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Caenorhabditis elegans for research on cancer hallmarks
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ABSTRACT

Atfter decades of research, our knowledge of the complexity of cancer
mechanisms, elegantly summarized as ‘hallmarks of cancer’, is
expanding, as are the therapeutic opportunities that this knowledge
brings. However, cancer still needs intense research to diminish
its tremendous impact. In this context, the use of simple model
organisms such as Caenorhabditis elegans, in which the genetics of
the apoptotic pathway was discovered, can facilitate the investigation
of several cancer hallmarks. Amenable for genetic and drug screens,
convenient for fast and efficient genome editing, and aligned with the
3Rs (‘Replacement, Reduction and Refinement’) principles for ethical
animal research, C. elegans plays a significant role in unravelling the
intricate network of cancer mechanisms and presents a promising
option in clinical diagnosis and drug discovery.
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Introduction

Cancer remains a leading cause of morbidity and mortality
worldwide, demanding significant continuous efforts from the
basic, translational and clinical research communities. The
‘Hallmarks of cancer’ reviews by Hanahan and Weinberg (2000,
2011) and Hanahan (2022) have been seminal in providing
conceptual clarity and direction on the tremendous complexity of
cancer. To understand this complexity, the research community
relies on a combination of patient data and model systems, spanning
from in vitro platforms to mammals. Although not necessarily the
obvious choice as a model organism for cancer research, the
nematode worm Caenorhabditis elegans offers several advantages.
Indeed, of the 14 hallmarks of cancer defined in the 2022 update
(Hanahan, 2022), ten can be studied in C. elegans (Fig. 1).

C. elegans is a small nematode with stereotyped lineages.
Hermaphrodites produce exactly 959 somatic cells. The invariant
cell linage during C. elegans development (Box 1) provides a
convenient template for studying deregulations in the complex
networks controlling the balance between cell proliferation, death and
differentiation. However, the lack of cell divisions in somatic adult
cells restricts the studies on proliferative signaling to developing
C. elegans larvae. Although C. elegans can display hyperproliferative
phenotypes, they do not form malignant tumors as those seen in
Drosophila (Gonzalez, 2013). Nevertheless, these nematodes are an
effective model organism to study mechanisms leading to tumor
progression. As an example, the genetics of apoptosis, which is
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widely dysregulated in cancer and essentially conserved from
nematodes to mammals, was discovered in C. elegans by Bob
Horvitz and earned him the Nobel Prize in Medicine or Physiology,
shared with Sydney Brenner and John Sulston, in 2002.

Despite its status as a suitable and well-powered model organism
(Table 1), a key requirement for embracing C. elegans as a model for
cancer is to establish whether cancer genes are conserved from
humans to nematodes. According to the Cancer Gene Census, more
than 1% of all human genes are implicated via mutation in cancer
(Tate et al., 2019). Approximately 90% of these genes bear somatic
mutations and 20% germline mutations across the cancers surveyed
in the Catalogue Of Somatic Mutations In Cancer (COSMIC)
(Sondka et al., 2018). About half of the genes mutated in germline
tumors also bear recurrent somatic mutations in sporadic tumors. To
estimate how many human cancer driver genes are conserved in
C. elegans, 1 took a list of 568 driver genes from the IntOgene list
(Martinez-Jiménez et al., 2020), which was compiled from the
analysis of 28,000 tumors of distinct cancer types, and then
searched for their orthologs in the Ortholist database (Kim et al.,
2018). This survey found that 72% of the human cancer driver genes
have one or more orthologs in C. elegans (Table S1). Still, this
percentage may underestimate the number of orthologs, because, for
example, Ortholist fails to identify cep-1 as a TP53 ortholog due to
the genes’ low sequence homology. However, cep-1 has been
proven as a bona fide functional ortholog of TP53 (Derry et al.,
2001). Despite the likely underestimate, my brief analysis shows
that C. elegans carries orthologs of about three-quarters of human
cancer driver genes, pointing to a high degree of conservation.

Therefore, the conservation of genes and biological mechanisms
support the use of C. elegans in cancer research. In this Review,
I use the hallmarks of cancer as a blueprint to update, refresh and
reinforce the value of C. elegans as a model to investigate cancer.

Cancer hallmarks in C. elegans

In 2000, Hanahan and Weinberg published ‘The hallmarks of
cancer’ (Hanahan and Weinberg, 2000), an iconic Review that was
embraced by cancer researchers worldwide. This article discusses
“six essential alterations in cell physiology that collectively dictate
malignant growth”: sustaining proliferative signaling, evading
growth suppressors, resisting cell death, enabling replicative
immortality, inducing angiogenesis, and activating invasion and
metastasis. These were the first hallmarks of cancer, but the authors
anticipated that “the search for the origin and the treatment of this
disease will continue over the next quarter century by adding further
layers of complexity”. Their prediction was correct, and the same
authors published ‘Hallmarks of cancer: the next generation’ in
2011 (Hanahan and Weinberg, 2011), adding two emerging
hallmarks, reprogramming of cellular energetics and avoiding
immune destruction, and two enabling characteristics, genome
instability and inflammation. In 2022, Hanahan published the latest
iteration in the series, ‘Hallmarks of cancer: new dimensions’
(Hanahan, 2022), consolidating the previous core of eight hallmarks
and two enabling characteristics, and proposing two new hallmarks,
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Fig. 1. Hallmarks of cancer that can be investigated in C. elegans. Despite its relative simplicity, C. elegans is amenable to effective modeling of ten of
the 14 hallmarks of cancer, leaving just four hallmarks that cannot (yet) be studied in this model.

unlocking phenotypic plasticity and senescent cells, and two
new emerging characteristics, epigenetic reprogramming and
polymorphic microbiomes. In this Review, I use this explicit
classification to comment on some of the numerous C. elegans
studies that have contributed to a better understanding of ten
hallmarks of cancer, underscoring the value of this model organism
to disentangle the complexity of cancer mechanisms.

Hallmark 1: sustaining proliferative signaling

Cell cycle progression drives cellular proliferation in a similar
manner in all eukaryotes, and most of the cell cycle components are
conserved from yeast to humans. Core elements of the cell cycle,
which have been extensively studied in C. elegans (Kipreos and
van den Heuvel, 2019), are not commonly mutated in cancer,
probably because they are too essential to tolerate mutations
hampering their functions and still permit cell survival. However,
core cell cycle components are often deregulated by diverse
mechanisms, such as altered proliferative signals. In C. elegans,
hyperplasia phenotypes due to excessive cellular proliferation can

be produced in different ways, such as by RNA interference
(RNAi)-mediated inactivation of the cell cycle inhibitor gene cki-1/
CDKNIB (Boxem and Van den Heuvel, 2002) or by gain-of-
function mutations in the CDC254 oncogene ortholog cdc-25.1
(Clucas et al., 2002).

Signaling pathways promoting cell cycle entry, like the receptor
tyrosine kinase (RTK)-RAS/MAPK cascade, are well conserved
and tightly regulated in metazoans. Elevated expression or gain-of-
function mutations in the RTK-RAS/MAPK pathway, or loss-of-
function mutations in its inhibitors, promote cancer. Researchers
have characterized C. elegans orthologs of the RTK-RAS/MAPK
core components (Fig. 2A), from the receptors and their ligands to
the ETS transcription factors responsible for the transcriptional
output of the pathway that drives proliferation. These core
components participate in many developmental processes,
interacting with other proteins and pathways in a cell-type-
specific manner. Alteration of this pathway during worm
development can result in overt phenotypes, such as a protruding
vulva, or less obvious ones, such as modification of cell
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Box 1. C. elegans development and proliferative cells

C. elegans is a small nematode, the body of which reaches ~1 mm in
length in adulthood. The small size, coupled with growth at atmospheric
levels of oxygen and 15-25°C, and a broad availability of excellent
genetic and cell biology tools, make it a popular model organism for
studying a wide array of biological processes.

The embryonic development of C. elegans can be roughly separated
into two stages: proliferation and morphogenesis. In hermaphrodites,
embryonic cell divisions produce 671 cells, of which 113 undergo
programmed cell death, 53 remain as blast cells and the rest terminally
differentiate. After hatching, these 53 blast cells further proliferate to
complete the postembryonic development that spans four tightly
regulated and well-characterized larval stages, and ultimately forms an
adult hermaphrodite with 959 somatic nuclei (Sulston and Horvitz, 1977;
Sulston et al., 1983). Embryonic development is initially driven by
transcripts obtained from the mother (maternal product) and is later
completed by zygotic transcription. Postembryonic blast cell divisions
begin 3 h after hatching, but only if food is available (Baugh and
Sternberg, 2006). Therefore, this food dependence provides an excellent
context to investigate proliferative signals from metabolic pathways.
Whereas other terminally differentiated postembryonic cells are
refractory to proliferative phenotypes, postembryonic blast cells
(intestinal cells, P cells, seam cells and sex myoblasts) are prompt to
hyperproliferate upon manipulation of some gene activities (Boxem and
Van den Heuvel, 2001; Wildwater et al., 2011; Ruijtenberg and Van Den
Heuvel, 2015).

fates or defective cell migration (Sundaram, 2006). Interestingly,
LET-60/HRAS expression is regulated by the conserved let-7
microRNA (miRNA) family, which is also expressed in humans.
Human RAS family genes contain multiple let-7 complementary
sites at their 3’ untranslated regions. Downregulation of /ez-7 results
in RAS overexpression and a deregulated progression through the
cell cycle (Johnson et al., 2005; 2007).

Conveniently, the postembryonic development of the vulva, an
epithelial aperture on the nematode’s ventral side that allows mating
and egg laying, is an amenable process for studying the function of
RAS. Loss of LET-60/HRAS function causes a vulvaless (Vul)
phenotype, whereas gain-of-function mutations produce multivulva
(Muv) animals. Although these phenotypes are provoked by
alterations of cell fates and do not represent overproliferation, the
Vul and Muv models have been widely used to identify other
components of the RTK-RAS/MAPK pathway (Sundaram, 2013),
cross-talks with other signaling cascades (Lee and Yoon, 2017,
Corchado-Sonera et al., 2022) and chemical inhibitors (Reiner et al.,
2008; Schmid et al., 2015; Ji et al., 2019; van der Hoeven et al.,
2020). Thus, genetic screens using the Muv phenotype
have allowed the identification of RTK-RAS/MAPK components
in C. elegans first, like KSR-1, the ortholog of human KSR1 and

Table 1. Useful C. elegans resources online

KSR2 (Kornfeld et al., 1995; Sundaram and Han, 1995), and
SEM-5, the ortholog of human GRB2 (Clark et al., 1992). Besides
genes and molecules, vulva development as a phenotypic
readout has also contributed to the identification of other factors
influencing LET-60/HRAS activity, such as hypoxia (Maxeiner
et al., 2019), oxidative stress (Kramer-Drauberg et al., 2020),
starvation (Grimbert et al., 2018) or alternative polyadenylation
(Subramanian et al., 2021).

The phosphatidylinositol 3-kinase (PI3K; PIK3) pathway also
promotes proliferative signals activated by extracellular stimuli such
as insulin or growth factors (Fig. 2B). This pathway is heavily
deregulated in cancer, either via aberrant activation of oncogenes, like
PI3K itself and its downstream kinase AKT, or via the loss of tumor
suppressors such as the lipid phosphatases INPP4B and PTEN. The
axis of this pathway in C. elegans is commonly studied in the context
of aging and metabolic signaling (Fig. 2B). Interestingly, the PTEN
ortholog DAF-18 is required to maintain the quiescence of some
postembryonic cells. Germ cell precursors and the mesoblast (M) cell
begin to proliferate after hatching in the presence of food. If food is
not present, these cells remain quiescent in wild-type C. elegans, but
divide in DAF-18/PTEN mutants (Fry et al., 2021; Chen et al., 2022).
This observation demonstrates that worms with hampered DAF-18/
PTEN activity or a hyperactivated PI3K are an excellent model to
study the regulatory signaling that modulates the quiescent-to-
proliferative state transition. Conveniently, a humanized C. elegans
model (Box 2) of PTEN mutations has been developed by substituting
the endogenous daf-18 gene with human PTEN, which rescues
multiple daf-18 mutant phenotypes (McDiarmid et al., 2018).

In the context of the PI3K pathway, the nutrient-sensing serine/
threonine kinase mTOR regulates developmental progression, and
promotes tumor growth and metastasis in diverse cancer types. The
C. elegans protein LET-363 is an ortholog of mTOR, and DAF-15
and RICT-1 correspond to the two mTOR interactors in mammalian
cells, RAPTOR (RPTOR) and RICTOR, respectively. Confirming
the conserved role of mTOR as a developmental regulator, let-363
inactivation by RNAi or mutations affects developmental processes,
including germ cell proliferation, exit from quiescence or embryonic
development (Keith Blackwell et al., 2019). Unfortunately, the most
studied and clinically used mTOR inhibitor rapamycin, which
forms a complex with the chaperone FKBP12 to inhibit the FRB
domain of mTOR (Huang et al., 2003), has a limited impact on
C. elegans growth and development, although it increases its
lifespan (Robida-Stubbs et al., 2012). Despite the limitations of
rapamycin in worms, studies on LET-363/mTOR signaling in
C. elegans keep providing layers of information on its functions.
As an example, the mitochondrial nuclease ENDOG suppresses
the mTOR pathway to promote autophagy (Wang et al., 2021),
a conserved pathway for which impairment is also related to cancer
(see ‘Hallmark 3: resisting cell death’ section).

Online resource Description

Reference

http://wormbase.org
http://wormbook.org
http://wormatlas.org
https://cgc.umn.edu
http://wormclassroom.org
http://genome.sfu.ca/gexplore
http://ortholist.shaye-lab.org
http://convart.org
http://wormbuilder.org
http://marrvel.org

Main repository for C. elegans data
Comprehensive compendium of reviews
Structural anatomy of C. elegans

Repository of strains

Resources for teaching

Temporal and spatial expression profiles
Search for C. elegans orthologs

Search for conservation of gene variants
Methods for genome engineering
Aggregated resources for human and models

Davis et al., 2022

Girard et al., 2007
Schroeder and Hall, 2021
Stiernagle, 2006

Lu et al., 2007

Hutter and Suh, 2016
Kim et al., 2018

Pir et al., 2022

Wang et al., 2017
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Fig. 2. Sustaining proliferative signaling pathways conserved from C. elegans to mammals. Sustained proliferative signaling is one of the original
hallmarks of cancer defined in Hanahan (2022), but these pathways have been the subject of intense research, and significant therapeutic success, for far
longer. (A,B) A simplified schematic of two well-known proliferative signaling pathways that are often dysregulated in cancer, RTK-RAS/MAPK (A) and PI3K
(B), paralleling the analogous mammalian and C. elegans pathways. Sustained signaling through these pathways increases cell proliferation in human cells
and causes diverse phenotypes in C. elegans. LET-60/HRAS activation causes a protruding vulva phenotype, whereas sustained AGE-1/PI3K signaling
prompts exit from quiescence in some postembryonic cells. P, phosphorylation; PIP, phospholipid; TFs, transcription factors.

Finally, I must mention in this section the germline tumors
produced by elevated activation of GLP-1/Notch in the C. elegans
distal tip cells, which are somatic cells (Berry et al., 1997). This
overt proliferative phenotype has been used to identify new genetic
interactions with the Notch pathway (Singh et al., 2021).

Aside from investigating individual proliferative signaling
pathways, genetic analyses in C. elegans can advance the study of
pathway cross-talks, as exemplified by the finding that the PI3K
signaling repressor DAF-18/PTEN also acts as a negative regulator
of RTK-RAS/MAPK signaling during vulva development
(Nakdimon et al., 2012). The well-characterized genetics of C.
elegans allow researchers to understand the complexities of cancer-
related pathway crosstalk in a tractable and relatively simple system.

Hallmark 2: evading growth suppressors

Tumor suppressor genes are like brakes against the onset and
progression of cancer. The two prototypical tumor suppressors, the
chromatin-remodeling protein retinoblastoma (Rb; RB1) and the
transcription factor P53 (TP53), correspond to C. elegans LIN-35

and CEP-1, respectively. LIN-35/Rb is a hub regulator of diverse
pathways upon extracellular and intracellular signals. Complete
deletion of the /in-35 ortholog in the soil nematode Caenorhabditis
briggsae produces very sick animals (Burton et al, 2021),
suggesting that a full /in-35 deletion might not be viable in C.
elegans. However, C. elegans with an early stop codon (allele n745)
in lin-35 are viable, and this mutation can be considered a putative
null allele, at least for some of the LIN-35 functions (Lu and
Horvitz, 1998). lin-35(n745) animals present diverse alterations,
such as upregulation of genes otherwise repressed by the DREAM
chromatin remodeling complex (Goetsch et al., 2017), sensitivity to
RNAIi (Wang et al., 2005) or additional intestinal cells (Boxem and
Van den Heuvel, 2001). Functional redundancy is a remarkable
feature of LIN-35/Rb, highlighting its capacity to influence different
genetic pathways via synthetic genetic interactions with other
mutations. The synthetic Muv (synMuv) phenotype is a clear
example. Although mutations in single synMuv genes, one of which
being /in-35 itself, do not cause a Muv phenotype, specific
combinations of at least two mutations do (Ceol et al., 2006). Such
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Box 2. CRISPR editing and humanization

For CRISPR-based gene editing in C. elegans, reagents are injected into
the germline of young adult hermaphrodites, which consists of two
symmetric U-shaped tubular structures with hundreds of germ nuclei that
form a syncytium. These nuclei later form oocytes that are fertilized when
they cross the spermatheca. Thus, by injecting the cocktail of CRISPR
reagents in a germline arm, hundreds of nuclei are potentially exposed to
gene editing. A single microinjection can produce dozens of edits, but
normally 15-20 animals are microinjected to secure the experiment,
particularly if the intent is not to provoke mutation via error-prone repair
but to induce a precise genome edit. Importantly, the short life cycle
(embryo to adult in 3-5 days) and the self-fertilization of hermaphrodites
allows for obtaining homozygous edits in 2 weeks.

CRISPR reagents can be injected as robust ribonucleoproteins
composed of Cas nucleases and synthetized guide RNAs (gRNAs), or
as plasmids that are then expressed in the targeted cells (Nance and
Frokjeer-Jensen, 2019). Moreover, researchers have engineered C.
elegans strains that express Cas9 (Schwartz et al., 2021), including a
strain that expresses a minimal-protospacer adjacent motif (PAM) Cas9
variantin the germline (Vicencio et al., 2022). Using such strains reduces
the cost of gene-editing experiments.

In the context of cancer research in worms, CRISPR can be used to
mutate genes of interest, generating precise deletions or missense
mutations in conserved amino acids, to investigate their biological
functions. Whereas a complete deletion results in a null allele, partial
loss-of-function alleles can be obtained by microdeletions or by tagging
the gene with a fluorescent reporter that can, in certain cases, hamper its
function. CRISPR can also be used for producing excess-of-function
alleles by inserting additional copies of any gene into precise genomic
sites to model copy-number gains often seen in human cancer genomes
(Yoshina et al., 2015; Mouridi et al., 2022; Malaiwong et al., 2023).

Endogenous fluorescent reporters are valuable genetic tools (Paix
et al., 2015; Vicencio et al., 2019) for studying the activity of a specific
pathway or oncogenic process. Reporter worm strains can be used in
genetic screens, like classic mutagenesis-, RNA interference (RNAI)- or
CRISPR-knockout-based approaches (Yang et al., 2020).

Finally, cancer-related genes in C. elegans can be partially or fully
humanized by replacing the worm gene with its human ortholog using
CRISPR, as demonstrated with daf-18/PTEN (McDiarmid et al., 2018).
Once the edit has been confirmed, researchers need to assess whether
the human gene, or part of it, is functional in the worm. If the loss of the
endogenous worm gene causes a phenotype that is rescued by the
human(ized) replacement (in the same locus or a different one), this
means that the human ortholog is functional, and therefore effects of
cancer-related mutations can be assessed in living worms.

capacity for genetic interactions and clear phenotypic readouts have
facilitated forward and reverse genetic screens that used traditional
mutagenesis and RNAI, respectively, to identify functional
interactions of LIN-35/Rb  with multiple cellular and
developmental processes (Fay et al., 2002; Thomas et al., 2003;
Ceron et al., 2007).

P53 is mutated in about half of human cancers (Perri et al., 2016).
Its role is to sense different stresses, including DNA damage, and
trigger a transcriptional response to repair the damage or to induce
apoptosis. In humans, 7P63 and TP73 are the other two members
of the gene family. They seem to be less commonly implicated in
cancer but have overlapping functions in distinct tissues that
complicate functional studies of 7P53. Invertebrates present a single
member of the p53 family containing an evolutionary conserved
p63-like domain structure (Rutkowski et al., 2010). cep-1 is the sole
member of the family in C. elegans. Owing to its low sequence but
high structural homology, CEP-1’s orthology to p53 in regulating
DNA-damage-induced apoptosis and genome stability was
identified a bit late, in 2001 (Derry et al., 2001; Schumacher

et al., 2001). cep-1 loss-of-function alleles do not cause obvious
developmental phenotypes, just mild defects that do not
compromise viability. Interestingly, cep-I mutants do not
accumulate mutations in the genome under unchallenged growth
conditions. However, introducing a cep-/ mutation into strains with
severe DNA repair defects increases the rate of mutagenesis (Meier
et al., 2021). Upon ultraviolet (UV) irradiation, CEP-1 is required
for DNA damage-induced apoptosis and cell cycle arrest in the
germline (Derry et al., 2007) but not in somatic cells, which do not
express DNA damage sensors such as ATM-1/ATM (Vermezovic
etal., 2012). Still, some studies suggest a role for CEP-1 in somatic
cells, contributing to halt the cell cycle in embryonic cells upon
impairments of the DNA damage response signaling (Moser et al.,
2009). Beyond Rb and P53, C. elegans can be used for investigating
the functions of other tumor suppressors, such as the CYLD
deubiquitinase, which stabilizes P53 activity in the DNA damage
response (Fernandez-Majada et al., 2016).

Hallmark 3: resisting cell death

Apoptosis is a highly regulated type of programmed cell death that
is typically inhibited in cancer. Moreover, certain tumors can
become resistant to apoptosis induced by chemotherapy. Therefore,
anti-apoptotic proteins are potential targets for therapies.
Interestingly, the core components of apoptotic pathways are not
only evolutionarily conserved but were first identified in C. elegans
(Horvitz, 2003). This discovery was expedited for two features of
worms: (1) the transparency of the animal, which allows the
observation of individual cells and apoptotic corpses, facilitated the
description of invariant somatic lineages and the stereotyped pattern
of apoptotic events (Sulston and Horvitz, 1977; Sulston et al.,
1983); (2) programmed cell death is not essential for the viability of
the organism (Ellis and Horvitz, 1986), allowing -efficient
identification of genes required for normal patterns of apoptosis
during development.

In the canonical C. elegans apoptosis pathway, transcriptional
activation of egl-1/, which encodes a BH3-only protein, inhibits
the antiapoptotic CED-9/BCL2. This permits the activation of
the proapoptotic CED-4/APAF1. CED-4 activity is required for
CED-3/Caspase to finally execute the apoptotic cell death.
Importantly, not only is the core apoptotic pathway conserved, but
C. elegans also carries orthologs to mammalian genes implicated in
its regulation (Conradt et al., 2016; Wei et al., 2020) and in the
recognition and clearance of apoptotic cell corpses (Lukacsi et al.,
2021) (Table 2).

Exposure of C. elegans to DNA damage via UV, y-irradiation or
the chemotherapeutic drug cisplatin can induce ectopic apoptotic
cell corpses (Gartner et al., 2000; Garcia-Rodriguez et al., 2018).
Thus, C. elegans is a suitable model for studying DNA damaging
agents and apoptosis execution in an in vivo setting. In addition,
worms have helped researchers describe other factors producing
apoptotic corpses, such as the inactivation of splicing components
(Rubio-Peia et al., 2015).

Moreover, cell death inhibitors have been identified in C. elegans
screens. Although they may not have therapeutic interest, these
findings contribute to a better understanding of factors and
pathways involved in cancer cells’ resistance to cell death
(Schwendeman and Shaham, 2016; Brantley et al., 2017).

Also related to resistance to cell death and cancer, the regulated
process of autophagy promotes cell survival through metabolic
rearrangements that imply lysosome-dependent degradation of
organelles. Genes involved in autophagy and their functions are
evolutionary conserved from worms to mammals (Wong et al.,
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Table 2. Conservation of apoptotic pathway components between C.
elegans and humans

C. elegans Human
) A
Apoptosis activation EGL-1 BH3-only protein
CED-9 BCL2
CED-4 APAF1
CED-3 Caspase
Apoptosis regulation DAD-1 DAD1
ICD-1 BTF3
DRP-1 DNM1L
ANT-1.1 SLC25A4
EIF-3.K EIF3K
PIG-1 MELK
CES-1 SNAI1
Clearance of cell corpses CED-1 SCARF1
CED-6 GULP1
DYN-1 Dynamin
CED-2 CRKL
CED-5 DOCK
CED-12 ELMO
CED-10 RAC1

2020). The C. elegans research community has well-established
tools to study autophagosomes, the key spherical structures in
autophagy with double-layer membranes that degrade cellular
components (Pefia-Ramos and Zhou, 2022). Moreover, the
functional interconnection between autophagy and apoptosis
pathways can be investigated in C. elegans (Ploumi et al., 2023).

Hallmark 4: enabling replicative immortality

Telomerase maintains telomeres at chromosome ends, which is
important for sustained replications, but which also limits the
replicative capacity of normal cells. However, cancer cells have
developed mechanisms to preserve telomeric DNA to avoid cell
cycle exit and senescence, effectively rendering them immortal.
Although mammalian telomeres consist of TTAGGG repeats, the
C. elegans telomere sequence is TTAGGC and repeats span for
4-9 kb at the ends of chromosomes (Wicky et al., 1996). C. elegans
telomeres can also form G-quadruplex structures (Marquevielle
et al.,, 2022), supporting the similarities between telomeres of
mammals and worms. Lack of trz-1, the C. elegans gene encoding
telomerase, causes sterility after 14-18 generations (Meier et al.,
2006). Thus, telomerase activity is necessary to maintain
immortality in C. elegans germ cells. Interestingly, telomerase-
independent mechanisms for protecting chromosomal ends were
identified among #r¢-1 mutants that remained fertile for more than
18 generations (Seo et al., 2015). Thus, similar to cancer cells,
C. elegans germ cells counteract the shortening of telomeres.

The state of C. elegans telomeres can be determined by
fluorescence in situ hybridization to investigate genes or other
factors influencing telomere biology (Seo and Lee, 2016). Several
orthologs of human protection of telomeres (POT) proteins have
been identified in C. elegans, including POT-1, POT-2, POT-3 and
MRT-1 (Shtessel et al., 2013). Telomere length variations among
natural isolates of C. elegans correlate with pot-2 variants,
supporting the existence of genetic variants that favor inter-
individual diversity of telomere lengths (Cook et al., 2016).
Interestingly, these differences do not correlate with changes
in progeny number or longevity. Moreover, the short life cycle
of C. elegans has facilitated a study showing that altered levels of

POT-1 and POT-2 foci, which are POT protein aggregates at
telomeres, in certain genetic backgrounds display transgenerational
epigenetic inheritance (Lister-Shimauchi et al., 2021).

Another protein involved in telomere metabolism is the WRN
helicase, which is also involved in replication arrest recovery and
DNA repair (Crabbe et al., 2004). Mutations in the WRN gene cause
Werner syndrome, a rare premature aging syndrome associated with
genome instability and an increased incidence of cancer. WRN-1,
the C. elegans ortholog for WRN, is part of DNA damage response
signaling pathways and is involved in the repair of double-stranded
DNA breaks caused by cytotoxic agents, including cisplatin (Hyun
etal., 2016; Ryu and Koo, 2017) (Box 3). Thus, C. elegans can help
to study alternative functions of genes related to maintaining the
integrity of telomeres and DNA as a whole, and the connection
between these processes and unlimited replicative potential.

Hallmark 5: activating invasion and metastasis

In the early 2000s, Sherwood and colleagues described a C. elegans
developmental process that models cell invasion through basement
membranes, which is a key step in metastasis (Sherwood and
Sternberg, 2003). The authors used a labeling system to identify and
track the vulva and the anchor cell, a specialized cell of the somatic
gonad. In the Larva 3 stage, the anchor cell invades the vulva
epithelium after disruption of the basement membrane, connecting
the uterus to the developing vulva (Sherwood and Sternberg, 2003).
A follow-up study by the same group identified fos-1, similar to
the human transcription factor FOS, as essential for the disruption of
the basement membrane. FOS-1 promotes invasion by regulating
the expression of several genes, including some related to the
extracellular matrix that are conserved in humans (Sherwood et al.,
2005).

Subsequently, an RNAI screen of transcription factors essential
for anchor cell invasion of the basement membrane identified
NHR-67. This transcription factor upregulates cki-//CDKNIB
levels, arresting the cell cycle before the invasion (Matus et al.,
2015). This shows that the proliferative and invasion states are
incompatible in the anchor cell, which opened an interesting view
of tumor cells, in which the cellular programs to proliferate or
invade may be mutually exclusive to some extent. The
aforementioned anchor cell invasion model has recently helped
identify other elements of the network regulating invasion, such as
EGL-43 (Deng et al., 2020) or components of the chromatin-
remodeling SWI/SNF complex (Medwig-Kinney et al., 2020; Smith
et al., 2022).

Another angle from which to investigate invasion and metastasis
in nematodes is through the Metastasis-associated protein (MTA)
family. In humans, the MTA1, MTA2 and MTA3 proteins are
subunits of diverse chromatin-remodeling complexes, and their
expression in tumors correlates with a poor prognosis (Kumar and
Wang, 2016). C. elegans carries two MTA proteins, LIN-40 and
EGL-27. LIN-40 is part of the nucleosome remodeling and
deacetylase (NuRD) complex involved in nucleosome remodeling
and chromatin deacetylation to regulate cell fates (Chen and
Han, 2001), whereas EGL-27 influences gene expression in
morphogenesis, stress response and the DNA damage response
(Xu and Kim, 2012; Mueller et al., 2014).

Because metastasis requires cell migration, this cellular
process is another bridge to connect C. elegans research with
metastasis (Stuelten et al., 2018). In this context, the conserved
family of ADAMTS metalloproteases, responsible for regulating
extracellular matrix and potential therapeutic targets, has been
studied in C. elegans (Ismat et al., 2013).
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Box 3. Investigating cancer therapies in C. elegans

Canceris not a single disease. The term spans multiple diseases arising in distinct organs and cells, altering diverse cellular pathways and genes. However,
this is not the only feature complicating cancer treatments. Cancer cells commonly develop mechanisms of resistance against therapies, forcing the use of
alternative treatments. Therefore, oncologists need a wide collection of therapeutic approaches. The implementation of new cancer therapies in the clinic
and the optimization or repurposing of existing ones are long journeys that C. elegans can help shorten.

1. First-line chemotherapies

Chemotherapeutic agents used as first-line cancer treatments present low specificity and therefore efficiently control cell proliferation in most organisms.
When using these agents, there are two main concerns: toxicity to normal cells and the onset of cellular resistance in cancer cells. Studies in C. elegans can
help reduce these concerns by helping understand the underlying mechanisms.

Cisplatin is probably the most common chemotherapeutic in the treatment of solid tumors. Depending on the dose, cisplatin causes diverse phenotypes in
C. elegans, including reduced mobility, sterility or body size (Hemmingsson et al., 2010; Garcia-Rodriguez et al., 2018). These phenotypes can be used to
identify genes or molecules that affect the therapeutic impact of cisplatin (Piulats et al., 2018; Martinez-Fernandez et al., 2022). Similarly, genes affecting
sensitivity to 5-fluorouracil have been identified in worms (Kim et al., 2008). C. elegans has also been used to study the variability in response to bleomycin
(Brady et al., 2019), the genomic lesions caused by mitomycin (Tam et al., 2015), and the effect on the microbiota and toxicity caused by floxuridine
(Ke et al., 2020).

2. Targeted therapies, humanization of drug targets and synthetic lethality
More specific cancer drugs that affect certain oncogenic pathways or a single protein can also be investigated in nematodes. In principle, if a small molecule
has an impact on a signaling pathway such as Wnt, Notch or RAS in worms, it will probably have an impact on the homologous human pathway (Kobet et al.,
2014) and could be chemically modified for a more efficient action in human cells. For example, known RAS inhibitors have been proven effective in
inhibiting the RAS-dependent multivulva phenotype in C. elegans (Reiner et al., 2008; Bae et al., 2012; van der Hoeven et al., 2020), and small molecules
modulating the RAS pathway were identified in worms (Schmid et al., 2015).

If an inhibitor does not work in C. elegans because the molecular dock of the targeted protein is not conserved, such region can be humanized, producing
a strain sensitive to the drug of interest. As an example, a specific region of sftb-1/SF3B81 was humanized by CRISPR to render a worm strain sensitive to
splicing inhibitors, which are of therapeutic interest in cancer (Serrat et al., 2019). This strain can then serve as a platform for studying chemical derivatives of
such drugs that have higher efficacy and less toxicity in animals, and eventually in the clinic.

Finally, the classic strategy of identifying synthetic lethal interactions to find novel therapeutic targets, particularly for cancers that are driven by loss of
tumor suppressors rather than by activation of a directly targetable oncogene, has also been explored in C. elegans (Fay et al., 2002; Ceron et al., 2007;
McLellan et al., 2012; Serrat et al., 2019; Bellelli et al., 2020).

3. Drug discovery
C. elegans cultures can be expanded to produce large populations of worms allowing high-throughput screens of small-molecule libraries (Giunti et al.,
2021). To achieve reliable read-outs from such drug discovery screens, researchers need a homogenous population of worms, which can be achieved by
the simple method of synchronizing animals with bleach and sodium hydroxide (Porta-de-la-Riva et al., 2012). Once the worms are synchronized, small
molecules can reach their cells through the intestine if mixed with the food or by crossing the cuticle (Zheng et al., 2013). Thus, several C. elegans strains
carrying mutations affecting cuticle integrity have been reported to have increased drug absorption. Using these strains in drug screens reduces potential
false-negative hits due to insufficient doses reaching the target cells. In laboratory conditions, C. elegans is commonly fed with genetically well-
characterized strains of Escherichia coli. To avoid concerns about the capacity of bacteria to metabolize the screened drugs, C. elegans can be fed with
dead bacteria or axenic liquid media.

Whereas drug screens in other C. elegans disease models commonly look for molecules that alleviate the disease-related phenotype (Moy et al., 2006;
Kukhtar et al., 2020), cancer-related screens may need to search for synthetic lethality events. In either case, the main factor in rendering a screen valuable
is to have a clear phenotypic readout.

Hallmark 6: deregulating cellular metabolism

Tagged as an ‘emerging hallmark’ in 2011, reprogramming of
cellular energetics has been designated as a core cancer hallmark in
2022 (Hanahan, 2022). In the presence of oxygen, normal cells use
glycolysis to produce ATP, NADH and pyruvate in the cytosol,
which is later oxidized to carbon dioxide in the mitochondria,
generating additional ATP in the process. Cancer cells present an
increase in glucose uptake, but they favor the production of lactate
from pyruvate, even in the presence of oxygen, which is a less
efficient way of producing ATP. This metabolic reprogramming, the
Warburg effect, has been known for more than a century (reviewed
in DeBerardinis and Chandel, 2020), and is even stronger in the
hypoxic conditions found in many tumors. Whether there is any
benefit to reprogramming toward a much less efficient production of
ATP is not well understood yet. Because some embryonic tissues
have a Warburg-like metabolism, it is hypothesized that such
energetic reprogramming allows the use of glycolytic intermediates
in biosynthetic pathways required for cell proliferation (Krisher and
Prather, 2012). Conveniently for metabolic studies, C. elegans ATP
levels and mitochondria respiration can be measured in individuals
or small populations (Koopman et al., 2016). Similarly to human
cell lines, treating worms with arsenic causes a Warburg effect,
which has been used to identify components of glycolysis and

electron transport chain complexes (Zhao et al., 2013; Luz et al,,
2016). Besides this arsenic-induced model, a Warburg-like aberrant
glycolysis has been studied in a C. elegans strain carrying mutant
sdhb-1 that mimics a missense mutation of the human succinate
dehydrogenase associated with rare heritable neuroendocrine
cancers (Saskéi et al., 2020). Another glycolytic shift reported in
C. elegans is the increase of lactate after activating small-conductance
calcium-activated K™ (SK) channels, which confers resistance to
oxidative stress and neuroprotection (Krabbendam et al., 2020).

Thus, although stable tumor-like structures are not well
established in C. elegans, factors influencing the metabolic switch
from mitochondrial respiration to lactate-producing glycolysis, as
well as other aspects of cancer-specific metabolic rewiring, can be
investigated in this model.

Hallmark 7: genome instability and mutation

Some phenotypes related to genome instability are easily observable
in C. elegans. As an example, a high prevalence of males (X/0) in
the progeny of hermaphrodites (X/X) indicates defects in meiotic
chromosome segregation and the onset of aneuploidy. The worm’s
transparency facilitates the observation of stained chromosomes,
allowing the detection of mitotic artifacts (Porta-de-la-Riva et al.,
2012), which are also a common occurrence in cancer cells.
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A common methodology to identify genes involved in genome
instability is to screen for sensitivity to DNA damage. This approach
has identified components for distinct repair mechanisms in
C. elegans. Most of the genes related to DNA repair mechanisms
are conserved, including arl-1/ATR, atm-1/ATM, brc-1/BRCAI/2,
chk-1/CHEK1, chk-2/CHEK?2, cku-70/XRCC6, dog-1/BRIP1, msh-
2/MSH?2 and rad-51/RAD51. These genes are included in a recent
compilation and review in WormBook (Gartner and Engebrecht,
2022).

The mechanisms that keep the frequency of spontaneous
mutations low are crucial for the correct development of an
organism. However, cancer cells often present elevated mutational
rates that may favor their clonal expansion. Cancer cells accumulate
mutations by disrupting DNA repair, bypassing cell cycle
checkpoints or inactivating the cellular surveillance systems that
trigger apoptosis or senescence upon excessive DNA damage. In a
recent study (Meier et al., 2021), more than 20 C. elegans DNA
repair mutants were maintained for several generations, and their
genomes were sequenced to observe that these animals displayed a
more than twofold increase in the number of diverse mutation types,
including deletions, structural variants and base substitutions.
Interestingly, brc-1/BRCAI and rad-51/RADS5 1 mutants showed an
increase in the number of mutations of all types (Meier et al., 2021).

Besides the implication of DNA replication or DNA damage
response in genome instability, proteins involved in RNA
processing and export, such as components of the THSC/TREX-2
complex, have also been linked to transcription-associated genome
instability in human cells and in worms (Bhatia et al., 2014; Zheleva
etal., 2021).

Finally, as an example of how C. elegans can open new lines of
thought in cancer research, functional interactions between DNA
repair proteins and chromatin remodelers such as histone
methyltransferases (Padeken et al., 2019; Yang et al., 2019) or
components of the DREAM complex (Bujarrabal-Dueso et al.,
2023) have been observed. These findings further expand the
complexity of factors influencing the mutational rate, a key process
in cancer.

Hallmark 8: nonmutational epigenetic reprogramming

Cancer cells can use other strategies besides mutations or
chromosomal alterations to reprogram gene expression. To adapt
to a changing microenvironment caused by hypoxia or other cellular
stresses, cells can modify their epigenome to activate a favorable
gene expression program, mainly via DNA methylation, histone
modifications or expression of small RNAs. DNA methylation on
cytosines (5SmC), mostly in CpG dinucleotides, is a common
repressive mark in mammals (Greenberg and Bourc’his, 2019).
However, C. elegans does not present SmC and lacks orthologs
to mammalian cytosine DNA methyltransferases. The presence
of other DNA methylation marks in C. elegans, such as 6mA,
has been controversial and does not represent a major drive for
reprogramming gene expression in worms (O’Brown et al., 2019).
However, histone modifications, and the enzymes responsible for
them, are well conserved. When encountering an altered
environment, like the presence of pathogens, osmotic stress,
exposure to chemicals or a lipid-rich diet, worms reprogram their
epigenome to acquire new gene expression programs, and these
programs maintain a transgenerational inheritance (Camacho et al.,
2018; Ozdemir and Steiner, 2022; Wan et al., 2022). Small RNAs
also participate in modifying the epigenetic landscape in C. elegans
and are regulated by environmental changes (Houri-Zeevi et al.,
2021). Indeed, our understanding of small RNAs as regulatory

molecules of the genome initiated with the work of C. elegans
researchers Andrew Fire and Craig Mello, who received a Nobel
prize for their discovery of RNAI (Fire et al., 1998). Finally, next-
generation sequencing technologies allow the study of RNA
modifications, such as methylated and thiolated ribonucleotides,
which have been identified in RNAs from human cancers and
nematodes (Barbieri and Kouzarides, 2020; Li et al., 2020).

Hallmark 9: polymorphic microbiomes

In the past few years, many articles have described the association
between microbial communities and response to cancer therapies. In
particular, the impact of the digestive tract microbiota on colorectal
cancer is well established (Sears and Garrett, 2014). The microbiota
associated with the digestive tract of animals can be studied in the
C. elegans gut (Douglas, 2019). Thus, C. elegans modeling can
address diverse questions related to microbiota, such as how
microbes affect the host transcriptome (Goémez-Orte et al., 2017),
the impact of microbial byproducts on the host organism (Venzon
et al.,, 2022) or the influence of host genetic backgrounds in
microbiome selection (Zhang et al., 2021).

To study the natural components of the C. elegans microbiome,
researchers have established CeMbio, a resource for the community
that includes a collection of 12 bacteria from nine different families
(Dirksen et al., 2020). In addition, C. elegans can be infected with
human enteric bacterial pathogens to study host—pathogen
interactions (Walker et al., 2021). As an example of studies
related to the microbiome—cancer axis, certain strains of
Enterococcus faecalis are potentially oncogenic because of their
capacity to produce reactive oxygen species (ROS) and induce DNA
damage, and C. elegans have been used to study Enterococcus
infections (Yuen and Ausubel, 2014; Sim and Hibberd, 2016). A
separate study demonstrated that Rhizobium also produces ROS that
induce DNA damage and mitotic defects in the C. elegans intestine
(Kniazeva and Ruvkun, 2019).

Another aspect of the impact of microbiota in cancer that can be
studied in the worm is how certain microbes’ metabolism can
influence responses to chemotherapy (Garcia-Gonzalez et al.,
2017). The presence of distinct bacterial strains in C. elegans
correlates with different toxicities caused by the chemotherapeutic
agent 5-fluorouracil (Nguyen et al., 2022), and C. elegans have been
used to study how human microbiome bacteria reduce the toxic
effect of the anticancer drug doxorubicin (Yan et al., 2018). Thus,
although the immune-regulatory effect of the mammalian
microbiome (Gharaibeh and Jobin, 2019) would be more difficult
to investigate in C. elegans, many questions related to microbiome
interactions with the host and chemotherapeutic agents can be
addressed in worms.

Hallmark 10: unlocking phenotypic plasticity

Most terminally differentiated cells stay in a nonproliferative
state. Thus, a potential cancer cell needs to avoid differentiation
or acquire its replicative capacity through dedifferentiation or
transdifferentiation to a different cell type compatible with
tumorigenesis. The stereotyped cell lineage and precise cellular
map of C. elegans can contribute to the investigation of genes and
pathways related to processes to maintain or acquire a cellular state
compatible with proliferation.

In C. elegans, muscle precursors cells can skip differentiation
and keep proliferating when the activity of cell cycle entry inhibitors
and of SWI/SNF components is hampered by mutations, RNAi
or lineage-specific gene inactivation (Ruijtenberg and Van
Den Heuvel, 2015). A follow-up study by the same group
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demonstrated that partial inactivation of SWI/SNF complex
components can induce overproliferation, but a minimal activity
of these SWI/SNF proteins is required to maintain essential cellular
functions (van der Vaart et al., 2020). In other words, depending on
the level of inactivation, reduced SWI/SNF activity can either
stimulate or inhibit proliferation. These studies set C. elegans as an
excellent model to further investigate SWI/SNF in diverse cancer
types and to explore vulnerabilities of tumors harboring mutations
in SWI/SNF subunits (Mittal and Roberts, 2020; Wanior et al.,
2021).

Diverse research tools are available to study the plasticity of
C. elegans cells. Advances in single-cell omics allow the identification
of differentiation markers in specific C. elegans cells or lineages, and
therefore the study of transcriptomic profiles associated with
proliferative capacities (Cao et al., 2017). Besides neurons, vulval
cells have been extensively used in studies of genes expressed in
specific postmitotic cells (Gupta et al., 2012). Moreover, cell cycle
sensors allow C. elegans researchers to track entry into the cell cycle
and therefore the transition from a nonproliferative to a proliferative
state in vivo (Van Rijnberk et al., 2017; Adikes et al., 2020).

Although C. elegans differentiated cells are highly resistant to
modifying their fate (Coraggio et al., 2018), Polycomb mutants
affecting histone methylation have the capacity to transdifferentiate,
for example, from germ cells to neurons (Tursun et al., 2011), or
dedifferentiate towards stemness. A study of the C. elegans nervous
system has demonstrated that the expression of transcription factors
determining neuronal identity restricts cellular plasticity through
chromatin modifications, but their removal restores such plasticity
(Patel and Hobert, 2017). Mutations in components of the
chromatin-remodeling Rb pathway cause the ectopic expression
of germ cell markers in somatic cells and the acquisition of germ
cell features, a process that likely contributes to malignant
transformation in Rb-mutant mammalian cells (Wang et al,
2005). Levels of Polycomb-regulated epigenetic marks regulating
cell fate and proliferative signals like Notch signaling-inducing
proliferation contribute to the delicate balance determining cell
cycle re-entry in somatic cells (Coraggio et al., 2018). Interestingly,
mutations in the components of polycomb repressive complex 2
were found in 25% of T-cell acute lymphoblastic leukemia, which
is mainly driven by oncogenic activation of Notch signaling
(Bardelli et al., 2021). Finally, by modifying in C. elegans the
distribution of the chromatin mark H3K27me3, an alteration
observed in certain pediatric gliomas, JNK signaling upregulation
was identified as the cause of the ectopic replicative fate in germ
cells that carry aberrant H3K27me3 marks (Delaney et al., 2019).
Because JNK inhibition hampered proliferation in cell lines derived
from such gliomas, this work produced a model for drug screens.
Thus, despite the stereotyped and rigid lineages, the studies
discussed here support the use of C. elegans as a model to
investigate processes promoting plasticity between quiescent and
proliferative cellular states.

Conclusions

C. elegans is a valuable genetic model organism in which a
malignant tumor has not been provoked yet. This causes some
scepticism among researchers that use other systems to study cancer.
However, extensive literature and a Nobel prize for discovering the
core apoptotic pathway have validated the usefulness of C. elegans
in cancer research. Showing that ten of the 14 iconic cancer
hallmarks can be investigated in C. elegans may help to reconsider
this powerful genetic model, free of ethical concerns, for solving
key questions on oncogenic processes. This Review intends to

provide a broad view of cancer mechanisms that can be explored in
C. elegans, but it is not exhaustive, and I apologize to the many
colleagues whose studies should, but could not, be cited due to
space constraints. Other helpful reviews about cancer research in
C. elegans were published in the past (Saito and Van den Heuvel,
2002; Kirienko et al., 2010; Kyriakakis et al., 2015). I decided to
focus on ten hallmarks to underscore that C. elegans is not a magic
tool to investigate all topics related to cancer, but it certainly is a
precise tool to address specific questions on cancer mechanisms and
uncover novel genetic interactions. Although C. elegans does not
have a vascular system, it could potentially be used to investigate
the 11th hallmark: inducing or accessing vasculature. In C. elegans,
pvf-1 encodes an ortholog of human/mammalian VEGF genes, and
Ver genes (ver-1, ver-3, ver-4) share homology with mammalian
genes encoding members of the VEGFR family, although they,
of course, participate in different biological processes in worms
(Dalpe et al., 2013; Luth et al., 2021). Far from being a closed
concept, the hallmarks of cancers have been recently reviewed in
the context of their interaction with the nervous system (Hanahan
and Monje, 2023). In the search for models to address questions
related to cancer—nerve interactions (Le and Oudin, 2023),
C. elegans may prove to be an excellent model to investigate
neuronal functions.

As well as providing valuable information on the biology of
cancer, C. elegans can also help researchers understand the targets,
mechanisms of action, and side effects of new and existing drugs
(Box 3). As the statistician George Box once said, all models are
wrong, but some are useful. Although not originally coined in the
context of human disease models, this quote and its many variations
have been widely adopted by our community. Like every other
disease model, C. elegans is not perfect, but it can efficiently answer
relevant questions that will advance our understanding of cancer and
improve translation to the clinic to help patients.
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