
j

)
−B

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣+
∣∣∣∣∣B
(

i∑
j=1

γ
(n)
j

)
−B(t)

∣∣∣∣∣ ,
where Ii =

[
i− 1

2n2
,
i

2n2

]
.
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Since the Brownian motion is uniformly continuous, we have that∣∣∣∣∣B
(

i∑
j=1

γ
(n)
j

)
−B(t)

∣∣∣∣∣ −−−→i→∞
0.

Similarly, we can assume that the realization of the uniform transport processes
that we have constructed in B(n)(·) is also uniformly continuous. Therefore, we also
have that ∣∣∣∣∣B(n)(t)−B(n)

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣ −−−→i→∞
0.

Therefore, from the previous inequality, we obtain that

lim
n→∞

∣∣B(n)(t)−B(t)
∣∣ ≤ lim

n→∞
max

1≤i≤2n2
max
t∈Ii

∣∣∣∣∣B(n)

(
i∑

j=1

γ
(n)
j

)
−B

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣
= lim

n→∞
max

1≤i≤2n2

∣∣∣∣∣B(n)

(
i∑

j=1

γ
(n)
j

)
−B

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣ .
Then, using (3.10), we can obtain that

lim
n→∞

max
1≤i≤2n2

∣∣∣∣∣B(n)

(
i∑

j=1

γ
(n)
j

)
−B

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣ =
= lim

n→∞
max

1≤i≤2n2

∣∣∣∣∣B
(

i∑
j=1

σ
(n)
j

)
−B

(
i∑

j=1

γ
(n)
j

)∣∣∣∣∣
Finally, using (3.15) and (3.16), we obtain that

lim
n→∞

max
0≤i≤2n2

∣∣∣∣∣B
(

i∑
j=0

σ
(n)
j

)
−B

(
i∑

j=0

γ
(n)
j

)∣∣∣∣∣ =
= lim

n→∞
max

0≤i≤2n2

∣∣∣∣B( i

2n2

)
−B

(
i

2n2

)∣∣∣∣
= 0, almost surely.

Therefore, we have that

lim
n→∞

max
0≤t≤1

∣∣B(n)(t)−B(t)
∣∣ = 0, almost surely.

Thus, we have proved the almost sure convergence of the uniform transport pro-
cesses towards the Brownian motion.
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3.2.2 Further Results

During this section we have been proving the almost sure convergence of the uniform
transport processes. Our purpose now is to complement this result and see some
other results that extend this notion.

To do so, we will comment two results that we can find in the paper Rate of
Convergence of Uniform Transport Processes to Brownian Motion and Application
to Stochastic Integrals by Gorostiza and Griego [4].

The first result is a theorem which states the almost sure convergence of the uniform
transport process (which we have already seen) but, furthermore, it adds a result on
the rate of convergence of these uniform transport processes towards the Brownian
motion.

Therefore, with this, we not only have the notion of convergence but also, in some
sense, how fast do these realizations of uniform transport processes, that we have
constructed before, converge. The theorem says the following.

Theorem 3.16. There exist realizations
{
B(n)(t), t ≥ 0

}
of the previous uniform

transport processes on the same probability space, (Ω,B,P), as a Brownian motion
{B(t), t ≥ 0}, with B(0) ≡ 0, so that the following conditions are satisfied:

(i)
lim
n→∞

max
0≤t≤1

∣∣B(n)(t)−B(t)
∣∣ = 0, almost surely.

(ii) For all q > 0,

P

max
0≤t≤1

∣∣B(n(t)−B(t)
∣∣ > α

√
log5(n)
√
n

 = o

(
1

nq

)
as n→ ∞,

where α is a positive constant depending on q.

Note that the first condition is the one that we have already proved and the second
condition is this rate of convergence, which we are not going to prove.

This is an interesting result but the other one that we want to comment is a more
notorious extension of the almost convergence that we have seen. This time, instead
of working with a stochastic process and see that it converges towards the Borwnian
motion, we are going to work with stochastic integrals and we are going to see that a
particular type of stochastic integrals converge almost surely towards an Itô integral.

Before stating and proving this result, let us introduce briefly the Itô calculus, the
concept of stochastic integral and, in particular, the Itô integral.

Itô calculus started to be developed in the 1950s by Kyoshi Itô in an attempt to
give rigorous meaning to some differential equations driven by the Brownian motion.
Roughly speaking, Itô started to develop the analogous of the classical Leibniz and
Newton’s calculus for stochastic processes.

44



Despite there had been different generalizations of the Riemann integral in the
classical analysis, it was not until Itô’s development that a theory of integration of
random mappings with respect to nowhere differentiable random integrators was
developed.

The stochastic generalization of the Riemann integral that he developed is what we
know nowadays as the Itô integral. This is an integral where the integrators and
the integrands are stochastic processes:∫ t

0

HsdBs,

where Hs is a locally square-integrable stochastic process adapted to a filtration
generated by the Brownian motion, Bs.

Now that we have presented the stochastic integrals we can state the last result
that we were talking about.

As we have said, this theorem states the notion of almost sure convergence but,
instead of working with uniform transport processes and the Brownian motion,
we work with stochastic integrals and the Itô integral. Furthermore, as in Theo-
rem 3.16, we again have a rate of convergence which gives us information regarding
the velocity of convergence. The theorem is the following one.

Theorem 3.17. Let
{
B(n)(t), t ≥ 0

}
be a realization of the uniform transport pro-

cesses we have seen before on the same probability space, (Ω,B,P), as a Brownian
motion {B(t), t ≥ 0}. Let ψ(x, t) be a real-valued function with partial derivatives
ψx(x, t) and ψt(x, t) for −∞ < x <∞ and 0 ≤ t ≤ 1. Define

In ≡
∫ 1

0

ψ
(
B(n)(t), t

)
dB(n)(t), (3.17)

and

I ≡
∫ 1

0

ψ (B(t), t) dB(t) +
1

2

∫ 1

0

ψx (B(t), t) dt, (3.18)

where the stochastic integral I is an Itô integral. Then, the following conditions are
satisfied:

(i)
lim
n→∞

In = I, almost surely. (3.19)

(ii) For all q > 0,

P [|In − I| > Rnαn] = o

(
1

nq

)
as n→ ∞,

where αn =
α
√
log5(n)
√
n

, with α a positive constant depending on q, and

Rn = max
0≤t≤1

max
|x−B(n)(t)|≤αn

|ψ(x, t)|+ max
0≤t≤1

max
|x−B(n)(t)|≤αn

|ψt(x, t)| .
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As in Theorem 3.16, we will not enter into proving the rate of convergence. What
we will prove will be the first condition. To do so, we will base our proof on the
paper of Wong and Zakai, On the convergence of ordinary integrals to stochastic
integrals [14].

Proof. Let F (λ, t) =

∫ λ

0

ψ(x, t)dx. Then, by Taylor’s expansion, we have

F
(
B(n)(1), 1

)
− F

(
B(n)(0), 0

)
=

∫ 1

0

ψ
(
B(n)(t), t

)
dB(n)(t) +

∫ 1

0

ψt

(
B(n)(t), t

)
dt.

We have seen that B(n)(t) converges almost surely towards B(t) for all t ∈ [0, 1]. We
also have seen, while we were constructing this realization of the uniform transport
processes, that B(n)(t) is continuous and has bounded variation. Moreover, we have
seen, by construction, that B(n)(t) is bounded. Then, using all these properties and
using that ψ(x, t) and ψt(x, t) are continuous, we obtain that

lim
n→∞

∫ 1

0

ψ
(
B(n)(t), t

)
dB(n)(t) =

= F (B(1), 1)− F (B(0), 0)−
∫ 1

0

ψt (B(t), t) dt, almost surely.

(3.20)

A result of Itô in [6] states that, if the function G(ξ, t) has a continuous first partial
derivative with respect to t and a continuous second partial derivative with respect
to ξ, for −∞ < ξ < ∞ and a ≤ t ≤ b, and if the random functions f(t) and g(t),
for a ≤ t ≤ b, are independent of the aggregate differences B(s)− B(t), t ≤ s ≤ b,
then f(t) ∈ L2[0, 1], f(t) ∈ L1[0, 1] a.s. and

dz(t) = g(t)dt+ f(t)dB(t).

Then, almost surely,

G(z(b), b)−G(z(a), a) =

=

∫ b

a

Gt(z(t), t)f(t)dB(t) +

∫ b

a

Gz(z(t), t)g(t) +Gt(z(t), t) +
1

2
f 2(t)Gz2(z(t), t) dt.

This result is what we call the Itô’s Formula or Itô’s Lemma. Applying this result
to F , and taking 0 ≤ t ≤ 1, we obtain:

F (B(1), 1)− F (B(0), 0) =

=

∫ 1

0

ψ (B(t), t) dB(t) +

∫ 1

0

Ft (B(t), t) +
1

2
ψB (B(t), t) dt, almost surely.

(3.21)
Then, (3.19) just follows by substituting (3.21) into (3.20).

□
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Appendices

Appendix A Other results on Weak Convergence

In this section we will see different results on weak convergence which consist in
proving weak convergence by showing that Pn(A) → P(A) for some special class of
sets A.

The theorem that we want to prove is the following one.

Theorem A.1. Let U be a subclass of P such that

(i) U is closed under the formation of finite intersections.

(ii) Each open set in S is a finite or countable union of elements of U .

Thus, if Pn(A) → P(A) for every A in U , then Pn ⇒ P.

Proof. If A1, . . . , Am lie in U , then their intersections also lie in U . Therefore, by
the inclusion-exclusion formula,

Pn

(
m⋃
i=1

Ai

)
=

∑
i

Pn(Ai)−
∑
i,j

Pn(AiAj) +
∑
i,j,k

Pn(AiAjAk)− · · ·

→
∑
i

P(Ai)−
∑
i,j

P(AiAj) +
∑
i,j,k

P(AiAjAk)− · · ·

= P

(
m⋃
i=1

Ai

)
.

Now, if G is open, we can express it as G =
⋃
i

Ai for some sequence {Ai} of

elements of U .

Then, given ε, we choose m so that P

(⋃
i≤m

Ai

)
> P(G)− ε.

Hence, because of the relation we have just seen,

P(G)− ε < P

(⋃
i≤m

Ai

)
= lim sup

n
Pn

(⋃
i≤m

Ai

)
≤ lim inf

n
Pn(G).

Since ε was taken arbitrary, the condition (iv) of Theorem 2.4 is satisfied and hence
we have weak convergence.

□

To continue, let S(x, ε) denote the ε-sphere (open) with x as centre. Then, we have
the following corollary of the previous theorem.
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Corollary A.2. Let U be a class of sets such that

(i) U is closed under formation of finite intersections.

(ii) For every x in S and every ε > 0 there is an A in U such that

Å ⊂ A ⊂ S(x, ε).

Thus,if S is separable and Pn(A) → P(A) for every A in U , then Pn ⇒ P.

Proof. The condition (ii) implies that, for each x ∈ G, with G open, we have that
x ∈ Å ⊂ A ⊂ G for some A in U .

Now, since S is separable, there exists a sequence (finite or infinite) {Ai} in U such

that G ⊂
⋃
i

Åi and Ai ⊂ G. This implies that G =
⋃
i

Ai.

Therefore, U satisfies the hypothesis in the previous theorem and we obtain the
result we were looking for.

□
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Appendix B Compactness

In this section we are going to prove a technical lemma involving totally bounded
sets, compactness and completeness. Let S be a metric space with the metric
defined by (2.1). The lemma is the next one.

Theorem B.1 (Theorem 2.7). For an arbitrary set A in S these three conditions
are equivalent:

(i) Ā is compact.

(ii) Each sequence in A has a convergent subsequence, the limit of which neces-
sarily lies in Ā.

(iii) A is totally bounded9 and Ā is complete.

Proof. Notice that (ii) holds if and only if each sequence in Ā has a subsequence
converging to a point in Ā.

Also, A is totally bounded if and only if Ā is totally bounded.

Therefore, we can assume that A = Ā, i.e. A is closed.

To make the proof clearer we introduce three more properties between (i) and (ii):

(i1) Each countable open cover of A has a finite subcover.

(i2) If A ⊂
⋃
n

Un where the U ′
ns are open and U1 ⊂ U2 ⊂ · · · , then A ⊂ Un for

some n.

(i3) If A ⊃ C1 ⊃ C2 ⊃ · · · , where the Cn’s are closed and nonempty, then
⋂
n

Cn

is nonempty.

We prove first that (i1), (i2), (i3), (ii), (iii) are all equivalent.

That (i1) implies (i2) is clear. For the inverse implication we can assume (i2) and

assume that {Un} covers A. Replacing the Un by
⋃
k≤n

Uk we have that A ⊂
⋃
k≤n

Uk

for some n and hence, (i1).

Now, the equivalence between (i2) and (i3).

First, (i2) says that A ∩ Un ↑ A implies that A ∩ Un = A for some n.

On the other hand, (i3) says that A ∩ Cn ↓ ∅ implies that A ∩ Cn = ∅ for some n
(Cn need not be contained in A).

If we take Cn = U c
n, both statements say the same, so they are equivalent.

Then, we want to prove that (i3) and (ii) are equivalent.

9A set A in a metric space S is totally bounded if there is a finite collection of open spheres
with radius ε such that its centers are in A and the union of these balls contains A.
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Assume first (i3). If {xn} is a sequence in A, take Bn = {xn, xn+1, . . .} and Cn = B̄n.

Each Cn is nonempty. Hence, since (i3) holds by assumption,
⋂
n

Cn contains some

x. Since x ∈ B̄n, there is an in ≥ n such that ρ(x, xin) <
1
n
. We choose these in’s

inductively so that i1 < i2 < · · · . Then, lim
n
ρ(x, xin) = 0, i.e., (ii) holds.

On the other hand, if Cn are decreasing, nonempty closed sets and (ii) holds, we

take xn ∈ Cn and let x be the limit of a subsequence. Then, x ∈
⋂
n

Cn. Hence, (i3)

holds.

Finally, we prove the equivalence between (ii) and (iii).

Assume first (ii).

If A is not totally bounded, then there exists a positive ε and an infinite sequence
{xn} in A such that ρ(xm, xn) ≥ ε for m ̸= n. But then {xn} contains no conver-
gent subsequence, and therefore (ii) implies total boundedness. Also (ii) implies
completeness because, if {xn} is Cauchy and has a subsequence converging to x,
then the entire sequence converges to x.

On the other hand, assume (iii). Since A is totally bounded, it can be covered, for
each n, by finitely many open balls Bn1, . . . , Bnkn of radius 1

n
.

Let {xm} be a sequence in A. We choose m11,m12, . . . integers in such a way that
xm11 , xm12 , . . . lie in the same B1k. This choice is possible because there are finitely
many of these balls.

Then, we choose m21,m22, . . . a subsequence of m11,m12, . . . in such a way that
xm21 , xm22 , . . . all lie in the same B2k. We keep doing this process.

Thus, if we call ri = mii, then xrn , xrn+1 , . . . all lie in the same Bnk.

Hence, it follows that xr1 , xr2 , . . . is Cauchy and, therefore, by completeness, it
converges to some point of A.

We have seen (i1), (i2), (i3), (ii), (iii) are equivalent. Now we just want to see that
(i) and (iii) are equivalent.

Clearly (i) implies (i1) because Ā is compact if each open cover has a finite subcover
and, hence, each countable open cover too.

Therefore, we have that (i) implies (iii). It just remains to prove the other impli-
cation. We will see that (i1) and (iii) imply (i).

If A is totally bounded, then it is clearly separable, and it follows by the Lindelöf
property10 that an arbitrary open cover of A has a countable subcover. Then, by
(i1), there is a further subcover that is finite.

□

10Lindelöf property: A Lindelöf space is a topological space in which every open cover has a
countable subcover.
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Appendix C Product Spaces

In this section we will prove a couple of results of weak convergence on product
spaces that we use in the section on Donsker’s Theorem.

First of all, let S = S ′ × S ′′ be the product of two metric spaces S ′ and S ′′.

If S is separable, notice that this requires S ′ and S ′′ to be separable, then P,P ′,P ′′,
which are the σ-fields of Borel sets of S, S ′, S ′′ respectively, are related by

P = P ′ × P”.

If we get a probability measure P on (S,P), its two marginal distributions are
defined by 

P′(A′) = P(A′ × S ′′), A′ ∈ P ′

P′′(A′′) = P(S ′ × A′′), A′′ ∈ P ′′.

The first result that we are going to see is the following theorem.

Theorem C.1. If S is separable then a necessary and sufficient condition for weak
convergence, Pn ⇒ P, is that

Pn(A
′ × A′′) −→ P(A′ × A′′)

for each P′-continuity set A′ and each P′′-continuity set A′′, where P and Pn are
probability measures on (S,P) and P′, P′′ are the marginal distributions of P.

Proof. First of all, let us denote by ∂, ∂′, ∂′′ the boundary operators of S, S ′, S ′′

respectively.

Since
∂(A′ × A′′) ⊂ ((∂′A′)× S ′′) ∪ (S ′ × (∂′′A′′)) ,

the condition is necessary.

To prove sufficiency we use the previous corollary on weak convergence to the class
U of sets A′ × A′′ with A′ a P′-continuity set and A′′ a P′′-continuity set.

U is closed under the formation of finite intersections and, by hypothesis, we have
that Pn(A) → P(A) for A in U .

Let (x′, x′′) ∈ S and ε > 0. Let us consider the sets

Aδ = {y′ : ρ′(x′, y′) < δ} × {y′′ : ρ′′(x′′, y′′) < δ} .

Notice that, for distinct δ, the sets ∂′ {y′ : ρ′(x′, y′) < δ} are disjoint and the sets
∂′′ {y′′ : ρ′′(x′′, y′′) < δ} are also disjoint. Therefore, Aδ lies in U for some 0 < δ < ε.

Moreover, if we define the following metric for S,

ρ ((x′, x′′), (y′, y′′)) = max {ρ′(x′, y′), ρ′′(x′′, y′′)} ,
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then we have that Aδ is the sphere with centre (x′, x′′) and radius δ.

Thus, the hypothesis of the corollary are satisfied and we obtain the sufficiency.

□

Now, for P′,P′′ probability measures on (S ′,P ′) and (S ′′,P ′′) respectively, the
product measure P′ × P′′ is a probability measure on P ′ × P ′′. Hence, if S is
separable, it is a probability measure on P too. With this, the following theorem
is consequence of the previous one.

Theorem C.2 (Theorem 2.30). Let P′
n and P′ be probability measures on (S ′,P ′)

and P′′
n and P′′ be probability measures on (S ′′,P ′′). If S = S ′ × S ′′ is separable,

then P′
n × P′′

n ⇒ P′ × P′′ if and only if P′
n ⇒ P′ and P′′

n ⇒ P′′.
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Appendix D Prokhorov’s Theorem

Let Π be a family of probability measures on (S,P).

We will say that Π is relatively compact if every sequence of elements of Π
contains a weakly convergent sequence in the sense that for every sequence {Pn} in
Π there is a subsequence {Pnk

} and a probability measure Q on (S,P) (but not
necessarily in Π) such that Pn ⇒ Q.

We say that the family Π of probability measures on the metric space S is tight if
for every ε > 0 there exists a compact set K such that P(K) > 1− ε for all P ∈ Π.

We will refer to the two following theorems as Prokhorov’s Theorem.

Theorem D.1. If Π is tight then it is relatively compact.

Theorem D.2. Suppose S is separable and complete. If Π is relatively compact
then it is tight.
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Appendix E Markov Chains and Markov Processes

In this section we are going to introduce briefly Markov chains and Markov pro-
cesses.

A Markov chain is a discrete time stochastic process, let us say {Xn}n≥1, that has
two particularities. The first one is that it has no “memory”, in the sense of the
future not depending on what the process did in the past but only on where the
process is at the present. The second characteristic is that such processes can only
have a finite or numerable number of values.

Note that we will call I the set of states of the process and each i ∈ I will be a
state of the process.

These processes can be represented using diagrams. For example, let us represent
a process with I = {a, b, c} and that follows the next rules:

• If it is on b it moves from b to a with probability 1.

• If it is on a, it moves to c with probability
1

3
or it stays in a with probability

2

3
.

• If it is on c, it moves to a or to b with probability
1

2
.

The diagram corresponding to this process is the following one.

a

bc
1
3

1
2

1
2

1

2
3

Figure 6: Example of Markov Chain.

To continue this introduction to Markov chains we define what a stochastic matrix
is.

Definition E.1. Let I be the set of states of a Markov chain and P = (pij)(i,j)∈I×I

be a matrix. We will say that P is stochastic if and only if,

(i) pij ∈ [0, 1] for all i, j.

(ii)
∑
j∈I

pij = 1 for every i ∈ I.
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Notice that we have a bijection between the diagrams of the processes and the
stochastic matrices. Therefore, we can represent those diagrams using matrices.
For example, if we take the diagram in Figure 6 but setting a = 0, b = 1 and c = 2,
we will obtain the following stochastic matrix:

2
3

1 1
2

0 0 1
2

1
3

0 0


With that being said, we can define what homogeneous Markov chains are.

Definition E.2. A stochastic process {Xn, n ≥ 0} which takes values in a set of
states I is an homogeneous Markov chain with initial distribution ν and with
transition probabilities matrix P = (pij)(i,j)∈I×I if

(i) X0 has distribution ν.

(ii) For every i0, . . . , in+1 ∈ I and n ≥ 0,

P [Xn+1 = in+1|X0 = i0, . . . , Xn = in] = P [Xn+1 = in+1|Xn = in] = pin,in+1 .

Notice that this first equality on the second condition,

P [Xn+1 = in+1|X0 = i0, . . . , Xn = in] = P [Xn+1 = in+1|Xn = in] ,

is what we call the Markov property. Basically it says that the process just
depends on the present and not on the past. Note also that the second equality
shows homogeneity in the sense that the probability does not depend on n.

This was for a discrete-time process, but we can consider processes on continuous
time. Then, to study them, we define Markov processes.

Notice that, in this case, instead of taking values on a set of states, we take values
on a space of states, E.

Definition E.3. A stochastic process {Y (t), t ∈ [0, T ]} taking values in a space of
states E, numerable, is a Markov process if for every s, t ≥ 0 and j ∈ E,

P [Y (t+ s) = j |Y (u), u ≤ t ] = P [Y (t+ s) = j |Y (t) ] .

Furthermore, if for every i, j ∈ E and s, t ≥ 0,

ps(i, j) := P [Y (t+ s) = j |Y (t) = i ]

is independent of t ≥ 0, we will say that Y is a time-homogeneous Markov
process.

The function
t 7−→ pt(i, j),

for fixed i, j ∈ E is called a transition probability and the family of matrices

Pt = (pt(i, j))(i,j)∈E×E
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is the transition function of the Markov process.

Note that, when we have a homogeneous Markov process, we can say that the
transition probabilities related to the process are stationary.

The homogeneous Markov processes satisfy the following properties.

Proposition E.4. Let {Y (t), t ≥ 0} be a Markov process homogeneous on time.
Then, for all i, j ∈ E and for all s, t ≥ 0, the following properties are satisfied:

(i) pt(i, j) ≥ 0.

(ii)
∑
k∈E

pt(i, k) = 1.

(iii)
∑
k∈E

pt(i, k)ps(k, j) = pt+s(i, j).

Remark E.5. The last condition is known as the Chapman-Kolmogorov equation
and, if we write it on matrix notation, we obtain Pt+s = PtPs.

Proof. The first and the second property are obvious because of the way we have
defined ps(i, j) := P [Y (t+ s) = j |Y (t) = i ]. Therefore, we just have to prove the
third one. Using the Markov property we obtain:∑

k∈E

pt(i, k)ps(k, j) =
∑
k∈E

P [Y (t) = k |Y (0) = i ]P [Y (t+ s) = j |Y (t) = k ]

=
∑
k∈E

(
P [Y (t+ s) = j |Y (t) = k, Y (0) = i ]×

×P [Y (t) = k |Y (0) = i ]

)

=
∑
k∈E

(
P [Y (t+ s) = j, Y (t) = k, Y (0) = i]

P [Y (t) = k, Y (0) = i]
×

×P [Y (t) = k |Y (0) = i ]

P [Y (0) = i]

)

=
∑
k∈E

P [Y (t+ s) = j, Y (t) = k, Y (0) = i]

P [Y (0) = i]

=
∑
k∈E

P [Y (t+ s) = j, Y (t) = k |Y (0) = i ]

= P [Y (t+ s) = j |Y (0) = i ] = pt+s(i, j).

□
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Furthermore, since the trajectories of the Markov processes are really irregular, we
will consider processes satisfying one more property. This property is a condition
of continuity on the transition function:

lim
t→0

pt(i, j) = δi,j,

where δi,j = 1 if i = j and δi,j = 0 if i ̸= j.

To finish this introduction, the last thing that we want to define on Markov pro-
cesses is the infinitesimal generator. To do so, we first have to state the following
proposition.

Proposition E.6.

(i) For all i ∈ E,

lim
t↓0

1− pt(i, i)

t
=: qi ∈ [0,∞].

(ii) For all i, j ∈ E,

lim
t↓0

pt(i, j)

t
=: qi,j <∞.

We will not enter into proving this result, we can find a proof for this and all the
reasoning behind in [11].

What we will pay attention to is to the fact that, since p0(i, i) = 1, the condition
(i) in Proposition E.6 tells us that the following limit exists:

lim
t↓0

pt(i, i)− p0(i, i)

t
=: −qi,

i.e., pt(i, i) has right derivative at t = 0. On the other hand, since p0(i, j) = 0, the
condition (ii) in Proposition E.6 tells us that pt(i, j) has right derivative at t = 0
and this derivative is qi,j.

Therefore, we can compute the right-hand derivative of the matrix Pt, which lets
us define the following concept.

Definition E.7. The matrix

A := lim
t↓0

Pt − I

t
=

d

dt
(Pt)

∣∣∣∣
t=0+

is called the infinitesimal generator of the Markov process on continuous time.

Remark E.8. If we assume E = N, the infinitesimal generator is of the form

A =



−q0 q0,1 q0,2 · · · ·
q1,0 −q1 q1,2 · · · ·
q2,0 q2,1 −q2 · · · ·
· · · · · · ·
· · · · · · ·
· · · · · · ·
· · · · · · ·


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Finally, let us see how a Markov process looks like. We consider E = {a, b, c, d, e}.
Then, the trajectory of a Markov process can be:

a

b

c

d

e

t

Figure 7: Trajectory of a Markov process.

Looking at this trajectory we can see that, despite the fact that this process is not
increasing, it looks kind of like a Poisson process. In fact, we can see that the Poisson
is a Markov process. That is because, since the Poisson process ({N(t), t ≥ 0}) has
independent increments, we can check the Markov property:

P [N(t+ s) = j |N(u), u ≤ t ] = P [N(t+ s) = j |N(t) ] ,

and therefore, it is a Markov process.
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[9] Paul Lévy. “Processus Stochastiques et Mouvement Brownien”. In: MR29120
25 (1948).
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