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SUMMARY

The objective of this project is to present the base of Optimal Transport Theory and some of
its applications. The Optimal Transport Problem was first studied by Monge in the 18th century,
and later reformulated by Kantorovich during the 20th century, being this second version the
main object of study. One of the key results relating Monge’s formulation is Brenier’s theorem,
which we will prove and apply to prove the Isoperimetric inequality and the Sobolev inequality.
By employing a different method we will prove another classical result, the Brunn-Minkowski
inequality. This essay concludes with some conditions for the two problems to have the same
optimal value. The other main topic studied during this work are the Wasserstein spaces. They
are a family of probability measures spaces where we use Optimal transport to construct a
metric, the Wasserstein distance. A key result is that it metrizes the weak topology of these
spaces.





CONTENTS

Introduction 1

1 The Optimal Transport Problem 2

1.1 Conditions For Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Optimal plans induced by maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Wasserstein distance 22

2.1 Definition and Wasserstein spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 W∞ distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Classical geometrical inequalities 34

3.1 Isoperimetric Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Sobolev Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Brunn-Minkowski Inequality 37

4.1 Geodesic space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 A Convex Functional overW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Brunn-Minkowski inequality proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Application to Kronecker sequences 45

5.1 Bounds using Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Kronecker sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Kantorovich's Formulation as a relaxation 52

Appendixes 56

A Analysis inequalities 57

Bibliography 59





INTRODUCTION

The study of the Optimal Transport Problem is a topic in Analysis that recently is earning the
interest of more mathematicians. This is partly due to the deep connections that are being
found between this theory and topics like Partial Differential Equations and the Ricci flow in
Differential Geometry. It is also starting to be applied to problems like machine learning or
image interpolating.

In this work I will present the basics of the Optimal Transport theory, how it can be applied
to easily prove some classical theorems, and the concept of Wasserstein distance. The main
references have been [1], [4] and [11]. The structure is as follows:

Chapters 1 and 2 provide the theoretical backbone of this essay. In the first chapter I introduce
the Optimal Transport Problem and its different formulations, including its duality. The main
theorems will be about characterizing the solutions of the problem. In Chapter 2 it is developed
the Wasserstein distance, how it is a metric in space of probability distributions, and that it
metrizes the weak topology.

Regarding the applications, I have included three distinct flavors. In Chapter 3 it is used
the theory of the first chapter, with a notable mention to Brenier’s theorem, to prove the
Isoperimetric inequality and the Sobolev inequality. In Chapter 4 it is proved the Brunn-
Minkowski inequality, for which is needed a brief introduction to the study of convex functionals
over the Wasserstein spaceW2.

Chapter 5 is devoted to more recent applications of the Wasserstein to Kronecker sequences,
for which I have followed the paper of [12].

Finally, Chapter 6 proves how Kantorovich’s formulation of the Optimal Transport problem is a
relaxation of Monge’s in compact subsets of Rd.



CHAPTER 1
THE OPTIMAL TRANSPORT PROBLEM

We start by considering (X, d) a Polish space, this is, a metric space that is both complete and
separable. The used notation is as follows:

• P(X) is the set of Borel probability measures on X .
• For µ ∈ P(X), its support suppµ is the set of all points x ∈ X such that for any open
neighborhood Nx we have that µ(Nx) > 0.

During this whole essay X,Y will be two Polish spaces. For a Borel map T : X → Y , we define
the push forward of µ ∈ P(X) as T#µ ∈ P(Y ) given by T#µ(E) = µ(T−1(E)) for each Borel set
E ⊆ Y . This is characterized by∫

f dT#µ =

∫
f ◦ T dµ, for all f : Y → R ∪ {±∞} measurable Borel.

Monge published “Mémoire sur la théorie des déblais et des remblais” in 1781, where he first
proposed a problem that has led to the field of Optimal Transport Theory. He was interested
in minimizing the effort of moving some resources that has te be extracted in some places and
transported to some destinations. We will consider a more general version here.

Problem 1.1 Monge’s Optimal Transport Problem
Given a cost function c : X × Y → R ∪ {+∞} measurable Borel, and measures µ ∈ P(X),
ν ∈ P(Y ), we want to minimize

T 7−→
∫
X
c(x, T (x)) dµ

for all T transport maps, this is T : X → Y with T#µ = ν.

It is worth commenting that most of the time we are not only interested on the minimal value,
but also on the map that optimizes it (if it exists) and its properties.

This problem has some phenomenons that are not desirable for its study. For example, there
may not exist any transport map T . To illustrate this it is enough to consider µ = δx some Dirac
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delta and ν not being one. Then we have that

T#µ(B) = δx
(
T−1(B)

)
=

{
1 if x ∈ T−1(B)

0 if x /∈ T−1(B)

}
= δT (x)(B) 6≡ ν

Another issue is that the constraint T#µ = ν is not closed with respect to any reasonable
topology. Take for example f : R → R one periodic, with f

∣∣
[0,1/2)

= 1 and f
∣∣
[1/2,1)

= −1.
We define then

µ = L
∣∣
[0,1]

, ν =
δ1 + δ−1

2
, fn(x) = f(nx).

It immediately follows that (fn)#µ = ν. We are going to prove that fn ⇀ 0 weakly, which, as
0#µ = δ0 6= ν finishes the example.

Consider first any function g ∈ Cc(R), we want to prove that
∫
fng → 0. As the support is

compact, we have supp g ⊆ [−M,M ]. Note that we can write

fn|[−M,M ] =


1 on

[
k
n ,

k+ 1
2

n

)
−1 on

[
k+ 1

2
n , k+1

n

) k = −Mn,−Mn+ 1, . . . ,−1, 0, 1, . . . ,Mn− 1.

As the function g is continous and with compact support, it is uniformly continous, so there is
some δ > 0 such that |x − y| < δ ⇒ |g(x) − g(y)| < ε

M . Then we can find a N such that for any
n ≥ N , 1

2n < δ and therefore

∣∣∣∣∫ M

−M
fng

∣∣∣∣ ≤ Mn−1∑
k=−Mn

∫ k+1
2

n

x= k
n

∣∣∣∣g(x)− g(x+
1

2n
)

∣∣∣∣ < 2Mn · 1

2n
· ε
M

= ε.

Kantorovich was a 20th century mathematician who contributed to many different research
topics. He is most known as being one of the founder of the modern linear optimization field
and being one of the Nobel Economy Prize winner of 1975. In the field of Optimal Transport, he
proposed a relaxation of the problem that avoids the complications previous discussed.
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Problem 1.2 Kantorovich’s Optimal Transport Problem
For c : X × Y → R ∪ {+∞}, and measures µ ∈ P(X), ν ∈ P(Y ), we want to minimize

γ 7−→
∫
X×Y

c(x, y) dγ

for γ a transport plan in

Adm(µ, ν) =

{
γ ∈ P(X × Y ) :

γ(A× Y ) = µ(A) ∀A ⊆ X Borel
γ(X ×B) = ν(B) ∀B ⊆ Y Borel

}
.

Note that the conditions for γ ∈ Adm(µ, ν) are equivalent to the first marginal being πX#γ = µ

and the second πY#γ = ν.

Transport plans are a generalization of transport maps, in the sense that if we have T : X → Y

a transport map from µ to ν, then

(Id, T ) : X −→ X × Y

x 7−→ (x, T (x))

induces the transport plan γ = γT := (Id, T )#µ:

• For A ⊆ X Borel, (Id, T )−1(A× Y ) = A, so γ(A× Y ) =
∫
A×Y dγ =

∫
A dµ = µ(A).

• For B ⊆ Y Borel, T−1(B) = (Id, T )−1(X ×B), so using that T#µ = ν

γ(X ×B) =

∫
X×B

dγ =

∫
T−1(B)

dµ =

∫
B
dν = ν(B).

During this section we are going to see that Kantorovich’s formulation has several advantages
over Monge’s that makes its study more suitable. Notably:

• There is always at least one transport map, as µ× ν ∈ Adm(µ, ν).

• The set Adm(µ, ν) is convex and compact with respect to the narrow topology, defined in
the following section.

• Under some mild regularity hypothesis over the cost function, there are minimizers and
they are nicely characterized.

• When the cost function is continuous and the first measure µ is atomless, inf(Monge) =

min(Kantorovich)1, so it makes sense to study this nicer problem.
1This theorem can be consulted on [10].
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1.1 Conditions For Optimality

Definition 1 Narrow Topology
We say a sequence of measures (µn) ⊆ P(X) narrowly converges to µ ∈ P(X) when∫

φ dµn →
∫
φ dµ ∀φ continuous and bounded.

This is sometimes written as µn nrw−−→ µ.
A set A ⊆ P(X) is called tight when for each ε > 0 exists some compact set Kε ⊆ X such
that µ(X\Kε) ≤ ε for all µ ∈ A.

It can be shown that this topology is metrizable. Moreover, the following two results are well
known in the study of Polish spaces. Let X be a complete separable metric space (this is, a
Polish space), then:

• (Prokhorov’s theorem) A family K ⊆ P(X) is relatively compact w.r.t. the narrow topology
if and only if K is tight.

• (Ulam’s tightness theorem) A finite Borel measure µ on X is tight, in the sense that {µ} is
a tight set. This means that

∀ε > 0 ∃K compact set such that µ(X\K) < ε.

More details about this results are available at [13], theorems 5.2 and 2.6.

Remark 1.3. Because any γ ∈ Adm(µ, ν) satisfies the inequality

γ (X × Y \K1 ×K2) ≤ γ ((X\K1)× Y ) + γ (X × (Y \K2)) = µ(X\K1) + ν(Y \K2)

we know that, if K1 ⊆ P(X) and K2 ⊆ P(Y ) are tight, then so is the set{
γ ∈ P(X × Y ) : πX#γ ∈ K1, π

Y
#γ = ν

}
.

Remark 1.4. We are going to use extensively the properties of lower and upper semicontinous
functions, so it will be useful for the reader to recall the following basic properties of them.

GivenM a metric space and a function f : X → R we say that f is lower semicontinous (l.s.c.)
at the point x0 ∈ X if for every y ∈ R with y < f(x0) exists U = U(y) a neighborhood of x0 such
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that f(x) > y ∀x ∈ U . The function f is l.s.c. if it is l.s.c. at every point.

The concept of upper semicontinous (u.s.c.) is defined in a complete symmetric way and is
characterized by f is u.s.c. if and only if −f is l.s.c.

• If the functions (fi)i∈I are all l.s.c. then the pointwise supremum supi∈I fi is l.s.c.
• Notably, for a monotone increasing sequence fn : X → R of continuous functions then

limn fn = supn fn is l.s.c.
• (Theorem of Baire) If f : X → R is l.s.c. then exists a monotone increasing sequence
fn : X → R of continuous functions with fn → f . If f : X → R ∪ {+∞} then fn : X → R.

Theorem 1.5 Existence of minimizers for the Kantorovich’s formulation
If c is lower semicontinous and bounded from below, then there is a minimizer for the

Kantorovich’s Problem 1.2.

Proof. First, by Ulam’s Theorem we know that the sets {µ} and {ν} are tight, so the previous
remark tell us that Adm(µ, ν) is tight. Using Prokhorov’s theorem, Adm(µ, ν) is relatively
compact (in the narrow topology). We claim that it is in fact compact. Let (γn) ⊆ Adm(µ, ν)

and γn → γ narrowly, we want to prove that γ ∈ Adm(µ, ν). For any φ ∈ C(X) bounded, we
know that (x, y) 7→ φ(x) is a continuous and bounded function on X × Y → R, so using the
narrow convergence∫

φ dπX#γ =

∫
φ(x) dγ = lim

n→∞

∫
φ(x) dγn = lim

n→∞

∫
γ dπX#γn =

∫
φ dµ.

As φ was arbitrary, we get that πX#γ = µ. The same idea works for ν, so γ ∈ Adm(µ, ν).

Now, we want to prove that the functional γ 7→
∫
c dγ is lower semicontinous in the narrow

topology. We know there is an increasing sequence of continuous functions cn with c = supn cn.
Because there is a lower bound c ≥ L > −∞ we can assume that cn ≥ L for all n too. We can
also assume that every cn is bounded, as long as we don’t require the upper bound to be the
same for each cn.

Using the monotone convergence theorem, we get
∫
c − L dγ = supn

∫
cn − L dγ. But because

γ is a probability,
∫
L dγ = L and we get∫

c dγ = sup
n

∫
cn dγ.

Note that because each cn is bounded, then γ 7→
∫
cn dγ is narrowly continuous. This makes

then γ 7→
∫
c dγ a supremum of continuous functions, so it is l.s.c.

Finally, as Adm(µ, ν) is compact and γ 7→
∫
cdγ is l.s.c. it attains a minimum.
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Definition 2 Optimal plans
The set Opt(µ, ν) denotes set of all optimal plans from µ to ν, this is, the set of plans that
minimize the Kantorovich Problem. We will also say that a plan is optimal if it is optimal with
respect to its marginals.

Note that this notation does not specify which is the cost function. This choice of c will be clear
from the context, as this function is usually fixed.

To tackle the problem of when a plan is optimal, we need first to introduce some notions.

Definition 3 c-transforms, c-concavity and c-convexity
For ψ : Y → R ∪ {±∞} we define its c+ transform as

ψc+ : X → R ∪ {−∞} ψc+(x) = inf
y∈Y

c(x, y)− ψ(y).

Analogously, for φ : X → R → ∪{±∞} we define

φc+ : Y → R ∪ {−∞} φc+(y) = inf
x∈X

c(x, y)− φ(x).

The c− transforms are given by

ψc− : X → R ∪ {−∞} ψc−(x) = sup
y∈Y

−c(x, y)− ψ(y) = − inf c(x, y) + ψ(y)

φc− : Y → R ∪ {−∞} φc−(y) = sup
x∈X

−c(x, y)− φ(x) = − inf c(x, y) + φ(x)

• φ : X → R ∪ {−∞} is c-concave if there is some ψ : Y → R ∪ {−∞} with φ = ψc+.

• ψ : Y → R ∪ {−∞} is c-concave if there is some φ : X → R ∪ {−∞} with ψ = φc+.

• φ : X → R ∪ {+∞} is c-convex if there is some ψ : Y → R ∪ {+∞} with φ = ψc−.

• ψ : Y → R ∪ {+∞} is c-convex if there is some φ : X → R ∪ {+∞} with ψ = φc−.

For φ : X → R ∪ {−∞} c-concave, we define its c-superdifferential as

∂c+φ =
{
(x, y) ∈ X × Y : φ(x) + φc+(y) = c(x, y)

}
.

For x ∈ X , we also denote ∂c+φ(x) = {y ∈ Y : (x, y) ∈ ∂c+φ}.
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Given φ : X → R ∪ {+∞} c-convex, we define its c-subdifferential as

∂c−φ =
{
(x, y) ∈ X × Y : φ(x) + φc−(y) = −c(x, y)

}
.

In the case of c-convex and c-concave functions on Y we use the natural symmetric
definitions.

I want first to highlight that there are some trivial connections between these concepts, like
that a function φ is c-convex if and only if −φ is c-concave or that −φc+ = (−φ)c−. This means
that most statements regarding one concept have an analogous one for the other. To get rid off
this redundancy, in this work I will focus mainly on the c-concave results.

One interesting property is that for ψ : Y → R ∪ {±∞} we have that ψc+ = ψc+c+c+. Indeed,

ψc+c+c+(x) = inf
ỹ∈Y

sup
x̃∈X

inf
y∈Y

{c(x, ỹ)− c(x̃, ỹ) + c(x̃, y)− ψ(y)} ,

so taking x̃ = x we get ψc+c+c+ ≥ ψc+, and taking y = ỹ gives the other inequality.
From this follows that φ : X → R ∪ {−∞} is c-concave if and only if φc+c+ = φ. Naturally, this
also works for functions ψ on Y .

This has a nice implication. Consider a c-concave function φ : X → R, then

φ(x) = φc+c+(x) = inf
y∈Y

c(x, y)− φc+(y)

means that φ(x) + φc+(y) ≤ c(x, y) for all x ∈ X , y ∈ Y .

If we apply this to the c-supperdiferential, then

φ(x) + φc+(y) = c(x, y)
φ(z)+φc+(y)≤c(z,y)⇐===========⇒ φ(z)− c(z, y) ≤ φ(x)− c(x, y) ∀z ∈ X.

The following proposition collects all these basic properties.

Proposition 1.6.
1. A function is c-concave iff and only if φ = φc+c+.

2. For a c-concave function,

φ(x) + φc+(y) ≤ c(x, y) ∀x ∈ X, ∀y ∈ Y.

3. For a c-concave function,

(x, y) ∈ ∂c+φ ⇐⇒ φ(z)− c(z, y) ≤ φ(x)− c(x, y) ∀z ∈ X.
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Example 1.7. If we consider X = Y = Rd and c(x, y) = −〈x, y〉, we get that this notions are the
standard ones in convex analysis:

• A function is c-convex (or c-concave) when it is convex (resp. concave).

• The c-superdifferential and c-subdifferential are the classical superdifferential and subdif-
ferential.

• The c− transform is the Legendre transform.

Indeed, for the first part we need to recall the following not so well-known theorem:

Theorem 1.8. A function f : A ⊆ Rn → R ∪ {+∞} is convex and l.s.c. if and only if
f = supα fα for a family fα of affine functions.

If φ is c-convex then exists a function with φ(x) = ψc−(x) = supy〈x, y〉 − ψ(y). But for any fixed
y the function 〈x, y〉 − ψ(y) is affine, so φ is convex.

For the other implication, a convex function is continuous in the interior of its domain, so
if φ(x) = supα fα(x) for fα affine functions we want to see that it is c-convex. Because the
functions are affine, we can write them as fα(x) = 〈x, yα〉 +Kα with yα,Kα ∈ Rd. Note that it
can happen that yα = yα̃ butKα 6= Kα̃. In this case we also have the inequality for sup{Kα,Kα̃}
where the suppremum is taken coordinate by coordinate. We can define

−ψ(y) =

{
sup {Kα : yα = y} if exists α with yα = α

−∞ if 6 ∃α with yα = y

Then it is clear that φ(x) = supy〈x, y〉 − ψ(y) = ψc−(x) is c-convex.

For the last part, the Legendre transform is the c− transform in the region where it is finite.

Example 1.9 (Discrete measures). Let’s consider X = Y = Rd and c(x, y) = |x − y|2/2 the cost
function. Let’s also assume that µ, ν ∈ P(Rd) are discrete measures of the form

µ =

M∑
i=1

miδxi , ν =

N∑
j=1

njδyj .

As any measure in γ ∈ Adm(µ, ν) is concentrated on the product of the supports, we can
represent the admisible set as

Adm(µ, ν) =


i=M
j=N∑
i,j=1

ai,jδ(xi,yj) : ai,j ≥ 0,

M∑
i=1

ai,j = nj ,

N∑
j=1

ai,j = mi


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Let’s consider now a plan γ ∈ Opt(µ, ν). Let’s consider K points in supp γ and a permutation σ
of {1, . . . , N}. Then we have that

K∑
k=1

|xk − yk|2

2
≤
∑
k=1

|xk − yσ(k)|2

2
. (1.1)

Indeed, if this is not true we can consider for ε > 0 small enough

γ̃ = γ − ε

K∑
k=1

(
δ(xk,yσ(k)) − δ(xk,yk)

)
would have a strictly smaller cost, contradicting the optimality of γ.

In fact, if for γ ∈ Adm(µ, ν) this condition holds true for anyN ∈ N, any points in the support and
any permutation, it can be proved that γ is optimal. This result will also be true as a consequence
of Theorem 1.10.

Note that if in (1.1) we expand the squares we get
∑

〈xk, yk〉 ≥
∑

〈xk, yσ(k)〉. This means that
γ ∈ Adm(µ, ν) is optimal when its support is a ciclically monotone set. This motivates us the
generalize the concept using this equation.

Definition 4 c-ciclically monotone
A set Γ ⊆ X × Y is c-ciclically monotone if for any N ∈ N points (xi, yi) ∈ supp(γ) and any
permutation σ : {1, . . . , N} → {1, . . . , N} we have

N∑
n=1

c(xi, yi) ≤
N∑

n=1

c(xi, yσ(i)).

The previous example showed a situation where being an optimal plan was characterized by its
support being c-ciclically monotone. This was not a special case, but is true in general, under
some assumptions on the cost function.
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Theorem 1.10 Fundamental Theorem of Optimal Transport
Let’s assume the cost function c is continuous and bounded from below and with the upper
bound

c(x, y) ≤ a(x) + b(y)

for some functions a ∈ L1(X,µ), b ∈ L1(Y, ν). For any γ ∈ Adm(µ, ν) the following statements
are equivalent:

1. γ is an optimal plan.

2. supp γ is c-cyclically monotone.

3. there exists φ : X → R, c-concave, with φ ∈ L1(X,µ) and supp γ ⊆ ∂c+φ.

4. there exists φ : X → R, c-concave, with max{φ, 0} ∈ L1(X,µ) and supp γ ⊆ ∂c+φ.

Proof. Because of the inequality∫
c(x, y) dγ ≤

∫
a(x) + b(y) dγ =

∫
a(x) dµ+

∫
b(y) dν <∞

we know that c ∈ L1(γ) for any γ ∈ Adm(µ, ν). Moreover, max{0, c} ∈ L1(γ) too.
1⇒2 Let’s argue by contradiction. For γ a optimal plan, if supp γ is not c-ciclically monotone

there are N points (xi, yi) ∈ supp γ and a permutation σ of them with

N∑
i=1

c(xi, yi) >
N∑
i=1

c(xi, yσ(i)).

Because the function c is continuous, we can actually find disjoint neighborhoods with
xi ∈ Ui, yi ∈ Ui that keep the inequality true:

N∑
i=1

c(ui, vσ(i))− c(ui, vi) < 0, ∀ui ∈ Ui, vi ∈ Vi.

Note that as each (xi, yi) ∈ supp γ, we can assume this sets to have non-zero γ measure.
We now want to construct a measure γ̃ = γ+ η so that the optimality of γ is contradictory.
For this, we want η to be a signed measure satisfying:
– η− ≤ γ, so γ̃ is a (positive) measure.

– null marginals and η(X × Y ) = 0, so we have γ̃ ∈ Adm(µ, ν).

–
∫
c dη < 0, making γ not optimal.
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To construct this measure, let’s denote byΩ =
∏N

i=1 Ui×Vi ⊂ (X×Y )N and the probability
measure P ∈ P(Ω) given by the product of 1

mi
γi where γi = γ

∣∣
Ui×Vi

and mi = γ(Ui × Vi).
With these notations, we consider

η =
minmi

N

N∑
i=1

(
πUi , πVσ(i)

)
#P −

(
πUi , πVi

)
#P

Note that for a set A×B ⊆ X × Y we can give a more explicit expression,

η(A×B) =
minmi

N

N∑
i=1

1

mimσ(i)
γi ((Ui ∩A)× Vi) γσ(i)

(
Uσ(i) × (Vσ(i) ∩B)

)
− 1

mi
γi ((Ui ∩A)× (Vi ∩B))

With both of these expression it is trivial to check that η satisfies all the wanted conditions.

4⇒1 Because supp γ ⊆ ∂c+φ we have φ(x) + φc+(y) = c(x, y) for (x, y) ∈ supp γ. Recall that
because φ is c-convex,

φ(x) + φc+(y) ≤ c(x, y), x ∈ X, y ∈ Y.

For another admisible plan γ̃ ∈ Adm(µ, ν) we want to see that
∫
c dγ ≤

∫
c dγ̃. But this

follows from the previous relationships:∫
c dγ =

∫
φ(x) + φc+(y) dγ =

∫
φ dµ+

∫
φc+ dν =

∫
φ(x) + φc+(y) dγ̃ ≤

∫
c(x, y) dγ̃.

3⇒4 This implication is clear.

2⇒3 Assuming that Γ = supp γ is c-ciclically monotone, a function φ with the conditions of
3 would have to satisfy the following: fix a point (x, y) ∈ Γ, and consider any N points
(xi, yi) ∈ Γ, then

φ(x) ≤ c(x, y1)− φc+(y1) = c(x, y1)− c(x1, y1) + φ(x1)

≤ c(x, y1)− c(x1, y1) + c(x1, y2)− c(x2, y2) + φ(x2)

...
φ(x) ≤ c(x, y1)− c(x1, y2) + · · ·+ c(xN , y)− c(x, y) + φ(x).

If φ satisfy the wanted conditions, φ+k does too, so we can assume φ(x) = 0, by replacing
the function φ if necessary. This motivates us to define the function the following way:

φ(x) := inf {c(x, y1)− c(x1, y2) · · ·+ c(xN , y)− c(x, y) : N ∈ Z+, (xi, yi) ∈ Γ i = 1, . . . , N}
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This is aL1(µ) function because of the upper bound from takingN = 1 and (x1, y1) = (x, y):

φ(x) ≤ c(x, y)− c(x, y) + c(x, y)− c(x, y) ≤ a(x) + b(y)− c(x, y) ∈ L1(µ).

The c-concavity is easy to see, as we can write φ(x) = ψc+(y) = infy∈Y c(x, y) − ψ(y) for
the function given by

−ψ(y) = inf {−c(x1, y2) · · ·+ c(xN , y)− c(x, y) : N ∈ Z+, (x1, y) ∈ Γ, (xi, yi) ∈ Γ i = 2, . . . , N}

Given (x, y) ∈ Γ, consider N ≥ 2 and make (x1, y1) = (x, y):

φ(z) ≤ c(z, y)− c(x, y) + inf {c(x, y2)− c(x2, y2) · · · } = c(z, y)− c(x, y) + φ(x),

which is equivalent to (x, y) ∈ ∂c+φ.

Note that in the implication 1⇒2 we have no used the upper bound on c, so we have this nice
corollary.

Corollary 1.11. Given a continuous cost function bounded from below, if a plan is optimal then it
has a c-cyclically monotone support.

As a consequence of the Fundamental theoremwe have the following result, that gives sufficient
conditions for the stability of maps when we change the probabilities µ, ν and the cost c.

Theorem 1.12 (Stability of optimal plans). Consider the following hypothesis:
• A cost function c : X × Y → R continuous and bounded from below.
• A sequence (ck) of continuous cost functions with ck → c uniformly.
• The measures (µk) ⊆ P(X) with µk

nrw−−→ µ.
• (νk) ∈ P(Y ) with νk

nrw−−→ ν.
• The optimal plans γk ∈ Opt(µk, νk) such that

∫
ck dγk <∞.

Then exists a subsequence γk′
nrw−−→ γ ∈ Adm(µ, ν) with c-cyclically monotone support.

Moreover, if c(x, y) ≤ a(x) + b(y) with a ∈ L1(X,µ) and b ∈ L1(Y, ν), then γ ∈ Opt(µ, ν).
Remark 1.13. Wehave not used it until now, but it is useful to note that a probability γ ∈ P(X×Y )

has c-ciclically monotone support if and only if

(supp γ)⊗N ⊆

{
((x1, y1), (x2, y2), · · · , (xN , yN )) ∈ (X × Y )N :

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i))

}

for any N ≥ 1 and any permutation σ : {1, · · · , N} → {1, · · · , N}.

We are using the notation (supp γ)⊗N = supp γ × · · · × supp γ︸ ︷︷ ︸
N times

.
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Proof. Because the sequences {µk} and {νk} are convergent, they are relatively compact sets,
and using Prokhorov theorem they are tight sets. Then, thanks to Remark 1.3, the sequence {γk}
is tight too and has a convergent subsequence γk

nrw−−→ γ ∈ Adm(µ, ν).

Using the Corollary 1.11 we know that supp γk is ck-ciclically monotone. For a fix N and
permutation σ we have

(supp γk)⊗N ⊆ Ck =

{
((x1, y1), (x2, y2), · · · , (xN , yN )) :

N∑
i=1

ck(xi, yi) ≤
N∑
i=1

ck(xi, yσ(i))

}
.

For k big enough, the uniform convergence gives the inequalities c − ε
2N ≤ ck ≤ c + ε

2N , so we
have the inclusions:

Ck ⊆ Cε :=

{
((x1, y1), (x2, y2), · · · , (xN , yN )) :

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)) + ε

}
.

As c is continuous, Cε is a closed set, so (supp γ)⊗N ⊆ Cε. This is true for any ε > 0, so it is also
true that (supp γ)⊗N ⊆ C0, which proves that γ is c-cyclically monotone.

The final part is a direct consequence of the Fundamental Theorem 1.10.

1.2 Duality
In the Kantorovich problem, we look tominimize γ 7→

∫
c dγ when γ ∈ Adm(µ, ν). In some sense,

this can be seen asminimizing a linear functional with the constraints πX#γ = µ and πY#γ = ν. This
kind of optimization problems admit a natural dual problem, whose optimal solution relates to
the optimal solution of the original one.

Consider the following problem, which we will prove that is the dual of the Optimal transport
problem.

Problem 1.14 Dual Problem
Given µ ∈ P(X), ν ∈ P(Y ) and a cost function c : X × Y → R, we want to maximize

(φ,ψ) 7−→
∫
φd µ+

∫
ψ dν

for φ ∈ L1(µ), ψ ∈ L1(ν) subject to

∀(x, y) ∈ X × Y, φ(x) + ψ(y) ≤ c(x, y).
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Theorem 1.15 (Duality theorem). Assuming that the cost function c is continuous, bounded from
below and satisfying

c(x, y) ≤ a(x) + b(y), a ∈ L1(µ), b ∈ L1(ν),

Then,

• The supremum of the Dual problem has the same value as the minimum of the Kantorovich
Problem 1.2.

• The supremum of the Dual problem is attained by a pair of the form (φ,φc+) for some
φ ∈ L1(µ) c-concave.

Proof. First, for any plan γ ∈ Adm(µ, ν) and any (φ,ψ) solution (not necessarily optimal) of the
dual problem, ∫

c dγ ≥
∫
φ(x) + ψ(y) dγ =

∫
φ dµ+

∫
ψ dν. (1.2)

Consider now an optimal plan γ ∈ Opt(µ, ν). By the fundamental theorem 1.10 we know there is
some c-concave function φ : X → R with supp γ ⊆ ∂c+φ. Then, we get

c(x, y) = φ(x) + φc+(y), ∀(x, y) ∈ supp γ.

Taking ψ = φc+, this makes the inequality of (1.2) an equality, so the proof is completed.

Definition 5 Kantorovich potential
A Kantorovich potential is a c-concave function φ such that (φ,φc+) is a optimal solution of
the Dual Problem 1.14.

Proposition 1.16. Under the assumptions of Theorem 1.15, consider any Kantorovich potential φ
and any optimal plan γ, then we have the inclusion supp γ ⊆ ∂c+φ.

Proof. For any plan γ ∈ Opt(µ, ν), because of the Fundamental Theorem 1.10 and the proof of
theorem 1.15, we know there is a Kantorovich potencial φ with supp γ ⊆ ∂c+φ.

For any other γ′ ∈ Opt(µ, ν) we have that∫
φ dµ+

∫
φc+ dν =

∫
φ(x) + φc+(y) dγ′ ≤

∫
c dγ′ =

∫
c dγ =

∫
φ dµ+

∫
φc+ dν.
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To make the inequality an equality, it must be that γ′-a.e. (x, y) ∈ ∂c+φ. Using that c is
continuous we get supp γ′ ⊆ ∂c+φ.

On the other hand, if we consider another Kantorovich potential (φ′, φ′c+) we get∫
φ dµ+

∫
φc+ dν =

∫
c dγ ≥

∫
φ′(x) + φ′c+(y) dγ =

∫
φ′ dµ+

∫
φ′c+ dν

As both sides are the same value (because they are optimal solutions of the dual problem), the
inequality is an equality and, just like before, this implies supp γ ⊆ ∂c+φ′.

1.3 Optimal plans induced by maps

Lemma 1.17 (Characterization of optimal maps). Let γ ∈ Adm(µ, ν). The following are equivalent,

i. γ is induced by a map.

ii. There is a γ-measurable set Γ ⊆ X × Y where γ is concentrated and such that for µ-a.e.
x ∈ X there is only a point y =: T (x) ∈ Y such that (x, T (x)) ∈ Γ.

If this happens, γ is induced by the transport map T .

Proof.

i⇒ii Let’s assume that exists T : X → Y with γ = (Id, T )#µ (this is, γ is induced by T ). Define
Γ = {(x, T (x)) : x ∈ X}. We get that

γ(Γ) =

∫
Γ
1 dγ =

∫
X
1 dµ = 1

because Γ is the image of X by the map (Id, T ) : X → X × Y .

ii⇒i The conditions of Γ allows us to consider T : X → Y , a priori well defined only in a set of
µ-measure 1 but that we can extend with any value in the problematic set of null measure.

For any f : X × Y → R continuous with compact support∫
f(x, y) dγ =

∫
Γ
f(x, y) dγ =

∫
Γ
f(x, T (x)) dγ =

∫
f(x, T (x)) dγ =

∫
X
f(x, T (x)) dµ

=

∫
f(x, y) d(Id, T )#µ

so indeed γ = (Id, T )#µ.
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To see the final part that T is a transport plan we have to see that T#µ = ν. For this,
consider any Borel set B ⊆ Y ,

T#µ(B) = µ(T−1(B)) =

∫
χT−1(B)(x) dµ =

∫
χB(T (x)) dγ =

∫
χB(y) dγ = ν(B).

Proposition 1.18. Consider the cost function c(x, y) = |x − y|2 and φ : Rd → R ∪ {−∞}. φ(x) is
c-concave if and only if the function φ(x) := |x|2/2 − φ(x) is convex and lower semicontinous.
Moreover, y ∈ ∂c+φ(x) if and only if y ∈ ∂−φ(x).

Proof. We know φ is c-concave if and only if ∃ψ with φ(x) = infy
{

|x−y|2
2 − ψ(y)

}
, but expanding

the norm we get

φ(x) = inf
y

{
|x|2

2
+

|y|2

2
− 〈x, y〉 − ψ(y)

}
⇐⇒ φ(x)− |x|2

2︸ ︷︷ ︸
−φ(x)

= inf
{
|y|2

2
− 〈x, y〉 − ψ(y)

}
.

So φ(x) = sup
y

{
〈x, y〉 −

(
|y|2

2
− ψ(y)

)}
=

(
|y|2

2
− ψ(y)

)−
, so φ is convex for the cost function

〈x, y〉, but because of the Remark 1.7 this means that it is convex (in the standard sense).

For the second part, we apply Proposition 1.6 and by expanding again the norm we get a c-
superdifferential for c(x, y) = 〈x, y〉:

y ∈ ∂c+φ(x) ⇐⇒ φ(z)− |z − y|2

2
≤ φ(x)− |x− y|2

2
∀z ∈ X

⇐⇒ φ(z)− |z|2

2
+ 〈z, y〉 ≤ φ(x)− |x|2

2
+ 〈x, y〉 ∀z ∈ X

⇐⇒ φ(z) + 〈x, y〉 ≤ φ(x) + 〈x, y〉 ∀z ∈ X

⇐⇒ y ∈ ∂φ(x).

Definition 6 Regular Measures
A measure on Rd is said to be regular if it gives 0 mass to any c-c hypersurface, with the
meaning that E ⊆ Rd is a c-c hypersurface (convex minus convex hypersurface) if, in some
system of coordinates, we can write the set as the graph

E =
{
(y, t) : y ∈ Rd−1, t ∈ R, t = g(y)− f(y)

}
with f, g : Rd−1 → R convex functions.
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A clear example of regular measures are absolutely continuous ones. This is because they give
no mass to Lipschitz hypersurfaces, and a c-c hypersurface is locally Lipschitz.

The differentiability of convex functions has a connection with c-c hypersurfaces, as the theorem
below shows. The proof can be consulted on [14, Thereom 2].

Theorem 1.19. A ⊆ Rd can be covered by countable many c-c hypersurfaces if and only if there
is some convex function f : Rd → R such that the non-differenciable points of f cover A.

Theorem 1.20 Brenier’s theorem
Let µ ∈ P(Rd) be ameasure with finite secondmoment and the cost function c(x, y) = |x−y|2,
then the following are equivalent:

1. For each ν ∈ P(Rd) with finite second moment, there exists only one optimal transport
plan from µ to ν, and it is induced by a map T .

2. µ is a regular measure.

If any of these cases happens, then the optimal map T is the gradient of some convex
function.

Remark 1.21. Before the proof, it will be useful to recall some basic properties of the
subdifferential. Given f : Rn → R defined in dom(f) we say that v ∈ Rn is a subgradient of
f at x ∈ dom(f) if

f(z) ≥ f(x) + v · (z − x) ∀z ∈ dom(f).

The subdifferential at x is ∂−f(x) the set of al subgradients at x.

• It is a closed convex set.
• If f is convex and x ∈ int dom(f) then ∂−f(x) is non-empty and bounded.
• If f is convex and differentiable at x then ∂−f(x) = {∇f(x)}.

Proof.

1⇒2: In order to find a contradiction, we assume that exists a c-c hypersurface E′ with positive
measure. Then by Theorem 1.19 exists f : Rd → R such that the setE of non-differenciable
points covers E′ and therefore µ(E) > 0.

By possibly modifying f outside of a compact set, we can also assume it has linear growth
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at infinity. We consider the maps

T (x) = the element of smallest norm in ∂−f
S(x) = the element of biggest norm in ∂−f

Because ∂−f(x) is a closed convex bounded set it makes sense to consider the element
of smallest norm and T is well defined. For the element of biggest norm, it may happen
that there are several of them. In this case pick one following some criteria (the closest
to (1, 0) for example)

Note that because of the definition of E, we have that T 6≡ S inside E and T ≡ S outside.
Consider the measure

γ =
1

2
((Id, T )#µ + (Id, S)#µ) ∈ P(R2d)

The linear growth means that exists k ≥ 0 such that f(x) = k|x|+O(|x|). For a fixed x ∈ Rd,
consider any v ∈ ∂−f(x), v 6= 0. This satisfies

f(z) ≥ f(x) + v · (z − x) = f(x)− v · x+ v · z, ∀z ∈ Rd.

Then f(z) = k|z| + O(|z|) ≥ f(x) − v · x + v · z. We can choose z parallel to v so that
v · z = |v| · |z|. Then

k|z|+O(|z|) ≥ f(x)− v · x+ |v| · |z| ⇒ (k − |v|) |z|+O(|z|) ≥ f(x)− v · x

As the right hand size is fixed, by making |z| → ∞ we get that |v| ≤ k.

This means that all the subgradients are bounded by k, so notably T (Rd) ⊆ [0, k] and
S(Rd) ⊆ [0, k]. This implies that ν = πY#γ is concentrated on

{
x ∈ Rd : |x| ≤ k

}
. Because

of the compact support
∫
|x|2 dν <∞.

To see that γ is optimal, we want to check that supp γ ⊆ ∂c+φ for some c-concave function.
Note that if in Proposition 1.18 we take f = φ and φ(x) = |x|2

2 − f(x) then φ is c-concave.
Moreover, as

∫
|x|2dµ < ∞, we can use the linear growth and continuity of f to get that

φ ∈ L1(Rd, µ). To conclude that γ is then optimal we need only to check that supp γ ⊆
∂c+φ = ∂−f . But because

(Id, T )#µ(U × V ) = µ ({x ∈ U : T (x) ∈ V }) , (Id, S)#µ(U × V ) = µ ({x ∈ U : S(x) ∈ V }) ,

if (x, y) /∈ {(x, S(x))} ⊆ ∂−f we can find a ball around it outside of ∂c+φ = ∂−f and
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therefore with γ-measure zero. Note that this ball exists because the set

∂c+φ =

{
(x, y) ∈ R2d : φ(x) + φc+(y) =

|x− y|
2

}
is closed as the functions φ,φc+ are continuous.

We can apply the hypothesis and γ is induced by a map, but this is a contradiction because
T 6= S on E with µ(E) > 0.

2⇒1: As both µ and ν have finite second moment we get that the bound

|x− y|2 ≤ 2|x|2 + 2|y|2

works for the Fundamental Theorem of OT 1.10 and the duality Theorem 1.15.

Moreover, by the Proposition 1.16 we know that for any c-concave Kantorovich potential φ
and any γ ∈ Opt(µ, ν) we have the inclusion supp γ ⊂ ∂c+φ. But the cost function |x− y|2

implies that φ(x) = |x|2
2 −φ(x) is convex and ∂c+φ = ∂−φ. Because µ is a regular measure,

the set of non-differentiability of φ has measure 0. This means that the∇φ is well defined
µ-almost everywhere, and because supp γ ⊆ ∂−φ the plans are concentrated on the graph
of ∇φ and therefore induced by it. This also proves that there is only one optimal plan,
the one induced by the map ∇φ = T .

Many of the use of Brenier’s theorem comes from the following corollary, which follows mostly
from applying Brenier’s theorem to both measures and the lemma 1.17.

Corollary 1.22
If µ, ν ∈ P(Rd) are regular measures with finite second moment, then the optimal transport
plan from µ to ν is induced by a map T , which is the gradient of a convex function and is a
bijection T : A→ B for A,B ⊆ Rd with µ(A) = ν(B) = 1.

Indeed, if T, S are the optimal maps given by the Brenier’s theorem with T#µ = ν and S#ν = µ

then for any measurable function F : Rd → R∫
F dν =

∫
F ◦ T dµ =

∫
F ◦ T ◦ S dν

So T ◦ S = Id a.e. in ν. The same reasoning shows that S ◦ T = Id a.e. in µ, which gives that T
is a bijection in the sense explained in the statement.
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Remark 1.23. We will usually use the map T : A→ B as change of variables, as in this situation
is a bijection. This map was the derivative of a convex function, so we can consider the gradient
of T because the second derivative of a convex function is well-defined almost everywhere,
thanks to Aleksandrov’s Theorem (check [6, Theorem A.2] for the proof).

Remark 1.24. Note that when f, g are the probability densities of µ, ν the condition T#µ = ν is
equivalent that for any F : Rd → R measurable∫

F (T (x))f(x) dx =

∫
F (x)g(x) dx =

∫
F (T (x))g(T (x))det(∇T (x)) dx

So by taking a sequence approximating a Dirac delta we get that

g(T (x))det(∇T (x)) = f(x)
T=∇u
====⇒ g(∇u(x))det(D2u(x)) = f(x).

And this is a particular case of the Monge-Ampère equation, a highly non-linear elliptic PDE.
Brenier’s theorem proves then the existence of a solution when f, g satisfy some conditions.



CHAPTER 2
WASSERSTEIN DISTANCE

Until now, when we have studied the Optimal Transport problem we have been interested on
the optimal plans and their properties. In this section the focus is going to shift to the optimal
value of the problem, and how this allows to define a distance between measures.

As in the previous section, we will assume X to be a Polish space with metric d.

2.1 Definition and Wasserstein spaces

Definition 7 Wasserstein distance
For any p ∈ [1,+∞) and µ, ν ∈ P(X), consider the cost function c(x, y) = d(x, y)p. Then the
Wasserstein distance is

Wp(µ, ν) =

(
inf

γ∈Adm(µ,ν)

∫
d(x, y)pdγ

) 1
p

=

(∫
d(x, y)pdγ̃

) 1
p

γ̃ ∈ Opt(µ, ν)

A first easy example is that for any x, y ∈ X then Wp(δx, δy) = d(x, y). This is due to the fact
that any plan γ ∈ Adm(δx, δy) must be concentrated on (x, y), so the only admisible plan is the
optimal.

Although in this case the distance is the same for any value of p, in general it depends on p.

Proposition 2.1. Wp is an extended distance on P(X), meaning that

1. Wp : P(X)× P(X) → [0,+∞].
2. It is symmetric.
3. IfWp(µ, ν) = 0 then µ = ν.
4. It satisfies the triangular inequality: Wp(µ, ν) ≤Wp(µ, λ) +Wp(λ, ν).
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Proof. The first two points are clearly true. For the third, ifWp(µ, ν) = 0 then exists γ ∈ Adm(µ, ν)

with ∫
d(x, y)pdγ = 0.

This means that γ is concentrated on the diagonal {x = y}, being induced by the map Id : X →
X , which makes µ = ν.

For the last part we need the following lemma.

Lemma 2.2 (Gluing or composition lemma). LetX,Y, Z be three polish spaces and γ1 ∈ P(X×Y ),
γ2 ∈ P(Y × Z) with πY#γ1

= πY#γ2
. Then exists γ ∈ P(X × Y × Z) with such that πX,Y

#γ = γ1 and
πY,Z#γ = γ2.

Proof. Let’s call µ := πY#γ1
= πY#γ2

. We can use the disintegration lemma to write dγ1(x, y) =

dµ(y)dγ1,y(x) with the meaning that∫
X×Y

f(x, y) dγ1(x, y) =

∫
Y

(∫
X
f(x, y)dγ1,y(x)

)
dµ(y).

Note that this is just the conditional probability for discrete and absolutely continuous, while
for singular measures the disintegration theorem1gives the theoretical support.

We do the same for dγ2(y, z) = µ(y)dγ2,y(z). Then

dγ(x, y, z) = dµ(y)dγ1,y(x)dγ2,y(z)

satisfies the wanted properties.

Continuation of 2.1 proof: If we consider γ1 ∈ Opt(µ, λ) and γ2 ∈ Opt(λ, ν) then we can apply
the Gluing lemma to get γ ∈ P(X3) with marginals µ, λ, ν. As π1,3#γ ∈ Adm(µ, ν),

Wp(µ, ν) ≤
(∫

dp dπ1,3#γ

) 1
p

=

(∫
d(x1, x3)

pdγ(x1, x2, x3)

) 1
p

≤
(∫

d(x1, x2)
pdγ(x1, x2, x3)

) 1
p

+

(∫
d(x2, x3)

pdγ(x1, x2, x3)

) 1
p

=Wp(µ, λ) +Wp(λ, ν).

1The proof can be checked on [5], [3] or [9].
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Corollary 2.3 Wasserstein’s spaces
Wp is a distance on the set of Borel probabilities

Pp(X) =

{
µ ∈ P(X) :

∫
d(x0, x)

pdµ(x) <∞ for some x0 ∈ X

}
.

It is a common convention to abbreviate a metric space (X, d) to just X , as the metric can
usually be inferred by the context. In this case, as the novelty is not on the space Pp but on the
distance, it is frequent to just write Wp(X). Naturally, the base space X may be omitted if it
does not cause confusion and use insteadWp or Pp.

Proof. First note that if
∫
d(x0, x)dµ(x) is finite for some x0 then it is finite for any x̃0 ∈ X :∫

d(x̃0, x)
pdµ(x) ≤ 2p−1

∫
d(x̃0, x0)

p + d(x0, x)
pdµ(x) <∞.

So for any µ, ν ∈ Pp and γ ∈ Adm(µ, ν)

Wp(µ, ν)
p ≤

∫
d(x, y)pdγ(x, y) ≤ 2p−1

(∫
d(x, x0)

pdµ(x) +

∫
d(x0, y)

pdν(y)

)
<∞

Proposition 2.4. If 1 ≤ p ≤ q thenWp ≤Wq.

Proof. This is a consequence that when λ is a finite measure ‖·‖L1(λ) ≤ ‖·‖Lα(λ) for any α ≥ 1.
Taking an optimal planWq(µ, ν) =

(∫
dq dγ

) 1
q then

Wp(µ, ν)
p ≤

∫
dpdγ ≤

(∫
dqdγ

) p
q

=Wq(µ, ν)
p ⇒ Wp ≤Wq.

This tells us that the distanceW1 is dominated by any other. This case p = 1 is specially frequent,
and is also known as the Kantorovich-Rubinstein distance.

Proposition 2.5 Kantorovich-Rubinstein duality
W1(µ, ν) = sup

{∫
φdµ−

∫
φdν : ‖φ‖Lip ≤ 1

}
where ‖φ‖Lip is the Lipschitz seminorm.
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The proof is a direct consequence of duality combined with the following lemma. Indeed,

W1(µ, ν) = sup
{∫

φdµ+

∫
φc+dν : φ c-concave

}
= sup

{∫
φdµ−

∫
φdν : ‖φ‖Lip ≤ 1

}
.

Lemma 2.6. If the cost function is a distance c(x, y) = d(x, y) (not necessarily the one of the
metric space X), then φ : X → R is c-concave if and only if it is 1-Lipschitz (for the distance d).
In this case φc+ = −φ.
Proof. If φ is c-concave, then

φ(x) = φc+c+(x) = inf
y∈X

sup
z∈X

d(x, y)− d(z, y) + φ(z).

This implies φ(x)− φ(z) ≥ infy d(x, y)− d(z, y), so

φ(z)− φ(x) ≤ sup
y
d(z, y)− d(x, y) ≤ d(z, x).

As the role of x and z is symmetric, this proves that φ is 1-Lipschitz.

If instead we assume that φ is 1-Lipschitz, this is,

|φ(x)− φ(y)| ≤ d(x, y) ∀x, y ∈ X.

Then−φ(y) ≤ d(x, y)−φ(x) so φc+(y) = infx d(x, y)−φ(x) = −φ(y) and, as−φ is still 1-Lipschitz,
φc+c+ = (−φ)c+ = φ and it is c-concave.

Definition 8 Weak topology on Pp

Given (µk) a sequence measures in Pp and µ ∈ Pp, we say that µk ⇀ µ weakly on Pp if µk → µ

narrowly and for some x0 ∈ X∫
d(x0, x)

pdµk(x) →
∫
d(x0, x)

pdµ(x).

Remark 2.7. This condition is equivalent to the any of the following ones:

1. µk → µ narrow and lim sup
k

∫
d(x0, x)

pdµk(x) →
∫
d(x0, x)

pdµ(x).

2. µk → µ narrow and lim
R→+∞

lim sup
k

∫
d(x0,x)≥R

d(x0, x)
pdµk(x) = 0.

3. For all continuous functions f : X → R with |f(x)| ≤ C (1 + d(x0, x)
p) we have that∫

f dµk →
∫
fdµ
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Proof. Let’s denote by (0) the condition of the definition. Then, there are some trivial
implications: (3)⇒(0)⇒(1). So we have to check two more implications.

(1)⇒(2): For any R ≥ 0, we can split the limit in∫
d(x0, x)

pdµ = lim sup
k

∫
d(x0, x)

pdµk

= lim sup
k

∫
d(x0, x)

pχ{d(x0,x)≤R}dµk + lim sup
k

∫
d(x0, x)

pχ{d(x0,x)≥R}dµk

The function of the first limit is bounded, and as µk → µ narrowly we get

lim sup
k

∫
d(x0, x)

pχ{d(x0,x)≤R}dµk =

∫
d(x0, x)

pχ{d(x0,x)≤R}dµ
R→∞−−−−→

∫
d(x0, x)

pdµ

where the last limit is a consequence of µ ∈ Pp. This proves the hypothesis of (2).

(2)⇒(3): Given f : X → R continuous with |f(x)| ≤ C(1 + d(x, x0)
p), for any R > 0 we can

consider the bounded continuous function f̃(x) = max{−R,min{R, f(x)}}. Then

lim
k

∫
f dµk = lim

k

(∫
f̃ dµk +

∫
f − f̃ dµk

)
=

∫
f̃ dµ+ lim

k

∫
f − f̃ dµk.

It is clear that limR→∞
∫
f̃ dµ =

∫
f dµ, so we want to check that the limit as R → ∞ of the

second part is 0. For this we can reason as follows:∣∣∣∣∫ f − f̃ dµk

∣∣∣∣ ≤ ∫ ∣∣∣f − f̃
∣∣∣ dµk =

∫
|f(x)|≥R

|f(x)| −R dµk ≤
∫
|f(x)|≥R

|f(x)| dµk.

But if R ≤ |f(x)| ≤ C(1 + d(x, x0)
p) we get R

C − 1 ≤ d(x, x0)
p and we can take an R big enough

so that d(x, x0) ≥ R′ with R′ → ∞ when R → ∞, and when R′ ≥ 1 we get |f(x)| ≤ 2Cd(x, x0)
p.

Using the hypothesis we finish the proof:

lim
R→∞

lim sup
k

∣∣∣∣∫ f − f̃ dµk

∣∣∣∣ ≤ lim
R→∞

lim sup
k

∫
d(x,x0)≥R′

2Cd(x, x0)
p dµk = 0.

This topology is not only metrizable, but is generated by the Wasserstein distance, as the
following theorem shows.

Theorem 2.8
µk ⇀ µ in Pp if and only if they converge in theWp, this is,Wp(µk, µ) → 0.
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First, we are going to require the following lemma, that has interest on its own.

Lemma 2.9. If (µk) is a Cauchy sequence inWp then {µk} is tight.

Proof. Recall that to prove a sequence is tight we need to find for every ε > 0 a compact set
Kε = K with µn(X\K) ≤ ε for all n ∈ N.

That (µk) is Cauchy means thatWp(µk, µl)
k,l→+∞−−−−−→ 0. Notably, this plus the triangular inequality

imply thatWp(µ1, µk) is bounded. From this we get

Wp(δx0 , µk)
k =

∫
d(x0, x)

pdµk(x) ≤ (Wp(δx0 , µ1) +Wp(µ1, µk))
p

is bounded too.

BecauseWp ≥ W1, we get that (µk) ⊆ Pp ⊆ P1 are Cauchy for W1 too. This means that for any
given ε > 0 exists N with

k ≥ N ⇒W1(µN , µk) < ε2.

Note that for any k ∈ N exists j = j(k) ∈ {1, . . . , N} withW1(µj , µk) < ε2:

• If k ≥ N , j(k) = N works by the previous inequality.
• If k ≤ N , we can take j(k) = k.

Recall that any Borel measure is tight, and as the finite union of tight sets is tight, the set
{µ1, . . . , µN} is tight:

Exists K compact with µj(X\K) < ε for 1 ≤ j ≤ N .

We can cover it with a finite number of balls like K ⊆ ∪m
i=1B(xi, ε) =: U . We are going to define

V = {x ∈ X : d(x,U) < ε} φ(x) =

(
1− d(x,U)

ε

)
+

=


1 if x ∈ U

0 if x /∈ V
1
ε (ε− d(x,U)) if x ∈ V \U

U ⊆ V ⊆ ∪B(xi, 2ε) and χU ≤ φ ≤ χV . It is also not difficult to check that φ is a (1ε )-Lipschitz
function. This means that ‖εφ‖Lip = 1, and using the Kantorovich-Rubinstein duality (2.5) we
get ∫

φdµk − dµj =
1

ε

∫
εφdµk − dµj ≤

1

ε
W1(µk, µj) ≤ ε
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where j = j(k) is described as before. This gives the estimate

µk(V ) =

∫
χV dµk ≥

∫
φdµk =

∫
φdµj +

(∫
φdµk − dµj

)
≥ µj(U)− ε ≥ 1− 2ε.

What we have proven is that for any ε > 0 exists a finite number of points x1, . . . , xm ∈ X with

Wε = ∪m
i=1B(xi, 2ε), µk(X\Wε) ≤ 2ε ∀k ∈ N.

We would like forWε to be compact, but in general it might not be. This has a classical solution:
replacing ε by ε

2l+1 and consider the union.

For each l ∈ N exists m(l) and x1, . . . , xm ∈ X with µ
(
X\ ∪m(l)

i=1 B(xi, 2
−lε)

)
≤ 2−lε. We define

K = ∩∞
l=1 ∪

m(l)
i=1 B(xi, 2

−lε).

Then µk(X\K) ≤ ε, it is a closed set, and becauseX is complete thenK is too. Also, it is totally
bounded, this meaning that for any arbitrarily small ε > 0 it can be covered by finitely many
balls of radius ε. But a complete totally bounded set is compact, so K is compact.

Theorem 2.8 proof: Let’s assume that (µk), µ ∈ Pp and Wp(µk, µ) → 0. We want to show that
µk ⇀ µ in Pp. By the previous lemma, {µk} is a tight set. This means that it is relatively compact,
so it has a subsequence µkn → µ̃ narrowly.

We want to check that µ = µ̃. For this recall that γ 7→
∫
d(x, y)pdγ is l.s.c. If we pick γn ∈

Opt(µ, µkn) then {γn} is a tight set, and then it has another subsequence γm with γm nrw−−→ γ. As
γ ∈ Adm(µ, µ̃) we can use the l.s.c. to get

Wp(µ, µ̃)
p ≤

∫
d(x, y)pdγ ≤ lim inf

m→∞
Wp(µ, µm)p = 0.

So indeed µ = µ̃. As this works for any converging subsequence of µk, we get µk
nrw−−→ µ.

Recall the following real analysis fact: for ε > 0 exists Cε such that (a + b)p ≤ (1 + ε)ap + Cεb
p

for any a, b ∈ R. So for any three points d(x0, x)p ≤ (1 + ε)d(x0, y)
p + Cεd(x, y)

p. If we consider
πk ∈ Opt(µk, µ):∫

d(x0, x)
pdµk(x) =

∫
d(x0, x)

pdπk(x, y) ≤ (1 + ε)

∫
d(x0, y)

pdπk(x, y) + Cε

∫
d(x, y)pdπk(x, y)

= (1 + ε)

∫
d(x0, y)dµ(y) + CεWp(µk, µ)

p.
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So by taking lim supk first and then ε→ 0 we get that

lim sup
k

∫
d(x0, x)

pdµk(x) ≤ lim sup
k

∫
d(x0, x)

pdµ(x)

and µk ⇀ µ in Pp.

For the other implication, if µk ⇀ µ in Pp we want to check thatWp(µk, µ) → 0.

Note that µk
nrw−−→ µ too, and this implies that {µk} is relatively closed, and by Prokhorov theorem

it is tight. Pick πk ∈ Opt(µ, µk), then {πk} is a tight set too. This means that there exists a
subsequence πk′

nrw−−→ π. As∫
d(x, y)pdπk ≤ 2p−1

∫
d(x, x0)

pdπk+2p−1

∫
d(x0, y)

pdπk = 2p−1

∫
d(x, x0)

pdµk+2p−1

∫
d(x0, y)

pdµ,

when we take lim infk it is bounded, and by Theorem 1.12 πk′
nrw−−→ π ∈ Opt(µ, µ). But then

π = (Id, Id)#µ. As this works for any converging subsequence, πk
nrw−−→ π.

Fix x0 ∈ X . For any R > 0, if d(x, y) ≥ R the chain of inequalities

2max{d(x, x0), d(x0, y)} ≥ d(x, x0) + d(x0, y) ≥ d(x, y) ≥ R

givesmax{d(x, x0), d(x0, y)} ≥ d(x, y) andmax{d(x, x0), d(x0, y)} ≥ R. More formally, this shows
that

χ{d(x,y)>R} ≤ χ{d(x,x0)≥R
2
, d(x,x0)≥ d(x,y)

2
} +χ{d(x0,y)≥R

2
, d(x0,y)≥ d(x,y)

2
}.

d(x, y)pχ{d(x,y)≥R} ≤ d(x, y)pχ{d(x,x0)≥R
2
, d(x,x0)≥ d(x,y)

2
} + d(x, y)pχ{d(x0,y)≥R

2
, d(x0,y)≥ d(x,y)

2
}

≤ 2pd(x, x0)χ{d(x0,x)≥R
2
} + 2pd(x0, y)χ{d(x0,y)≥R

2
}.

Consider

Wp(µk, µ)
p =

∫
d(x, y)pdπk(x, y) =

∫
min{d(x, y)p, Rp}dπk +

∫ (
d(x, y)p −Rp

)
+
dπk(x, y).

The first integral goes to 0 when k → ∞, as it is a continuous bounded function and πk
nrw−−→ π

with π concentrated on {x = y}. For the second integral we can use the previous bounds:∫ (
d(x, y)p −Rp

)
+
dπk(x, y) ≤

∫
d(x, y)pχ{d(x,y)≥R}dπk(x, y)

≤ 2p
∫
d(x0,x)≥R

2

d(x, x0)
pdπk(x, y) + 2p

∫
d(x0,y)≥R

2

d(y, x0)
pdπk(x, y)

≤ 2p
∫
d(x0,x)≥R

2

d(x, x0)
pdµk(x) + 2p

∫
d(x0,y)≥R

2

d(y, x0)
pdµ(y)
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Therefor lim supkWp(µk, µ)
p ≤ limR→+∞ lim supk

∫
d(x, y)pχ{d(x,y)≥R}dπk(x, y) ≤ 0 by the

definition of weak convergence in Pp. This proves thatWp(µk, µ) → 0.

Theorem 2.10
The space (Pp,Wp) is a Polish space, this is, as a metric space it is complete and separable.

Proof. As we already know that it is a metric space, we only need to check that it is complete
and separable.

Separability: As X is a separable space, let’s take D a dense subsequence of X and consider

F =


N∑
j=1

ajδxj : 1 ≤ N <∞, aj ∈ Q, aj ≥ 0,
∑

aj = 1, xj ∈ D

 ⊆ Pp(X)

This set is numerable, so we would like to check that it is dense. Given µ ∈ Pp, exists a compact
set K ⊆ X such that ∫

X\K
d(x0, x)

pdµ(x) ≤ εp.

Note that B(xj , ε) for xj ∈ D∩K is an open cover ofK, so we can coverK with a finite number
of balls B(xj , ε) with xj ∈ D, 1 ≤ j ≤ N . Define

B′
k = B(xk, ε)\ ∪j<k B(xj , ε)

so that the B′
k are disjoint. We consider then f : X → X given by

f(x) =

{
x0 if x ∈ X\K
xk if x ∈ B′

k ∩K

This satisfies d(x, f(x)) ≤ ε for any x ∈ K, so∫
X
d(x, f(x))pdµ =

∫
K
d(x, f(x))pdµ+

∫
X\K

d(x, x0)
p dµ(x) ≤ 2εp.

As (Id, f)#µ ∈ Adm(µ, f#µ), we have computed that W p
p (µ, f#µ) ≤ 2εp. It is easy to check that

f#µ =
∑N

j=1 ajδxj for 0 ≤ aj ∈ R (and the xj ∈ D). We want then to approximate this probability
with another with rational coefficients.

We are going to consider bj ∈ Q with these conditions:

• 0 ≤ bj ≤ aj for j ≥ 2 and |aj − bj | ≤ ε′.
• As we want to have

∑
bj = 1 =

∑
aj , pick b1 given by b1 = 1−

∑
j≥2 bj = a1 +

∑
j≥2 aj − bj .

So 0 ≤ a1 ≤ b1.
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This makes
N∑
j=1

bjδxj a probability measure on F .

We can define γ =

N∑
i,j=1

ci,jδ(xi,xj) ∈ Adm(
∑

ajδxj ,
∑

bjδxj ) as

c1,1 = a1, cj,j = bj j ≥ 2, ci,1 = ai − bi i ≥ 2, ci,j = 0 otherwise.

And by taking ε′ small enough we get

W p
p (
∑

ajδxj ,
∑

bjδxj ) ≤
N∑
i=2

(ai − bi)d(x1, xi)
p ≤ ε′

N∑
i=2

d(x1, xi)
p ≤ εp.

Completness: Given a Cauchy sequence (µk) ⊆ Pp, by Lemma 2.9 it is a tight set. It admits then
a subsequence µn nrw−−→ µ. Using the l.s.c.∫

d(x0, x)
pdµ(x) ≤ lim inf

n

∫
d(x0, x)

pdµn(x) ≤ lim inf
n

[Wp(δx0 , µ1) +Wp(µ1, µn)]
p < +∞.

This is, µ ∈ Pp. Using again the l.s.c. and that the sequence is Cauchy we get that

lim sup
m

Wp(µ, µm) ≤ lim sup
m

lim inf
n

Wp(µn, µm) ≤ lim sup
m,n

Wp(µn, µm) = 0.

This proves that µn → µ in the Wp topology. A classical argument shows that when a Cauchy
sequence has a convergent subsequence the whole sequence is convergent to the same point,
so the proof is finished.
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2.2 W∞ distance

Note that we can write W∞(µ, ν) = inf
{
‖d(x, y)‖Lp(γ) : γ ∈ Adm(µ, ν)

}
. This justifies the

following definition.

Definition 9
For µ, ν ∈ P(X) two probabilitiesW∞(µ, ν) = inf

{
‖d(x, y)‖L∞(γ) : γ ∈ Adm(µ, ν)

}
.

Note that this is not a Kantorovich’s optimal transport problem. This, combined with the fact
that it will not share some of the key properties of Wp spaces, motivates to just briefly study
this concept.

We also define

P∞(X) = {µ ∈ P(X) : suppµ is bounded} .

Proposition 2.11. For µ, ν ∈ P∞(X)

W∞(µ, ν) = lim
p→∞

Wp(µ, ν).

Proof. Consider γk ∈ Adm(µ, ν) such that ‖d(x, y)‖Lk(γ) =Wk(µ, ν). As {γk} ⊆ Adm(µ, ν) the set
{γk} is tight, and then in has a convergent subsequence: γk′

nrw−−→ γ ∈ Adm(µ, ν).

Because µ, ν are bounded supported, γk is too, and the function d(x, y) is bounded for x, y ∈
supp γk. Then, the narrow convergence implies∫

d(x, y)pdγk →
∫
d(x, y)pdγ

This means that

‖d(x, y)‖Lp(γk)
k→∞−−−→ ‖d(x, y)‖Lp(γ)

p→∞−−−→ ‖d(x, y)‖L∞(γ)

And therefore lim
p
Wp(µ, ν) ≥W∞(µ, ν). The other inequality is because for any γ ∈ Adm(µ, ν)

‖d(x, y)‖L∞(γ) ≥ ‖d(x, y)‖Lp(γ) ≥Wp(µ, ν).
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Corollary 2.12. (P∞,W∞) is a metric space.

This is a consequence of the previous proposition, as the only non-trivial property to check is
the triangular inequality, and now it can be proved by taking limits inWp.

Remark 2.13. P∞ ( ∩p≥1Pp. Indeed, it is easy to give an example of a probability in Pp for any p
but not in P∞. Consider X = R and

µ =

∞∑
n=1

1

2n
δn, suppµ = {1, 2, 3, . . . } .

Remark 2.14. If µ ∈ Pp for all p ≥ 1 andW∞(µ, ν) <∞ for all ν ∈ P∞ then µ ∈ P∞.

We know thatW∞(µ, δx0) <∞, but as Adm(µ, δx0) = {γ} with γ induced by the map T : X → X ,
T (x) ≡ x0, then

W∞(µ, δx0) = ‖d(x, y)‖L∞(γ) = ‖d(x, x0)‖L∞(µ)

and suppµ is bounded.

Proposition 2.15. W∞ does not metrize the weak topology on P∞.

In X = R consider µn = n−1
n δ0 +

1
nδ1 and ν = δ0. Then µn ⇀ ν butW∞(µn, ν) = 1.



CHAPTER 3
CLASSICAL GEOMETRICAL INEQUALITIES

3.1 Isoperimetric Inequality

Theorem 3.1 Isoperimetric inequality
For any open set E ⊆ Rd, let’s denote by P (E) its perimeter and B ⊆ Rd the unit ball. Then
we have that

Ld(E)1−
1
d ≤ P (E)

dLd(B)
1
d

.

Proof. We can restrict to ourselves to the case when E has finite measure, as when it is infinite
both sides are +∞. We can define the following probabilities then:

µ =
1

Ld(E)
Ld∣∣E ∈ P(Rd), ν =

1

Ld(B)
Ld∣∣B ∈ P(Rd).

Both measures are absolutely continuous, so we can apply Brenier’s theorem 1.22. This means
that, for the cost c(x, y) = |x− y|2, there is only one admisible plan, that it is also induced by an
optimal plan T : E → B. Moreover, T is the gradient of a convex function and a bijection, after
possibly ignoring a set of zero measure. Now, using the change of variable T (x) on T#µ = ν, we
get that for any Borel function F : B → R,

1

Ld(B)

∫
B
F =

1

Ld(E)

∫
E
(F ◦ T ) =

∫
B
F

1

Ld(E)det(∇T (T−1y))
.

Taking now a sequence of functions that approximate a Dirac delta we get the following
pointwise inequality:

1

Ld(E)
= det(∇T (x)) 1

Ld(B)
, ∀x ∈ E.



3.2. SOBOLEV INEQUALITY 35

On the other hand, as ∇T (x) is the Hessian of a convex function, it is a symmetric matrix with
eigenvalues λi(x) = λi ≥ 0, so we have the inequality

(det∇T (x))
1
d = (λ1 . . . λd)

1
d ≤ λ1 + · · ·+ λd

d
=
Tr(∇T (x))

d
=

∇ · T (x)
d

. (3.1)

Combaining both facts, 1

Ld(E)
1
d

≤ ∇ · T (x)
dLd(B)

. Now, integrating over E and using the divergence

theorem

Ld(E)1−
1
d ≤

∫
E

∇ · T (x)
dLd(B)

1
d

dx =
1

dLd(B)
1
d

∫
∂E

〈T (x),−→n (x)〉dS(x).

Because T (x) ∈ B, ‖T (x)‖ ≤ 1 and therefore |〈T (x),−→n (x)〉| ≤ 1, so we get the wanted result.

Remark 3.2. In (3.1) we have used the inequality between the arithmetic and geometric means.
We know that for this to be an equality it would have to be that λ1 = λ2 = · · · = λd. But if all
the eigenvalues are the same, then the map T : E → B is just a homothety and E is a ball (of
radius possibly not 1). Also, in this case the only other inequality transforms into a equality too.

This shows both that the inequality is sharp, and that is only attained when E is a ball.

3.2 Sobolev Inequality

Theorem 3.3 Sobolev Inequality
For all functions f ∈W 1,p(Rd) exists a constant C = C(p, d) such that for 1 ≤ p < d

(∫
|f |p∗

) 1
p∗

≤ C

(∫
|∇f |p

) 1
p

where p∗ = dp

d− p
(or equivalently 1

p∗ + 1
d = 1

p ).

Proof. By normalization we can assume
∫
|f |p∗ = 1. Also, we can assume f ≥ 0 without loss of

generality. Because the functions with compact support are dense we can assume that f has it.
With this hypothesis, what we want to prove is that(∫

|∇f |p
) 1

p

≥ C.
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Let’s fix a smooth function g : Rd → R with g ≥ 0 and
∫
g = 1. With this we can consider the

following probabilities on Rd:

µ = fp∗Ld, ν = gLd.

We are again in a situation where we can apply Brenier’s Theorem to get the optimal transport
map T : Rd → Rd. Using the change of variable T (x) on T#µ = ν and taking aproximations we
get the equality

g(T (x)) =
fp∗(x)

det∇T (x) ∀x ∈ Rd.

Note that T#µ = ν means that for every F : Rd → R Borel
∫
Fg =

∫
(F ◦T )fp∗. From this we can

deduce that∫
g1−

1
d =

∫
g−

1
d g =

∫
(g ◦ T )−

1
d fp∗ =

∫
det(∇T )

1
d (fp∗)1−

1
d ≤ 1

d

∫
∇ · Tfp∗(1−

1
d
).

where we have used that ∇T satisfies again (3.1). Using now a change of variables and that f
has compact support, we get∫

g1−
1
d ≤ −p∗

d

(
1− 1

d

)∫
f

p∗
q T · ∇f, 1

p
+

1

q
= 1.

At last, using the Hölder inequality we get the wanted bound:

∫
g1−

1
d ≤ p∗

d

(
1− 1

d

)(∫
fp∗|T |q

) 1
q
(∫

|∇f |p
) 1

p

=
p∗
d

(
1− 1

d

)(∫
g(x)|x|qdx

) 1
q
(∫

|∇f |p
) 1

p



CHAPTER 4
BRUNN-MINKOWSKI INEQUALITY

Before presenting a proof of the Brunn-Minkowski inequality we need some preliminary results.
Mainly, we are going to see first that W2(Rd) is a geodesic space and then define a convex
functional on it.

4.1 Geodesic space

Remark 4.1. It will useful to remember the following concepts. In a metric space (X, d) we say
that a curve or path is a continuous application ω : [0, 1] → X . Its length is

Len(ω) = sup
{

n−1∑
k=0

d(ω(tk), ω(tk+1)) : n ≥ 1, 0 = t0 < t1 < t2 < · · · < tn = 1

}
.

We will consider only curves with finite length Len(ω) < +∞.

We define the (metric) derivative of a curve as

|ω′|(t) := lim
h→0

d(ω(t+ h), ω(h))

|h|
, t ∈ [0, 1].

A curve is absolutely continuous ω ∈ AC(X) when exists g ∈ L1([0, 1]) such that

d(ω(t), ω(s)) ≤
∫ s

t
g

for all 0 ≤ t < s ≤ 1.

We can reparametrize an absolutely continuous so that it is Lipschitz. Also, for ω ∈ AC(X)

Len(ω) =
∫ 1
0 |ω′|(t) dt.

A curve is a geodesic between x0 and x1 if it minimizes the length among all absolutely
continuous curves with ω(0) = x0 and ω(1) = x1.
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We say that X is a geodesic space if for every pair of points

d(x, y) = min {Len(ω) : ω ∈ AC(X), ω(0) = x, ω(1) = y} .

A curve it is said to be a constant speed geodesic if

d(ω(t), ω(s)) = |t− s|d(ω(0), ω(1)).

It is easy to check that this curve is indeed a geodesic.

Theorem4.2. ForX ⊆ Rd convex and the cost function c(x, y) = |x−y|p, p > 1, given µ, ν ∈ Pp(X)

and γ ∈ Opt(µ, ν) we define

πt : X ×X −→ X, µt := (πt)#γ .

(x, y) 7−→ (1− t)x+ ty

Then for t ∈ [0, 1] the curve µt is a constant speed geodesic between µ and ν onWp(X).

If γ = (Id, T )#µ then µt = ((1− t)Id+ tT )#µ.

Proof. We make the claimWp(µt, µs) ≤ |t− s| ·Wp(µ, ν). Applying it several times proves indeed
the result: for t < s

Wp(µ, ν) ≤Wp(µ, µt) +Wp(µt, µs) +Wp(µs, ν) ≤Wp(µ, ν) (t+ (s− t) + (1− s)) =Wp(µ, ν)

where we have used the claim with µ0 = µ and µ1 = ν. But this forces all the inequalities to be
equalities, soWp(µt, µs) = (s− t)Wp(µ, ν).

To prove the claim note that the following plan is admisible
γs,t = (πt, πs)#γ ∈ Adm(µt, µs).

This is because π1#γs,t
= (πt)#γ = µt. We have then the inequalities:

Wp(µt, µs) ≤
(∫

|x− y|p dγs,t
) 1

p

=

(∫
|πt(x, y)− πs(x, y)|pdγ

) 1
p

=

(∫
|(1− t)x+ ty − (1− s)x− sy|p dγ

) 1
p

= |t− s|
(∫

|x− y|pdγ
) 1

p

= |t− s|Wp(µ, ν).

Finally, when the plan is induced by amap γ = (Id, T )#µ, for anymeasurable functionF : X → R∫
F dµt =

∫
F d(πt)#γ =

∫
F ((1− t)x+ ty) dγ(x, y) =

∫
F ((1− t)x+ tT (x)) dµ(x)

So µt = ((1− t)Id+ tT )#µ.
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This theorem has as a direct consequence the following corollary.

Corollary 4.3
For p > 1 and X ⊆ Rd convexWp(X) is a geodesic space.

4.2 A Convex Functional overW2

Definition 10 Internal energy functional
Given u : [0,+∞) → R ∪ {+∞} convex with u(0) = 0 we define the funcional

E(µ) =
∫
Rd

u(µ(x))dx

for absolutely continuous probabilities µ = µ(x)dx in Rd.

Remark 4.4. Although the integral domain is Rd, we can restrict it to the support of µ thanks to
the condition u(0) = 0. Moreover, we can get rid off this condition by considering

E(µ) =
∫
µ(x)>0

u(µ(x)) dx

Remark 4.5. We have not checked that E(µ) is well defined, this is, that the integral makes sense,
as it could happen that both the positive and negative parts of u(µ(x)) were not integrable.
Indeed, in general it will not be, so we usually need to assume some additional assumptions
either on u or on µ.

A quite general and useful condition that guarantees this is when u is bounded from below and
satisfies that

lim inf
x→0+

u(x)

xα
> −∞ for some α > d

d+ 2
,

Then the negative part satisfies u−(x) ≤ ax+ bxα. We can assume that α < 1, and then we get
that

α >
d

d+ 2
⇐⇒ αd+ 2α > d ⇐⇒ 2α > d(1− α) ⇐⇒ 2α

1− α
> d
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and then the following integral is finite∫
µ(x)α dx =

∫
Rd

µ(x)α(1 + |x|)2α(1 + |x|)−2α dx

≤
(∫

µ(x)(1 + |x|)2dx
)α(∫

(1 + |x|)
−2α
1−αdx

)1−α

< +∞

This makes the integral of E(µ) well defined, perhaps being E(µ) = +∞.

Definition 11 Interpolating curves
Given µ, ν0, ν1 ∈ P2(Rd) with µ a regular measure, consider T0 and T1 the optimal maps from
µ to ν0 and ν1 for the cost c(x, y) = |x − y|2. Then the interpolating curve from ν0 to ν1 with
base µ is

νt = ((1− t)T0 + tT1)#µ , t ∈ [0, 1].

A special case is when µ = ν0, as we then the curve is just the geodesic from µ0 to µ1. This also
justifies the name of generalized geodesic to the curve µt, although I will favor the previous one,
as this is not (in general) a geodesic.

Theorem 4.6
Given u, consider its functional E . Assume the map x 7→ xdu(x−d) is convex and non-

increasing on (0,+∞), then the functional E is convex, meaning that for any µ, ν0, ν1 ∈ P(Rd)

absolutely continuous and any t ∈ (0, 1)

E(νt) ≤ (1− t)E(ν0) + tE(ν1).

Notably, this theorem affirms that νt is absolutely continuous when the original measures are.
As a corollary, when µ = ν0 we get that E is geodesically convex.

On the other hand, it does not affirm that E is well defined over the interpolating curve, and we
will need some additional assumption like the one of Remark 4.5 for this.

Proof. Thanks to Brenier’s theorem, we know that the optimal maps T0 and T1 are gradients
of convex functions and that they are injective in a set A ⊆ Rd with µ(A) = 1. They are a
bijection with the images, which has also mass 1: ν0(T0(A)) = 1 ν1(T1(A)) = 1. Also, the maps
are differentiable in A, and their gradient is the Hessian matrix of a convex function, therefore
with positive determinant and positive semi-definite.
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Let’s call Tt = (1 − t)T0 + tT1. Note that as the gradient is linear, ∇Tt = (1 − t)∇T0 + t∇T1
is the convex combination of ∇T0 and ∇T1. Also, these 3 matrices are the Hessians of convex
functions, so they are symmetric positive semi-definite (a.e. in x ∈ Rd). Because the functional
A 7→ det(A)d is concave (Lemma 4.7) and det(∇T0),det(∇T1) > 0, we get that det(∇Tt) > 0 a.e.
in x.

For any measurable function F we can do a change of variables to get that∫
F dνt =

∫
F (Tt(x))µ(x) dx =

∫
F (y)

µ(T−1
t (y))

det∇Tt(T−1
t (y))

dy.

So the measure νt is absolutely continuous with density is given by

νt(y) =
µ(T−1

t (y))

det∇Tt(T−1
t (y))

, νt(Tt(x)) =
µ(x)

det∇Tt(x)
.

Then the functional E is well defined along the curve νt:

E(νt) =
∫
Rd

u(νt(y)) dy =

∫
Rd

u

(
µ(x)

det∇Tt(x)

)
det∇Tt(x) dx.

Then, it is clear that if we prove that A 7→
(

µ(x)
det(A)

)
det(A) is a convex function for A ∈ Mn×n(R)

symmetric positive semi-definite then the functional E is convex.

Recall that if g : D ⊆ Rn → R is concave and h : R → R is convex and non-increasing, then
f = h ◦ g is convex. In our case,

• x 7→ xdu

(
µ(x)

xd

)
is convex and non-increasing (a.e. in x, as we have to impose µ(x) > 0).

• A 7→ (detA)
1
d is concave (see Lemma 4.7 for the details).

Then the map is convex a.e.

A 7−→ (detA)
1
d = x 7−→ xdu

(
µ(x)

xd

)
= det(A)u

(
µ(x)

detA

)
.

Lemma 4.7 (Minkowski determinant inequality). The map A 7−→ (detA) 1
n for A n× n symmetric

positive semidefinite matrices is concave.

Proof. Given two matrices of the form A and A+B, we want to check that

F : [0, 1] −→ R

t 7−→ F (t) := det(A+ tB)
1
n
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is concave. Recall that a positive semidefinite symmetric matrix has a “square root”, this is,
exists A 1

2 positive semidefinite with A 1
2A

1
2 = A. Then, we can write

det(A+ tB)
1
n = det

(
A

1
2

(
Id+ tA

1
2BA− 1

2

) A1

2

) 1
n

= det(A)
1
n det

(
Id+ tA

1
2BA− 1

2

) 1
n
.

So we can assume without loss of generality that A = Id. To compute the derivatives of F (t) =
det(Id+ tB)

1
n we will use Jacobi’s formula:

d

dt
X(t) = (detX(t)) · tr

(
X(t)−1dX(t)

dt

)

With this d

dt
det(Id+ tB) = det(Id+ tB) tr

(
(Id+ tB)−1B

)
and

F ′(t) =
1

n
det(Id+ tB)

1
n tr

(
(Id+ tB)−1C

)
F ′′(t) =

1

n
det(Id+ tB)

1
n

[
1

n
(trC)2 − tr(C2)

]
, C = (Id+ tB)−1B

Finally, we have that F ′′(t) ≤ 0 because (trC)2 ≤ n tr(C2). Consider the eigenvalues of C:
λ1, λ2, . . . , λn. Then trC =

∑
λi and tr(C2) =

∑
λ2i so using the Cauchy-Schwartz inequality

(trC)2 =
(

n∑
i=1

λi

)2

≤ n

n∑
i=1

λ2i = n tr(C2).

As we are imposing quite a few conditions on u for the functional E to be convex, a natural
question is whether we can find functions satisfying all of them. The following proposition
gives some families of these types of functions.

Proposition 4.8. We can apply the previous theorem for the functions

1. u(x) = x log(x).

2. u(x) = xα − x

α− 1
for α 6= 1, α ≥ 1− 1

d and dimension d > 2.

3. u(x) = xp for p > 1.

4. u(x) = −xα for 1− 1
d ≤ α < 1.

Note that although in the theory we have not asked for any smoothness in the function u, in
practice this functions are at least C2, so that we can check the convexity and non-increasing
conditions easily.
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Proof. As the previous comment says, many of the work is just computing the second derivative
of u and x 7→ xdu(x−d). Then the only condition worth commenting is that E is well defined. For
the first two cases, we can easily fullfil the condition described in Remark 4.5. For the third case,
u−(x) = 0, while for the last u+(x) = 0.

4.3 Brunn-Minkowski inequality proof

Finally, we are prepared to prove this classical result. The main idea of the proof is that we if
we choose an adequate function u the functional E over uniform probabilities on a set is going
to be an expression related to its measure, and using the convexity of the functional we can get
the result.

Theorem 4.9 Brunn-Minkowski inequality
For any compact sets A,B ⊆ Rd

L
(
A+B

2

) 1
d

≥ L(A)
1
d + L(B)

1
d

2

Proof. If L(A) = 0, then L(A+B
2 ) ≥ L(B2 ) = 1

2d
L(B), so we have to focus on the case with

L(A),L(B) > 0.

Consider the probabilities µ0, µ1 ∈ P2(Rd) given by the densities

µ0(x) =
1

L(A)
χA(x), µ1(x) =

1

L(B)
χB(x).

Consider µt the geodesic (inW2(Rd)) from µ0 to µ1. Then the functional

E(ρ) =
∫
Rd

u(ρ(x)) dx, u(x) = −x1−
1
d 1

is convex and therefore: E(µ 1
2
) ≤ E(µ0) + E(µ1)

2
. We can easily compute the right side of the

inequality:

E(µ0) =
∫

−µ0(x)1−
1
d dx = −L(A)

1
d
−1

∫
χA(x)

1− 1
ddx = −L(A)

1
d .

1For dimension d = 1 perhaps would be more precise to say u(0) = 0 and u(x) = −1 for x > 0.
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By the same reasoning we compute E(µ1) and get that

E(µ 1
2
) ≤ −

(
L(A)

1
d + L(B)

1
d

)

As u is a convex function, we can apply Jensen’s inequality to de measure dx
Ld(A+B

2 )
to get

∫
u(µ 1

2
(x))

dx

Ld
(
A+B
2

) ≥ u

(∫
µ 1

2
(x)

dx

Ld
(
A+B
2

)) = u

(
Ld

(
A+B

2

)−1
)

With this we can bound

E(µ 1
2
) ≥ Ld

(
A+B

2

)
u

(
Ld

(
A+B

2

)−1
)

= −Ld

(
A+B

2

) 1
d

that implies the wanted result.



CHAPTER 5
APPLICATION TO KRONECKER SEQUENCES

5.1 Bounds using Fourier coefficients

For f(x)dx an absolutely continuous probability on [0, 1] it is clear that we can define its Fourier
series as just taking f̂(k). This generalizes nicely to general probabilities as

µ̂(k) =

∫
e2πikxdµ µ ∈ P([0, 1]).

Proposition 5.1. Given a probability µ ∈ P([0, 1]) we have that for each n ∈ N

W1(µ, dx) ≲
1

n

n∑
k=1

|µ̂(k)|
k

.

Proof. Note that µ ∈W1([0, 1]), so it can be approximated by νN = 1
N

∑N
k=1 δxk

, xk ∈ [0, 1], when
N → ∞, as this kind of measures are dense. Applying this to the Wasserstein distance:

W1(µ, dx) ≤W1(µ, νN ) +W1(νN , dx) ⇒ W1(µ, dx) ≤ lim sup
N→∞

W1(νN , dx).

Using the duality,W1(νN , dx) = sup
{

N∑
k=1

f(xk)−
∫ 1

0
f(x)dx : ‖f‖Lip ≤ 1

}
.

Using the Koksma-Hlawka1 inequality we get that∣∣∣∣∣ 1N
N∑
k=1

f(xk)−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ var(f) · sup
J⊆[0,1]

|νN (J)− L(J)| .

Where the supremum is taken over all intervals J ⊆ [0, 1]. But the total variation of a 1-Lipschitz

1Check Appendix A for the details of the Koksma-Hlawka and the Erdős-Turan inequalities.
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function is bounded by 1:

var(f) = sup
{

N−1∑
i=1

|f(xi+1)− f(xi)| : 0 ≤ x1 < x2 < · · · < xN ≤ 1

}

≤ sup
{

N−1∑
i=1

|xi+1 − xi| : 0 ≤ x1 < x2 < · · · < xN ≤ 1

}
= 1.

The final step of the proof is applying the Erdős-Turan inequality:

sup
J⊆[0,1]

|νN (J)− L(J)| ≲ 1

n
+

n∑
k=1

|ν̂N (k)|
k

.

Taking N → ∞, this is, making νN → µ, we get the inequality of the statement.

We now consider the Sobolev space of functions with zero average g : Ω ⊆ Rd → R equipped
with the norm

‖g‖Ḣ1 =

(∫
Ω
|∇g|2 dx

) 1
2

.

This defines the dual space Ḣ−1:

‖f‖Ḣ−1 = sup
{∫

Ω
f · g dx : ‖g‖Ḣ1 ≤ 1

}
.

With a little more generality, for 2 measures on Ω we have that

‖µ− ν‖Ḣ−1 = sup
{∫

Ω
g d(µ− ν) : ‖g‖Ḣ1 ≤ 1

}
.

Note that because µ− ν has average 0 we can ignore the condition for g to have 0 average, this
is, replacing ‖g‖Ḣ1 ≤ 1 by ‖∇g‖L2 ≤ 1.

Consider now the Neumann Problem{
−∆u = µ− ν in Ω
∂u
∂n = 0 on ∂Ω

where the first condition is understood in the weak sense: for all f ∈ C∞(Ω)∫
fd(µ− ν) =

∫
∇f · ∇u dx.

If u is a solution of this problem, we claim that ‖µ − ν‖Ḣ−1 = ‖∇u‖L2 . Indeed, it is enough to
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prove it in a dense set, and using the first condition of the problem∫
f d(µ− ν) =

∫
∇f · ∇u dx ≤ ‖∇f‖L2 · ‖∇u‖L2 ≤ ‖∇u‖L2 .

Taking f = u
∥∇u∥L2

gives the equality.

Proposition 5.2. Given an absolutely continuous probability f(x)dx on [0, 1]

W2(f(x)dx, dx) = ‖1− f‖Ḣ−1 =
1

π

( ∞∑
k=1

|f̂(k)|2

k2

) 1
2

.

Proof. Because g(x)dx and dx are absolutely continuous probabilities we know thanks to
Brenier’s theorem that the W2 distance is given by an optimal transport map (the cost |x − y|2

plays the same role than |x−y|2
2 ).

Then exists ϕ : [0, 1] → [0, 1] convex function with ϕ′ : [0, 1] → [0, 1] satisfying

• W2(f(x)dx, dx) =

(∫ 1

0
|x− ϕ′(x)|2 dx

) 1
2

= ‖x− ϕ′(x)‖L2 .
• (ϕ′)#dx = f(x)dx, meaning that for any measurable function F : [0, 1] → R∫ 1

0
F (x)f(x) dx =

∫ 1

0
F (ϕ′(x)) dx.

• Up to a set of measure 0, ϕ′ is injective.
The norm ‖1 − f‖Ḣ−1 is determined by a Neumann problem, that as we are in dimension 1 can
be written as {

−u′′ = 1− f in (0, 1)

u′(x) = 0 for x = 0, 1

}
⇒ ‖1− f‖Ḣ−1 = ‖u′‖L2 .

For any F ∈ C∞([0, 1]) we want to have
∫
F (x)(1 − g(x)) dx =

∫
F ′(x)u′(x) dx. But using

integration by parts∫ 1

0
F (x)(1− f(x)) dx = −

∫ 1

0
F ′(x)v(x), v(x) =

∫ x

0
(1− f(t)) dt, v(0) = v(1) = 0.

So we can take u′(x) = −v(x) dt as a solution. Now, we can use that ϕ′ is monotone
nondecreasing and (up to a null set) injective to get that a.e. in x

u′(x) =

∫ x

0
f(t)dt− x =

∫ 1

0
χ[0,x](ϕ

′(t))dt− x = ϕ′(x)− x

So ‖1− f‖Ḣ−1 = ‖u′‖L2 = ‖ϕ′(x)− x‖L2 =W2(f(x)dx, dx).
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For the second part, because f is a probability on [0, 1] 1 − f is a function with 0 average.
Moreover its Fourier coefficients are ̂(1− f)(0) = 0 and ̂(1− f)(k) = −f̂(k) otherwise. By using
Plancherel identity in the norms we get:

‖x‖Ḣ1(dx) =

(∑
k∈Z

|∇̂x(k)|2
) 1

2

.

As we are working on [0, 1], ∇̂x(k) = x̂′(k) = 2πikx̂(k). We can then bound ‖1− g‖Ḣ−1 by:

∫ 1

0
(1− f)x =

∑
k∈Z

̂(1− f)(k)x̂(k) =
1

2π

∑
k ̸=0

−f̂(k)
k

∇̂x(k) ≤ 1

2π

∑
k ̸=0

|f̂(k)|2

k2

 1
2
∑

k ̸=0

|∇̂x(k)|2
 1

2

≤ 1

π

( ∞∑
k=1

|f̂(k)|2

k2

) 1
2

When taking the supremum subject to ‖x‖Ḣ−1 ≤ 1 we actually get the equality, as the only
inequality used has been Cauchy-Schwarz.

5.2 Kronecker sequences

A badly approximable number is a number α ∈ R such that ∃c > 0 with∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q2
∀p
q
∈ Q.

Note that the inequality is equivalent to |qα− p| ≥ c

q
. Some examples of badly approximable

numbers are
√
2,
√
3, e, . . .

We can get the following result

Theorem 5.3

For α badly approximable number we can define the probability µN =
1

N

N∑
n=1

δ{nα}. Then,

W2(µN , dx) ≲α

√
logN
N

.
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Proof. We start by defining the distance to nearest integer as

‖x‖ = min {x− bxc, dxe − x} = min {{x} , 1− {x}} .

Note that it satisfies these two properties:

• ‖kα‖ ≳α
1

|k|
for α badly approximable.

•
∣∣e2πix − 1

∣∣ ∼ ‖x‖.

With this we can easily bound the Fourier Coefficients of µN :

|µ̂N | =

∣∣∣∣∣ 1N
N∑

n=1

e2πiknα

∣∣∣∣∣ = 1

N

∣∣∣∣e2πikNα − 1

e2πikα − 1
e2πikα

∣∣∣∣ ≤ 1

N

2

|e2πikα − 1|
∼ 1

N ‖kα‖
.

Let’s consider the sets Al =
{
‖kα‖ : 2l ≤ k ≤ 2l+1

}
. They satisfy the following

• ‖kα‖ ≳ 1
|k| ≥

1
2l+1 ∼ 1

2l
.

• |Al| = 2l.

• The set is ∼ 2−l separated, this is because for a 6= b in the range [2l, 2l+1] the difference is
of the form

|‖aα‖ − ‖bα‖| = |±aα± bα+M | = |α(±a± b) +M | ≳ 1

|±a± b|
≥ 1

2l+2
∼ 1

2l
.

From this we can deduce that
∑
x∈Al

1

x2
≲

2l∑
m=1

1

m2/22l
. Indeed, ordering the elements of Al like

a0 < a1 < a2 < · · · < a2l−1 their distances are distributed as below:

∼ 1
2l

∼ 1
2l

∼ 1
2l

· · ·

0 a0 a1 a2 1

Using Proposition 5.2 and that |µ̂N (k)| ≤ ‖µ‖L1 = 1 we get

W2(µN , dx) ∼

( ∞∑
k=1

|µ̂N (k)|2

k2

) 1
2

≤

 N2∑
k=1

|µ̂N (k)|2

k2
+

∞∑
k=N2+1

1

k2

 1
2
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The tail of the series can be easily bounded by ≲ 1

N2
. For the first terms,

N2∑
k=1

|µ̂N (k)|2

k2
≲ 1

N2

N2∑
k=1

1

k2‖kα‖2
≤ 1

N2

⌊log2 N2⌋∑
l=0

2l+1∑
k=2l

1

k2‖kα‖2
≤ 1

N2

⌊log2 N2⌋∑
l=0

1

22l

2l+1∑
k=2l

1

‖kα‖2

≲ 1

N2

⌊log2 N2⌋∑
l=0

1

22l

2l∑
m=1

22l

m2
≤ 1

N2

⌊log2 N2⌋∑
l=0

∞∑
m=1

1

m2
≲ 1

N2

⌊log2 N2⌋∑
l=0

1

=
blog2N2c

N2
≲ logN

N2
.

So we get that

W2(µN , dx) ≲
(

logN
N2

+
1

N2

) 1
2

≲
√

logN
N

.

This upper bound is relatively sharp, as the following classical result gives a close lower bound.

Proposition 5.4. If we have a sequence (xn) ⊆ [0, 1] and define µN = 1
N

∑N
i=1 δxi then

W2(µN , dx) ≥W1(µN , dx) ≥
1

4N
.

Proof. By the Kantorovich-Rubinstein duality,

W1(µN , dx) = sup
{∣∣∣∣∫ 1

0
fdµN − dx

∣∣∣∣ : ‖f‖Lip ≤ 1

}
.

For a fix N , assume the points are ordered like 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ 1, and define
f(x) = d(x, {x1, . . . , xN}) = min{d(x, xi), d(x, x1 + 1), d(x, xN − 1)}, this is, the natural distance
when we see the interval [0, 1] as the torus. We have then

W1(µN , dx) ≥
∣∣∣∣∫ 1

0
f dµN − dx

∣∣∣∣ = ∫ 1

0
f dx.

Finding the minimum of this integral can be see as a easy optimization problem if we consider
the new variables:

i = 1, 2, . . . , N − 1, yi = xi+1 − xi,

∫ xi+1

xi

f dx =
1

2
yi
yi
2

=
1

4
y2i

yN = x1 + 1− xN ,

∫ x1

0
f dx+

∫ 1

xN

f dx =
1

4
y2N .

where the integrals are computed as the area of a triangle with base yi and width yi/2.
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x1 x1 + 1x2 x3x3 − 1

0 1

Figure 5.1: In blue, graph of f(x) for 3 points.

So we are interested in the optimization problem

Minimize: F =

N∑
i=1

1

4
y2i subject to:

N∑
i=1

yi = 1, yi ≥ 0.

By using the multipliers of Lagrange, we get that the minimum is attained when exists λ such
that 1

2yi − λ = 0, so all the yi are equal and yi = 1
N . This gives us

W1(µN , dx) ≥ F ≥
N∑
i=1

1

4

(
1

N

)2

=
1

4N
.

Remark 5.5. We can use the technics used to boundW2 to try boundW1, using now Proposition
5.1 to get the Fourier coefficients. In this case this is not very successful, as we would get

W1(µN , dx) ≲α
(logN)2

N

which is bigger than if we use the other bound: W1(µN , dx) ≤W2(µN , dx) ≲
√

logN
N2

.



CHAPTER 6
KANTOROVICH’S FORMULATION AS A

RELAXATION

The Kantorovich problem is to look for the minimum of the functional

K : Adm(µ, ν) −→ R ∪ {+∞}

γ 7−→
∫
c dγ =: K(γ).

On the other hand, for the Monge’s problem, we consider a map T : X → Y and consider the
induced plan γT = (Id, T )#µ ∈ Adm(µ, ν) and try to minimize K(γT ). We can extend this to a
functional defined over the whole set of admisible plans as

M(γ) =

{
K(γ) =

∫
c dγ if γ = γT

+∞ otherwise

It is clear that the infimum of Monge’s formulation is the infimum of M. Now that both
formulations are expressed as minimizing a functional over the same set of measures, we can
check that K is the relaxation of M.

Definition 12 Relaxation as an optimization concept
Given Ω a metric space and F : Ω → ∪{+∞} a functional bounded from below we define its
relaxation F : Ω → R ∪ {+∞} as

F = sup {G : Ω → R ∪ {+∞} : G ≤ F and it is l.s.c.}

Remark 6.1. It is immediate to check that infF = infF . Indeed, F ≥ F implies infF ≥ infF . The
other implication is because the constant function f ≡ infF is l.s.c. and f ≤ F , so F ≥ f and
infF ≥ inf f = infF .

So we can try to minimize F by minimizing F . This is useful as the relaxation usually has nicer
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properties than the original one.

Remark 6.2. Note that F is l.s.c. because it is the supremum of a family of l.s.c. functions.
Moreover, we can write it as

F (x) = inf
{

lim inf
n

F (xn) : xn → x
}
.

Proof. Let us denote F to the original definition and F̃ to the new expression.

• As F̃ ≤ F and it is l.s.c. we have that F̃ ≤ F .

• For any xn → x, F (xn) ≤ F (xn) so F (x) = lim infF (xn) ≤ lim infF (xn) ≤ F̃ (x).

As the chapter’s tittle suggests, the idea to prove that both formulation of the problem have
the same infimum is to check that K is the relaxation of M. We will prove it for measures
µ ∈ P(RN ), ν ∈ P(RM ) with compact supports and a lower semicontinous cost function. We
will also assume that µ is atomless, this is,

µ({x}) = 0 ∀x ∈ supp(µ).

This last assumption is reasonable, as we know that if µ is Dirac delta it may happen that there
is no transport map, which we will see that does not happen in this case.

The idea of the proof is that, in this context, the plans induced by transport plans are going to
be dense in Adm(µ, ν), and precisely for this kind of plans both functionals coincide. To get to
this result we will require several lemmas.

Lemma 6.3. If µ, ν ∈ P(R) have compact support and µ atomless then exists a transport map
with T#µ = ν.

Proof. In dimension 1, the set of no differentiability of a convex function is at most countable,
so it has Lebesguemeasure 0. This makes that an atomless measure is regular, and we can apply
Brenier’s Theorem to µ and get a transport map with T#µ = ν.

Lemma 6.4. There exists σd : Rd → R measurable Borel, injective, whose image is a Borel set
and with its inverse σ−1

d being Borel measurable too.

Proof. If we prove it for the case d = 2 then we can define by induction

σd(x1, x2, . . . , xd) =: σ2 (x1, σd−1(x2, . . . , xd)) .
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For this case, as

R2 −→ (0, 1)2

(x, y) 7−→
(
1

2
+

1

π
arctanx, 1

2
+

1

π
arctan y

)
is a continuous bijection, it is enough to define σ : (0, 1)2 → R satisfying all the wanted
properties for σ2.

Given x, y ∈ (0, 1) we can consider its decimal expansion, without numbers ending in 9 periodic,

x = 0.x1x2x3 · · · =
∞∑
i=1

xi10
i, y = 0.y1y2y3 · · · =

∞∑
i=1

yi10
i.

We define then σ(x, y) := 0.x1y1x2y2 · · · . Note that numbers like 0.393939 · · · are not in the
image set S := σ((0, 1)2) ⊆ (0, 1).

To prove that σ is measurable it is enough to note that for [a, b] ⊆ (0, 1) with rational endpoints
of the form

a = 0.a1a2 · · · a2n, b = 0.b1b2 · · · b2n

the preimage is a rectangle and therefore Borel measurable:

σ−1([a, b]) = [0.a1a3 · · · a2n−1, 0.b1b3 · · · b2n−1]× [0.a2a4 · · · a2n, 0.b2b4 · · · b2n].

The injectivity of σ is clear due to only allowing 1 periodic expansion for any number. For the
measurability of the inverse function, a similar reasoning allows to prove that

(σ−1
2 )−1 ([a, b]× [c, d]) = S ∩ [A,B]

So it is only left to prove that S is measurable.

S =
{
0.x1x2 · · · ∈ (0, 1) : ∀n ∃m,m′ > n, m odd, m′ even xm 6= 9, xm′ 6= 0

}
(0, 1)\S = {0.x1x2 · · · ∈ (0, 1) ∃N such that ∀n ≥ N x2n = 9 or x2n+1 = 9}

Naturally, this last set we can split it in two sets depending wether the periodic 9 is in the even
positions or in the odd ones: (0, 1)\S = Aodd ∪Aeven. But then

Aeven = ∪∞
N=1 {0.x1x2 · · ·x2N−19x2N+19x2N+3 · · · ∈ (0, 1)} = ∪∞

N=1BN

As for any N , there are countably many point in BN , this is a Borel set, which in turns implies
that Aeven is Borel. The same reasoning works for Aodd, and then we can get that S is Borel.
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Corollary 6.5. Given µ ∈ P(RN ), ν ∈ P(RM ) both with compact support and µ atomless there
exists a Transport map T#µ = ν.

Proof. As (σN )#µ, (σM )#ν ∈ P(R) have both compact support and the first one is atomless we
can apply Lemma 6.3 and the exists S#(σN )#µ

= (σM )#ν . Then T = σ−1
M ◦ S ◦ σN is the wanted

map:

T#µ(A) = µ(T−1(A)) = µ
(
σ−1
N ◦ S−1 ◦ σM (A)

)
= (σN )#µ

(
S−1 ◦ σM (A)

)
= S#(σN )#µ

(σM (A)) = (σM )#ν (σM (A)) = ν(σ−1
M ◦ σM (A)) = ν(A).

Lemma 6.6. Let X be a compact metric space, ρ ∈ P(X) and Gn a sequence of partitions: Ci,n

disjoint with ∪i∈InCi,n = X . Call an = supi∈In diam(Ci,n) and assume that an → 0.

If we have a sequence of probability measures ρn ∈ P(X) with ρn(Ci,n) = ρ(Ci,n) for all i ∈ In,
n ≥ 1, then ρn → ρ narrowly.

Proof. Given φ : X → R continuous, as X is compact, φ is then bounded and absolutely

continuous. We have the bound
∣∣∣∣∫ φdρn −

∫
φdρ

∣∣∣∣ ≤ ∑
i∈In

∣∣∣∣∣
∫
Ci,n

φdρn −
∫
Ci,n

φdρ

∣∣∣∣∣.
Using the absolute continuity we have that for every ε > 0 exists n such that if x, y ∈ Ci,n then
|φ(x)− φ(y)| < ε

2 . Pick a point in each set xi ∈ Ci,n, so we have φ(xi)− ε
2 < φ(x) < φ(xi)+

ε
2 for

x ∈ Ci,n. As ρ(Ci,n) = ρn(Ci,n) we get the inequality∣∣∣∣∣
∫
Ci,n

φ dρn −
∫
Ci,n

φ dρ

∣∣∣∣∣ ≤ ερ(Ci,n) ⇒
∣∣∣∣∫ φdρn −

∫
φdρ

∣∣∣∣ ≤ ∑
i∈In

ερ(Ci,n) = ε.

This proves that
∫
φdρn →

∫
φ dρ, so we have ρn nrw−−→ ρ.

Theorem 6.7
Given X ⊆ RN , Y ⊆ RM compact subsets and probabilities µ ∈ P(X), ν ∈ P(Y ) then the
set of transport plans induced by a map is dense in Adm(µ, ν).

Proof. For any n ∈ N consider (Ki,n)i∈In a partition by cubes of X with diam(Ki,n) ≤ 1
2n , and

one K̃j,n of Y . Then Ci,j,n = Ki,n ×Kj,n is a partition of X × Y with diam(Ci,j,n) <
1
n .

Given γ ∈ Adm(µ, ν), consider Coli,n := Ki,n × Y and γi,n the restriction to Coli,n of γ. This
measure has marginals µi,n and νi,n with compact support and µi,n being atomless, so it exists
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(Ti,n)#µi,n
= νi,n. Because the Coli,n form a partition we can define

Sn(x) = Ti,n if x ∈ Coli,n.

Which is clear that sends µ to ν: (Sn)#µ = ν.

If we apply γSn(Ci,j,n) = γ(Ci,j,n) then we can apply Lemma 6.6 to get that γSn

nrw−−→ γ and
complete the proof. But this inequality is a result precisely of how we have defined Ti,n:

γSn(Ci,j,n) = γTi,n(Ki,n × K̃j,n) = µi,n(T
−1
i,n (K̃j,n)) = νi,n(K̃j,n) = γ(Ki,n × K̃j,n).

Corollary 6.8
When µ ∈ P(RN ), ν ∈ P(RM ) have compact support and the cost function is l.s.c. then K is
the relaxation of M. Notably, inf M = min K.

Proof. Because of Theorem 1.5 we know that K is l.s.c. We also have that K ≤ M so K ≤ M. For
the other implication, given any γ ∈ Adm(µ, ν) exists γTn → γ narrowly so

J(γ) ≤ lim inf
n

M(γTn) ≤ lim inf
n

K(γTn) = K(γ).



APPENDIX A
ANALYSIS INEQUALITIES

The Koksma-Hlawka inequality gives an upper bound to the difference between a Riemann sum
and the actual integral. For this it defines the following concept, the discrepancy. This appendix
will give a brief summary of this result, for a more complete text one can read [8, Chapter 2],
sections 1 and 5. The paper [2] also gives a nice summary.

Given N points 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ 1

D∗((xk)) = sup
{∣∣∣∣∣ 1N

N∑
k=1

χ[0,t](xj)− t

∣∣∣∣∣ : 0 ≤ t ≤ 1

}
.

Note that that if we call ν =
∑N

k=1 δxk
we are just taking the supremum of ν([0, t])− L([0, t]).

We also consider

D((xk)) = sup
{∣∣∣∣∣ 1N

N∑
k=1

χI(xk)− L(I)

∣∣∣∣∣ : I ⊆ [0, 1] interval
}
.

It is clear that D∗ ≤ D, but we also have that D ≤ 2D∗ (check [8, Chapter 2, Theorem 1.3]).

Theorem A.1 Koksma-Hlawka inequality
If f has bounded variation then∣∣∣∣∣ 1N

N∑
k=1

f(xk)−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ var(f) ·D∗((xk)) ≤ var(f) ·D((xk)).

The proof can be consulted on [8, Chapter 2, Theorem 5.1].
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The variation of a function is defined as

var(f) = sup
{

N−1∑
i=1

|f(xi+1)− f(xi)| : 0 ≤ x1 < x2 < · · · < xN ≤ 1

}

The Erdős-Turan inequality is another classical result, that bounds the discrepancy.

Theorem A.2 Erdős-Turan inequality
Given N points 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ 1 let ν =

∑N
k=1 δxk

. Then for any n ∈ N

D((xk)) ≲
1

n
+

n∑
k=1

|ν̂(k)|
k

The proof can be consulted on [8, Chapter 2, Theorem 2.5 and comment at the end of page 114]



BIBLIOGRAPHY

[1] Luigi Ambrosio and Nicola Gigli. A User’s Guide to Optimal Transport. Springer Berlin
Heidelberg, 2013.

[2] L. Brandolini, L. Colzani, G. Gigante, and G. Travaglini. On koksma-hlawka inequality, 2011.

[3] Laura Caravenna. TheDisintegration Theoremand Applications toOptimalMass Transport.
PhD thesis, International School of Advanced Studies, 2009.

[4] Villani Cédric. Optimal transport: Old and new. Springer Berlin Heidelberg, 2009.

[5] J. T. Chang and D. Pollard. Conditioning as disintegration. Statistica Neerlandica, 51(3):287–
317, 1997.

[6] Michael G. Crandall, Hitoshi Ishii, and P. L. Lions. User’s Guide to viscosity solutions of
second order partial differential equations. American Mathematical Society, 1992.

[7] Piotr Hajłasz. On an old theorem of erdös about ambiguous locus, 2021.

[8] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of sequences. Dover,
2006.

[9] Jan K. Pachl. Disintegration and compact measures. MATHEMATICA SCANDINAVICA, 43:157–
168, 1978.

[10] Aldo Pratelli. On the equality between Monge’s infimum and Kantorovich’s minimum in
optimal mass transportation. Annales de l’I.H.P. Probabilités et statistiques, 43(1), 2007.

[11] Filippo Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of
variations, pdes, and modeling. 2015.

[12] Stefan Steinerberger. Wasserstein distance, fourier series and applications. Monatshefte
für Mathematik, 194(2):305–338, Jan 2021.

[13] Onno van Gaans. Probability measures on metric spaces. Avalible online.

[14] Luděk Zajíček. On the differentiation of convex functions in finite and infinite dimensional
spaces. Czechoslovak Mathematical Journal, 29(3):340–348, 1979.

https://www.math.leidenuniv.nl/%7Evangaans/jancol1.pdf


ALPHABETICAL INDEX

A
Adm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

B
Badly approximable number . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Brenier Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 20

C
c transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
c-c hypersurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
c-ciclically monotone set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
c-concavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
c-convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
c-subdifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
c-supperdiferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

D
Dual Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

G
Geodesic space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

I
Internal energy functional, E . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Interpolating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

K
Kantorovich potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Kantorovich's Optimal Transport Problem . . . . . . . . . . . . 4, 52
Kantorovich-Rubinstein duality . . . . . . . . . . . . . . . . . . . . . . . . 24

M
Monge's Optimal Transport Problem . . . . . . . . . . . . . . . . 2, 52

N
Narrow Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

O
Opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

P
Polish Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Prokhorov Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Push Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
P∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

R
Regular measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

T
Tight set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Transport Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Transport Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

W
Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Wasserstein space, Wp(X) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
W∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Weak topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25


	Introduction
	The Optimal Transport Problem
	Conditions For Optimality
	Duality
	Optimal plans induced by maps

	Wasserstein distance
	Definition and Wasserstein spaces
	W distance

	Classical geometrical inequalities
	Isoperimetric Inequality
	Sobolev Inequality

	Brunn-Minkowski Inequality
	Geodesic space
	A Convex Functional over W2
	Brunn-Minkowski inequality proof

	Application to Kronecker sequences
	Bounds using Fourier coefficients
	Kronecker sequences

	Kantorovich's Formulation as a relaxation
	Appendixes
	Analysis inequalities
	Bibliography

