
ADVANCED MATHEMATICS
MASTER’S FINAL PROJECT

On the Gromov-Hausdorff distance
between compact spaces

Author: Supervisor:
Rafael Martínez Vergara Carles Casacuberta Vergés

Facultat de Matemàtiques i Informàtica

June 28, 2023



Contents

Summary 1
1. Introduction and background 2
2. Gromov-Hausdorff distance between compact metric spaces 5
3. The metric space of metrics and the space of correspondences 22
4. Distances between Banach spaces 30
5. Gromov-Hausdorff distances between spheres 34
6. Discussion 50
References 52



Summary

This work provides an introduction to the Gromov-Hausdorff distance,
discussing its original definition and its relationship with correspondences
between spaces. We prove that the Gromov-Hausdorff distance serves as a
metric for the set of isometry classes of compact metric spaces. The primary
objectives of this study are to establish the existence of a pseudo-metric on the
disjoint union X ⊔ Y that achieves the Gromov-Hausdorff distance between
compact spaces X and Y, and to establish bounds for the Gromov-Hausdorff
distance between spheres of different dimensions.

2020 Mathematics Subject Classification: 51F30, 53C23, 55N31, 55P91.
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1. Introduction and background

When exploring Topological Data Analysis, the concept of Gromov-Haus-
dorff distance arises as a means of quantifying dissimilarity between data
sets. Within this context, the Gromov-Hausdorff distance is primarily stud-
ied in relation to finite sets, as it is specifically designed for analyzing such
datasets. However, an intriguing question arises when we shift our focus
to infinite sets: What does it happen when we extend our consideration to
compact metric spaces?

The Gromov-Hausdorff distance between metric spaces X and Y, denoted
by dGH(X, Y), quantifies the extent to which X and Y fail to be isometric. The
Gromov-Hausdorff distance is used in many areas of geometry [BBI01, CC97,
Col96, Pet06]. In applications to shape and data comparison/classification,
one aims to estimate either the Gromov-Hausdorff distance between spaces
[Mém07, MS04, MS05] or the Gromov-Wasserstein distance [AMJ18], which
is one of its optimal transport induced variants.

However, both distances are hard to compute, both analytically and algo-
rithmically [AFN+18, Mém12]. Despite the interest in this type of distances,
the exact values of Gromov-Hausdorff distance between standard compact
spaces such as spheres are known in only a small number of cases.

In Section 2, following [BBI01] and [KO99], we introduce the definition
of Gromov-Haudorff distance between pseudo-metric spaces using isometric
embeddings and the Hausdorff distance.

Definition 1.1. Let A, B be pseudo-metric spaces. The Gromov-Hausdorff dis-
tance between A and B, denoted by dGH(A, B), is the infimum of all ε ≥ 0 so
that there is a pseudo-metric space M and isometric embeddings iA : A → M
and iB : B → M such that dM(iA(A), iB(B)) ≤ ε, where dM denotes Hausdorff
distance in M.

Then we prove that we can actually restrict ourselves to pseudo-metrics on
the disjoint union of A and B.

We introduce correspondences between sets and the concept of distortion
of a correspondence in order to prove that the Gromov-Hausdorff distance
can be computed using them.
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Theorem 1.2. For any two pseudo-metric spaces X and Y,

dGH(X, Y) =
1
2

inf
C
{dis(C)},

where the infimum is taken over all correspondences C between X and Y.

We prove that the Gromov-Hausdorff distance is nonnegative, symmetric,
and it satisfies the triangle inequality. Moreover, we have that dGH(X, Y) = 0
if and only if X and Y are isometric.

Theorem 1.3. The set of isometry classes of compact metric spaces endowed
with the Gromov-Hausdorff distance is a metric space.

We introduce the concept of length spaces from [BBI01], which are spaces
where one can define a class of admissible paths. A particular case of a length
space is a Riemmanian manifold endowed with the geodesic distance. We
can study the Gromov-Hausdorff distance between spaces with the following
result.

Proposition 1.4. Every compact length space can be obtained as a Gromov-
Hausdorff limit of finite graphs.

This theorem, which is proved in Section 2, gives a way for computing an
approximation of the Gromov-Hausdorff distance between compact length
spaces.

In Section 3, following [ŠTZ92, ŠTZ93], we study the structure of the metric
space of metrics on a given set. We focus on the case where the given space is
a complete and compact metric space. Then, following [IIT16], we study the
set of closed relations and the subset of closed correspondences, which turns
out to be a compact set. We prove that the distortion function is a continuous
function. Hence we obtain the following result.

Theorem 1.5. For any two compact metric spaces X and Y there exists a
correspondence R such that dGH(X, Y) = 1

2dis(R).

This allows us to infer that there exists a pseudo-metric ρ on the disjoint
union X ⊔ Y associated with the correspondence R where the infimum is
actually achieved. Proving this fact was the main motivation of the present
work.

3



In Section 4, following [KO99] and [Kal95], we introduce a generalization
of the Gromov-Hausdorff distance to Banach spaces. This is useful to work
with lp spaces, which, for p > 2, are Banach spaces but not Hilbert spaces.
We prove that this generalization is only useful when comparing real Ba-
nach spaces, because there are real-isomorphic Banach spaces which are not
complex-isomorphic.

In Section 5, following [LMS21] and [ABC+22], we focus on the case of
estimating Gromov-Hausdorff distances between spheres of different dimen-
sions. We relate Gromov-Hausdorff distance, Borsuk-Ulam theorems, and
Vietoris-Rips complexes as follows. Estimating the Gromov-Haudorff dis-
tance dGH(X, Y) for metric spaces X and Y involves bounding the distortion
of a function f : X → Y, which measures the extent to which f fails to pre-
serve distances; the more functions between X and Y distort the metrics,
the larger dGH(X, Y) must be. When X and Y are spheres, [ABC+22] show
that it suffices to consider odd functions. We transform an odd function
f : Sk → Sn into a continuous odd map between Vietoris-Rips complexes.
Then we obstruct the existence of such maps with the Z/2 equivariant topol-
ogy of Vietoris-Rips complexes, measured via the following quantity.

Definition 1.6. For k ≥ n, we define

cn,k = inf{r ≥ 0 | there exists an odd map Sk → VR(Sn; r)}.

Due to a theorem of Hausmann [H+95], there is a homotopy equivalence
VR(Sn; r) ≃ Sn for sufficiently small r, and moreover there is an odd map
f : VR(Sn; r) → Sn. The Borsuk-Ulam theorem then implies that no odd
map Sk → VR(Sn; r) exists for such r unless k ≤ n. In particular, cn,n = 0.
Therefore, the quantity cn,k represents the amount by which Sn needs to be
"thickened" until it admits an odd map from Sk.

The main results in Section 5 are bounds for the Gromov-Hausdorff dis-
tance between spheres.

Theorem 1.7. For all k ≥ n, the following inequalities hold:

2 · dGH(S
n, Sk) ≥ inf{dis( f ) | f : Sk → Sn is odd} ≥ cn,k.

Theorem 1.8. For every n ≥ 1, we have that dGH(S
n, Sn+1) ≤ π/3.
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2. Gromov-Hausdorff distance between compact metric spaces

In this section we focus on the study of the Gromov-Hausdorff distance on
compact metric spaces following [KO99].

We recall the notion of Gromov-Hausdorff distance between metric spaces.
It will be convenient to define it, more generally, for pseudo-metric spaces.

Definition 2.1. A pseudo-metric on a set M is a map d : M× M → [0, ∞) which
is symmetric, satisfies the triangle law and the condition d(x, x) = 0 for all
x ∈ M. We say that (M, d) is a pseudo-metric space.

Note that a pseudo-metric d does not necessarily satisfy the condition that
d(x, y) = 0 =⇒ x = y. If we have two metric spaces (X, dX), (Y, dY) and a
relation R ⊂ X × Y , we define the distortion of R by

dis(R) = sup
(x,y),(x′,y′)∈R

|dX(x, x′)− dY(y, y′)|.

This notion can be applied to arbitrary maps g between metric spaces X and
Y. Thus we denote the distortion of g by dis(g) := dis(Rg) where Rg denotes
the fact that a map g is also a relation. In this case we have

dis(g) = sup
x,x′∈X

|dX(x, x′)− dY(g(x), g(x′))|.

Given two maps g : X → Y and h : Y → X between metric spaces, the codis-
tortion of g and h is defined as

codis(g, h) = sup
x∈X,y∈Y

|dX(x, h(y))− dY(g(x), y)|.

The codistortion allows one to bound the extent to which the maps g and
h fail to be inverses of each other. Indeed, if codis(g, h) < ε, then one has
dX(x, h(g(x))) < ε for all x and dY(g(h(y)), y) < ε for all y.

We need to introduce the Hausdorff distance between subsets of a metric
space. Let (M, d) be a metric space, and let S ⊂ M be a subset. We define the
distance of a point x ∈ M to the set S by

d(x, S) = inf
s∈S

d(x, s).

We denote by Ur(S) the r-neighborhood of the set S, i.e., the set of points
x ∈ M such that d(x, S) < r.
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Definition 2.2. Let (M, d) be a metric space and A, B ⊂ M. We define the
Hausdorff distance between A and B by

dH(A, B) = inf{r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A)}.

We can specify the metric d by using the notation dH(A, B, d). If it is clear
which metric we are using, then we use the notation dM(A, B).

The next proposition from [BBI01] contains reformulations of the Haus-
dorff distance.

Proposition 2.3. Let (M, d) be a metric space. Suppose given A, B ⊂ M and
r > 0. Then

(1) dH(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}
.

(2) dH(A, B) ≤ r if and only if d(a, B) ≤ r for all a ∈ A and d(b, A) ≤ r
for all b ∈ B.

Proof. Both statements follow directly from the definition. Details are given
in [BBI01, 7.3.2]. □

Proposition 2.4. Let (M, d) be a metric space. Then

(1) dH is a pseudo-metric on the set of all subsets of M.
(2) dH(A, A) = 0 for any A ⊂ M, where A is the closure of A.
(3) If A, B ⊂ M are closed and dH(A, B) = 0, then A = B.

Proof. 1. Since the Hausdorff distance is an infimum of positive numbers,
we have that dH is non-negative. From the definition we can swap A
and B and the definition remains unchanged, so, dH is symmetric. The
triangle inequality follows from the fact that for A, B, C subsets of M, using
Proposition 2.3, we have that

d(a, C) ≤ d(a, b) + d(b, C) ≤ d(a, b) + dH(B, C),

for all b ∈ B and a ∈ A. Taking the infimum over the elements in B we
obtain

d(a, C) ≤ d(a, B) + dH(B, C) ≤ dH(A, B) + dH(B, C).
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Taking the supremum over all elements a ∈ A we have that

sup
a∈A

d(a, C) ≤ dH(A, B) + dH(B, C).

With the same arguments we can prove that

sup
c∈C

d(A, c) ≤ dH(A, B) + dH(B, C).

Hence we have proved that

dH(A, C) = max

{
sup
a∈A

d(a, C), sup
c∈C

d(A, c)

}
≤ dH(A, B) + dH(B, C).

2. Since A ⊂ A we have that d(a, A) = 0 for all a ∈ A. Also by the definition
of the closure of the set A we have that d(a, A) = 0 for all a ∈ A. Hence
d(A, A) = 0.

3. Suppose that there exists x ∈ A \ B. Since B is closed, there exists an r > 0
such that Br(x) does not intersect with B. Then x ̸∈ Ur(B), and hence
dH(A, B) ≥ r > 0. □

In particular, Proposition 2.4 proves that the set of closed subsets of M
equipped with the Hausdorff distance is a metric space.

Definition 2.5. Let A, B be pseudo-metric spaces. The Gromov-Hausdorff dis-
tance between A and B, denoted by dGH(A, B), is the infimum of all ε ≥ 0
susch that there is a pseudo-metric space M and there are isometric embed-
dings iA : A → M and iB : B → M such that dM(iA(A), iB(B)) ≤ ε.

We denote by F (A, B) the set of all pairs (ϕ, ψ) of maps ϕ : A → B and
ψ : B → A. We define G(ϕ, ψ) for (ϕ, ψ) ∈ F (A, B) as the union of the graphs
of ϕ and ψ. We define D(ϕ, ψ) as the supremum of all quantities

1
2
|dA(a1, a2)− dB(b1, b2)|

such that a1, a2 ∈ A and b1, b2 ∈ B with (ai, bi) ∈ G(ϕ, ψ) for i = 1, 2.

Theorem 2.6. Let A and B be bounded metric spaces. Then

dGH(A, B) = inf
(ϕ,ψ)∈F (A,B)

D(ϕ, ψ).
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Proof. We first suppose that M is a pseudo-metric space and that A, B are
isometrically embedded in M. We denote by dA the metric induced by the
isometric embedding in iA(A), and similarly for iB(B). Let ε be the Haus-
dorff distance between iA(A) and iB(B) in M. If σ > ε then we can define
ϕ : iA(A) → iB(B) such that dM(a, ϕ(a)) < σ and ψ : iB(B) → iA(A) such that
dM(ψ(b), b) < σ for all a ∈ iA(A) and b ∈ iB(B). Hence we have that, for
(ai, bi) ∈ G(ϕ, ψ),

|dA(a1, a2)− dB(b1, b2))| ≤ dM(a1, ψ(b3)) + dM(b1, ϕ(a3))) < 2σ

with a2 = ψ(b3) and b2 = ϕ(a3). We can take σ → ε, so we have that

inf
(ϕ,ψ)∈F (A,B)

D(ϕ, ψ) ≤ dGH(A, B).

Now suppose given (ϕ, ψ) ∈ F (A, B), and let σ = D(ϕ, ψ). We let M :=
A
⊔

B and define a pseudo-metric dM as follows. We let dM coincide with dA
on iA(A) and with dB on iB(B). If a ∈ iA(A) and b ∈ iB(B) then

dM(a, b) := inf
(a′,b′)∈G(ϕ,ψ)

(dA(a, a′) + dB(b′, b)) + σ.

We have to check that dM is a pseudo-metric on M. The symmetry property
follows from the definition and, since dM restricted to A and B is a metric, it
satisfies that dM(m, m) = 0 for all m ∈ M. Hence there only remains to check
the triangle law.

Let a1, a2 ∈ iA(A) and b ∈ iB(B). Suppose that (α1, β1), (α2, β2) ∈ G(ϕ, ψ).
Then we have that

dB(β1, b) + dB(β2, b) ≥ dB(β1, β2) ≥ dA(α1, α2)− 2σ.

Hence we have that

dA(a1, α1) + dB(β1, b) + dA(α2, a2) + dB(β2, b) ≥ dA(a1, a2)− 2σ.

Thus we have that

dA(a1, a2) ≤ dA(a1, α1) + dB(β1, b) + σ + dA(α2, a2) + dB(β2, b) + σ.

Since (α1, β1), (α2, β2) ∈ G(ϕ, ψ) are arbitrary, we obtain that

dA(a1, a2) ≤ inf
(α1,β1)∈G(ϕ,ψ)

(dA(a1, α1) + dB(β1, b)) + σ

+ inf
(α2,β2)∈G(ϕ,ψ)

(dA(α2, a2) + dB(β2, b)) + σ

= dM(a1, b) + dM(b, a2).
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So we have that dM(a1, a2) ≤ dM(a1, b) + dM(b, a2). We prove that dM(a1, b) ≤
dA(a1, a2) + dM(a2, b) by contradiction, so assume the opposite inequality.
Then

dM(a1, b) > dA(a1, a2) + inf
(α,β)∈G(ϕ,ψ)

dA(a2, α) + dB(β, b) + σ

≥ inf
(α,β)∈G(ϕ,ψ)

dA(a1, α) + dB(β, b) + σ = dM(a1, b),

which is clearly a contradiction.
We can argue symmetrically with A, B interchanged and obtain that dM is

a pseudo-metric. With this definition of dM it is clear that dM(a, ϕ(a)) ≤ σ

and dM(ψ(b), b) ≤ σ. This shows that dGH(A, B) ≤ σ = D(ϕ, ψ), and we
obtain that

dGH(A, B) ≤ inf
(ϕ,ψ)∈F (A,B)

D(ϕ, ψ).

Since we have shown both inequalities, equality holds. □

Definition 2.5 is the definition that N. J. Kalton and M. I. Ostrovskii used in
[KO99]. The definition of the Gromov-Hausdorff distance between pseudo-
metric spaces A and B deals with a huge class of pseudo-metric spaces. It
is possible to reduce this class the to disjoint union of A and B. More pre-
cisely, the Gromov-Hausdorff distance between two metric spaces (A, dA)
and (B, dB) is the infimum of r > 0 such that exists a pseudo-metric d on the
disjoint union A ⊔ B such that the restrictions of d to A and B coincide with
dA and dB, and dH(A, B) < r in the space (A ⊔ B, d).

To prove this, fix isometries f : A → A′ and g : B → B′, and define a
distance between a ∈ A and b ∈ B by

d(a, b) = dZ( f (a), g(b)).

This definition yields a pseudo-metric on A ⊔ B for which dH(A, B) < r. The
quotient metric space (A ⊔ B)/d is isometric to A′ ⊔ B′ ⊂ Z, where Z is a
common pseudo-metric space and A′, B′ are isometric copies of A and B
inside Z. To obtain a metric on A ⊔ B, define

d(a, b) = dZ( f (a), g(b)) + δ,

with δ an arbitrary positive constant. Then dH(A, B) < r + δ.
Hence we have obtained the following result.
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Theorem 2.7. The Gromov-Hausdorff distance between pseudo-metric spaces
A and B is the infimum of all ε ≥ 0 so that there is a pseudo-metric on A ⊔ B
such that dA⊔B(A, B) ≤ ε.

Moreover, from [KO99], we obtain that

2dGH(A, B) = inf
g,h

{dis(g), dis(h), codis(g, h)},

where g : X → Y and h : Y → X are arbitrary maps. Anyway, in order to
work with the Gromov-Hausdorff distance we will only use Theorem 2.6 for
the disjoint union and Definition 2.5.

Proposition 2.8. Let X, Y, Z be metric spaces. Then

dGH(X, Z) ≤ dGH(X, Y) + dGH(Y, Z).

Proof. Let dX⊔Y and dY⊔Z be metrics on X ⊔ Y and Y ⊔ Z, respectively, that
extend metrics of X, Y and Z. Define the distance between x ∈ X and z ∈ Z
by

dX⊔Z(x, z) = inf
y∈Y

{dX⊔Y(x, y) + dY⊔Z(y, z)}.

We can check that dX⊔Z is a metric on X ⊔ Z. If x1, x2 ∈ X and z ∈ Z then we
have that

dX⊔Z(x1, z) = inf
y∈Y

{dX⊔Y(x1, y) + dY⊔Z(y, z)}

≤ inf
y∈Y

{dX⊔Y(x1, x2) + dX⊔Y(x2, y) + dY⊔Z(y, z)}

= dX⊔Z(x1, x2) + dX⊔Z(x2, z).

If x ∈ X and z1, z2 ∈ Z then we have that

dX⊔Z(x, z1) = inf
y∈Y

{dX⊔Y(x, y) + dY⊔Z(y, z1)}

≤ inf
y∈Y

{dX⊔Y(x, y) + dY⊔Z(y, z2) + dY⊔Z(z2, z1)}

= dX⊔Z(x, z2) + dX⊔Z(z2, z1).

This proves that the triangle inequality holds for dX⊔Z. Since dX⊔Z extends
the metrics in X and Z, it follows that dX⊔Z restricted to X and Z satisfies
the conditions of metric. Hence dX⊔Z is a metric on X ⊔ Z. The definition
of dX⊔Z yields that dH(X, Z) ≤ dH(X, Y) + dH(Y, Z) where dH refers to the
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metrics in the disjoint union of each pair. Thus taking the infimum over all
metrics dX⊔Y and dY⊔Z we obtain that

dGH(X, Z) ≤ dGH(X, Y) + dGH(Y, Z). □

We now introduce a particular case of relations in order to reduce further
the space where the infimum is taken.

Definition 2.9. Let X and Y be sets. A correspondence between X and Y is a
surjective multivalued function from X to Y. That is, a subset C ⊂ X × Y
such that for all x0 ∈ X there is some (x0, y) ∈ C and for all y0 ∈ Y there is
some (x, y0) ∈ C.

Note that a correspondence is a particular case of a relation. If C is a
correspondence, then C−1 is also a correspondence.

Theorem 2.10. For any two metric spaces X and Y,

dGH(X, Y) =
1
2

inf
C
{dis(C)},

where the infimum is taken over all correspondences C between X and Y.

Proof. Let dGH(X, Y) < r for r > 0. We may assume that X and Y are sub-
spaces of some metric space Z and dH(X, Y) < r in Z. Define

C := {(x, y) : x ∈ X, y ∈ Y, dZ(x, y) < r}.

Since dH(X, Y) < r, the set C is a correspondence between X and Y. If
(x, y), (x′, y′) ∈ C then

|dZ(x, x′)− dZ(y, y′)| ≤ dZ(x, y) + dZ(x′, y′) < 2r.

Hence we have that dis(C) < 2r.
Let dis(C) = 2r. It suffices to show that there is a pseudo-metric d on the

disjoint union X ⊔ Y such that d restricted to X is dX, d restricted to Y is dY
and dH(X, Y) ≤ r in (X ⊔ Y, d). The idea is to set the distance from x to y
equal to r whenever x and y correspond to each other, and take the minimal
metric d generated by this condition. Formally, for x ∈ X and y ∈ Y we
define

d(x, y) = inf{dX(x, x′) + dY(y′, y) + r : (x′, y′) ∈ C},
11



and the distances within X and Y are defined by dX and dY. We need to check
the triangle inequality. If (x′, y′), (x′′, y′′) ∈ C then

dis(C) ≥ |dX(x′, x′′)− dY(y′, y′′)|.

Thus we have that, for all y,

dY(y, y′) + dY(y, y′′) ≥ dY(y′, y′′) ≥ dX(x′, x′′)− dis(C).

For x1, x2 ∈ X and y ∈ Y, if (x′, y′), (x′′, y′′) ∈ C attain the respective infima,
then

d(x1, y) = dX(x1, x′) + dY(y′, y) + r,

d(x2, y) = dX(x2, x′′) + dY(y′′, y) + r.

Consequently,

d(x1, y) + d(x2, y) = dX(x1, x′) + dY(y′, y) + dX(x2, x′′) + dY(y′′, y) + 2r

≥ dX(x1, x′) + dX(x′, x′′) + dX(x′′, x2) = d(x1, x2).

Hence the triangle inequality follows by symmetry. For every x ∈ X there is
some y ∈ Y such that (x, y) ∈ C. Hence d(x, y) = r. Thus d(x, Y) = r and
using symmetry we obtain that dH(X, Y) = r. Therefore

dGH(X, Y) ≤ dH(X, Y) = r.

So we have that the equality holds. □

We now want techniques for handling Gromov-Hausdorff distances. While
the previous results do not give an explicit expression for the distance, they
provide another quantity which differs from the distance by no more than
twice the distortion. Note that an estimate of this type is sufficient to study
the topology determined by the Gromov-Hausdorff distance.

If (M, d) is a metric space and X is a subset of M, then the packing radius
of X is half of the infimum of distances between different elements of X. If
the packing radius is r, then open balls of radius r centered at the points of
X will all be disjoint from each other, and each open ball centered at one of
the points of X with radius 2r will be disjoint from the rest of X. The covering
radius of X is the infimum of the numbers r such that every point of M is
within distance r of at least one point in X, that is, it is the smallest radius
such that closed balls of that radius centered at the points of X have all M as
their union. An ε-packing is a set X of packing radius ≥ ε/2; an ε-covering is a
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set X of covering radius ≤ ε; and an ε-net is a set X that is both an ε-packing
and ε-covering.

Definition 2.11. Let X and Y be metric spaces and ε > 0. A map f : X → Y is
called an ε-isometry if dis( f ) ≤ ε and f (X) is an ε-net in Y.

It is important to note that an ε-isometry does not need to be continuous.

Theorem 2.12. Let X and Y be metric spaces and ε > 0. Then

(1) If dGH(x, Y) < ϵ, then there exists a 2ε-isometry from X to Y.
(2) If there exists an ε-isometry from X to Y, then dGH(X, Y) < 2ε.

Proof. 1. Let C be a correspondence between X and Y with dis(C) < 2ε. For
every x ∈ X, choose f (x) ∈ Y such that (x, f (x)) ∈ C. This defines a map
f : X → Y. It is clear that dis( f ) ≤ dis(C) < 2ε. Let us show that f (X) is
a 2ε-net in Y. For y ∈ Y consider x ∈ X such that (x, y) ∈ C. Since both y
and f (x) are in correspondence with x, we have that

d(y, f (x)) ≤ d(x, x) + dis(C) < 2ε.

Hence we have that dH(y, f (X)) < 2ε.
2. Let f be an ε-isometry. Define C ⊂ X × Y by

C = {(x, y) ∈ X × Y : d(y, f (x)) ≤ ε}.

Since f (X) is an ε-net in Y, we have that C is a correspondence. If (x, y),
(x′, y′) ∈ C we have that

|d(y, y′)− d(x, x′)| ≤ |d( f (x), f (x′))− d(x, x′)|+ d(y, f (x)) + d(y′, f (x′))

≤ dis( f ) + 2ε ≤ 3ε.

Hence dis(C) ≤ 3ε, and by Theorem 2.10 we have that

dGH(X, Y) ≤ 3
2

ε < 2ε. □

It is important that we do not require continuity of ε-isometries. Even if
two spaces are very close with respect to the Gromov-Hausdorff distance,
it can happen that there are no continuous maps with small distortion, for
example spheres with small handles.
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Let X be the standard two-dimensional sphere and Xn be the same sphere
with a small handle attached to it. Let the diameter of the handle be less
that 1/n. As n grows, handles become smaller and smaller and the spaces
Xn become more and more similar to X. One could say that handles van-
ish to a point and the sequence {Xn} converges to X. However Xn is not
homeomorphic to X, so a different notion of convergence is needed.

First we need two useful results, one for Lipschitz maps and the other one
for distance-preserving maps.

Proposition 2.13. Let X be a metric space, and X′ a dense subset of X. Let
Y be a complete metric space and f : X′ → Y a Lipschitz map. Then there
exists a unique continuous map f : X → Y such that f |X′ = f . Moreover f is
a Lipschitz map with the same Lipschitz constant as f .

Proof. Le C be a Lipschitz constant for f . For every x ∈ X we define f (x) ∈ Y
as follows. Choose a sequence {xn}∞

n=1 such that xn ∈ X′ for all n, and xn → x
as n → ∞. We can see that { f (xn)} is a Cauchy sequence. Indeed, we have
that

d( f (xi), f (xj)) ≤ Cd(xi, xj)

for all i, j. Hence { f (xn)} converges. We define f (x) = limn f (xn). So we
have defined f : X → Y. If we have that

x = lim
n

xn,

x′ = lim
n

x′n,

f (x) = lim
n

f (xn),

f (x′) = lim
n

f (x′n),

then we have that

d( f (x), f (x′)) = lim
n

d( f (xn), f (x′n))

≤ C lim
n

d(xn, x′n) = Cd(x, x′).

Therefore f is Lipschitz with a Lipschitz constant ≤ C.
If two continuous maps coincide on a dense set, then the two maps coincide

everywhere. Hence the map f is unique. □
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Proposition 2.14. Let X be a compact metric space and f : X → X be a
distance-preserving map. Then f (X) = X.

Proof. Suppose the contrary, i.e., let p ∈ X \ f (X). Since f (X) is compact and
hence closed, there exists an ε > 0 such that Bε(p) ∩ f (X) = ∅. Let n be
the maximal possible cardinality of an ε-separated set in X and S ⊂ X be an
ε-separated set of cardinality n, i.e., for any x, y ∈ S we have that d(x, y) ≥ ε.
It can be proved that if there exists an (ε/3)-net of cardinality n, then an ε-
separated set cannot contain more than n points. A maximal ε-separated set
is an ε-net. ([BBI01, p.14]). Since f is a distance-preserving map, the set f (S)
is also ε-separated. On the other hand we have that

d(p, f (S)) ≥ d(p, f (X)) ≥ ε.

Therefore f (S) ∪ {p} is an ε-separated set of cardinality n + 1. This is a
contradiction with the choice of n. □

Theorem 2.15. The Gromov-Hausdorff distance defines a metric on the space
of isometry classes of compact metric spaces. In other words, the Gromov-
Hausdorff distance is nonnegative, symmetric and satisfies the triangle in-
equality; moreover we have that dGH(X, Y) = 0 if and only if X and Y are
isometric.

Proof. In the statements above we have proved that the Gromov-Hausdorff
distance is a pseudo-distance, so it only remains to prove that dGH(X, Y) = 0
implies that X and Y are isometric. Let X and Y be two compact metric
spaces such that dGH(X, Y) = 0. From Theorem 2.12, there exists a sequence
of maps fn : X → Y such that dis( fn) → 0. Since X is a compact metric space,
we can fix a countable dense set S ⊂ X. Using the following Cantor diagonal
procedure we obtain a subsequence { fnk} ⊂ { fn} such that for every x ∈ S
the sequence { fnk(x)} is convergent in Y.

Let S = {xi}∞
i=1. We first consider { fn}. Since { fn(x1)} ⊂ Y and Y is

a compact metric space, there exists a subsequence { fnk} ⊂ { fn} such that
{ fnk(x1)} is convergent in Y. For simplicity of notation we denote by { fl}
the subsequence that applied to x1 is convergent. Doing the same argument,
since { fl(x2)} ⊂ Y and Y is a compact metric space, there exists a subse-
quence { flk} ⊂ { fl} such that { flk(x2)} is convergent in Y. Since the sequence
{ fl} is a subsequence of { fn}, we have that { fl(x1)} converges in Y.
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Assume we have a sequence { fi} that converges with x1, . . . , xm. Since
{ fi(xm+1)} ⊂ Y and Y is a compact metric space, there exists a subsequence
{ fik} ⊂ { fi} such that { fik(xm+1)} is convergent in Y. Hence { fik(xn)} is
convergent in Y for n = 1, . . . , m, m + 1. So by induction we can find a sub-
sequence { fnk} ⊂ { fn} such that for every x ∈ S the sequence { fnk(x)} is
convergent in Y.

For simplicity of notation we assume that { fnk} is { fn}. Then we can define
a map f : S → Y as the limit of fn, setting f (x) = limn fn(x) for every x ∈ S.
Since

|d( fn(x), fn(y))− d(x, y)| ≤ dis( fn) → 0,

we have that d( f (x), f (y)) = limn d( fn(x), fn(y)) = d(x, y) for all x, y ∈ S.
In other words, f is a distance-preserving map from S to Y. Hence using
Proposition 2.13 we can extend f to all X.

In the same way we can obtain a map g : Y → X satisfying the same prop-
erties of f . Therefore we have that f ◦ g : Y → Y is a distance-preserving map.
Hence using proposition 2.14 the map f ◦ g is bijective. Then the map f is
surjective and therefore is an isometry between X and Y. □

This last theorem allows us to consider compact metric spaces as points in
the so-called Gromov-Hausdorff space, keeping in mind that isometric spaces
represent the same "point". The topology of this space (determined by the
Gromov-Hausdorff distance) is called the Gromov-Hausdorff topology.

In what follows, we consider converging sequences in the Gromov-Haus-
dorff space of compact metric spaces. By definition, a sequence {Xn}∞

n=1 of
compact metric spaces converges to a compact metric space X if dGH(Xn, X) →
0 as n → ∞. In this case we write Xn

GH−−→ X and call X the Gromov-Hausdorff
limit of {Xn}∞

n=1. Since dGH is a metric, the limit is unique up to an isometry.
One of the reasons why we pay attention to the trivial case of finite spaces

is that finite spaces form a dense set in the Gromov-Hausdorff space:

Example 2.16. Every compact metric space X is a limit of finite spaces. In-
deed, take a sequence εn → 0 of positive numbers and choose a finite εn-net

Sn in X for every n. Then Sn
GH−−→ X, simply because

dGH(X, Sn) ≤ dH(X, Sn) ≤ εn.

Moreover, taking appropiate ε-nets one can essentially reduce convergence of
arbitrary compact metric spaces to convergence of their finite subsets.
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Definition 2.17. Let X and Y be two compact metric spaces, and ε, δ > 0. We
say that X and Y are (ε, δ)-approximations of each other if there exist finite
collections of points {xi}N

i=1 and {yi}N
i=1 in X and Y, respectively, such that:

(1) The set {xi}N
i=1 is an ε-net in X, and {yi}N

i=1 is an ε-net in Y.
(2) |dX(xi, xj)− dY(yi, yj)| < δ for all i, j ∈ {1, . . . , N}.

An ε-approximation is an (ε, ε)-approximation.

Proposition 2.18. Let X and Y be compact metric spaces.
(1) If Y is an (ε, δ)-approximation of X, then dGH(X, Y) < 2ε + δ.
(2) If dGH(X, Y) < ε, then Y is a 5ε-approximation of X.

Proof. (1) Let X0 = {xi}N
i=1 and Y0 = {yi}N

i=1 be as in Definition 2.17. The
second condition in the definition means that the natural correspon-
dence {(xi, yi) : 1 ≤ i ≤ N} between X0 and Y0 has distortion less than
δ. It follows that dGH(X0, Y0) < δ/2. Since X0 and Y0 are ε-nets in X
and Y respectively, we have that dGH(X, X0) ≤ ε and dGH(Y, Y0) ≤ ε.
By the triangle inequality, we obtain that

dGH(X, Y) ≤ dGH(X, X0) + dGH(X0, Y0) + dGH(Y0, Y)

< ε +
δ

2
+ ε < 2ε + δ.

(2) By Theorem 2.12, there is a 2ε-isometry f : X → Y. Let X0 = {xi}N
i=1 be

an ε-net in X and yi = f (xi). Then |d(xi, xj)− d(yi, yj)| < 2ε < 5ε for
all i, j. It remains to prove that Y0 = {yi}N

i=1 is a 5ε-net in Y. Pick y ∈ Y.
Since f (X) is a 2ε-net in Y, there is an x ∈ X such that d(y, f (x)) ≤ 2ε.
Since X0 is an ε-net in X, there exists an xi ∈ X0 such that d(x, xi) ≤ ε.
Then we have that

d(y, yi) = d(y, f (xi)) ≤ d(y, f (x)) + d( f (x), f (xi))

≤ 2ε + d(x, xi) + dis( f ) ≤ 2ε + ε + 2ε ≤ 5ε.

Hence d(y, Y0) ≤ d(y, yi) ≤ 5ε. □

The above proposition yields a criterion for convergence: Xn
GH−−→ X if and

only if, for any ε > 0, Xn is an ε-approximation of X for all large enough n.
There is a more elegant formulation of this statement:
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Theorem 2.19. Let X be a compact metric space and {Xn}n be a sequence of

compact metric spaces. Then Xn
GH−−→ X if and only if for every ε > 0 there

exists a finite ε-net S in X and an ε-net Sn in each Xn such that Sn
GH−−→ S.

Moreover, the ε-net can be chosen so that, for all sufficiently large n, the set
Sn has the same cardinality as S.

Proof. If such an ε-net exists, then Xn is an ε-approximation of X for all suf-

ficiently large n. Then Xn
GH−−→ X by the previous proposition. To prove the

converse implication, take a finite (ε/2)-net S in X and construct correspond-
ing nets Sn in Xn. Namely, pick a sequence of εn-approximations fn : X → Xn

where εn → 0 and define Sn = fn(S). Then Sn
GH−−→ S and, as in the previous

proposition, Sn is an ε-net in Xn for all large enough n. □

We need to introduce the concept of length space in order to obtain a quite
useful result using finite graphs. We follow the definitions of [BBI01].

A path γ in a topological space X is a continuous map γ : I → X defined
on an interval I ⊂ R. By an interval we mean any connected subset of the
real line; it may be open or closed, finite or infinite, and a single point is
counted as an interval. Since a path is a map, one can speak about its image,
restrictions, etc.

A length structure on a topological space X is a class A of admissible paths,
which is a subset of all continuous paths in X, together with a map L : A →
R+ ∪ ∞; the map L is called path length. The class A has to satisfy the follow-
ing assumptions:

(1) The class A is closed under restrictions: if γ : [a, b] → X is an admis-
sible path and a ≤ c ≤ d ≤ b, then the restriction γ|[c,d] of γ is also
admissible.

(2) A is closed under concatenations (products) of paths. Namely, if a
path γ : [a, b] → X is such that its restrictions γ1, γ2 to [a, c] and [c, b]
are both admissible paths, then so is γ.

(3) A is closed under linear reparametrizations: for an admissible path
γ : [a, b] → X and a homeomorphism ϕ : [c, d] → [a, b] of the form
ϕ(t) = αt + β, the composition γ ◦ ϕ is also an admissible path.
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Every class of paths comes with its own class of reparametrizations. For
example, consider the class of all continuous paths and the class of homeo-
morphisms, or the class of piecewise smooth paths and the class of diffeo-
morphisms. We only require that the class of reparametrizations includes all
linear maps.

We require that L possesses the following properties:
(1) Length of paths is additive: L(γ|[a,b]) = L(γ|[a,c]) + L(γ|[c,b]) for any

c ∈ [a, b].
(2) The length of a piece of a path continuously depends on the piece,

i.e., for a path γ : [a, b] → X of finite lenght, denote by L(γ, a, t) the
length of the restriction of γ to the segment [a, t]. Then we require that
L(γ, a, ·) is a continuous function.

(3) The length is invariant under reparametrizations: L(γ ◦ ϕ) = L(γ) for
any homeomorphism ϕ such that γ and γ ◦ ϕ are admissible.

(4) We require length structures to agree with the topology of X in the
following sense: for a neighborhood Ux of a point x, the length of
paths connecting x with points of the complement of Ux is separated
from zero:

inf{L(γ) : γ(a) = x, γ(b) ∈ X \ Ux} > 0.

Once we have a length structure, we are ready to define a metric associated
with the structure. We will always assume that the topological space X car-
rying the length structure is a Hausdorff space. For two points x, y ∈ X we
set the associated distance d(x, y) between them to be the infimum of lengths
of admissible paths conecting these points:

dL(x, y) = inf{L(γ) | γ : [a, b] → X, γ ∈ A, γ(a) = x, γ(b) = y}.

If it is clear from the context wich length structure L gives rise to dL, we
usually drop L in the notation dL. Then (X, dL) is a metric space.

Definition 2.20. A metric that can be obtained as the distance function asso-
ciated to a length structure is called an intrinsic metric or length metric. A
metric space whose metric is intrinsic is called a length space.

While any compact metric space can be obtained as a limit of finite spaces
(see Example 2.16), these finite spaces do not carry length metrics. For length
spaces, the role of finite spaces is played by the one-dimensional ones, i.e.,
graphs. Recall that a finite metric graph is a length space obtained by gluing
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together several spaces isometric to line segments in such a way that only
endpoints may be shared between the segments. Equivalently, a finite metric
graph is a finite topological graph equipped with a length metric.

Proposition 2.21. Every compact length space can be obtained as a Gromov-
Hausdorff limit of finite graphs.

Proof. Let X be a length space. We want to obtain X as a Gromov-Hausdorff
limit of finite graphs. Pick small positive numbers ε and δ (where δ is much
smaller than ε), and choose a finite δ-net S in X. Then consider the following
graph G: the set of vertices of G is S, two points x, y ∈ S are connected by an
edge if and only if d(x, y) < ε, and the length of this edge is equal to d(x, y).

Let us show that G is an ε-approximation for X if δ is small enough, say,
δ < ε2/4diam(X). We consider S both as a subset of X and a subset of G.
Obviously S is an ε-net in both spaces, and dG(x, y) ≥ d(x, y) for all x, y be
a shortest path in X connecting x and y. Choose n points x1, . . . , xn where
n ≤ 2L(γ)/ε, dividing γ into intervals of lengths no greater than ε/2. For
every i = 1, . . . , n there is a point yi ∈ S such that d(xi, yi) ≤ δ. In addition, set
x0 = y0 = x and xn+1 = yn+1 = y. Note that d(yi, yi+1) ≤ d(xi, xi+1) + 2δ < ε

for all i = 0, . . . , n. In particular, yi and yi+1 are connected by an edge in G
provided that δ < ε/4. Then

dG(x, y) ≤
n

∑
i=0

d(yi, yi+1) ≤
n

∑
i=0

d(yi, yi+1) + 2δn = d(x, y) + 2δn.

Recall that n ≤ 2L(γ)/ε ≤ 2diam(X)/ε; hence

dG(x, y) ≤ d(x, y) + δ
4diam(X)

ε
< d(x, y) + ε,

if δ < ε2/4diam(X).
Thus we have a finite graph which is an ε-approximation for X. Letting

ε → 0 yields a sequence of graphs converging to X. □

The following result will be useful in the computation of Gromov-Hausdorff
distances.

Proposition 2.22. Let X and Y be two compact metric spaces.
(1) Let {x1, . . . , xn} ⊂ X be an R-covering of the compact metric space X.

Then dGH(X, {x1, . . . , xn}) ≤ R.
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(2)
1
2
|diam(X)− diam(Y)| ≤ dGH(X, Y) ≤ 1

2
max{diam(X), diam(Y)}.

Proof. (1) This result can be found in [BBI01], and it is similar to the same
result for ε-nets.

(2) The Gromov-Hausdorff distance between a one-point metric space {p}
and a bounded metric space X is

dGH({p}, X) =
1
2

diam(X).

Hence using the triangle inequality we obtain that

dGH(X, Y) ≥ 1
2
|diam(X)− diam(Y)|.

We know that
dGH(X, Y) =

1
2

inf
C
{dis(C)},

where the infimum is taken over all correspondences C between X and Y.
Therefore, we obtain that

dGH(X, Y) ≤ 1
2

max{diam(X), diam(Y)}. □

The study of length spaces is important because if we consider a Riemann-
ian manifold M with the geodesic distance d then the Hopf-Rinow theorem
states that M is geodesically complete if and only if (M, d) is a complete met-
ric space. Recall that, by definition, M is geodesically complete if for every
point p ∈ M the exponential map expp is defined on the entire tangent space
TpM.
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3. The metric space of metrics and the space of correspondences

In this section we follow [ŠTZ92], [ŠTZ93] and [IIT16].
Let X be a nonempty set. We denote by M = M(X) the set of all metrics

on X. We can define a finite metric d∗ on M as follows: If d, d′ ∈ M then

d∗(d, d′) = min{1, sup
x,y∈X

|d(x, y)− d′(x, y)|}.

Proposition 3.1. (M, d∗) is a metric space.

Proof. We have to show that d∗ is a metric. We note that

d∗(d, d′) = min{1, ∥d − d′∥∞}.

Therefore d∗(d, d′) = 0 if and only if ∥d − d′∥∞ = 0, and this is equivalent to
the statement that d = d′.

Symmetry follows from the equality ∥d− d′∥∞ = ∥d′− d∥∞ and the triangle
inequality is a consequence of the triangle inequality of the infinity norm. □

We denote by tα a discrete metric on X of value α, i.e., tα(x, x) = 0 and
tα(x, y) = α for x, y ∈ X, x ̸= y.

Proposition 3.2. The metric space (M, d∗) is not complete.

Proof. We consider the sequence {t1/k}∞
k=1 of elements of M. If 0 < m < n

are natural numbers, then

d∗(t1/n, t1/m) = min{1, ∥t1/n − t1/m∥∞} =

∣∣∣∣ 1n − 1
m

∣∣∣∣.
Hence, the sequence {t1/k}k converges. However, the limit is not a metric on
X. Since uniform convergence implies pointwise convergence, it is enough to
observe that for x, y ∈ X with x ̸= y we have that

lim
n

t1/n(x, y) = lim
n

1
n
= 0,

and the zero function is not a metric on X. □
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We denote by ℵ0 the cardinality of the set of positive integers N.
In connection with this we mention some subspaces of M which are com-

plete. Suppose α > 0 and define

Hα = {d ∈ M : d(x, y) ≥ α for all x, y ∈ X with x ̸= y}.

Theorem 3.3. The subspace Hα of M is a complete metric space.

Proof. We omit the details of this result, which can be found in [ŠTZ92]. □

We consider the following sets:

U = U (X) = {d ∈ M : (X, d) is a complete metric space},

K = K(X) = {d ∈ M : (X, d) is a compact metric space}.

Note that if X is finite then U = K.
Equivalence of metrics determines an equivalence relation ∼ on M. We

denote by M|∼ the set of equivalence classes corresponding to ∼.
Let O0 be the class of M|∼ whose elements d satisfy the following property:

A sequence xk ∈ X converges with respect to d if and only if {xk} is almost
stationary, i.e., d(xk, x) → 0 for some x ∈ X implies that xk = x for all but at
most finitely many k.

The class O0 contains all discrete metrics, but there are other metrics too.
For instance, if X = (0, ∞) and we define σ(x, y) = max{x, y} for x ̸= y, and
σ(x, x) = 0, then σ ∈ O0 but σ is not discrete.

Proposition 3.4. The set K is a union of classes from M|∼.

Proof. If d ∈ K then (X, d) is compact and hence (X, d′) is also compact for
all d′ ∼ d. □

The analogous theorem for U does not hold in general, since completeness
is not a topological property. Actually we have that

Theorem 3.5. (1) If X is finite then U = M = O0.
(2) If X is infinite, then U ∩O0 ̸= ∅ ̸= O0 ∩ (M\U ).

Proof. (1) The case of a finite set X is clear, since all convergent sequences
are almost stationary.
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(2) Let X be an infinite set. Then there exists a one-to-one sequence xk ∈
X, i.e, xi ̸= xj if i ̸= j. Let X′ = X \ {xk} and define a metric σ on X as
follows: σ(x, x) = 0 for all x ∈ X, σ(x, y) = 1 if x and y are different
and at least one of them belongs to X′, while σ(xi, xj) = max{1/i, 1/j}
for different i, j ∈ N. We prove that σ ∈ O0 ∩ (M\U ).

Suppose that {yk} is a sequence such that σ(yk, y) → 0 as k → ∞.
Then σ(yk, y) = 1 if y ∈ X′ and yk ̸= y, and σ(yk, y) ≥ 1/m if y = xm
and yk ̸= xm for all k, m. Thus there exists a k0 such that y = yk for
every k ≥ k0, which implies that σ ∈ O0. Furthermore, the sequence
{xk} is a Cauchy sequence but it does not converge with respect to σ

because {xk} is not almost stationary. Consequently σ ∈ M\ U .
On the other hand, the discrete metric t1 belongs to O0 ∩ U . □

We say that a subset A of a topological space X is dense in itself if A has
no isolated points. Equivalently, A is dense in itself if every point of A is an
accumulation point.

Lemma 3.6. Every class O ∈ M|∼ is a dense in itself subset of M.

Proof. Let ε > 0. Let O ∈ M|∼, d ∈ O. It suffices to consider the metrics
da = d + a min{1, d} for 0 < a < ε, and notice that da ∈ Bε(d) ∩ O for all
0 < a < ε. □

Theorem 3.7. Each of the sets K, U is a dense in itself subset of (M, d∗).

Proof. The union of an arbitrary system of dense in itself sets is dense in itself.
Hence the statement for K follows from Lemma 3.6 and Proposition 3.4. In
view of Theorem 3.5 we have to deal with U separately. Let d ∈ U , ε > 0 and
0 < a < ε. Define da(x, y) = d(x, y) + a for different x, y ∈ X and da(x, x) = 0
for all x ∈ X. Then da ∈ U ∩ Bε(d) for each 0 < a < ε. □

The following result will be needed for the final statements of the section
about the Gromov-Hausdorff distance between compact metric spaces.

Theorem 3.8. The set K is closed in (U , d∗).
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Proof. If X is a finite set, then K = U . So we can suppose that |X| ≥ ℵ0. Let
dn ∈ K and d ∈ U and suppose that d∗(dn, d) → 0 as n → ∞. Assume that
d ∈ U \K. Then (X, d) is not totally bounded. Hence for some 1 > ε0 > 0 the
set X has a countable ε0-discrete subset, i.e., there exists a sequence xn ∈ X
such that

d(xk, xl) ≥ ε0

for all k, l ∈ N with k ̸= l. Let n ∈ N be fixed. The metric space (X, dn) is
compact. So {xk}k has a convergent subsequence {xkj}j in (X, dn). Then

|d(xki , xkj)− dn(xki , xkj)| ≥ ε0 − dn(xki , xkj)

for all i, j ∈ N with i ̸= j. So we have that

sup
i,j∈N

|d(xki , xkj)− dn(xki , xkj)| ≥ ε0

for all i, j ∈ N with i ̸= j. This implies that d∗(dn, d) ≥ ε0 > 0 for every n.
This is a contradiction. □

It is not true in general that K is closed in (M, d∗). To see this, let X =
{x1, . . . } be a countable set. Define metrics dn, d ∈ M as follows: d(x, x) = 0
for all x ∈ X and d(xi, xj) = max{1/i, 1/j} for all i, j ∈ N different. For each
n define dn(x, x) = 0 for all x ∈ X and for all i, j ∈ N different let dn(xi, xj) =
d(xi, xj) if min{i, j} ̸= n and dn(xi, xj) = min{1/i, 1/j} if min{i, j} = n.

In this case we have that d ∈ M \ U ⊂ M \ K. Further, dn ∈ K for
each n ∈ N, since every sequence in (X, dn) is either almost stationary or
dn-converges to xn. On the other hand, as n → ∞,

d∗(d, dn) = sup
min{i,j}=n

|d(xi, xj)− dn(xi, xj)|

= sup
j>n

|d(xi, xj)− dn(xi, xj)| = sup
j>n

∣∣∣∣ 1n − 1
j

∣∣∣∣ = 1
n
→ 0.

Now we want to prove the existence of a pseudo-metric in the disjoint
union that achieves the actual Gromov-Hausdorff distance. Before that, we
need to consider the space of all correspondences between X and Y, denoted
by R(X, Y), as a set inside the set of all nonempty relations P(X, Y) ⊂ X ×Y
between X and Y. Notice that any σ ∈ P(X, Y) such that there exists an
R ∈ R(X, Y), R ⊂ σ, satisfies that σ ∈ R(X, Y). In particular, the closure R
of a correspondence R is a correspondence itself.
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Proposition 3.9. If σ ∈ P(X, Y), then dis(σ) = dis(σ).

Proof. If σ ⊂ σ, then dis(σ) ≤ dis(σ). Suppose that dis(σ) < dis(σ). By
definition, for each ε > 0 and any (x̄, ȳ), (x̄′, ȳ′) ∈ σ there exist (x, y), (x′, y′) ∈
σ such that

|dX(x̄, x̄′)− dX(x, x′)| ≤ ε

3
,

|dY(ȳ, ȳ′)− dY(y, y′)| ≤ ε

3
.

Thus we have that

|dX(x̄, x̄′)− dY(ȳ, ȳ′)| < |dX(x, x′)− dY(y, y′)|+ 2
ε

3
≤ dis(σ) + 2

ε

3
.

Hence, by taking the supremum, we conclude that dis(σ) + 2(ε/3) > dis(σ).
Since ε is arbitrary we have dis(σ) ≥ dis(σ), which is a contradiction. □

We denote by Pc(X, Y) the set of all closed nonempty relations between X
and Y. Similarly Rc(X, Y) stands for the set of all closed correspondences
between X and Y.

Corollary 3.10. For any metric spaces X and Y we have

dGH(X, Y) =
1
2

inf{dis(R) : R ∈ Rc(X, Y)}.

Now we can establish a link between correspondences from R(X, Y) and
pseudo-metrics on X ⊔ Y.

Proposition 3.11. Let X and Y be metric spaces. Let R ∈ R(X, Y) be such
that dis(R) < ∞. Let ρR be an extension of the metrics of X and Y defined by

ρR(x, y) = inf{dX(x, x′) + dY(y, y′) +
1
2

dis(R) : (x′, y′) ∈ R}.

Then ρR is a pseudo-metric on X ⊔ Y and dH(X, Y, ρR) =
1
2dis(R).

Proof. It is clear that ρR is symmetric. The triangle inequality follows from

dX(x, x′) + dY(y, y′) ≤ dX(x, z) + dX(z, x′) + 2dY(y, y′)

for z ∈ X and similarly for z ∈ Y.
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Recall that the Hausdorff distance is

dH(X, Y) = max

{
sup
x∈X

d(x, Y), sup
y∈Y

d(X, y)

}
,

and that

d(x, Y) = inf
y∈Y

d(x, y).

Hence we have that

ρR(x, Y) = inf
y∈Y

ρR(x, y) = inf
y∈Y

inf{dX(x, x′) + dY(y, y′) +
1
2

dis(R) : (x′, y′) ∈ R}

= inf{dX(x, x′) +
1
2

dis(R) : (x′, y′) ∈ R} =
1
2

dis(R).

We can do the same for ρR(y, X). Therefore we obtain that, with ρR,

dH(X, Y) = max
{

1
2

dis(R),
1
2

dis(R)
}

=
1
2

dis(R). □

We denote by H(X) the family of all nonempty subsets of a metric space X.
Recall that dH is a metric on H(X). In [BBI01, Theorem 7.3.8] the following
result is proved:

Theorem 3.12 (Blaschke). Let X be a metric space. The metric spaces H(X)
and X are both compact or non-compact simultaneously.

We consider the metric space X × Y with the distance function

dX×Y((x, y), (x′, y′)) = max{dX(x, x′), dY(y, y′)}.

If X and Y are compact metric spaces, then X × Y is a compact metric
space. We also have that Pc(X, Y) = H(X × Y) and using Theorem 3.12 we
obtain that Pc(X, Y) is a compact metric space.

Proposition 3.13. Let X and Y be compact metric spaces. The set Rc(X, Y) is
closed in Pc(X, Y), and consequently, Rc(X, Y) is a compact metric space.
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Proof. It is sufficient to prove that for each σ ∈ Pc(X, Y) ∖Rc(X, Y) there
exists a neighborhood U which does not intersect with Rc(X, Y). Since
σ ̸∈ Rc(X, Y), either πX(σ) ̸= X or πY(σ) ̸= Y, where πX and πY are the
canonical projections. Suppose that the first condition holds, i.e., there exists
x ∈ X ∖ πX(σ). Since σ is a closed subset of the compact space X × Y, it
is compact itself, and therefore πX(σ) is compact in X. Hence there exists
an open ball Uε(x) such that Uε(x) ∩ πX(σ) = ∅. We can take Uε(x)× Y as
U. □

Now we define a function

f : (X × Y)× (X × Y) → R

(x, y, x′, y′) 7→ |dX(x, x′)− dY(y, y′)|.
It is clear that f is continuous. Notice that for each σ ∈ P(X, Y) we have

dis(σ) = sup{ f (x, y, x′, y′) : (x, y), (x′, y′) ∈ σ} = sup f |σ×σ.

Proposition 3.14. Let X and Y be compact metric spaces. Then the function
dis : Pc(X, Y) → R is continuous.

Proof. Since (X × Y)× (X × Y) is compact, the function f is uniformly con-
tinuous. Thus for any σ ∈ Pc(X, Y) and any ε > 0 there exists δ > 0 such
that for the open ball U = UX×Y

δ (σ) ⊂ X × Y of radius δ centered at σ we
have that

sup f |U×U ≤ sup f |σ×σ + ε.

We denote by V the open ball UPc(X,Y)
δ (σ) ⊂ Pc(X, Y) of radius δ centered at

σ. Since for any σ′ ∈ V we have σ′ ⊂ U, it follows that

dis(σ′) = sup f |σ′×σ′ ≤ sup f |U×U ≤ dis(σ) + ε.

Swapping σ and σ′, we get that |dis(σ)− dis(σ′)| ≤ ε, and hence the function
dis : Pc(X, Y) → R is continuous. □

We say that a correspondence R ∈ R(X, Y) is optimal if dGH(X, Y) =
1
2dis(R). We denote by Ropt(X, Y) the set of all optimal correspondences
between X and Y.

Theorem 3.15. For any two compact metric spaces X and Y we have that
Ropt(X, Y) ̸= ∅.
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Proof. By Proposition 3.14 the function dis : Rc(X, Y) → R is continuous, and
by the Proposition 3.13 the space Rc(X, Y) is a compact metric space. Hence
there exists R ∈ Rc(X, Y) such that dGH(X, Y) = 1

2dis(R), and we conclude
that R ∈ Ropt(X, Y). □

From the construction that relates each correspondence with a specific
pseudo-metric, we obtain the following result:

Corollary 3.16. For all compact metric spaces X and Y there exists a pseudo-
metric ρ on X ⊔ Y such that dGH(X, Y) = dH(X, Y, ρ).

We cannot expect that the pseudo-metric ρ from Corollary 3.16 is actually
a metric. For instance, let X = Y = S1. We know that dGH(X, Y) = 0. If there
exists a metric on X ⊔ Y such that 0 = dGH(X, Y) = dH(X, Y, ρ), then there
exist x ∈ X and y ∈ Y such that x ̸= y in X ⊔ Y and ρ(x, y) = 0, which is
contradictory with the fact that ρ is a metric.
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4. Distances between Banach spaces

The standard notion of distance between two Banach spaces is the Banach-
Mazur distance, which is defined by

dBM(X, Y) = log inf{∥T∥∥T−1∥ | T : X → Y is an isomorphism}.

The Banach-Mazur distance is only finite when X and Y are isomorphic. We
next introduce the Kadets distance and certain related notions of distance.
The Kadets distance is closely related to the Gromov-Hausdorff distance; see
[KO99]. We want to include Banach spaces in the range of the Gromov-
Hausdorff distance, such as lp spaces for p > 2, which are not Hilbert spaces.

We recall that if Z is a Banach space and X and Y are closed subspaces of Z
then the gap or opening Λ(X, Y) is defined as the Hausdorff distance between
the closed unit balls BX and BY of X and Y, i.e.,

Λ(X, Y) = max{sup
y∈BY

d(y, BX), sup
x∈BX

d(x, BY)}.

For X and Y arbitrary Banach spaces, we define the Kadets distance as

dK(X, Y) = inf
Z,ϕ,ψ

Λ(ϕ(X), ψ(Y)),

where the infimum is taken over all Banach spaces Z and all linear isometric
embeddings ϕ : X → Z and ψ : Y → Z.

This distance was introduced by Kadets, who proved for example that

lim
p→2

dK(lp, l2) = 0.

The Kadets distance is clearly related to the notion of Gromov-Hausdorff dis-
tance between metric spaces. It is natural to introduce the Gromov-Hausdorff
distance dGH(X, Y) between two Banach spaces X and Y as the Gromov-
Hausdorff distance between their closed unit balls. Formally it is defined as
dGH(X, Y) = dGH(BX, BY). Suppose d is a metric on the union BX ∪ BY which
coincides with the respective norm-distances on BX and BY. We can extend d
to X ∪ Y by defining d to coincide with the norm-distance on each of X and
Y and, for x ∈ X and y ∈ Y,

d(x, y) = inf
u∈BX ,v∈BY

{∥x − u∥X + d(u, v) + ∥y − v∥Y}.

Let us note that our definition applies to both real and complex Banach
spaces, but there are complex Banach spaces which are real-isometric but
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not even complex-isometric. In view of this, the Gromov-Hausdorff distance
is more natural for the category of real Banach spaces.

An elementary example of a two real-isomorphic Banach spaces which are
not complex-isomorphic is given by Kalton in [Kal95]. Bourgain in [Bou86]
gave an example with a probabilistic approach. Kalton gave an explicit con-
struction of a Banach space X so that X is not isomorphic to its complex
conjugate.

Given a Banach space X we define its complex conjugate X̂ to be the space
X equipped with the alternative scalar multiplication α

⊗
x = ᾱx.

Let ω denote the space of all complex-valued sequences. We let en be the
canonical basis vectors. Suppose f : [0, ∞) → C is a Lipschitz map, with
f (0) = 0. We define a map Ω : l2 → ω by

Ω f (x)(n) = x(n) f
(

log
(

∥x∥2

|x(n)|

))
.

Here we interpret the right-hand side to be zero if x(n) = 0. We then define
Z2( f ) to be the space of pairs (x, y) in l2 × ω such that

∥(x, y)∥ f = ∥x∥2 + ∥y − Ω f (x)∥2 < ∞.

It follows that Z2( f ) is a Banach space under a norm equivalent to the quasi-
norm ∥·∥ f . This space was considered in [KP79], but only the real case was
discussed. However, the switch to complex scalars and complex-valued f is
not a problem.

If s ∈ l∞ with ∥s∥∞ ≤ 1 then we have the estimate ∥Ω f (sx)− sΩ f (x)∥2 ≤
C0∥x∥2 where C0 depends on the Lipschitz constant of f , and this leads to
the fact that there is a constant C such that ∥(sx, sy)∥ f ≤ C∥(x, y)∥ f . It is
used frequently that if τ : N → N is a permutation and xτ(n) = x(τ(n))
then ∥(xτ, yτ)∥ f = ∥(x, y)∥ f .

We now specialise to the functions fα(t) = t1+iα for −∞ < α < ∞. We
write Z2(α) instead of Z2( fα) and Ωα instead of Ω fα

. The following statement
can be found in [Kal95], it is important for the following discussion.

Proposition 4.1. The complex conjugate of Z2(α) is isomorphic to Z2(−α).

Theorem 4.2. If Z2(α) is isomorphic to Z2(β) then α = β.
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Proof. We suppose that α ̸= 0 and that Z2(α) is isomorphic to Z2(β). Let
a = 1 + iα and b = 1 + iβ.

We observe the following inequalities for t > s ≥ 0:

|tb − sb| ≥ t − s,(1)

|tb − sb| ≤ |b|(t − s),(2)

|tb − sb − bsb−1(t − s)| ≤ 1
2
|b|2
|s| (t − s)2.(3)

For w ∈ l2 we define

Ω′
β(w)(n) = w(n)

(
log|w(n)−1|

)b
.

Note that

∥Ωβ(w)− Ω′
β(w)∥2 ≤ |b||log∥w∥2|∥w∥2.

If A ⊂ N is finite then we let ξA = ∑n∈A en.
We will suppose the existence of an operator T : Z2(α) → Z2(β) such that

∥T∥ < 1 and c > 0, so that, for every n, ∥T(en, 0)∥β, ∥T(0, en)∥β > c. We
say that T is admissible if it satisfies these properties for some c > 0. If
we have an admissible operator, then we can find an admissible operator
T and an increasing sequence of integers {pn}n so that for suitable sequences
u, v, w, y ∈ ω we have, setting Bn = {pn−1 + 1, . . . , pn}, T(en, 0) = (uξBn , vξBn)
and T(0, en) = (wξBn , yξBn). Here uξBn = ∑k∈Bn u(k)ek.

We can show that we must have limn∥wξBn∥2 = 0. So it follows, by passing
to a subsequence and rearranging that we can further suppose that w = 0.
We then have c ≤ ∥yξBn∥2 ≤ 1 for all n and some c > 0. We can also show by
contradiction that we cannot have infn∥uξBn∥ = 0.

So there exists an admissible T so that infn∥uξBn∥ > 0. Under these cir-
cumstances we can apply a diagonalization procedure and a subsequence ar-
gument to produce an operator S : Z2(α) → Z2(β) with ∥S∥ < 1 and so that
S(en, 0) = (λen, µen) and S(0, en) = (0, νen) with λ ̸= 0. Let A = {1, 2, . . . , N}
and σ = 1

2 log(N). Then∥∥∥S(N−1/2ξA, σaN−1/2ξA

∥∥∥
2
< 1.

Hence, ∣∣∣νσa − λ(σ + log|λ|)b + µ
∣∣∣ ≤ 1.
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As this holds for all N we must have a = b or α = β, as required. □

With this theorem we have an immediate corollary which give us what we
are looking for:

Corollary 4.3. The space Z2(α) is not isomorphic to its complex conjugate
when α ̸= 0.

This example shows that, in the case of Banach spaces, we need to restrict
Gromov-Hausdorff distance to the real case.
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5. Gromov-Hausdorff distances between spheres

In this section we follow the articles [LMS21] and [ABC+22]. We consider
the problem of estimating the Gromov-Hausdorff distance dGH(S

n, Sm) be-
tween spheres endowed with their geodesic distance.

We recall that the diameter of a bounded metric space (X, dX) is the number

diam(X) = sup
x,x′∈X

dX(x, x′).

For m ∈ N ∪ {∞}, we view the m-dimensional sphere

Sm = {(x1, . . . , xm+1) ∈ Rm+1 | x2
1 + · · ·+ x2

m+1 = 1}
as a metric space by endowing it with the geodesic distance: For any two
points x, x′ ∈ Sm the geodesic distance between them is

dSm(x, x′) := arccos(⟨x, x′⟩) = 2 arcsin
(

dE(x, x′)
2

)
,

where dE denotes the canonical Euclidean metric inherited from Rm+1.
Note that for m = 0 this definition implies that S0 consists of two points

at distance π, and that S∞ is the unit sphere in l2 with distance given by the
expression above.

We recall that for any two bounded metric spaces X and Y one always has
that

dGH(X, Y) ≤ 1
2

max{diam(X), diam(Y)}.

This means that in the case of spheres with the geodesic metric we have the
following bound:

(4) dGH(S
m, Sn) ≤ π

2
for all 0 ≤ m ≤ n.

Here we state a theorem from Lyusternik and Schnirelmann, which can be
found in [Bol06, p.118], that follows from the Borsuk-Ulam theorem. This
theorem will be helpful for proving some bounds for the Gromov-Hausdorff
distance in terms of correspondences.

Theorem 5.1 (Lyusternik- Schnirelmann). Let n ∈ N, and {U1, . . . , Un+1} be
a closed cover of Sn. Then there is i0 ∈ {1, . . . , n + 1} such that Ui0 contains
two antipodal points.
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Lemma 5.2. For any integer m ≥ 1 and any finite metric space P with cardi-
nality at most m + 1 we have that dGH(P, Sn) ≥ π/2.

Proof. Suppose m ≥ 1 is given. Assume that R is an arbitrary correspondence
between Sm and P. We claim that dis(R) ≥ π. For each p ∈ P let R(p) :=
{z ∈ Sm | (x, p) ∈ R}. Then {R(p) | p ∈ P} is a closed cover of Sm. Since
P has cardinality at most m + 1, Theorem 5.1 yields that for some p0 ∈ P we
have that diam(R(p0) = π. The claim follows since

dis(R) ≥ max
p∈P

diam(R(p)). □

Hence we have that for each integer n ≥ 1, if P is a finite metric space with
cardinality at most n + 1 and diam(P) ≤ π then dGH(P, Sn) = π/2.

Theorem 5.3 (Distance to S0). For any integer n ≥ 1,

dGH(S
0, Sn) =

π

2
.

Proof. The proof follows from the fact that S0 is a finite metric space with
cardinality 2 and that diam(S0) = π. □

We can use the same argument in the proof of Lemma 5.2 to obtain the
following:

Corollary 5.4. Let R be any correspondence between a finite metric space P
and S∞. Then dis(R) ≥ π.

Proof. As in the proof of Lemma 5.2, the correspondence R induces a closed
cover of S∞. Thus, it induces a closed cover of any finite dimensional sphere
S|P|−1 ⊂ S∞. Hence we can apply Theorem 5.1 to obtain the result. □

Actually a small modification of the proof of Corollary 5.4 gives us the
following stronger claim. We say that a metric space X is totally bounded if
and only if for every real number ε > 0, there exists a finite collection of open
balls of radius ε whose centers lie in X and whose union contains X. This is
equivalent to the existence of a finite ε-net.
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Theorem 5.5. Let X be any totally bounded metric space. Then

dGH(X, S∞) ≥ π

2
.

Proof. Fix ε > 0 and let Pε be a finite ε-net for X. Then, by the triangle
inequality and Corollary 5.4, we have that

dGH(X, S∞) ≥ dGH(S
∞, Pε)− dGH(X, Pε) ≥

π

2
− ε.

Since ε > 0 was arbitrary, this implies the claim. □

The Borsuk-Ulam theorem implies that, for any positive integers n > m
and for any given continuous function ϕ : Sn → Sm, there exist two antipo-
dal points in the higher dimensional sphere which are mapped to the same
point in the lower dimensional sphere. This forces the distortion of any such
continuous map to be π.

In contrast we prove that there always exists a surjective, antipode preserv-
ing and continuous map ψm,n from Sm to Sn.

Theorem 5.6. For all integers 0 < m < n < ∞, there exists an antipode
preserving continuous surjection ψm,n : Sm → Sn, i.e., ψm,n(−x) = −ψm,n(x)
for every x ∈ Sm.

In order to prove Theorem 5.6, we need to work a bit more. Spherical
suspensions and space-filling curves are key technical tool for this purpose.
The existence of space-filling curves is well known; see [Pea90].

Theorem 5.7 ([Pea90]). There exists a continuous and surjective map

H : [0, 1] → [0, 1]2.

By resorting to space-filling curves, we can prove the following proposition
which will be crucial.

Proposition 5.8. There exists an antipode preserving continuous surjection

ψ1,2 : S1 → S2.
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Proof. We denote by Conv(v1, . . . , vd) the convex hull of the vectors v1, . . . , vd.
Let ei for i = 1, 2, 3 be the canonical orthonormal basis of R3. We define the
3-dimensional cross-polytope by

B̂3 = Conv(e1,−e1, e2,−e2, e3,−e3) ⊂ R3.

Then, its boundary ∂B̂3, which consists of eight triangles

Conv(e1, e2, e3), Conv(e1, e2,−e3), . . . , Conv(−e1,−e2,−e3),

is homeomorphic to S2.
Now, we divide S1 into eight closed circular arcs with length equal to π/4.

We are able to build a continuous and surjective map

ϕ1 : [0, π/4] → Conv(e1, e2, e3) such that ϕ1(0) = e1, ϕ1(π/4) = e2

as follows.
Since Conv(e1, e2, e3) is homeomorphic to [0, 1]2, by Theorem 5.7 there ex-

ists a continuous and surjective map ϕ′
1 : [π/12, π/6] → Conv(e1, e2, e3). Then

we can extend its domain using linear interpolation between e1 and ϕ′(π/12),
and between e2 and ϕ′(π/6) to give rise to ϕ1. By using an analogous proce-
dure, we can construct continuous and surjective maps

ϕ2 : [π/4, π/2] → Conv(−e1, e2, e3) such that ϕ2(π/4) = e2, ϕ2(π/2) = e3,

ϕ3 : [π/2, 3π/4] → Conv(e1,−e2, e3) such that ϕ3(π/2) = e3, ϕ3(3π/4) = −e2,

ϕ4 : [3π/4, π] → Conv(−e1,−e2, e3) such that ϕ3(3π/4) = −e2, ϕ3(π) = −e1.

We construct the remaining ones, ϕ5, ϕ6, ϕ7, ϕ8 by suitably reflecting the ones
already constructed:

ϕ5 : [π, 5π/4] → Conv(−e1,−e2,−e3) such that ϕ5(x) = −ϕ1(−x),

ϕ6 : [5π/4, 3π/2] → Conv(e1,−e2,−e3) such that ϕ6(x) = −ϕ2(−x),

ϕ7 : [3π/2, 7π/4] → Conv(e1, e2,−e3) such that ϕ7(x) = −ϕ3(−x),

ϕ8 : [7π/4, 2π] → Conv(−e1, e2,−e3) such that ϕ8(x) = −ϕ4(−x).

Finally, by gluing all eight maps ϕi, we build an antipode preserving contin-
uous and surjective map ψ̂1,2 : S1 → ∂B̂3. Using the canonical (closest point
projection) homeomorphism between B̂3 and S2, we obtain ψ1,2 : S1 → S2.
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From its construction the map ψ1,2 is continuous, surjective, and antipode
preserving. □

Suppose given m, n ∈ N and a map f : Sm → Sn. One can lift this map f
to a map from Sm+1 to Sn+1 in the following way: A point from Sm+1 can be
expressed as (p sin θ, cos θ) for some p ∈ Sm and θ ∈ [0, π]. Then, the spherical
suspension of f is the map

S f : Sm+1 → Sn+1

(p sin θ, cos θ) 7→ ( f (p) sin θ, cos θ).

Lemma 5.9. If the map f : Sm → Sn is continuous, surjective, and antipode
preserving, then S f : Sm+1 → Sn+1 is also continuous, surjective, and an-
tipode preserving.

Proof. From the construction it is clear that S f is continuous and surjective.
Since f is antipode preserving, we know that f (−p) = − f (p) for every p ∈
Sm. Hence,

S f (−p sin θ,− cos θ) = S f (−p sin(π − θ), cos(π − θ))

= ( f (−p) sin(π − θ), cos(π − θ))

= (− f (p) sin(π − θ), cos(π − θ))

= −S f (p sin(π − θ), cos(π − θ))

for any p ∈ Sm and θ ∈ [0π]. Thus, S f is also antipode preserving. □

Using induction we can obtain the following corollary:

Corollary 5.10. For any integer m > 0, there exists a continuous, surjective,
and antipode preserving map

ψm,m+1 : Sm → Sm+1.

Proof. We have the existence of ψ1,2 from Proposition 5.8. For general m, it
suffices to apply Lemma 5.9 in the induction hypothesis. □

38



Proof of Theorem 5.6. By Corollary 5.10, there are continuous, surjective, and
antipode preserving maps ψm,m+1, ψm+1,m+2, . . . , ψn−1,n. Then the map

ψm,n : Sm → Sn

p 7→ ψm,n(p) := ψn−1,n ◦ · · · ◦ ψm,m+1(p)

is also continuous, surjective, and antipode preserving. This is due to the fact
that composition map of two continuous, surjective, and antipode preserving
maps is continuous, surjective, and antipode preserving. □

Theorem 5.11. For all 0 < m < n < ∞ we have that

dGH(S
m, Sn) <

π

2
.

Proof. Let ψm,n : Sm → Sn be an antipode preserving continuous surjection.
Recall that the graph of a surjective map can be seen as a correspondence, so
let Rm,n = graph(ψm,n). In order to prove the theorem, it is enough to prove
that dis(Rm,n) = dis(ψm,n) < π.

Since ψm,n is continuous and Sm is compact, the supremum in the definition
of the distortion is a maximum:

dis(ψm,n) = max
x,x′∈Sm

|dSm(x, x′)− dSn(ψm,n(x), ψm,n(x′))|.

Let x0, x′0 ∈ Sm attain the maximum. We may assume that x0 ̸= x′0, otherwise
dGH(S

m, Sn) ≤ 1
2dis(ψm,n) = 0, which is a contradiction since n ̸= m.

In this case suppose first that −x0 ̸= x′0. We have that

0 < dSm(x, x′) < π and 0 ≤ dSn(ψm,n(x), ψm,n(x′)) ≤ π.

Thus

|dSm(x, x′)− dSn(ψm,n(x), ψm,n(x′))| < π.

Assume now that −x0 = x′0. In this case dSm(x, x′) = dSn(ψm,n(x), ψm,n(x′)) =
π since ψm,n is antipode preserving. Thus, we also have that

0 = |dSm(x, x′)− dSn(ψm,n(x), ψm,n(x′))| < π. □(5)
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Observe that the antipode preserving property of ψm,n given in Theorem
5.6 is stronger than what we need in the proof of Theorem 5.11. Indeed, all
one needs is that ψm,n(x) ̸= ψm,n(−x) for any x ∈ Sm.

Now we focus on giving some non trivial lower bound for the Gromov-
Hausdorff distance between spheres of different dimensions. We will make
use of Vietoris-Rips complexes in order to transform an odd function f into
a continuous odd map between Vietoris-Rips complexes of spheres.

We follow the definitions of [LMS21], but [MBZ03, Chapter 5] contains
more background. We have the following concepts and properties:

• A Z/2 space is a topological space X equipped with an involution map,
denoted by x 7→ −x, such that −(−x) = x for all x ∈ X. We say that a
Z/2 space X is free if −x ̸= x for all x ∈ X.

• If X and Y are Z/2 spaces, then a function f : X → Y is odd if f (−x) =
− f (x) for all x ∈ X.

• If X, Y, Z are Z/2 spaces, and f : Y → Z, g : X → Y are odd, then f ◦ g
is odd.

• The sphere Sn is a Z/2 space, since it inherits the involution map of
Rn+1.

• The index of a Z/2 space X is defined to be

ind(X) = min{k ≥ 0 | there exists an odd map X → Sk}.

• The coindex of a Z/2 space X is defined to be

coind(X) = max{k ≥ 0 | there exists an odd map Sk → X}.

• For all n ≥ 0, we have ind(Sn) = coind(Sn) = n, by the Borsuk-Ulam
theorem.

• For all Z/2 spaces X, we have ind(X) ≥ coind(X), by the Borsuk-
Ulam theorem.

• If there is an odd map X → Y, then ind(X) ≤ ind(Y) and coind(X) ≤
coind(Y).

• If the Z/2 space X is not free, then ind(X) = coind(X) = ∞ because
we may construct an odd map Sk → X for any k ≥ 0 by taking the
constant map to a fixed point of the Z/2 action on X.

• A Z/2 metric space is a Z/2 space which is also a metric space, and
that satisfies dX(x, x′) = dX(−x,−x′) for all x, x′ ∈ X.

40



• Let X, Y be Z/2 spaces, and let f0, f1 : → Y be odd maps. Then a
Z/2 homotopy from f0 to f1 is a homotopy H : X × [0, 1] → Y such that
H(·, t) is odd for all t ∈ [0, 1]. In this case we say that f0 and f1 are
Z/2 homotopic.

• Let X, Y be Z/2 spaces. We say that X, Y are Z/2 homotopy equivalent,
denoted X ∼Z/2 Y, if there exists odd maps f : X → Y and g : Y → X
such that f ◦ g is Z/2 homotopic to the identity map on Y and g ◦ f is
Z/2 homotopic to the identity map on X.

Note that if X ∼Z/2 Y, then ind(X) = ind(Y) and coind(X) = coind(Y).
We say that a space X is k-connected if the homotopy groups πi(X) are

trivial for i ≤ k. An important property is the following:

(6) If a Z/2 space X is (k − 1)-connected, then ind(X) ≥ coind(X) ≥ k.

We identify a simplicial complex with its realization. For example, if
{x0, . . . , xm} is a simplex in a simplicial complex, then we write ∑i λixi to re-
fer to a point in the geometric realization of its simplicial complex, where the
barycentric coordinates λi ≥ 0 satisfy ∑i λi = 1. A simplicial map between
two simplicial complexes indeed induces a continuous function between their
geometric realizations.

For a metric space X and r ≥ 0, the Vietoris-Rips simplicial complex VR(X; r)
has vertex set X and a nonempty finite subset σ ⊂ X is a simplex when
diam(σ) ≤ r. The Vietoris-Rips complex is a clique complex, which means
that for every nonempty finite σ ⊂ X, the simplex σ is in VR(X; r) if and only
if the edge {u, v} is in VR(X; r) for every pair u, v ∈ σ.

If X is a Z/2 metric space and r ≥ 0, we extend the involution on X to an
involution on VR(X; r) by defining

−∑
i

λixi := ∑
i

λi(−xi).

Note that if X is a free Z/2 metric space then VR(X; r) is a free Z/2 space
whenever r < infx∈X dX(x,−x). In particular, VR(Sn; r) is a free Z/2 space
for r < π.

Definition 5.12. For k ≥ n, we define

cn,k = inf{r ≥ 0 | there exists an odd map Sk → VR(Sn; r)}.

We recall that a subset A of a metric space X is an ε-covering if for every
point x ∈ X there exists a point a ∈ A such that dX(a, x) < ε.
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Lemma 5.13. For X ⊂ Sk a finite (ε/2)-covering with X = −X, there exists
an odd map ϕ : Sk → VR(X; ε).

Proof. It suffices to consider ε < π, otherwise VR(X; ε) is not a free Z/2 space
and coind(VR(X; ε)) = ∞. Let {ρx}x∈X be a Z/2 invariant partition of unity
subordinated to the cover {B(x, ε/2)}x∈X of Sk. That is,

• ρx is a nonnegative continuous real-valued function supported in the
ball B(x, ε/2).

• ∑x∈X ρx(y) = 1 for all y ∈ Sk.
• ρ−x(−y) = ρx(y) for all x ∈ X and y ∈ Sk.

To see that such a Z/2 partition of unity exists, note that it can be obtained
from a (standard) partition of unity on the quotient space RPn.

Define the map ϕ : Sk → VR(X; ε) by ϕ(y) = ∑x∈X ρx(y)x. Note that any
point x whose coefficient in ϕ(y) is positive must have dSk(x, y) < ε/2 because
ρx is supported in B(x, ε/2). Therefore, diam{x ∈ X | ρx(y) > 0} < ε, so ϕ(y)
is a well defined point in VR(X; ε). Since each ρx is continuous, so is ϕ. Since
−X = X, we can compute that

ϕ(−y) = ∑
x∈X

ρx(−y)x = ∑
x∈X

ρ−x(y)(x) = ∑
x∈−X

ρx(y)(−x)

= ∑
x∈−X

ρx(y)(−x) = ∑
x∈X

ρx(−y)(x) = ϕ(−y).

Thus ϕ is an odd map. □

Choosing a different partition of unity will produce a map that is homo-
topic to ϕ. Indeed, given two partitions of unity {ρ1

x}x∈X and {ρ2
x}x∈X, a

homotopy between the corresponding maps ϕ1, ϕ2 can be given by a straight
line homotopy H(·, t) = tϕ1 + (1 − t)ϕ2.

Lemma 5.14. A function f : X → Y between metric spaces induces a simpli-
cial map f̂ : VR(X; r) → VR(Y; r + dis( f )) for any r ≥ 0. If X, Y are Z/2
metric spaces and f is odd, then f̂ is also odd.

Proof. We define f̂ : VR(X; r) → VR(Y; r + dis( f )) by sending a vertex x ∈
X to f (x) ∈ Y, and then extending linearly to simplices. In other words,
f̂ ([x0, . . . , xm]) = [ f (x0), . . . , f (xm)]. If diam(σ) ≤ r, then by definition of
distortion, diam( f (σ)) ≤ r + dis( f ). Thus, f̂ is well defined, simplicial, and
continuous on the underlying geometric realizations.
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If both X, Y are Z/2 metric spaces and f is an odd function, then

f̂

(
−∑

i
λixi

)
= f̂

(
∑

i
λi(−xi)

)
= ∑

i
λi f (−xi) = −∑

i
λi f (xi). □

This lemma shows how to turn a possibly discontinuous function into a
continuous one.

For each integer n ≥ 1, recall the natural isometric embedding of Sn−1 to
the equator E(Sn) of Sn:

tn−1 : Sn−1 ↪→Sn

(x1, . . . , xn) 7→(x1, . . . , xn, 0).

Also, define the sets A(Sn) ⊂ Sn, which are usually called helmets:

Definition 5.15. Let us define

A(S0) := {1},

A(S1) := {(cos θ, sin θ)|θ ∈ [0, π)}.

Moreover, for general n ≥ 1, we define inductively

A(Sn) := H>0(S
n) ∪ tn−1(A(Sn−1)),

where H>0(S
n) = {(x1, . . . , xn+1) ∈ Sn | xn+1 > 0}.

Observe that, for any n ≥ 0,

A(Sn) ∩ (−A(Sn)) = ∅ and A(Sn) ∪ (−A(Sn)) = Sn.

The following lemma is simple but critical.

Lemma 5.16. For any m, n ≥ 0, let C ⊂ Sn be a nonempty set such that
C ∩ (−C) = ∅ and let ϕ : C → Sm be any map. Then, the extension ϕ∗ : C ∪
(−C) → Sm of ϕ defined by ϕ∗(x) = ϕ(x) for all x ∈ C and ϕ∗(−x) = −ϕ(x)
for all x ∈ −C is an antipode preserving map and satisfies that dis(ϕ∗) =
dis(ϕ).

Proof. By definition ϕ∗ is antipode preserving. Now for x, x′ ∈ C we have

|dSn(x,−x′)− dSm(ϕ∗(x), ϕ∗(−x′))| = |(π − dSn(x, x′))− (π − dSm(ϕ(x), ϕ(x′)))|
= |dSn(x, x′)− dSm(ϕ(x), ϕ(x′))| ≤ dis(ϕ)
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and

|dSn(−x,−x′)− dSm(ϕ∗(−x), ϕ∗(−x′))| = |dSn(x, x′)− dSm(ϕ(x), ϕ(x′))|
≤ dis(ϕ).

Hence we have that dis(ϕ∗) = dis(ϕ). □

Theorem 5.17. For all k ≥ n, the following inequalities hold:

2 · dGH(S
n, Sk) ≥ inf{dis( f ) | f : Sk → Sn is odd} ≥ cn,k.

Proof. Let k ≥ n and let f : Sk → Sn be an odd function. The last inequality
follows from the claim that dis( f ) ≥ cn,k. Indeed, let ε > 0 and choose a
finite Z/2 invariant ε-covering X ⊂ Sk. By Lemma 5.13 we get an odd map
Sk → VR(X; ε), and by Lemma 5.14 the restriction map f|X : X → Sn induces
a continuous odd map VR(X; ε) → VR(X; ε + dis( f )). Their composition

Sk → VR(X; ε) → VR(X; ε + dis( f ))

is continuous and odd, showing that ε + dis( f ) ≥ cn,k for all ε > 0. Hence
dis( f ) ≥ cn,k.

The first inequality is the "helmet trick" from [LMS21]. Lemma 5.16 states
that any function h : Sk → Sn can be modified to obtain an odd function
f : Sk → Sn with dis( f ) ≤ dis(h). Therefore, since

2 · dGH(S
n, Sk) = inf

g,h
max{dis(h), dis(g), codis(h, g)}

where the infimum is taken over all maps h : Sk → Sn and g : Sn → Sk,

2 · dGH(S
n, Sk) ≥ inf{dis(h)|h : Sk → Sn} ≥ inf{dis( f )| f : Sk → Sn is odd }.

□

Now we show how strong is Theorem 5.17 by describing the known values
of the constants cn,k. These results depend on the topology of Vietoris-Rips
complexes and thickenings of spheres. Indeed, the topology of VR(Sn; r)
constrains how large the scale r must be in order for the complex to admit an
odd map from the k-sphere.

We begin with some basic properties that follow from the definition of cn,k.
The inclusion Sk ↪−→ Sk′ implies that cn,k ≤ cn,k′ for k ≤ k′. Furthermore,
the inclusion VR(Sn′

; r) ↪−→ VR(Sn; r) implies that cn,k ≤ cn′,k′ for k ≤ k′ and
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n′ ≤ n. Since the diameter of Sn is π, the complex VR(Sn; π) is contractible
and therefore cn,k ≤ π for all n ≤ k.

We have that cn,n = 0 since VR(Sn; ε) ≃Z/2Z Sn for all ε > 0 sufficiently
small. Also we can see that c0,k = π for all k > 0.

Theorem 5.18. For all l ≥ 1, we have c1,2l+1 = c1,2l =
2πl

2l+1 .

In order to prove this theorem we have to introduce what Vietoris-Rips
metric thickenings are. We replace the points of the simplices in this defi-
nition with the corresponding finitely supported probability measures. That
is, we define the Vietoris-Rips metric thickening VRm(X; r) to be the subspace
of the finitely supported probability measures P consisting of all measures µ

such that supp(µ) has diameter at most r. The topology of VRm(X; r) is the
metric topology given by the 1-Wasserstein distance. For more details, see
[Moy22].

Proof. These values are related to the homotopy types of the simplicial com-
plexes VR(S1; r) and of the metric thickenings VRm(S1; r). We can com-
pute the homotopy types of these simplicial complexes VR(S1; r) ≃ S2l+1

for 2πl
2l+1 ≤ 2π(l+1)

2l+3 . The homotopy types of these metric thickenings are de-

termined in [Moy22] as VRm(S1; r) ≃ S2l+1 for 2πl
2l+1 ≤ 2π(l+1)

2l+3 .
For l > 2πl

2l+1 , VR(S1; r) is 2l-connected. Then from (6) we obtain an odd
map S2l+1 → VR(Sp1; r). This shows that c1,2l ≤ c1,2l+1 ≤ 2πl

2l+1 . On the other
hand, as in Section 5.1 of [ABF20], we can produce an odd map VRm(S1; r) →
R2l ∖ {0} ≃Z/2Z S2l−1 for r < 2πl

2l+1 . This shows that c1,2l ≥ c1,2l+1 ≥ 2πl
2l+1 .

Hence c1,2l = c1,2l+1 = 2πl
2l+1 . □

Theorem 5.19. For all n ≥ 1, we have cn,n+2 = cn,n+1 = rn := arccos
(

−1
n+1

)
.

Proof. These values follow from knowledge about the homotopy types of
VR(Sn; r) and VRm(Sn; r). From results in [AAF18, Proposition 5.3] and
[LMO20, Corollary 7.1] we have that VRm(Sn; r) ≃ Sn and VR(Sn; r) ≃ Sn

for all r < rn. Recall that the alternating group A(n + 2) can be seen as a
subgroup of SO(n) even though there is no canonical way to do this; see
[AHP22, Section 5.1] for more details. Furthermore, [AAF18, Theorem 5.4]
provides a homotopy equivalence VRm(Sn; rn) ≃ Sn ∗ SO(n+1)

A(n+2) . Since Sn is
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(n − 1)-connected and SO(n+1)
A(n+2) is 0-connected, their join is (n + 1)-connected.

This shows that cn,n+1 ≤ cn,n+2 ≤ rn. On the other hand, [AAF18, Proposition
5.3] produces an odd map VRm(Sn; r) → Rn+1 ∖ {0} ≃Z/2Z Sn for r < rn,
and the same construction provides an odd map VR(Sn; r) → Rn+1 ∖ {0}.
Therefore, the Borsuk-Ulam theorem implies that there cannot exist odd
maps Sn+1 → VRm(Sn; r) or Sn+1 → VR(Sn; r) for r < rn. This shows that
cn,n+1 ≥ cn,n+2 ≥ rn. Hence cn,n+1 = cn,n+2 = rn. □

Exact values of cn,k are not known for n ≥ 2 and k ≥ n + 3, but we can
provide some bounds on cn,k in terms of coverings of projective spaces. For a
metric space X, we denote by covX(k) the infimum over all ε > 0 for which
there exists a finite set A ⊂ X of cardinality |A| ≤ k such that the balls of
radius ε about A cover X, i.e., such that A is an ε-covering of X. Let RPn

be the projective space obtained as the quotient Sn/(x ∼ −x), and equipped
with the quotient metric. Explicitly,

dRPn({x,−x}, {x′,−x′}) = min{dSn(x, x′), dSn(−x,−x′)},

so RPn has diameter π/2.

Theorem 5.20. For all k ≥ n ≥ 1, we have that cn,k ≥ π − 2covRPn(k).

Proof. In [ABF21, Theorem 3] it is proved that if δ ≥ covRPn(k) then there
is an odd map VRm(Sn; π − 2δ) → Sk−1, and so coind(VRm(Sn; π − 2δ)) ≤
ind(VRm(Sn; π − 2δ)) ≤ k − 1. Therefore, there is no odd map defined on
Sk → VRm(Sn; π − 2δ) unless δ ≤ covRPn(k). Replacing π − 2δ by r we con-
clude that there is no odd map Sk → VRm(Sn; r) unless r ≥ π − 2covRPn(k).
This is tight when n = 1 and k is odd. □

For any n ≥ 1, we have that

lim
k→∞

2covRPn(k) = 0.

Corollary 5.21. Let n ≥ 1 be fixed. The distortion of an odd function f : Sk →
Sn tends towards its maximum possible value π as k goes to infinity.
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Now we give an upper bound on the Gromov-Hausdorff distance between
Sn and Sn+1 for all n ≥ 1. For this we need to introduce several geometric ob-
jects. For all n ≥ 1, we may inscribe a regular (n + 1)-simplex in Sn. Any pair
of vertices of the inscribed simplex lie on the same geodesic distance apart,
and this distance is exactly rn = arccos( −1

n+1). The facets of the inscribed
simplex may be projected radially outward, obtaining (n + 2) sets that cover
Sn, and which are additionally closed, geodesically convex, and pairwise iso-
metric. We call these radially projected facets regular geodesic simplices in Sn.
The diameters of these simplices are computed in [San46] and the value tn is
arccos (−n+1

n+3) whenever n is odd and arccos (−
√

n
n+4) whenever n is even.

This diameter is achieved between points at the centers of opposite faces
which each contains half the vertices of the simplex and rounded appropri-
ately whenever there is an odd number of vertices. Notice that rn ≤ tn for
every n, and the equality holds only for n = 1. As n → ∞ we have that
rn → π/2 and tn → π. In particular, tn > 2π/3 for all n ≥ 2.

These quantities rn, tn played an essential role in the work of Lim, Mémoli,
and Smith [ABC+22], who showed that rn ≤ 2dGH(S

n, Sn+1) ≤ tn.
We first make an important observation regarding the distortion of rela-

tions which only pair together points that lie a bounded distance from one
another.

Lemma 5.22. Let (X, dX) be a metric space, and Y ⊂ X be a subspace with
induced metric dY. Let R ⊂ X × Y be any relation, and define

εR := sup{dX(x, y) | (x, y) ∈ R}.

Then the distortion of R is at most 2εR.

Proof. Let (x, y) and (x′, y′) be in R. We want to bound the quantity |dX(x, x′)−
dY(y, y′)|. Applying the triangle inequality we obtain

dX(x, x′) ≤ dX(x, y) + dX(y, y′) + dX(y′, x′) ≤ 2εR + dX(y, y′).

We can also use the symmetry to see that dX(y, y′) ≤ 2εR + dX(x, x′). Hence
dis(R) ≤ 2εR. □

Recall that H(Sn+1) denotes the closed upper half hemisphere of Sn+1, and
let N ∈ H(Sn+1) denote the north pole. We consider the map τ : H(Sn+1)∖
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{N} → Sn which sends a point in the upper hemisphere to the unique nearest
point on the equator.

We require two important facts for the statement that follows. The most
crucial is that in order to bound dGH(S

n, Sn+1) it suffices to bound the dis-
tortion of correspondences between the upper hemisphere H(Sn+1) and the
equator of Sn (see Lemma 5.5 of [ABC+22]). Second, note that if x ̸= N
and x′ are points in H(Sn+1) and dSn+1(x, x′) ≥ π/2, then dSn+1(τ(x), x′) ≥
dSn+1(x, x′). Indeed, dSn+1(x, x′) ≥ π/2 if and only if ⟨x, x′⟩ ≤ 0, and since
both x and x′ have nonnegative last coordinate we see that ⟨τ(x), x′⟩ ≤ ⟨x, x′⟩,
which implies that dSn+1(τ(x), x′) ≥ dSn+1(x, x′).

Theorem 5.23. For every n ≥ 1, we have that dGH(S
n, Sn+1) ≤ π/3.

Proof. We first construct a correspondence between Sn and Sn+1, and then we
bound its distortion.

Let P = {p1, . . . , pn+2} be the vertices of an inscribed regular (n + 1)- sim-
plex in Sn. For each i ∈ {1, . . . , n + 2}, let Fi be the geodesic convex hull of
P ∖ {pi}. So, for each i the set Fi is a regular geodesic simplex in Sn, and its
barycenter is −pi. We define

E :={p ∈ H(Sn+1) | dSn+1(p, N) > π/3},

Ci :={p ∈ H(Sn+1) | p ̸= N, τ(p) ∈ Fi, and dSn+1(p, N) ≤ π/3} ∪ {N}.

We define a correspondence R between H(Sn+1) and Sn as follows:

R := {(p, τ(p)) | p ∈ E} ⊔ {(p,−pi) | p ∈ Ci for some i}.

This is a correspondence since E and Ci cover H(Sn+1), and since (p, p) ∈ R
for every p ∈ Sn.

Now we argue that the distortion of R is at most 2π/3. Let (x, y), (x′, y′) ∈
R. We consider the following cases:
(1) Both x and x′ lie in E. By Lemma 5.22, the relation between E and Sn

consist of pairs (x, τ(x)) has distortion at most π/3. Here we have y =
τ(x) and y′ = τ(x′), so |dSn+1(x, x′)− dSn(y, y′)| is at most π/3.

(2) Neither x and x′ lie in E. Then we must have dSn+1(x, N) ≤ π/3 and
dSn+1(x′, N) ≤ π/3. Hence dSn+1(x, x′) ≤ 2π/3. Moreover both y and y′ lie
in P so dSn(y, y′) ≤ rn ≤ 2π/3. Thus we have that |dSn+1(x, x′)− dSn(y, y′)|
is at most 2π/3.
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(3) x ∈ E, x′ ̸∈ E, and dSn+1(x, x′) ≤ π/2. It is sufficient to show that
dSn(y, y′)− dSn+1(x, x′) ≤ 2π/3. Since y = τ(x), we have that dSn+1(x, y) ≤
π/6. Moreover, for some i ∈ {1, . . . , n + 2} we have that x′ ∈ Ci and
y′ = −pi. Every point in Ci has nonnegative inner product with −pi, so
dSn+1(x′, y′) ≤ π/2. Applying the triangle inequality twice, we obtain

dSn(y, y′) ≤ dSn+1(y, x) + dSn+1(x, x′) + dSn+1(x′, y′)

≤ π

6
+ dSn+1(x, x′) +

π

2
.

Hence |dSn(y, y′)− dSn+1(x, x′)| ≤ 2π/3.
(4) x ∈ E, x′ ̸∈ E, and dSn+1(x, x′) ≤ π/2. As in the previous case it is

sufficient to show that dSn(y, y′)− dSn+1(x, x′) ≤ 2π/3. We have that y =
τ(x), and since dSn+1(x, x′) > π/2 we infer that

dSn+1(x, x′) ≤ dSn+1(y, x′) ≤ dSn+1(y, y′) + dSn+1(x′, y′).

Consequently, dSn+1(x, x′)− dSn(y, y′) ≤ dSn+1(x′, y′). By the previous case
we have that dSn+1(x′, y′) ≤ π/2. □

In view of Theorems 5.17, 5.18 and 5.23, we have shown that in partic-
ular the Gromov-Hausdorff distance between S1 and S2 is equal to π/3 ≃
1.04719755120.
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6. Discussion

In this work we have seen how the Gromov-Hausdorff distance between
pseudo-metric spaces X and Y is defined in terms of embeddings into a com-
mon pseudo-metric space containing isometric copies of X and Y, following
[BBI01] and [KO99]. Then we have proved that this definition is equivalent to
considering only pseudo-metrics on the disjoint union X ⊔ Y as explained in
[BBI01]. This restricts greatly the collection of spaces that we need to consider
and allows us to understand that the Gromov-Hausdorff distance cannot nec-
essarily be achieved inside any common metric space. The simplest example
is to consider X = Y and suppose that the Gromov-Hausdorff distance is
attained within X ⊔ X. Since the Gromov-Hausdorff distance between X and
X itself is 0, there would exist different points in X ⊔ X for which the dis-
tance is 0. This is not allowed for a metric. Hence the remaining possibility is
that there exists a pseudo-metric on X ⊔ X for which the Gromov-Hausdorff
distance is achieved.

We related the original definition of the Gromov-Hausdorff distance be-
tween pseudo-metric spaces X and Y with the distortion of correspondences
between X and Y. Specifically, the Gromov-Hausdorff distance is half the
infimum of the distortion of all correspondences between the given spaces
X and Y, using [BBI01] as a reference. This relation allowed us to study
the Gromov-Hausdorff distance by considering the distortion as a continu-
ous function on the space of relations between X and Y. If we consider X
and Y to be compact metric spaces, then the distortion function is a contin-
uous function and the set of closed correspondences between X and Y is a
compact set; therefore there exists a correspondence for which the infimum
is achieved.

Following [KO99], we have introduced a generalization of the Gromov-
Hausdorff distance for Banach spaces. We proved that this generalization
is only useful when comparing real Banach spaces, since there exist real-
isometric Banach spaces that are not complex-isometric.

We have studied an estimate of bounds for the Gromov-Hausdorff dis-
tance between spheres of different dimensions. In this case, bounding the
Gromov-Hausdorff distance involves bounding the distortion of functions
between spheres of different dimensions. Using ideas from [LMS21] we have
proved that, in the case of spheres, it suffices to consider odd functions only.
Therefore, using Vietoris-Rips complexes and the Borsuk-Ulam theorem we
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can establish a lower bound for the Gromov-Hausdorff distance between
spheres. We can also provide an upper bound for the Gromov-Hausdorff
distance between spheres of consecutive dimensions. Therefore, in particu-
lar, we could prove that the Gromov-Hausdorff distance between S1 and S2

is dGH(S
1, S2) = π/3, as first shown in [LMS21].
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