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Abstract

The field of transformation groups studies continuous actions of groups on topological
spaces, in particular on CW-complexes. One of the fundamental questions that arises in
this context is to determine those finite groups that can act effectively on a given topological
space. A large amount of results are known about this issue, but it is not completely
answered yet. Even in the case of abelian groups actions or elementary groups actions the
question is highly nontrivial.

This project is devoted to a remarkable result regarding the description of those finite
abelian groups that act freely on a CW-complex. The result states that if X is a finite CW-
complex and (Z/p)n acts freely on X, with p prime, then the sum of the lengths of the
homology groups of X with coefficients in Z/p is bounded below by n + 1. Our study
has been restricted to the case p = 2, that was proved by Carlsson in 1983, with a modern
approach based on cohomological methods.



Introduction

Along this work we will denote the p-tori by

Zp := Z/(p).

for each p ∈ Z prime.

The theory of transformation group in as extensive field in mathematics that studies
topological spaces endowed with a continuous action of a group. In this context there is a
natural interest in necessary conditions for a topological space to admit a free action. This
question has obtained different answers while the study of transformation groups has been
developed.

This field was first introduced in the 1930’s and the 1940’s by P.A. Smith study of finite
groups actions. His work stated several remarkable results on the fixed points set XG of
the group action. Regarding our question on free spaces, an important result due to Smith
on free actions of p-tori is the following (see [Smi44]).

Theorem 0.1 (Smith). Let G = (Zp)n with p prime. Assume that G acts freely on the m-
dimensional sphere X = Sm. Then n = 1.

Substantial progress was achieved after the development of a modern approach based
on cohomological methods, which was introduced in A. Borel seminar in Princeton Univer-
sity (see [Bor+60]). In particular, an important tool was described, the Borel construction.

The use of these reformulation implied an improvement and better understatement
of P.A. Smith original results. Specifically, the study of free p-tori actions on finite CW-
complexes lead to the following result, that was proved by Carlsson ([Car83]) for p = 2
and by Baumgartner ([Bau93]) for p odd.

Theorem 0.2 (Carlsson - Baumgartner). Let G = (Zp)n with p prime and let X be a finite
CW-complex. Assume that G acts freely and cellularly on X. Then

∞

∑
n=−∞

λ(Hn(X; Z2)) ≥ n + 1.

In the above statement one considers that for X a G-space, the G-action extends to the
cohomology H•(X; k), with k a fields, hence H•(X; k) is a k[G]-modules. If J denotes the
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augmentation ideal of k[G], for M a k[G]-module the length λ(M) is defined as

λ(M) = max{λ : Jλ−1M ̸= 0}.

The aim of this project is to give a full description of the above result for the case
p = 2 following [Car83]. For that we have structured the project in two sections and two
additional appendices.

In the first chapter 1 we give an introduction to the basic concepts in the theory of
transformation groups and we prove some basic results. In this sense, we start in the first
section 1.1 by defining topological groups, G-spaces and G-CW-complexes, which are the
main objects of study of this field. In the second section 1.2 we establish the definition of
an equivariant cohomology theory over a category of G-spaces, and a comparison theorem
of cohomology theories is proved. In the following section 1.3 we describe one of the most
important tools in the study of transformation groups, which is the Borel construction, and
we give both a topological and an algebraic approach to these method, which we prove to
be equivalent. Finally, with a view towards studying (Z2)n-complexes, in the last section
1.4 we give an explicit description of the algebraic version of the Borel construction for the
case G = (Z2)n.

The second chapter 2 is devoted to explain the proof of Theorem 2.23 following the
procedure used by Carlsson in [Car83], which uses a purely algebraic approach. In the
first section 2.1 we introduce some results on differential graded modules which lead up
to the proof of Theorem 2.17, that is essential for the final prove. In the following section
2.2 we define the β functor, which latter on is observed to be analogous to the algebraic
version of the Borel construction, and we state several results on its homology to finally
prove Theorem 2.22, from which it is directly deduced the desired result. Finally, in 2.3 we
give a geometric interpretation of the statements in the previous section considered over a
finite CW-complex and we prove Theorem 2.23.

At the end of this project we have included two additional appendix chapters. In the first
appendix A we prove some results on homotopy theory that are needed along the work,
mainly the mapping cone construction and its main properties. In the second appendix
B we give an introduction to principal G-bundles, which are essential in the definition of
the Borel construction. After giving a proper description of these objects, we proceed in
section B.1 by proving an important equivalence between equivariant maps and sections
of bundles. Finally, in section B.2 we define universal principal G-bundles and classifying
spaces, we prove one of the main theorems on principal G-bundles, and we conclude with
the computation of some examples of universal principal G-bundles, which are used in the
discussion of the Borel construction.
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Chapter 1

Equivariant cohomology of
G-CW-complexes and the Borel
construction

In this chapter we give an introduction to the theory of transformation groups and we
describe the category of G-spaces and G-CW-complexes. Moreover, we describe the Borel
construction, which is an important tool in the study of transformation groups that allow
us to define an equivariant cohomology theory H∗G(X) of a G-space X. In the last section
we discuss the case of interest G = (Z2)n. The chapter has been based on [AP93] and
[Bre72].

1.1 Topological groups, G-spaces and G-CW-complexes

We start by introducing the object of study in the theory of transformation groups. In the
most general setup we will consider an action of a topological group G on a topological
space X.

By a topological group G we mean a Hausdorff topological space together with a con-
tinuous map G × G −→ G which defines on G a group structure in such a way that the
inverse map x 7→ x−1 is also continuous. The identity element of G is denoted by e.

Definition 1.1. Let G a topological group. A G-space is a Hausdorff topological space X with a
left action of G, that is a map G× X −→ X which satisfies that

a) (gg′)x = g(g′x) for all x ∈ X and g, g′ ∈ G;

b) ex = x for all x ∈ X, where e denotes the identity element in G.
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The action of G on X is free if for each x ∈ X the only element g ∈ G that leaves x fixed, gx = x,
is the identity g = e.

Definition 1.2. Let X, Y be G-spaces. A G-equivariant map, or a G-map, is a continuous map
f : X −→ Y which commutes with the group action, that is

f (gx) = g f (x) for all g ∈ G and x ∈ X.

Moreover, we say that two G-maps h0, h1 : X −→ Y are G-homotopic if there exists a G-map

H : X× I −→ Y

where I = [0, 1] with a trivial G-action, and such that H|X×{0} = h0 and H|X×{1} = h1.

From the above definitions it follows that for a fixed topological group G the set of
G-spaces and G-equivariant maps define the category of G-spaces GTop.

In a similar way as one proceeds in non-equivariant topology it is convenient to restrict
our study to the case of G-spaces that are G-homotopic to G-CW-complexes. The proper
definition of G-CW-complexes will be the following step.

Definition 1.3. An n-dimensional G-cell of type G/K is a G-space

G⧸K× Dn

with the G-action given by

G×
(

G⧸K× Dn
)
−→ G⧸K× Dn

(g, ([g′], x)) 7→ ([gg′], x),

where Dn denotes the n-dimensional ball and K ⊂ G is a subgroup. We say that G/K × Sn−1 is
the G-boundary of the G-cell G/K× Dn.

In the construction of G-CW-complexes we say that the G-space X is obtained by attach-
ing a disjoint union of n-dimensional G-cells to a G-space Y⊔

i∈I

(
G⧸Ki

× Dn
)

with Ki ⊂ G subgroup for each i ∈ I,

along the G-maps
ϕi : G⧸Ki

× Sn−1 −→ Y

if
X = Y ⊔

(
⊔i∈I

G⧸Ki
× Dn

)
/ ∼,

where for all ([g]i, s) ∈ G⧸Ki
× Sn−1

ϕi([g]i, s) ∼ ([g]i, s).

Notice that this procedure is completely analog to non-equivariant attaching maps in CW-
complexes. Then we define G-CW-complexes as the following.
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Definition 1.4. A G-CW-complex is the colimit in the category of G-space GTop of a sequence of
G-equivariant inclusions

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ,

with X0 a disjoint union of 0-dimensional G-cells and Xn obtained by attaching a disjoint union of
n-dimensional G-cells to Xn−1.

We say that a G-CW-complex is finite if it is built from finitely many G-cells and that it
is finite-dimensional if all its G-cells are of bounded dimension. For X a G-CW-complex
we call X/G the orbit space, which naturally inherits a structure of CW-complex. Notice
that the non-equivariant cells of X/G correspond to the orbit spaces of the G-cells of X
and the attaching maps in X/G are induced by the corresponding maps in X modulo the
G-action.

Since the construction of G-CW-complexes follows the same structure used in the defini-
tion of usual CW-complex, it can be proved that the standard topological and homological
properties of CW-complexes have they analogous counterpart on the equivariant setting,
which justifies the interest in focusing our study to G-spaces that are G-homotopic to G-
CW-complexes.

Let us consider some examples of G-CW-complexes.

Example 1.5. Let G = Z2 = {±1} and consider the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}
with the scalar multiplication G-action

G× Sn−1 −→ Sn−1

(g, x) 7→ gx.

Notice Sn−1 is a free G-space with the following decomposition as a G-CW-complex

X0 = G ∼= S0

Xm = Xm−1 ∪ϕm (G× Dm) for each 1 ≤ m < n

where

ϕm : G× Sm−1 −→ Xm−1 = Sm−1

(g, x) 7→ gx.

The orbit space X/G corresponds to the real projective space RPn−1 with the standard
cellular decomposition induced by the G-CW-complex structure of Sn−1.

Example 1.6. Let G = S1 the unit sphere and consider S2n−1 = {x ∈ Cn : ∥x∥ = 1} with
the G-action given in this case by complex multiplication

G× S2n−1 −→ S2n−1

(g, x) 7→ gx.

6
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Again Sn−1 is a free G-space with an analogous G-CW-complex decomposition

X0 = G ∼= S1

X1 = X0

X2m = X2m−1 ∪ϕ2m (G× D2m) for each 1 ≤ m < n

where

φ2m : G× S2m−1 −→ X2m−1 = X2m−2 = S2m−1

(g, x) 7→ gx.

Now the orbit space X/G is the complex projective space CPn−1 again with the standard
cellular decomposition induced by the G-CW-complex structure of S2n−1.

In the following sections we will thoroughly use the universal free G-space EG, that is
the total space of the universal principal G-bundle

EG −→ BG

and which can be endowed with a G-CW-complex structure. See Appendix B for an intro-
duction to principal G-bundles.

1.2 Equivariant cohomology theories of G-CW-complexes

The contemporary approach in the study of transformation groups emphasizes the im-
portance of cohomological methods. In this section our objective is to provide a general
description of the fundamental properties that a cohomological theory needs to satisfy
within the equivariant context.

Several equivariant cohomology theories may be defined over distinct categories of G-
spaces and the axioms that have to be fulfilled may depend on the context. Our focus
will be on equivariant cohomology theories defined over the category of finite G-CW-
complexes. We demand the following properties.

Definition 1.7. An equivariant cohomology theory h•G = {hn
G}n∈Z on finite G-CW-complex

is a family of contravariant functors from the category of finite G-CW-complex to the category of
R-modules over R, with R a commutative ring, which fulfils

A1) h•G is G-homotopy invariant, that is that h•G( f0) = h•G( f1) if f0, f1 : X −→ Y are G-homotopic;

A2) if X1, X2 are G-CW-complexes and X0 ⊂ X2 is a subcomplex, then if X is obtained by
attaching X2 to X1 along the G-map ϕ : X0 −→ X1 there exists a long exact Mayer-Vietoris
sequence given by

· · · −→ hq
G(X0) −→ hq+1

G (X) −→ hq+1
G (X1)× hq+1

G (X2) −→ hq+1
G (X0) −→ · · · .

7
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An analog definition for an equivariant homology theory naturally arises. However,
our interest lies in using a cohomology theory because its multiplicative structure will be
essential in the study.

To conclude this section we will prove a comparison theorem between equivalent co-
homology theories, which is a result that also has an analogous counterpart in the non-
equivariant setting.

Theorem 1.8. Let τ : h•G −→ k•G be a natural transformation between equivariant cohomology
theories in the sense of Definition 1.7. If τ(G/K) is an isomorphism for each K ⊂ G subgroup, then
for each finite G-CW-complex τ is an isomorphism .

Proof. Let K ⊂ G subgroup and consider the G-CW-complex

X = G/K× Sn−1 = X1 ∪ϕ X2

where X1 = G/K× D0, X2 = G/K× Dn−1 and

ϕ : X0 = G/K× Sn−2 −→ X1

is given by collapsing Sn−2 to one point. We proceed by induction on n to prove that
τ(G/K× Sn−1) is an isomorphism. If n = 1 we have that X0 = ∅, X1 = G/K× D0 ≃ G/K
and X2 = G/K× D0 ≃ G/K, hence by property A2 we have a commutative diagram

0 hq
G(X) hq

G(X1)× hq
G(X2) 0

0 kq
G(X) kq

G(X1)× kq
G(X2) 0

τ(X1)×τ(X2)τ(X)

and by property A1 we obtain τ(X1) and τ(X2) are isomorphisms, hence τ(X) is also an
isomorphism. For n > 1 by property A2 we also have a commutative diagram

hq−1
G (X1)× hq−1

G (X2) hq−1
G (X0) hq

G(X) hq
G(X1)× hq

G(X2) hq
G(X0)

hq−1
G (X1)× hq−1

G (X2) kq−1
G (X0) kq

G(X) kq
G(X1)× kq

G(X2) kq
G(X0)

τ(X1)×τ(X2)τ(X)τ(X0) τ(X0)τ(X1)×τ(X2)

Then, by inductive hypothesis τ(X0) is an isomorphism and by the same argument as
before the same happens for τ(X1) and τ(X2), thus by the Five Lemma we obtain that
τ(X) is an isomorphism, which concludes the inductive step.
To show that τ(X) is an isomorphism for each finite G-CW-complex we use induction on
the skeleton of X. We can assume that the 0-skeleton X0, that is a disjoint finite union of
0-dimensional G-cells, is constructed by attaching to an initial 0-cell the other 0-cells one
after each other along empty maps. Then the result for the base case follows similarly

8
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as the base case of the previous inductive process. Notice that this can be done because
we have a finite number of 0-cells. For n > 0 we have that the n-skeleton Xn is obtained
by attaching a disjoint finite union of n-dimensional G-cells to the (n− 1)-skeleton Xn−1.
Again we can split this process in a finite number of steps. At each step we construct

Y = Y1 ∪ϕ Y2

where Y1 is assumed to satisfy that τ(Y1) is an isomorphism, Y2 is an n-dimensional G-cell
Y2 = G/K× Dn and

ϕ : Y0 = G/K× Sn−1 −→ Y1.

From property A2 we have a commutative diagram

hq−1
G (Y1)× hq−1

G (X2) hq−1
G (Y0) hq

G(Y) hq
G(Y1)× hq

G(Y2) hq
G(Y0)

hq−1
G (Y1)× hq−1

G (X2) kq−1
G (Y0) kq

G(Y) kq
G(Y1)× kq

G(Y2) kq
G(Y0)

τ(Y1)×τ(Y2)τ(Y)τ(Y0) τ(Y0)τ(Y1)×τ(Y2)

Therefore, by property A1 we have that τ(Y2) is an isomorphism and by the case proved
before the same happens for τ(Y0), hence by the Five Lemma we obtain τ(Y) is an isomor-
phism, which concludes the proof. □

In the following section we are going to introduce an important case of an equivariant
cohomology theory that is obtained using the Borel construction.

1.3 The Borel construction

In 1960 Armand Borel introduced a method to study the cohomology of G-spaces concern-
ing the information associated to the G-action, the Borel construction. This has become a
basic tool in the theory of transformation groups. Let us describe this construction.

We assume that G is a compact Lie group. Let X be a G-space and consider EG the
total space of the universal principal G-bundle EG −→ BG. For an introduction to universal
principal G-bundles see Appendix B. The topological product EG × X can be endowed
with a G-action given by

G× (EG× X) −→ EG× X
(g, (p, x)) 7→ (pg−1, gx).

Then we define the Borel construction on X as

XG := EG×G X = EG× X/ ∼,

where (p, x) ∼ (pg−1, gx) for each g ∈ G. Notice that XG is the orbit space of the G-action
on the product EG× X.

9
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In regard to Appendix B.1 we have that XG is the fiber bundle associated to the universal
principal G-bundle (EG, π) by X, hence XG corresponds to the total space of the bundle

πEG : XG −→ BG

with fiber X.

The Borel construction is significantly relevant because it provides the framework for
defining an equivariant cohomology theory in the sense of Definition 1.7.

Definition 1.9. Let X be a G-space. We define the equivariant cohomology of X as

H•(XG) = H•(EG×G X).

We can notice that the equivariant cohomology H•(XG) has a structure of H•(BG)-
module. Indeed, if ∗ denotes the singleton with a trivial G-action, we have that

H•(∗G) = H•(EG×G ∗) = H•(BG).

Therefore, the projection XG = EG×G X −→ EG×G ∗ = BG induces a map

H•(BG) −→ H•(XG)

that endows H•(XG) with a H∗(BG)-module structure.

Moreover, if G is a compact Lie group and acts freely on X we have a principal G-
bundles given by the projection onto the orbit space

π : X −→ X/G.

Therefore, by considering the associated bundle by EG we obtain

πEG : EG×G X −→ X/G

with fiber EG, that is contractible. It follows from the long exact sequence of homotopy
groups (see [Hat02]) associated to the above fiber bundle that

H•(XG) ∼= H•(X/G).

This result will appear again in the context of the proof of the main theorem in Section 2.3.

With the above discussion we have defined the Borel construction and the equivariant
cohomology of a G-space X merely using topological tools, since the equivariant cohomol-
ogy of X has been defined as the usual topological cohomology of its Borel construction.
However, there exists an equivalent procedure that allows us to describe an algebraic ver-
sion of the Borel construction. The algebraic setting is particularly interesting because it
provides the algebraic machinery needed to prove important results on the G-space X. We
start with some definitions.

10
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From now on we assume that G is a finite group.

Let EG the total space of the universal principal G-bundle, that is a free G-CW-complex
and consider ϵ•(G) := W•(EG; k) the cellular chain complex with coefficients in a field k.
Since ϵ•(G) inherits a G-action from the G-space structure of EG we may consider ϵ•(G)

as a chain complex over the group ring k[G].

Definition 1.10. Let C• (resp. C•) be a chain complex (resp. a cochain complex) over k[G]. We
define

βG
• (C•) := ϵ•(G)⊗k[G] C•,

where βG
n (C•) =

⊕
i(ϵi(G)⊗k[G] Cn−i), and

β•G(C
•) = Homk[G](ϵ•(G), C•),

where βn
G(C•) = ∏i Homk[G](ϵi(G), Cn−i).

In the above definition we assume that C• is a left k[G]-module and C• is a right k[G]-
module, and by defining

eg := g−1e for e ∈ EG, g ∈ G,

we convert the left G-action on EG to a right G-action that induces a right k[G]-module
structure on ϵ•(G).

Notice that if C• = Homk(C•, k) by the tensor-hom adjunction we obtain that

β•G(C
•) = Homk[G](ϵ•(G), Homk(C•, k)) = Homk(ϵ•(G)⊗k[G] C•, k) = Homk(βG

• (C•), k).

The above definitions allow us to define two homology and cohomology theories.

Definition 1.11. Let C• (resp. C•) be a chain complex (resp. a cochain complex) over k[G]. We
define the homology of G with coefficients in C• as

HG
• (C•) = H(βG

• (C•))

and we define the cohomology of G with coefficients in C• as

H•G(C
•) = H(β•G(C

•)).

It can be seen that if C• is a k[G]-module concentrated at zero degree we obtain the usual
homology and cohomology of the group G with coefficients in C• and C•, respectively (see
[Bro82]).

Let us assume that C• is bounded below, which means that for some n0 we have that
Cn = 0 for each n ≤ n0. The following Proposition gives us an alternative description of
β•G(C

•). Let us denote
ϵ•(G) = Homk[G](ϵ•(G), k[G])

11
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the dual k[G]-module of ϵ•(G). If ϵ•(G) is assumed to be a right k[G]-module, then ϵ•(G)

can be considered with a structure of left k[G]-module given by

(gϕ)(e) = ϕ(eg)

for each g ∈ G, ϕ ∈ ϵ•(G) and e ∈ ϵ•(G).

Proposition 1.12. Let C• be a bounded below cochain complex over k[G]. We have a natural
isomorphism of cochain complexes over k

Φ : C• ⊗k[G] ϵ•(G) −→ Homk[G](ϵ•(G), C•)
c⊗ ϕ 7→ Φc⊗ϕ : ϵ•(G) −→ C•

e 7→ cϕ(e)

where c ∈ C•, ϕ ∈ ϵ•(G) and e ∈ ϵ•(G).

Proof. We can see that the map is well-defined since it is compatible with the coboundaries.
Indeed, for c ∈ Cn, ϕ ∈ ϵi(G) and e ∈ ϵi(G) we have that

Φ(∂(c⊗ ϕ))(e) = Φ(dC•(c)⊗ ϕ + (−1)nc⊗ dϵ•(G)(ϕ))(e) =

= ΦdC• (c)⊗ϕ(e) + (−1)nΦc⊗dϵ•(G)(ϕ)
(e) = dC•(c)ϕ(e) + (−1)ncdϵ•(G)(ϕ(e)) =

= dC•(cϕ(e))− (−1)n+icϕ(dϵ•(G)(e)) = dC• ◦Φc⊗ϕ(e)− (−1)n+iΦc⊗ϕ ◦ dϵ•(G)(e) =

= ∂(Φ(c⊗ ϕ))(e).

Moreover, we have that ϵ•(G) is a free k[G]-module, and C• and ϵ•(G) are bounded below.
Therefore, it is sufficient to prove the result with ϵ•(G) and ϵ•(G) being k[G]. Then we
have

Φ : C• ⊗k[G] k[G] ∼= C• −→ Homk[G](k[G], C•)
c⊗ ϕ ↔ cϕ 7→ Φ(c⊗ ϕ) : k[G] −→ C•

e 7→ cϕ(e)

which is clearly a natural isomorphism. □

From the above definitions we conclude that we have two additive functors

βG
• : ∂gk[G]-Mod −→ ∂gk-Mod

β•G : δgk[G]-Mod −→ δgk-Mod

from the category of chain complexes (resp. cochain complexes) over k[G] to the category
of chain complexes (resp. cochain complexes) over k. With the following Proposition we
describe some properties of these functors.

Proposition 1.13. The functor βG
• satisfies the following properties:

12
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a) βG
• preserves homotopies, hence if f0, f1 : C• −→ C′• are homotopic chain maps over k[G] then

βG
• ( f0) and βG

• ( f1) are homotopic chain maps over k;

b) βG
• is exact, hence if C• −→ C′• −→ C′′• is an exact sequence of chain complexes over k[G] then

βG
• (C•) −→ βG

• (C
′
•) −→ βG

• (C
′′
• )

is an exact sequence of chain complexes over k;

c) if f : C• −→ C′• is a map of chain complexes over k[G] which is a chain equivalence over k,
then βG

• ( f ) : βG
• (C•) −→ βG

• (C′•) is a chain equivalence of chain complexes over k[G].

Proof. To prove (a) consider s : C• −→ C′• a chain homotopy between f0 and f1 in ∂gk[G]-Mod,
hence s is a morphism of k[G]-modules such that

f0 − f1 = ∂s + s∂.

Then we obtain that idϵ•(G)⊗k[G] s = βG
• (s) is the desired chain homotopy in ∂gk-Mod since

βG
• ( f0)− βG

• ( f1) = βG
• ( f0 − f1) = βG

• (∂s + s∂) = ∂βG
• (s) + βG

• (s)∂.

Property (b) follows from the fact that ϵ•(G) is a free k[G]-module, hence ϵ•(G) is k[G]-flat
and βG

• = ϵ•(G)⊗k[G] − is exact.
To prove (c) we will use the mapping cone. Consider cone( f ) and notice that

cone(βG
• ( f )) = βG

• (cone( f )),

hence by Proposition A.4 it is enough to see that if N is contractible, then βG
• (N) is also

contractible. For that consider a filtration of ϵ•(G) by the degree

Fnϵ•(G) =
n⊕

i=0

ϵi(G)

which induces a filtration of ϵ•(G)⊗k[G] N given by

0 = F−1(ϵ•(G)⊗k[G] N) ⊂ · · · ⊂ Fn(ϵ•(G)⊗k[G] N) ⊂ Fn+1(ϵ•(G)⊗k[G] N) ⊂ · · ·

such that
lim−→

n
Fn(ϵ•(G)⊗k[G] N) = ϵ•(G)⊗k[G] N

and for each n ≥ 0
Fn+1(ϵ•(G)⊗k[G] N)

Fn(ϵ•(G)⊗k[G] N)
∼= ϵn(G)⊗k[G] N,

which is contractible, because it is the direct sum of finitely many copies of N. Then, we
obtain that ϵ•(G)⊗k[G] N is contractible (see Corollary B.1.18 in [AP93]), which concludes
the proof. □

13
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Notice that the above Proposition is based on standard properties of the tensor prod-
uct functor. Analogous statements for the functor β•G : δgk[G]-Mod −→ δgk-Mod can be
obtained using the corresponding properties for the Hom functor.

We also have that property (c) can be refined if C• and C′• are assumed to be free as k-
modules. Indeed, since then the conditions of being acyclic and contractible are equivalent
(see Proposition B.1.11 in [AP93]), then it suffices to assume that H( f ) is an isomorphism.

Once we have introduced the functors βG
• and β•G we already have all the necessary

information to describe the algebraic version of the Borel construction. Let X be a G-space.
We can apply the above functors to the singular chain complex S•(X; k) and to the singular
cochain complex S•(X; k), considered as k[G]-modules. We denote

βG
• (X; k) := βG

• (S•(X; k)) β•G(X; k) := β•G(S
•(X; k))

and
HG
• (X; k) := H•(βG

• (X; k)) H•G(X; k) := H•(β•G(X; k)).

It can be seen that the above definitions correspond to equivariant homology and cohomol-
ogy theories, respectively.

Theorem 1.14. The functor HG
• (−; k) (resp. H•G(−; k)) is an equivariant homology theory (resp.

equivariant cohomology theory) in the sense of Definition 1.7.

Proof. See Theorem 1.2.6 in [AP93] for a proof of the equivariant cohomology case. □

It is important to notice that if X is a G-CW-complex we can equivalently use the cellular
chain complex W•(X; k) instead of the singular chain complex S•(X; k) to define HG

• (X; k)
and H•G(X, k). We can state this result as a Proposition.

Proposition 1.15. Let X be a G-CW-complex. We have natural isomorphisms

H•(βG
• (S•(X; k))) ∼= H•(βG

• (W•(X; k))) and H•(β•G(S
•(X; k))) ∼= H•(β•G(W

•(X; k))).

Proof. Let
X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · ·

be the structural skeletal filtration of X. We define the subcomplex

Cn(X; k) = {c ∈ Sn(X; k) : ∂c ∈ Sn−1(X; k)} ⊂ Sn(X; k),

where ∂ is the coboundary on the singular chain complex S•(X; k). We have that C•(X; k)
is a k[G]-subcomplex of S•(X; k) and we can consider a chain map over k[G]

p : C•(X; k) −→W•(X; k)

that sends c ∈ Cn(X; k) to its class in Wn(X; k) ∼= Hn(Xn, Xn−1; k). We want to prove that
the maps

i : C•(X; k) −→ S•(X; k) and p : W•(X; k) −→ S•(X; k)

14
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are homotopy equivalences over k. Therefore, since i and p are chain maps in ∂gk[G]-Mod
we obtain from Proposition 1.13(c) the desired result. Moreover, by the subsequent discus-
sion it suffices to see that H•(i) and H•(p) are isomorphisms since C•(X; k), S•(X; k) and
W•(X; k) are free as k-modules.
We start proving that H•(i) is an isomorphism. We have that H•(i) is surjective because any
homology class in Hn(S•(X; k)) is represented by a cycle in Sn(Xn; k), thus also in Cn(X; k).
On the other hand, let us consider a cycle c ∈ Cn(X; k) such that there exists another cycle
b ∈ Sn+1(X; k) with ∂b = c, that is that H•(i)([c]) = 0 in Hn(S•(X; k)). Then we can take
b′ ∈ Sn+1(Xn+1; k) such that ∂b′ = ∂b = c and by definition we obtain that b′ ∈ Cn+1(X; k),
hence [c] = 0 in Hn(C•(X; k)) and H•(i) is injective.
It remains to prove that H•(p) is an isomorphism. Consider a cochain c ∈ Sn(Xn, k) that
represents a cycle in

Wn(X; k) = Hn(Xn, Xn−1; k) = Hn

(
S•(Xn; k)

S•(Xn−1; k)

)
.

Then we have that ∂c ∈ Sn−1(Xn−2; k) + ∂(Sn(Xn−1; k)), so we can write ∂c = a′ + ∂b′′

with a′ ∈ Sn−1(Xn−2; k) and b′′ ∈ Sn(Xn−1; k). It is clear that Hn−1(S•(Xn−2; k)) = 0 and
we notice that ∂a′ = 0. Therefore there exists b′ ∈ Sn(Xn−2; k) such that ∂b′ = a′. If we
consider the element

c′ = c− b′ − b′′ ∈ Sn(Xn, k)

we observe that it represents a cycle in Cn(Xn; k) since ∂c′ = ∂c − a′ − ∂b′′ = 0 and it is
mapped by H•(p) to the homology class represented by c, hence H•(p) is surjective. On
the other hand, let c ∈ Cn(Xn; k) a cycle in C•(X; k) such that H•(p)([c]) = 0, that is that
there exist elements b′ ∈ Sn+1(Xn+1; k) and a′′ ∈ Sn(Xn−1; k) such that ∂b′ = c + a′′, and
we also have that ∂c = 0, hence ∂a′′ = 0. However, since Hn(S•(Xn−1; k)) = 0 there exists
b′′ ∈ Sn+1(Xn−1; k) with ∂b′′ = a′′. Thus we obtain that ∂(b′ − b′′) = c + a′′ − a′′ = c and
since b′ − b′′ ∈ Cn+1(X; k) we conclude that [c] = 0 in Hn(C•(X; k)), so H•(p) is injective.
This concludes the proof. □

Finally, we will give an explicit description of the multiplicative structure of this alge-
braic equivariant cohomology theory that we are considering. The cellular chain complex
ϵ•(G) has a diagonal

∆ : ϵ•(G) −→ ϵ•(G)⊗ ϵ•(G)

that is a map of chain complexes over k[G]. This diagonal map can be thought as being
induced by the topological diagonal

EG −→ EG× EG

to ϵ•(G) = W•(EG; k) or as a lifting of the isomorphism

k −→ k⊗ k

15
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to the free resolutions ϵ•(G) −→ k and ϵ•(G)⊗ ϵ•(G) −→ k⊗ k, which is uniquely determined
up to homotopy of chain complexes over k[G].

If C• is a cochain complex over k[G], then the above diagonal map induces a product

β•G(C
•)⊗ β•G(k) = Homk[G](ϵ•(G), C•)⊗Homk[G](k, C•) −→ Homk[G](ϵ•(G), C•) = β•G(C

•)

given by ϕ⊗ ψ 7→ ϕ ∪ ψ, for ϕ ∈ β•G(C
•), ψ ∈ β•G(k) and ϕ ∪ ψ given by

(ϕ ∪ ψ)(e) = η((ϕ⊗ ψ)(∆e))

with e ∈ ϵ•(G), that is the composition

ϵ•(G)
∆−→ ϵ•(G)⊗ ϵ•(G)

ϕ⊗ψ−−→ C• ⊗ k
η−→ C•,

where η : C• ⊗ k −→ C• is the k-module structure natural map. This product induces a map
in cohomology

H•G(C
•)⊗ H•G(k) −→ H•G(C

•),

hence we have a H•G(k)-module structure on H•G(C
•). More precisely, this induces a right

H•G(k)-module structure, and we can define an analog left structure. Since ∆ is commutative
up to homotopy, the left and right structure coincide on cohomology level H•G(C

•), and they
are equivalent on cochain level only up to homotopy. Notice that if C• = k, we obtain the
usual cup product on H•G(k).

Furthermore, if C• has a product, that is a morphism

µ : C• ⊗ C• −→ C•

in ∂gk[G]-Mod such that C• ⊗ C• has a diagonal map, then with a similar argument we
have an induced product

β•G(C
•)⊗ β•G(C

•) −→ β•G(C
•)

given by ϕ1 ⊗ ϕ2 7→ ϕ1 ∪ ϕ2, for ϕ1, ϕ2 ∈ β•G(C
•) and ϕ1 ∪ ϕ2 given by

(ϕ1 ∪ ϕ2)(e) = µ((ϕ1 ⊗ ϕ2)(∆e))

with e ∈ ϵ•(G), that is the composition

ϵ•(G)
∆−→ ϵ•(G)⊗ ϵ•(G)

ϕ1⊗ϕ2−−−→ C• ⊗ C•
µ−→ C•.

Finally, we can apply the above discussion to our case of interest. Let X be a G-space
and take C• = S•(X; k) the singular cochain complex, which has a product

µ : S•(X; k)⊗ S•(X; k) −→ S•(X; k)

induced by the diagonal map X −→ X × X. This induces a multiplicative structure on
cohomology

H•(X; k) = H•(β•G(S
•(X; k))).

To conclude our introduction to the Borel construction we will see that both equivariant
cohomology theories defined above indeed coincide.

16



Master’s Final Project Jordi Garriga Puig

Theorem 1.16. Let G be a finite group. The homology (resp. cohomology) theories HG
• (−; k) and

H•(EG×G−; k) (resp. H•G(−; k) and H•(EG×G−; k)) are naturally isomorphic over the category
of G-spaces.

Proof. We start proving the statement for the homology theories. Let X a G-space. Recall
that

HG
• (X; k) = H•(βG

• (X; k)),

with βG
• (X; k) = ϵ•(G) ⊗k[G] S•(X; k) and ϵ•(G) = W•(EG; k). We can observe that we

can replace the cellular chain complex W•(EG; k) by the singular chain complex S•(X; k)
since both are free resolutions of k over k[G], hence are chain homotopic over k[G]. By
Eilenberg-Zilberg Theorem we can consider two chain maps Φ and Ψ

S•(EG; k)⊗ S•(X; k)
Φ
⇄
Ψ

S•(EG× X; k)

such that ΦΨ and ΨΦ are naturally chain equivalent to the corresponding identity maps.
Moreover, since the G-action is given by a continuous action we have that naturality as-
sures us that Φ and Ψ are compatible with the diagonal G-action, hence they induce chain
homotopy equivalences over k given by

S•(EG; k)⊗k[G] S•(X; k)
Φ
⇄
Ψ

k⊗k[G] S•(EG× X; k).

We also have that π : EG × X −→ EG ×G X is a covering map with deck transformation
group G, that is that

G = { f ∈ Aut(EG× X) : π f = π} ⊂ Aut(EG× X).

Therefore we obtain that the map

Θ : k⊗k[G] S•(E× X; k) −→ S•(EG×G X; k)

is an isomorphism. Indeed, Θ is injective because if two singular simplices σ1
q , σ2

q : ∆q −→
EG × X coincide when they are composed with π, then there exists g ∈ G such that
gσ1

q = σ2
q , hence they represent the same class in k⊗k[G] S•(E× X; k). On the other hand,

Θ is surjective since any singular simplex σq : ∆q −→ EG ×G X can be lifted to a simplex
on EG × X because ∆q is contractible. Thus, the composition ΘΦ induces the desired
isomorphism on homology

HG
• (X; k) ∼= H•(EG×G X; k).

With a similar argument we can obtain the isomorphism for cohomology, but we have to
additionally check the compatibility with the ring structure. Recall that

H•G(X; K) = H•(β•G(X; k)),

17
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with β•G(X; k) = Homk[G](ϵ•(G), S•(X; k)). As before we replace the cellular chain com-
plex W•(EG; K) by the singular chain complex S•(EG; k), and we consider the diagonal
on S•(EG; k) given by the composition of the map induced by the topological diagonal
EG −→ EG× EG and an Eilenberg-Zilberg map

S•(EG; k) −→ S•(EG× EG; k) −→ S•(EG; k)⊗ S•(EG; k).

We can observe that by the tensor-hom adjunction we have natural isomorphisms

β•G(S
•(X; k)) = Homk[G](S•(EG; k), S•(X; k)) =

= Homk[G](S•(EG; k), Homk(S•(X; k), k)) ∼= Homk(S•(EG; k)⊗k[G] S•(X; k), k),

hence we obtain the desired isomorphism in cohomology. Regarding the multiplicative
structure we have that the product in H•G(X; k) = H•(β•G(S

•(X; k))) is induced by the
composition

S•(EG; k)⊗ S•(X; k)
∆EG⊗∆X−−−−→ (S•(EG; k)⊗ S•(EG; k))⊗ (S•(X; k)⊗ S•(X; k)) τ−→

τ−→ (S•(EG; k)⊗ S•(X; k))⊗ (S•(EG; k)⊗ S•(X; k))
ϕ1⊗ϕ2−−−→ k⊗ k ∼= k

where ϕ1, ϕ2 ∈ Homk(S•(EG; k)⊗k[G] S•(X; k), k), ∆EG and ∆X are the corresponding diago-
nals and τ denotes the twist of the middle terms in the tensor product. On the other hand,
the product in H•(EG×G X; k) is induced by the diagonal on S•(EG× X; k)

S•(EG× X; k)
∆EG×X−−−→ S•(EG× X; k)⊗ S•(EG× X; k)

ψ1⊗ψ2−−−→ k⊗ k ∼= k

for ψ1, ψ2 ∈ S•(EG× X; k). It is clear that the following diagram

S•(EG; k)⊗ S•(X; k) S•(EG× X; k)

(S•(EG; k)⊗ S•(EG; k))⊗ (S•(X; k)⊗ S•(X; k))

(S•(EG; k)⊗ S•(X; k))⊗ (S•(EG; k)⊗ S•(X; k)) S•(EG× X; k)⊗ S•(EG× X; k)

Φ

∆EG⊗∆X

τ

∆EG×X

Φ⊗Φ

is commutative up to homotopy. Therefore, it follows from the above discussion that we
have a commutative diagram up to homotopy given by

S•(EG; k)⊗k[G] S•(X; k) (S•(EG; k)⊗k[G] S•(X; k))⊗ (S•(EG; k)⊗k[G] S•(X; k))

S•(EG×G X; k) S•(EG×G X; k)⊗ S•(EG×G X; k)

(ΘΦ)⊗(ΘΦ)ΘΦ
∆EG×G X

where the horizontal maps induce the products in cohomology. Finally, since the isomor-
phism H•G(X; k) ∼= H•(EG×G X; k) is given by the dual complexes map of ΘΦ we deduce
that this isomorphism is compatible with the multiplicative structure, as we wanted to
obtain. □
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1.4 The Borel construction for 2-tori

In this last section we will provide an explicit description of the algebraic version of the
Borel construction for the group G = (Z2)n. This detailed exposition will be indispensable
to understand the forthcoming chapter’s proof of the main theorem.

In the first place we consider the case n = 1, that is G = Z2. From the discussion in
Appendix B.2 we know that the total space of the universal principal G-bundle is given by

EG = lim−→
n

Sn = S∞

Considering a natural decomposition of EG as a G-CW-complex we obtain that the cellular
chain complex ε•(G) = W•(EG) is given by a free chain complex over Z[G] with one
generator in each non-negative dimension, hence we have that

ε•(G) = W• ⊗Z[G],

where W• is a free abelian group generated by {w0, w1, w2, . . .}, with deg(wi) = i for each
i ≥ 0. The boundary on ϵ•(G) is given by

∂wn =

{
(1 + g)wn−1 if n is even,
(1− g)wn−1 if n is odd

}
,

where 1 denotes the unit element and g the generator of G. The following result gives us
the homology of the classifying space BG.

Proposition 1.17. Let k be a field of characteristic 2 and let G = Z2. For each n ≥ 0 we have

Hn(BG; Z) ∼= Hn(ϵ•(G)⊗k[G] S•(∗; k)) ∼=


Z if n = 0,
Z2 if n is odd,
0 otherwise


and

Hn(BG; k) ∼= Hn(ϵ•(G)⊗k[G] k) ∼= k.

Proof. The first isomorphisms follow from Theorem 1.16 since

Hn(BG; k) = Hn(EG×G ∗; k) ∼= HG
n (∗; k) = Hn(ϵ•(G)⊗k[G] S•(∗; k)) = Hn(ϵ•(G)⊗k[G] k).

where ∗ denotes the singleton with the trivial G-action. The same argument holds for
Hn(BG; Z). We can observe that the boundary on ϵ•(G)⊗Z[G] Z is given by

∂(wn ⊗ 1) =

{
((1 + g)wn−1)⊗ 1 = wn−1 ⊗ 2 if n is even,
((1− g)wn−1)⊗ 1 = 0 if n is odd

}
,

hence the result follows immediately. Finally, since k is of characteristic 2 we deduce that
the boundary is trivial on ϵ•(G)⊗k[G] k, thus we also obtain the result for Hn(BG; k). □
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We can compute the cohomology of the classifying space BG by taking the dual com-
plexes, or by using the Universal Coefficient Theorem. Nevertheless, to obtain the multi-
plicative structure on H•(BG; k) we need to consider a diagonal map

∆ : ϵ•(G) −→ ϵ•(G)⊗ ϵ•(G).

Let us consider the diagonal given by

∆(wn) = ∑
p+q=n

∆p,q,

where

∆p,q =


wp ⊗ wq if p is even,
wp ⊗ gwq if p is odd and q is even,
−wp ⊗ gwq if p and q are odd

 .

Since the desired map is a lifting of the natural isomorphism k −→ k⊗ k to the free resolu-
tions k[G] −→ k and k[G]⊗ k[G] −→ k ⊗ k, which is uniquely determined up to homotopy,
it suffices to prove that the above definition of ∆ is a well-defined morphism of chain
complexes over k[G], that is that commutes with the boundary. We can write

∆(wn) =

{
∑

n−1
2

m=0 w2m ⊗ wn−2m + w2m+1 ⊗ gwn−2m−1 if n is odd,

wn ⊗ w0 + ∑
n
2−1
m=0 w2m ⊗ wn−2m + w2m+1 ⊗ wn−2m−1 if n is even.

}
,

Then denote by ∂⊗ to the boundary on ϵ•(G)⊗ ϵ•(G) and notice that for n odd we have
that

∂⊗(∆(wn)) =

n−1
2

∑
m=0

(1 + g)w2m−1 ⊗ wn−2m + w2m ⊗ (1− g)wn−2m−1+

+ (1− g)w2m ⊗ gwn−2m−1 − w2m+1 ⊗ (1 + g)wn−2m−2 =

= wn−1 ⊗ (1− g)w0 + (1− g)wn−1 ⊗ gw0+

+

n−1
2 −1

∑
m=0

(1− g)w2m ⊗ gwn−2m−1 + w2m ⊗ (1− g)wn−2m−1+

+ (1 + g)w2m+1 ⊗ wn−2m−2 − w2m+1 ⊗ (1 + g)wn−2m−2 =

= (1− g)wn−1 ⊗ w0 + (1− g)
n−1

2 −1

∑
m=0

w2m ⊗ wn−2m−1 − w2m+1 ⊗ gwn−2m−2 =

= (1− g)∆(wn−1) = ∆((1− g)wn−1) = ∆(∂(wn)).

With a similar procedure we may obtain the same result for n even.

Proposition 1.18. Let k be a field of characteristic 2 and let G = Z2. We have

H•(BG; Z) ∼= H•(HomZ[G](ϵ•(G), Z)) ∼=
Z[t]
(2t)

, with deg(t) = 2

and
H•(BG; k) ∼= H•(Homk[G](ϵ•(G), k)) ∼= k[t], with deg(t) = 1.
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Proof. The initial isomorphisms again follow from Theorem 1.16

H•(BG; k) = H•(EG×G ∗; k) ∼= H•G(∗; k) =

= H•(Homk[G](ϵ•(G), S•(∗; k))) = H•(Homk[G](ϵ•(G), S•(∗; k)))

where ∗ again denotes the singleton with the trivial G-action and the same can be argued
for Hn(BG; Z). Consider the element wn ∈ HomZ[G](ϵ•(G), Z) defined over W• by

wn(wm)

{
1 if n = m,
0 if n ̸= m

}
,

which extends to ϵ•(G) as a Z[G]-module morphism. Since δwn(wn+1) = wn(∂wn+1) we
deduce that

δwn =

{
(1− g)wn+1 if n is even,
(1 + g)wn+1 if n is odd

}
.

For wp and wq we can also consider the cup product, that is given by the composition

ϵ•(G)
∆−→ ϵ•(G)⊗ ϵ•(G)

wp⊗wq

−−−→ Z⊗Z −→ Z

and we can observe that satisfies

wp ∪ wq(wm) = (wp ⊗ wq)(∆wm) =

{
1 if p + q = m,
0 if p + q ̸= m

}
.

Indeed, this result is immediate for p even, and for p odd and q even. If p and q are odd
we have to take into account the sign convention to obtain that

(wp ⊗ wq)(−wp ⊗ gwq) = −(−1)|p||q|wp(wp)⊗ wq(gwq) = 1.

Therefore, wp ∪ wq = wp+q. With this discussion we can compute the cohomology rings.
For n even the element wn is a representative of the generator of Hn(BG; Z) and since
2wn ∼ 0 we obtain that Hn(BG; Z) is zero for n odd. Given the multiplicative structure
induced by the cup product we obtain the desired result. On the other hand, since k is of
characteristic two we have that the coboundary is trivial, and again considering the cup
product we conclude the proof. □

Notice that we have observed that the cochain complex β•G(k) = Homk[G](ϵ•(G), k),
together with the multiplicative structure induced by the cup product induced by the di-
agonal map defined above, is isomorphic to the polynomial algebra k[t] with deg(t) = 1

β•G(k) ∼= k[t]

not only on cohomology, but also on cochain level given by wn 7→ tn. Moreover, we have
seen that the coboundary on k[t] is given by the derivation

δ(t) = 2t2,

21



Master’s Final Project Jordi Garriga Puig

which holds for any coefficient ring k, and if k is a field of characteristic 2 we have that this
coboundary is trivial.

Let C• be a bounded below cochain complex over k[G], that is an object in δgk[G]-Mod.
By Proposition 1.12 we have a natural isomorphism

β•G(C
•) ∼= C• ⊗k[G] ϵ•(G)

with the usual coboundary considered in the tensor product of cochain complexes. We can
observe that we have a natural isomorphism of k[G]-modules

ϵ•(G) = Homk[G](ϵ•(G), k[G]) ∼= Homk[G](W•⊗ k[G], k[G]) ∼= k[G]⊗Homk(W•, k) = k[G]⊗W•,

where we denote W• = Homk(W•, k). Therefore, it induces an isomorphism of k-modules

β•G(C
•) ∼= C• ⊗k[G] ϵ•(G) ∼= C• ⊗k[G] k[G]⊗W• ∼= C• ⊗W•.

Under these isomorphisms the coboundary, which we will denote by δ, is given by

δ(c⊗ wn) =

{
δc⊗ wn + (−1)|c|c(1− g)⊗ wn+1 if n is even,
δc⊗ wn + (−1)|c|c(1 + g)⊗ wn+1 if n is odd

}
.

where wn is the dual element to wn, δ is the coboundary in C• and |c| denotes the degree
of the element c ∈ C•. The above formula follows from the fact that the coboundary of
ϵ•(G) ∼= k[G]⊗W• is given by

δ(1⊗ wn) =

{
(1− g)⊗ wn+1 if n is even,
(1 + g)⊗ wn+1 if n is odd

}
,

that the cochain complex C• ⊗k[G] ϵ•(G) has the usual tensor product coboundary and that

cg⊗ (1⊗ w) = c⊗ (g⊗ w)

in the isomorphism C• ⊗k[G] ϵ•(G) ∼= C• ⊗k[G] (k[G]⊗W•). To avoid confusions with the
standard tensor product cochain complex, we denote C•⊗W• = (C• ⊗W•, δ).

Proposition 1.19. Let C• be a bounded below cochain complex over k[G]. Then β•G(C
•) ∼= C•⊗W•

is naturally isomorphic to C• ⊗ k[t] as a right module over β•G(k) ∼= k[t].

Proof. We have to see that the structure of β•G(k)-module of β•G(C
•) ∼= C•⊗W• is equivalent

to C• ⊗ k[t]. For that we take c⊗ wp ∈ β•G(C
•) ∼= C•⊗W• and wq ∈ β•G(k) and we compute

the product (c⊗ wp) ∪ wq given by the composition

ϵ•(G)
∆−→ ϵ•(G) −→ ϵ•(G)

(c⊗wp)⊗wq

−−−−−−→ C• ⊗ k
η−→ C∗,

where η : C• ⊗ k −→ C• is the k-module structure map of C•. If follows from definition that

((c⊗ wp) ∪ wq)(wm) = η((c⊗ wp)⊗ wq)(∆wm) =

{
c if p + q = m,
0 if p + q ̸= m

}
,
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hence we obtain that (c⊗ wp)wq = c⊗ wp+q in C•⊗W•. Therefore we deduce that

Φ : C•⊗W• −→ C• ⊗ k[t]
c⊗ wn 7→ c⊗ tn

is the desired isomorphism of k[t]-modules. □

We also denote C•⊗k[t] to the complex with underlying module C•⊗ k[t] and cobound-
ary induced by the isomorphism from C•⊗W•. Then C•⊗k[t] is a differential graded mod-
ule over k[t]. In particular, the product

β•G(C
•)⊗ β•G(k) −→ β•G(C

•)

is already associative on the cochain level, while the analogous left product in only asso-
ciative up to homotopy.

Once we have properly discusses the base case we can extend the above results to the
description of the algebraic Borel construction for the case G = (Z2)n with n > 1. The
corresponding total space of the universal principal G-bundle EG −→ BG can be given by
the n-fold product of the Z2-CW-complexes EZ2

EG = EZ2 × · · · × EZ2.

Therefore, the cellular chain complex ϵ•(G) = W•(EG; k) corresponds to the n-fold tensor
product of ϵ•(Z2) = W•(EZ2; k)

ϵ•(G) = ϵ•(Z2)⊗ · · · ⊗ ϵ•(Z2)

considered as a complex over k[G] = k[Z2]⊗ · · · ⊗ k[Z2] with the componentwise action.
Given these considerations we can easily extend the calculation for G = Z2.

Proposition 1.20. Let k a field of characteristic 2 and let G = (Z2)n. We have

H•(BG; k) = H•G(∗; k) ∼= k[t1, · · · , tn]

with deg(ti) = 1 for each 1 ≤ i ≤ n.

Proof. From the above discussion we deduce that

BG = EG/G = BZ2 × · · · × BZ2.

Therefore, since by Proposition 1.18 we know that H•(BZ2; k) ∼= k[t], using Künneth Theo-
rem we can obtain the desired result

H•(BG; k) = H•(BZ2 × · · · × BZ2; k) ∼= H•(BZ2; k)⊗ · · · ⊗ H•(BZ2; k) ∼=
∼= k[t]⊗ · · · ⊗ k[t] ∼= k[t1, · · · , tn],

where we have used that k is a field. □
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Finally, we can extend the latter result in Proposition 1.19 to G = (Z2)n.

Proposition 1.21. Let C• be a bounded below cochain complex over k[G]. Then β•G(C
•) is naturally

isomorphic to C• ⊗ k[t1, . . . , tn] as a right k[t1, . . . , tn]-module.

Proof. By Proposition 1.12 we have an isomorphism of k-modules

β•G(C
•) ∼= C• ⊗k[G] ϵ•(G) = C• ⊗k[G] Homk[G](ϵ•(G), k[G]) ∼=

∼= C• ⊗k[G] Homk[G]((W• ⊗ k[Z2])⊗ · · · ⊗ (W• ⊗ k[Z2]), k[G]) ∼=
∼= C• ⊗k[G] Homk[G]((W• ⊗ · · · ⊗W•)⊗ k[G]), k[G]) ∼=
∼= C• ⊗k[G] k[G]⊗Homk(W• ⊗ · · · ⊗W•, k) ∼=

C• ⊗Homk(W• ⊗ · · · ⊗W•, k) ∼= C• ⊗W• ⊗ · · · ⊗W•

and from Proposition 1.19 it follows the desired isomorphism. □

As before we denote by C•⊗k[t1, . . . , tn] to the complex β•G(C
•) with the twisted differ-

ential of C•⊗k[t1, . . . , tn].

And with this final result we bring our general introduction to the theory of transfor-
mation groups to a close.
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Chapter 2

The homology of finite free
(Z2)

n-Complexes

This chapter is dedicated to the proof of the main theorem based on Carlsson method
[Car83], which is strongly based on commutative algebra. In the first place Carlsson de-
votes a section to the study of differential graded modules and proves two key results, that
are Theorems 2.16 and 2.17. In a second part the author defines the functor β and proves
a general version of the main theorem for any free bounded above chain complex C• over
k[G], which is Theorem 2.22. Finally, this result is used to obtain the main theorem.

2.1 Differential graded modules

Let k a field of characteristic 2 and let A = k[x1, . . . , xn] be the polynomial ring in n vari-
ables, which we grade by considering deg(xi) = −1 for all 1 ≤ i ≤ n.

Along this chapter we will assume that any graded A-module M is bounded above,
that is that Mn = 0 for some n sufficiently large, and locally finite, that is that dimk(Mn)

is finite for each n ∈ Z.

To start with, we consider a standard result on free graded A-modules.

Proposition 2.1. Let M, N be free graded A-modules and let f : M −→ N be a morphism of
A-modules of degree 0 such that f ⊗ id : M ⊗A k −→ N ⊗A k is an isomorphism. Then f is an
isomorphism. Moreover, if f ⊗ id is injective, then f is injective onto a direct summand.

Proof. Since M is free and bounded above we can assume that

M = Am1 ⊕ Am2 ⊕ Am3 ⊕ · · · =
⊕
i∈I

Ami,

where we order the elements by degree, deg(mi) ≥ deg(mi+1) for each i ∈ I. Moreover,
since f is a morphism of A-modules of degree 0, the same happens for f ⊗ id and we have
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that for each i ∈ I

( f ⊗ id)(mi ⊗ 1) =
ki

∑
j=1

ni
j ⊗ ki

j,

where ki
j ∈ k and ni

j ∈ N with deg(ni
j) = deg(mi). Notice that the above sum is finite

because N is assumed to be locally finite. Therefore, since f ⊗ id is an isomorphism we
deduce that

N = An1 ⊕ An2 ⊕ An3 ⊕ · · · =
⊕
i∈I

Ani,

with ni = ∑ki
j=1 ki

jn
i
j. Let us define a morphism of A-modules given by

g : N −→ M
ni 7→ mi

We can observe that the composition of f and g is given by

(g ◦ f )(mi) = mi +
∞

∑
j=i+1

pj
imj = idM(mi) + h(mi)

with pj
i ∈ A and then we have that the inverse of f is given by f−1 = Id + ∑∞

n=1(−1)nhn,
hence we deduce f is an isomorphism. If f ⊗ id is injective, the same argument considered
over f ⊗ id : M⊗ k −→ im( f ⊗ id) implies the desired result. □

Definition 2.2. A differential graded (DG) A-module M is a graded A-module with a morphism
of A-modules

d : M −→ M

such that deg(d) = −1 and d2 = 0. We say that M is a free (resp. finitely generated) DG
A-module if M is free (resp. finitely generated) as an A-module.

Definition 2.3. Let M be a DG A-module and let N be a graded A-module. We define H•(M, N)

as the homology of the DG A-module M⊗A N with the differential d⊗ id.

The homology H•(M⊗A N) is defined as usual

H•(M⊗A N) :=
ker(dn ⊗ id : Mn ⊗A N −→ Mn−1 ⊗A N)

im(dn+1 ⊗ id : Mn+1 ⊗A N −→ Mn ⊗A N)
.

Let I ⊂ A be the maximal ideal I = (x1, . . . , xn). If M is free DG A-module, we can
consider the filtration given by the powers Ik M

· · · −→ Ik+1M −→ Ik M −→ Ik−1M −→ · · · −→ IM −→ M.

Moreover, notice that the morphism of A-modules Ik ⊗A M −→ Ik M induces an isomor-
phism

Ik M
Ik+1M

∼=
Ik

Ik+1 ⊗A
M
IM

.
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Since M is locally finite and bounded above, then the filtration {Ik M}k is finite in each
dimension, that is that for all n ∈ Z there exists some k ≥ 0 such that (Ik M)n = 0. Finally,
for each k ≥ 0 we have that Ik/Ik+1 is a direct sum of copies of the field k. We denote

grI(A) =
⊕
k≥0

Ik

Ik+1 .

Lemma 2.4. VLet M be a free DG A-module. There exists an spectral sequence with

E1
−p,q
∼=

Ip

Ip+1 ⊗A Hq(M, k) and dr : Er
p,q −→ Er

p−r,q+r−1

that converges to H•(M). Moreover, {Er
p,q, dr}r is a spectral sequence of modules over grI(A) and

E∞
0,q
∼= im(Hp(M) −→ Hp(M, k)).

Proof. We have a filtration of DG A-modules

· · · −→ Ik+1M −→ Ik M −→ Ik−1M −→ · · · −→ IM −→ M

that determines a spectral sequence {Er
p,q, dr}r≥1 with dr of bidegree (−r, r − 1) and such

that

E1
p,q
∼= Hp+q

(
Ip M

Ip+1M

)
∼= Hp+q

(
Ik

Ik+1 ⊗A
M
IM

)
∼=

Ip

Ip+1 ⊗A Hq

(
M
IM

)
∼=

∼=
Ip

Ip+1 ⊗A Hq

(
M
IM

)
∼=

Ip

Ip+1 ⊗A Hq(M⊗A k) =
Ip

Ip+1 ⊗A Hq(M, k).

where we have used that the differential is trivial on the quotient Ik/Ik+1 and that

M/IM ∼= M⊗A A/I ∼= M⊗A k.

Since the filtration is finite in each dimension it is bounded, hence the spectral sequence
converges to H•(M). It is clear that {Er

p,q, dr}r≥1 is a spectral sequence of grI(A)-modules
since d is a morphism of A-modules. Finally, we have that

Er
0,q =

{x ∈ Mq : d(x) ∈ Ir Mq−1}
IMq + d(Mq+1)

∼= k⊗A
{x ∈ Mq : d(x) ∈ Ir Mq−1}

d(Mq+1)
.

Therefore, any element in E∞
0,q ⊂ E1

0,q admits a representative cycle that has a lifting ζ ∈ Mq

such that d(ζ) ∈ Ir Mq−1 for all r ≥ 1. Since the filtration is finite in each dimension, for r
sufficiently large we have that (Ir M)q−1 = 0, hence the element belongs to Hq(M). Notice
that the spectral sequence in the statement is obtained by considering p := −p. □

Let us define the operator

θi : H•(M, k) −→ H•(M, k)
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given by

d1 : E1
0,q
∼= Hq(M, k) −→ E1

−1,q
∼= (I/I2)⊗A Hq(M, k)

1⊗ ζ 7→ ∑n
i=1 xi ⊗ θi(ζ)

where xi denotes the image of xi in I/I2. Since {xi}i is a basis of I/I2 over k, we have that
the images θi(ζ) are uniquely determined.

Proposition 2.5. For each 1 ≤ i, j ≤ n we have that θ2
i = 0 and θiθj = θjθi.

Proof. Since (d1)2 = 0 and d1 is a morphism of A-modules we obtain

0 = (d1)2(1⊗ ζ) = d1

(
n

∑
i=1

xi ⊗ θi(ζ)

)
=

n

∑
i=1

xid1(1⊗ θi(ζ)) =

=
n

∑
i=1

xi

n

∑
j=1

xj ⊗ θjθi(ζ) =
n

∑
i=1

n

∑
j=1

xixj ⊗ θjθi(ζ).

Therefore, as {xixj}1≤i,j≤n is a basis of I2/I3 over k we obtain the desired result. □

Lemma 2.6. Let N be the largest integer such that HN(M, k) ̸= 0. Let ζ ∈ HN(M, k) with
θi(ζ) = 0 for all 1 ≤ i ≤ n. Then ζ ∈ im(HN(M) −→ HN(M, k)).

Proof. Since θi(ζ) = 0 for all 1 ≤ i ≤ n we obtain d1(ζ) = 0. Then for any r > 1 we have

dr(ζ) ∈ Er
−r,N+r−1 ⊂ E1

−r,N+r−1
∼=

Ir

Ir+1 ⊗A HN+r−1(M, k) = 0

because N < N + r− 1. Therefore, dr(ζ) = 0 for all r ≥ 1, and by Lemma 2.4 we conclude

ζ ∈ E∞
0,N
∼= im(HN(M) −→ HN(M, k)).

□

We say that a map between DG A-modules is a chain map and the usual notions of
chain homotopy and chain equivalence are considered.

Lemma 2.7. Let M be a free DG A-module such that H•(M, k) = 0. Then M is contractible.

Proof. Since H•(M, k) = 0 we can assume M⊗A k has a basis over k given by {eα, fα}α∈A for
some indexing set A. Let us consider the free graded A-module F generated by {e′α, f ′α}α∈A,
where deg(e′α) = deg(eα) and deg( f ′α) = deg( fα) with the differential d′ given by d′(e′α) =
f ′α and d′( f ′α) = 0 for each α ∈ A. It is clear that F is a free DG A-module. Let us define a
morphism of A-modules

ϕ : F −→ M
e′α 7→ eα

f ′α 7→ d(eα)
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where eα is a lifting of eα ∈ M⊗A k to eα ∈ M. We have an induced isomorphism

ϕ⊗ id : F⊗A k −→ M⊗A k
e′α ⊗ 1 7→ ϕ(e′α)⊗ 1 = eα

f ′α ⊗ 1 7→ ϕ( f ′α)⊗ 1 = d(e′α)⊗ 1 = fα,

that is indeed a chain map. Since M and F are free graded A-modules, by Proposition
2.1 we have ϕ is also an isomorphism. Finally, we have that F is chain equivalent to 0.
Consider α : F −→ 0, β : 0 −→ F and notice β ◦ α = id0 and ϕ : F −→ F given by ϕ(e′α) = 0 and
ϕ( f ′α) = e′α is a chain equivalence between idF and α ◦ β because

(ϕ ◦ d + d ◦ ϕ)(e′α) = g( f ′α) = e′α = (idF − α ◦ β)(e′α),

(ϕ ◦ d + d ◦ ϕ)( f ′α) = d(e′α) = f ′α = (idF − α ◦ β)( f ′α).

Therefore, M is contractible. □

Corollary 2.8. Let M, N be free DG A-modules and let f : M −→ N be a chain map. If H•( f , k) is
an isomorphism, then f is a chain equivalence.

Proof. Since f ⊗ k is a quasi-isomorphism, by Corollary A.3 we have that cone( f ⊗ k) is
acyclic. We notice that

cone( f ⊗ k) = (M⊗A k)[−1]⊕ (N ⊗A k) ∼= (M[−1]⊕ N)⊗A k = cone( f )⊗A k,

and

Dcone( f⊗k) =

(
−dM ⊗ id 0
− f ⊗ id dN ⊗ id

)
=

(
−dM 0
− f dN

)
⊗ id = Dcone( f ) ⊗ id.

Therefore, cone( f ) ⊗A k is acyclic and by Lemma 2.7 cone( f ) is contractible. Finally, by
Proposition A.4 we conclude that f is a chain equivalence. □

Definition 2.9. Let M be a DG A-module. A composition series for M is a sequence

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mq = M

of DG A-modules such that for each 1 ≤ j ≤ q the quotient Mj/Mj−1 is a free DG A-module with
zero differential. We say M is solvable if there exists a free finitely generated DG A-module M
that admits a composition series and a chain equivalence

f : M −→ M,

We define the length l(M) of M as the length of the shortest composition series that admits any free
finitely generated DG A-module M which is chain equivalent to M.
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Lemma 2.10. Let M1, M2, M3 be free finitely generated DG A-modules such that the differential
on M1 is trivial and assume we have a short exact sequence

0 −→ M1
q−→ M2

p−→ M3 −→ 0

If l(M3) = l, then there exists a free finitely generated DG A-module M2 admitting a composition
series of length l + 1 and a chain equivalence between M2 and M2.

Proof. Since l(M3) = l we know there exist a free finitely generated DG A-module M3 that
admits a composition series of length l and a chain equivalence f : M3 −→ M3. Let us
consider the pullback

M2 = {(m, m) ∈ M2 ⊕M3 : p(m) = f (m)}

and the natural map

ϕ : M2 −→ M2

(m, m) 7→ m.

We have a commutative diagram

0 M1 M2 M3 0

0 M1 M2 M3 0
q p

q′ p′

ϕ f

where the rows are exact and the top row maps are given by q′(m′) = (q(m′), 0) and
p′(m, m) = m. Then, we have a morphism between the induced long exact sequences in
homology, so for each k ∈ Z we have a commutative diagram

Hk+1(M3) Hk(M1) Hk(M2) Hk(M3) Hk−1(M1)

Hk+1(M3) Hk(M1) Hk(M2) Hk(M3) Hk−1(M1)

Hk(ϕ) Hk( f )Hk+1( f )

Since by hypothesis Hk+1( f ) and Hk( f ) are isomorphisms, by the Five Lemma we obtain
that Hk(ϕ) is also an isomorphism, hence ϕ is a chain equivalence by Corollary 2.8. More-
over, we have that M2 is free and finitely generated. Finally, the exact sequence

0 −→ M1 −→ M2 −→ M3 −→ 0

splits because M3 is free, hence projective. Therefore, we have that M2 ∼= M1 ⊕M3 and we
have that

M2/M3 ∼= M1
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is a free DG A-module with zero differential. Thus,

0 = M0 ⊆ M1 ⊆ · · · ⊆ Ml = M3 ⊆ M2

is a composition series of length l + 1 for M2, which concludes the proof. □

Proposition 2.11. Let M be a free finitely generated DG A-module. Then M is solvable.

Proof. We proceed by induction on the rank of M, which is defined as

rank(M) = dimk(M⊗A k).

If rank(M) = 1, then M ∼= A. Since A is an integral domain, for any x ∈ A we have

d(x)d(x) = d(xd(x)) = xd2(x) = 0,

hence d = 0 in M and 0 ⊆ M is a composition series for M, thus M is solvable.
Assume that the result is satisfied for all M′ with rank(M′) < rank(M). If H•(M, k) = 0,
by Lemma 2.7 we have M is solvable. If not, take N to be the largest integer such that
HN(M, k) ̸= 0. By Proposition 2.5 we have that H•(M, k) is an Λ(θ1, · · · , θn)-module,
where Λ(θ1, · · · , θn) is the exterior algebra generated by the operators θi. Consider the
ideal J = (θ1, · · · , θn) ⊂ Λ(θ1, · · · , θn) and let l be the largest integer such that

Jl HN(M, k) ̸= 0.

Notice that this is well-defined because Jn+1HN(M, k) = 0. For ζ ∈ Jl HN(M, k) we have
that jζ = 0 for any j ∈ J, and in particular θi(ζ) = 0 for all 1 ≤ i ≤ n. Then, by Lemma 2.6
we have that

ζ ∈ im(HN(M) −→ HN(M, k)),

so there exists ζ ∈ MN with dζ = 0 that projects to a cycle that represents ζ in M ⊗A k.
Since ζ projects to a nonzero element in M ⊗A k, by Proposition 2.1 it generated a free
summand of M. Consider AeN a free graded A-module generated by an element of degree
N and with trivial differential. We can consider the map

i : AeN −→ M
eN 7→ ζ

that is trivially a chain map and induces an inclusion into a direct summand of M. Hence,
we have that rank(coker(i)) = rank(M)− 1. Therefore, by the inductive hypothesis and
Lemma 2.10 considered over the short exact sequence

0 −→ AeN
i−→ M −→ coker(i) −→ 0

we obtain that M is solvable, which concludes the proof. □
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Definition 2.12. Let M be a DG A-module. We say that M is totally finite if H•(M) is a a
k-vector space of finite dimension.

Let Mi be a graded k[xi]-module for each 1 ≤ i ≤ n. Then we have that

M1 ⊗k M2 ⊗k · · · ⊗k Mn

is a graded module over k[x1]⊗k · · · ⊗k k[xn] ∼= k[x1, . . . , xn] = A by considering the com-
ponentwise action. For each 1 ≤ i ≤ n let us consider the k[xi]-modules

Ai = k[xi] Bi = k[xi, x−1
i ] Ci =

Bi

Ai
.

Then, for 0 ≤ j ≤ n we define the A-modules

Pj = A1 ⊗k A2 ⊗k · · · ⊗A Aj ⊗k Cj+1 ⊗k · · · ⊗k Cn

Qj = A1 ⊗k A2 ⊗k · · · ⊗A Aj ⊗k Bj+1 ⊗k Cj+2 ⊗k · · · ⊗k Cn

Notice that for each 1 ≤ i ≤ n we have a short exact sequence of k[xi]-modules

0 −→ Ai −→ Bi −→ Ci −→ 0.

Then, by successively applying the functors − ⊗k Ak for 1 ≤ k ≤ i − 1 and − ⊗j Ck′ for
i + 1 ≤ k′ ≤ n, which are exact, we conclude that for each 0 ≤ j ≤ n− 1 there is a short
exact sequence of A-modules

0 −→ Pj+1 −→ Qj −→ Pj −→ 0.

Lemma 2.13. Let M be a free finitely generated totally finite DG A-module. Then H•(M, Qj) = 0
for all 0 ≤ j ≤ n− 1.

Proof. Let Sj+1 be the multiplicative system of power of xj+1. It follows from the definitions
that Qj = (Pj+1)Sj+1 . Moreover, since localization commutes with tensor products and it is
exact, which implies that it preserves homology, we deduce that for each 0 ≤ j ≤ n− 1

H•(M, Pj+1)Sj+1 = H•(M⊗A Pj+1)Sj+1
∼= H•((M⊗A Pj+1)Sj+1)

∼=
∼= H•(M⊗A (Pj+1)Sj+1)

∼= H•(M⊗A Qj) = H•(M, Qj).

We proceed by induction downward on the index j. If j = n− 1 with the same argument
as before we have

H•(M, Qj) ∼= H•(M, A)Sn
∼= H•(M, A)⊗A A[x−1

n ].

Since H•(M, A) ∼= H•(M) is a finite dimensional k-vector space, it follows that some power
of xn needs to annihilate H•(M), hence H•(M)Sn = 0 and we are done.
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Assume that the result holds for j > m, with 0 ≤ m < n− 1. For each 1 ≤ k ≤ n− 1− j we
have a short exact sequence of A-modules

0 −→ Pj+k+1 −→ Qj+k −→ Pj+k −→ 0.

We apply the covariant functor M ⊗A −, which is exact, and we consider the connecting
morphism of the associated long exact sequence on homology

∂j+k : H•(M, Pj+k) −→ H•(M, Pj+k+1).

By inductive hypothesis we obtain that ∂j is an isomorphism for all k ≥ 1, because
H•(M, Qj+k) = 0. Therefore, the composition

∂n−1 ◦ · · · ◦ ∂j+2 ◦ ∂j+1 : H•(M, Pj+1) −→ H•(M, Pn)

is also an isomorphism, hence

H•(M, Pj+1) ∼= H•(M, Pn) ∼= H•(M, A) ∼= H•(M),

and by the same argument for the base case we obtain that

H•(M, Qj) ∼= H•(M, Pj+1)Sj+1
∼= H•(M)Sj+1 = 0,

which concludes the proof for the inductive step. □

Corollary 2.14. Let M be a free finitely generated totally finite DG A-module. Then the connecting
morphisms

∂j : H•(M, Pj) −→ H•(M, Pj+1)

of the long exact sequence in homology induced by the short exact sequence

0 −→ Pj+1 −→ Qj −→ Pj −→ 0

are isomorphisms.

Lemma 2.15. Let 0 −→ N1 −→ N2 −→ N3 −→ 0 be a short exact sequence of graded A-modules and
let

0 −→ M1
f−→ M2

g−→ M3 −→ 0

be a short exact sequence of free DG A-modules such that M3 has trivial differential. Then the
connecting morphism δ of the long exact sequence in homology induced by the sequence of graded
A-modules satisfy that

im(δ : H•(M2, N3) −→ H•(M2, N1)) ⊂ im(H•(M1, N1) −→ H•(M2, N1)).
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Proof. Let ζ ∈ H•(M2, N3) and z = ∑i∈I mi ⊗ ni ∈ M2 ⊗A N3 a representative cycle, hence
∑i∈I d(mi)⊗ ni = 0. We want to compute δζ. For that, we consider a lifting ni ∈ N2 of each
ni with i ∈ I and we compute

(d⊗ id)

(
∑
i∈I

mi ⊗ ni

)
= ∑

i∈I
d(mi)⊗ ni ∈ M2 ⊗A N1.

On the other hand, since the differential on M3 is trivial we have

d(mi) ∈ ker(M2 −→ M3) = M1,

where we identify M1 with im(M1 −→ M2), which is a direct summand of M2 since the
A-modules are free. From the above statements one concludes that

∑
i∈I

d(mi)⊗ ni ∈ (M2 ⊗A N1) ∩ (M1 ⊗ N2) ,

but again since the A-modules are free we have that

(M2 ⊗A N1) ∩ (M1 ⊗ N2) = M1 ⊗A N1.

Therefore, we deduce that ∑i∈I d(mi) ⊗ ni is a cycle contained in M1 ⊗A N1 ⊂ M2 ⊗ N1,
which is what we wanted to prove. □

Theorem 2.16. Let M be a free finitely generated totally finite DG A-module with H•(M) ̸= 0.
Then l(M) ≥ n + 1.

Proof. We can assume that M admits a composition series of length l = l(M). If that is
not the case, we can replace M by a chain equivalent free finitely generated DG A-module
admitting such composition series. Let

0 = M0 ⊆ M1 ⊆ · · · ⊆ Ml = M

be this composition series. In the first place we will prove that for each 0 ≤ j ≤ l the
morphism

H•(ij, Pj) : H•(Ml−j, Pj) −→ H•(M, Pj)

is surjective, where
ij : Ml−j −→ M

is the inclusion associated to the composition series. We proceed by induction on j. If j = 0
the result is immediate. For j > 0 assume that ij is surjective and consider the commutative
diagram

H•(Ml−j, Pj) H•(M, Pj)

H•(Ml−j, Pj+1) H•(M, Pj+1)H•(ij,Pj+1)

∂

H•(ij,Pj)

∂
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where the vertical maps are induced by the connecting homomorphism associated to the
short exact sequence

0 −→ Pj+1 −→ Qj −→ Pj −→ 0

as it was done in Lemma 2.13. By Corollary 2.14 the right vertical map is an isomorphism.
Let ζ ∈ H•(M, Pj+1) and take ζ ′ ∈ H•(M, Pj) such that ∂ζ ′ = ζ. By inductive hypothesis
we have that there exists some ζ ′′ ∈ H•(Ml−j, Pj) such that ζ ′ = H•(ij, Pj)(ζ

′′). Then, by the
commutative diagram above we obtain

H•(ij, Pj+1)(∂ζ ′′) = ζ.

If we apply Lemma 2.15 to the short exact sequences of A-modules

0 −→ Pj+1 −→ Qj −→ Pj −→ 0 0 −→ Ml−j−1 −→ Ml−j −→
Ml−j

Ml−j−1
−→ 0

we obtain that

im(δ : H•(Ml−j, Pj) −→ H•(Ml−j, Pj+1)) ⊂ im(H•(Ml−j−1, Pj+1) −→ H•(Ml−j, Pj+1)),

hence there exists some ζ ′′′ ∈ H•(Ml−j−1, Pj+1) such that its image in H•(Ml−j, Pj+1) is
∂(ζ ′′). Therefore, H•(ij+1, Pj+1)(ζ

′′′) = ζ, so H•(ij+1, Pj+1) is surjective as we wanted to see.
Finally, assume that l ≤ n. Then the map

H•(il , Pl) : H•(M0, Pl) −→ H•(M, Pl)

is surjective. However, M0 = 0 and by Corollary 2.14 we have that

H•(M, Pl) ∼= H•(M, Pn) ∼= H•(M, A) ∼= H•(M),

so H•(M) = 0, which is a contradiction. Hence, l ≥ n + 1. □

Recall that for each 1 ≤ i ≤ n we have an operator θi on H•(M, k) and by Proposition
2.5 we have that if M is a free DG A-module, then H•(M, k) is an Λ(θ1, · · · , θn)-module.
We denote E = Λ(θ1, · · · , θn).

Let us consider the ideal J = (θ1, . . . , θn). For F an E-module we define the length λ(E)
as the largest λ such that Jλ−1F ̸= 0

λ(F) = max{λ : Jλ−1F ̸= 0}.

For M a free finitely generated DG A-module we define the homological length L(M) as

L(M) =
∞

∑
n=−∞

λ(Hn(M, k)).

Notice that the sum is finite because M is finitely generated.
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Theorem 2.17. Let M be a free finitely generated DG A-module. Then L(M) ≥ l(M).

Proof. We want to see that there exists a free finitely generated DG A-module admitting
a composition series of length L(M) which is chain equivalent to M. We proceed by
induction on the homological length L(M).
Assume that L(M) = 1. Then there exists N ∈ Z such that HN(M, k) is the only non-
vanishing homology group, hence Hn(M, k) = 0 for all n ̸= N. Since J annihilates HN(M, k)
it follows from Lemma 2.6 that the map

HN(M) −→ HN(M, k)

is surjective. We can consider a basis of HN(M, k) given by ζ1, . . . , ζs and take cycles in M
ζ1, . . . , ζs that are projected to representative cycles of ζ1, . . . , ζs. Construct a As = ⊕s

i=1Aρi

generated by ρ1, . . . , ρs with deg(ρi) = N for all 1 ≤ i ≤ s and with trivial differential. We
can consider the map

f : As −→ M
ρi 7→ ζi

which is trivially a chain map and induces an isomorphism

H•( f , k) : H•(As, k) −→ H•(M, k).

Therefore, by Corollary 2.8 we obtain that f is a chain equivalence. It is clear that As admits
a composition series of length 1, hence l(M) = 1 and we conclude the proof for the base
case.
For the inductive step assume that the result hold for L(M) ≤ j and let M be a free
finitely generated DG A-module with l(M) = j + 1. Let N be the largest integer such that
HN(M, k) ̸= 0 and take the length λ = λ(HN(M, k)). Notice that

J(Jλ−1HN(M, k)) = JλHN(M, k) = 0,

hence by Lemma 2.6 we obtain that Jλ−1HN(M, k) ⊂ im(HN(M) −→ HN(M, k)). Similarly
as before, choose a basis of Jλ−1HN(M, k) given by ζ1, . . . , ζs and take cycles in M ζ1, . . . , ζs

that are projected to representative cycles of ζ1, . . . , ζs. Let As = ⊕s
i=1Aρi be as before and

consider the map

f : As −→ M
ρi 7→ ζi,

which is again a chain map. After applying the functor −⊗A k we obtain the map

f ⊗ id : As ⊗A k −→ M⊗A k
ρi 7→ ζ ′i ,
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where ζ ′i is a cycle in M ⊗A k representing ζi, hence f ⊗ id is injective. Therefore, by
Proposition 2.1 we deduce that f is an inclusion to a direct summand of M, which allows
us to consider the free DG A-module

M =
M

f (As)
,

that is also finitely generated. From the short exact sequence of A-modules

0 −→ As
f−→ M −→ M −→ 0

and after applying the functor −⊗A k we obtain a long exact sequence given by

· · · −→HN+1(M, k) −→ HN( f (As), k) −→ HN(M, k) −→ HN(M, k) −→ HN−1( f (As), k) −→ · · ·
· · · −→ Hn( f (As), k) −→ Hn(M, k) −→ Hn(M, k) −→ Hn−1( f (As), k) −→ · · ·

because the A-modules are free. Moreover, since Hn(M, k) = HN+1(M, k) = 0 for n > N
and Hn( f (As), k) = 0 for n ̸= N we deduce that

Hn(M, k) ∼=
{

Hn(M, k) if j < N,
HN(M, k)/(Jλ−1HN(M, k)) if j = N

}
.

Therefore, L(M) = L(M) − 1. From the inductive hypothesis it follows that M is chain
equivalent to a free finitely generated DG A-module M that admits a composition series
of length L(M)− 1. Finally, by Lemma 2.10 applied to the above short exact sequence we
obtain that there exists a free finitely generated DG A-module chain equivalent to M with
a composition series of length L(M), which concludes the proof. □

Remark 2.18. In the original version of Carlsson’s paper [Car83] Theorem 2.16 states
that l(M) ≥ n. Nevertheless, we have observed that the argument can be extended to
l(M) ≥ n + 1 without any additional difficulty. We want to emphasize this fact because
this extended version is essential to obtain the main theorem in the most general terms
(see Theorem 1.4.14 in [AP93]), and even though all the bibliography attributes the proof
of the main theorem to Carlsson, inexplicably the author does not state the result with the
standard lower bound.

2.2 The β functor

Let G = (Z2)n and consider the group ring E = k[G]. Notice that as a k-algebra we have
an isomorphism between E and the exterior algebra Λ(y1, . . . , yn) given by

Λ(y1, . . . , yn) −→ k[G]

yi 7→ 1 + Ti,
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where T1, . . . , Tn is a system of generators of G. We assume E is concentrated at zero
degree.

We say that a cochain complex over E is a bounded above and locally finite free graded
E-module C• such that deg(δ) = −1, where δ denotes the differential δ. For C• a cochain
complex over E we define a DG A-module βC• with underlying module

A⊗k C•.

and differential given by

d = id⊗ δ +
n

∑
i=1

xi ⊗ yi,

where xi and yi denote the multiplication by xi and yi, for each 1 ≤ i ≤ n. Notice that β

defines a functor
β : E-CoCh −→ k-CoCh

from the category of cochain complexes over E to the category of cochain complexes over
k. With the following result we will compare the structures of the E-module H•(C•) and
H•(βC•, k) as a Λ(θ1, . . . , θn)-module.

Proposition 2.19. Let C• be a cochain complex over E. There is a natural isomorphism

b : H•(C•) −→ H•(βC•, k)

compatible with the multiplicative structures, that is that the following diagram commutes

H•(C•) H•(βC•, k)

H•(C•) H•(βC•, k)

yi θi

b

b

Proof. Let us consider the chain map

b : C• −→ k⊗A βC• ∼= k⊗A (A⊗k C•)
c 7→ 1⊗ 1⊗ c,

that is well-defined because

((1⊗ d)(b(c)) = (1⊗ d)(1⊗ 1⊗ c) = 1⊗ 1⊗ δ(c) +
n

∑
i=1

1⊗ xi ⊗ yic =

= 1⊗ 1⊗ δ(c) = b(δ(c)),

where we have used that 1⊗ xi ⊗ yic = xi ⊗ 1⊗ yic = 0 for each 1 ≤ i ≤ n. It follows from
definition that b is an isomorphism, hence b = H•(b) is also an isomorphism. To prove
that the diagram commutes consider z a cycle in C•, hence satisfies δ(z) = 0. Notice that a
lifting of b(z) = 1⊗ 1⊗ z from k⊗A βC• to A⊗A βC• may be given by ζ = 1⊗ 1⊗ z. If z
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is the homology class represented by the cycle z, we know that to compute θi(b(z)) we can
use d1(b(z)) = d(b(z)). We have

d(ζ) = 1⊗ 1⊗ δ(z) +
n

∑
i=1

1⊗ xi ⊗ yiz =
n

∑
i=1

1⊗ xi ⊗ yiz =
n

∑
i=1

xi ⊗ 1⊗ yiz,

hence reducing d(ζ) modulo I2 we conclude that

d1(b(z)) =
n

∑
i=1

xi ⊗ yiz.

Therefore, recalling the definition of the operators θi for 1 ≤ i ≤ n we obtain the commuta-
tivity of the diagram. □

Let M be an E-module. We define

ME = {m ∈ M : yim = 0 for all 1 ≤ i ≤ n},

which also determines a functor

−E : E-CoCh −→ k-CoCh

from the category of cochain complexes over E to the category of cochain complexes over
k.

Proposition 2.20. Let C• be a cochain complex over E. There is a natural isomorphism of k-vector
spaces

s : H•(CE
• ) −→ H•(βC•).

Proof. We consider the map

s : CE
• −→ βC•

z 7→ 1⊗ z.

Notice that for any z ∈ CE
• we have that

ds(z) = d(1⊗ z) = 1⊗ δ(z) +
n

∑
i=1

xi ⊗ yiz = 1⊗ δ(z) = s(δ(z))

because yiz for all 1 ≤ i ≤ n, hence s is a chain map.
We can observe that the cochain complex C• can be filtered with the cochain subcomplexes

FnC• =
⊕
j≥n

Cj

and this filtration satisfies that the successive quotients FnC•/Fn+1C• are finitely generated
free E-modules with trivial differential. We also have that the filtration {FnC•}n is finite
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in each dimension, that is that for all k ∈ Z we have that (FnC•)k = 0 for k sufficiently
large, because C• is bounded above and locally finite. Moreover, we also have that βC• is
bounded above. Notice that if we prove the statement for the cochain complexes FnC• for
each n ∈ Z we are done. Furthermore, we claim that it suffices to prove the statement
for the quotients FnC•/Fn+1C• for each n ∈ Z. Indeed, assume that the result holds for
the quotients and proceed by induction downwards on the filtration degree n. Since C• is
bounded above, for n0 sufficiently large we have that Cn = 0 for all n ≥ n0, hence FnC• = 0
for all n ≥ n0 and the proof for base case follows immediately. For the inductive step
consider the short exact sequence of E-modules

0 −→ Fn+1C• −→ FnC• −→
FnC•

Fn+1C•
−→ 0.

Since A is k-flat we obtain that the functor β is exact. On the other hand, we have that
FnC•/Fn+1C• is a free E-module, in particular a projective E-module. Therefore the sur-
jective projection FnC• −→ FnC•/Fn+1C• has a section which allows us to assure that −E

preserves the exactness of the above short exact sequence. Then after applying these two
functors to the aforementioned sequence and by considering the chain map s we obtain the
following commutative diagram

0 (Fn+1C•)E (FnC•)E
(

FnC•
Fn+1C•

)E
0

0 β(Fn+1C•) β(FnC•) β
(

FnC•
Fn+1C•

)
0

sss

Therefore, we have a map between the long exact sequences associated to the horizontal
short exact sequences of the above diagram given by

Hk+1

((
FnC•

Fn+1C•

)E
)

Hk(En+1) Hk(En) Hk

((
FnC•

Fn+1C•

)E
)

Hk−1(En+1)

Hk+1

(
β
(

FnC•
Fn+1C•

))
Hk(βn+1) Hk(βn) Hk

(
β
(

FnC•
Fn+1C•

))
Hk−1(βn+1)

sssss

where we denote βn = β(FnC•) and En = (FnC•)E to simplify the notation. By the inductive
hypothesis and the assumption on the quotients FnC•/Fn+1C• we obtain that the first and
the last two vertical maps are isomorphisms, and by the Five Lemma we conclude the proof
for the inductive step of the claim.
Finally, since each of the quotients FnC•/Fn+1C• is a direct sum of free E-modules modules

40



Master’s Final Project Jordi Garriga Puig

with trivial differentials, it is enough to consider the cochain complex D• given by

Dn =

{
E if n = 0,
0 if n ̸= 0

}

as the functors β and −E commute with direct sums. Now, on the one hand with a carefully
observation of βD• we can notice that it corresponds to the Koszul resolution of k over
A. Therefore, since the Koszul resolution is acyclic (see Proposition 4.2.2 in [Ser75]) we
conclude

Hn(βD•) =

{
k if n = 0,
0 if n ̸= 0

}
.

On the other hand, it is clear that we also have that

Hn(DE
• ) =

{
k if n = 0,
0 if n ̸= 0

}
.

Hence, since the map s matches the generators of H•(DE
• ) and H•(βD•) we finish the proof.

□

Corollary 2.21. Let C• be a cochain complex over E finitely generated as an E-module. Then βC•
is totally finite.

Proof. We have that CE is a finite-dimensional k-vector space because C• is finitely gener-
ated, hence the same happens to H•(CE). Therefore, it follows from Proposition 2.20 that
H•(βC•) is also a finite-dimensional k-vector space, which means that βC• is totally finite.
□

Let us consider the ideal J = (y1, . . . , yn) ⊂ E. Recall that if M is a E-module, we define
the length λ(M) as the largest integer λ such that Jλ−1M ̸= 0.

Theorem 2.22. Let C• be a cochain complex over E finitely generated as an E-module. Then

∞

∑
n=−∞

λ(Hn(C•)) ≥ n.

Proof. It follows from Proposition 2.19 that

∞

∑
n=−∞

λ(Hn(C•)) =
∞

∑
n=−∞

λ(Hn(βC•, k)) = L(βC•).

By Corollary 2.21 we have that βC• is totally finite, and it is clear that βC• is also locally
finite and bounded above. Therefore, by Theorem 2.16 we deduce that βC• admits a com-
position series of length n, that is l(βC•) ≥ n. Finally, from Theorem 2.17 we conclude that
L(βC•) ≥ l(βC•) ≥ n, which finishes the proof. □

41



Master’s Final Project Jordi Garriga Puig

2.3 The proof of the main theorem

We have already introduced all the necessity algebraic results needed to properly prove the
main theorem. Before concluding this chapter we will provide a geometric interpretation
to the these statements in order to obtain a more illustrative characterisation of the main
theorem.

Let G = (Z2)n and k = Z2. Let X be a free finite G-CW-complex and consider C• =
W•(X; k) the cellular cochain complex negatively graded, where we also assume that the
differential δ is of degree −1.

We can observe that C• is indeed a free graded E-module, since the G-action is free.
Moreover, C• is locally finite, because X is finite, and bounded above. Then we can consider
the construction βC• that we defined in the previous section 2.2. From the discussion
in section 1.4 we can notice that βC• corresponds to the DG A-module C• ⊗ k[t1, . . . , tn]

negatively graded with the twisted differential, and by Proposition 1.21 we obtain that the
construction βC• is naturally isomorphic to β•G(X; k), again negatively graded. Therefore
we can conclude that by defining the construction βC• we are obtaining an algebraic model
whose homology corresponds to the equivariant cohomology of the G-CW-complex X

H•(βC•) ∼= H•G(X; k).

We can understand 2.19 as the fact that by considering the tensor product with the field
k on cochain level we recover the usual cohomology of the G-CW-complex X

H•(βC•, k) ∼= H•(C•) = H•(X; k).

Furthermore, we can observe that Proposition 2.20 is an equivalent result to the fact that if
X is a free G-space, we have that

H•G(X; k) ∼= H•(X/G; k).

Indeed, we already know that the equivariant cohomology of X can be obtained by the
homology of the construction βC•. On the other hand, we can prove that CE

• = W•(X/G; k).
Let c ∈ CE

• be a cochain and notice that for each 1 ≤ i ≤ we have

yic = 0 = (1 + Ti)c ⇐⇒ Tic = c,

that corresponds to say c ∈W•(X/G; k). Therefore we obtain

H•(βC•) ∼= H•G(X) ∼= H•(X/G; k) ∼= H•(CE
• )

which is equivalent to Proposition 2.20.

Finally, by Theorem 2.22 applied to C• = W•(X; k) we can prove the main theorem of
this project.

42



Master’s Final Project Jordi Garriga Puig

Theorem 2.23. Let X be a finite CW-complex such that (Z2)n acts freely and celluarly on X. Then

∞

∑
n=−∞

λ(Hn(X; Z2)) ≥ n.

Proof. Let C• = W•(X; k) be cellular cochain complex negatively graded, which by the
previous discussion is a cochain complex over E and it is finitely generated as an E-module.
If follows from 2.22 that

∞

∑
n=−∞

λ(Hn(X; k)) =
∞

∑
n=−∞

λ(Hn(C•)) ≥ n.

Finally, by the Universal Coefficients Theorem we deduce that Hn(X; k) ∼= Homk(Hn(X; k), k)
as k[G]-modules. Then it is immediate to check that λ(Hn(X; k)) = λ(Homk(Hn(X; k), k))
for each n ∈ Z, which is reasonable because they are dual representations. And we con-
clude the proof. □
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Appendix A

Basic notions on homotopy theory

A.1 The mapping cone

Throughout this section we assume that all the objects are considered in an abelian cate-
gory. We have based the result on [Wei94].

Definition A.1. Let A•, B• be chain complexes and let f : A• −→ B• be a morphism of chain
complexes. The mapping cone of f is the chain complex given by

cone( f ) = A•[−1]⊕ B•

with the differential
D(a, b) = (−dA(a), dB(b)− f (a)).

It is standard to see that cone( f ) is a well-defined chain complex.

Lemma A.2. Let f : A• −→ B• be a morphism of chain complexes. There is an exact sequence of
chain complexes

0 −→ B•
i−→ cone( f )

j−→ A•[−1] −→ 0,

where i(c) = (0, c) and j(a, c) = −a. Moreover, the connecting morphism in the associated long
exact sequence is H•( f ).

Proof. It is straightforward to check the exactness of the sequence of chain complexes. To
compute the connecting morphism in the associated long exact sequence consider a ∈
An[−1] = An−1 with dA(a) = 0, take the element (a, 0) ∈ cone( f )n and notice that

D(a, 0) = (−dA(a), f (a)) = (0, f (a)),

so the element of Bn−1 having (0, f (a)) as image is f (a), hence the connecting morphism
corresponds to Hn−1( f ). □
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Corollary A.3. Let f : A• −→ B• be a morphism of chain complexes. Then f is a quasi-isomorphism
if and only if cone( f ) is acyclic.

Proof. From the long exact sequence associated to the short exact sequence in Lemma A.2

· · · −→ Hn+1(cone( f )) −→ Hn+1(A•[−1]) = Hn(A•)
Hn( f )−−−→ Hn(B•) −→ Hn(cone( f )) −→ · · ·

the result follows immediately. □

Proposition A.4. Let f : A• −→ B• be a morphism of chain complexes. If cone( f ) is contractible,
then f is a chain equivalence.

Proof. Since cone( f ) is contractible, it is chain equivalent to the zero module, so there exists
a map ϕ : cone( f ) −→ cone( f ) such that ϕD + Dϕ = idcone( f ). Assume that ϕ is given by
the matrix

ϕ =

(
a b
c d

)
.

From the equality ϕD + Dϕ = idcone( f ) we obtain that(
−adA − b f − dAa bdB − dAb

−cdA − d f − f a + dBc ddB − f b + dBd

)
=

(
1 0
0 1

)
.

Then since bdB − dAb = 0 we deduce that −b : B• −→ A• is a chain map. And it follows
from

−adA − b f − dAa = 1 =⇒ 1− (−b) f = (−a)dA + dA(−a)

ddB − f b + dBd = 1 =⇒ 1− f (−b) = ddB + dBd

that −b is indeed the chain homotopy inverse of f that satisfies (−b) f ≃−a idA and
f (−b) ≃d idB, hence f is a chain equivalence. □
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Appendix B

Principal G-bundles

In this appendix we give an introduction to principal G-bundles. We have followed [Nab18]
and [Mit01a]. We start by defining this object.

Definition B.1. Let G be a topological group. Let E and B be right G-spaces such that the action
of G on B is trivial and consider a G-map

π : E −→ B

We say that (E, π) is a principal G-bundle over B if there exists an open cover {Ui}i∈I of B such
that for each i ∈ I there exists a G-map ϕi : π−1(Ui) −→ Ui × G which is an homeomorphism and
makes the following diagram commutative

π−1(Ui) Ui × G

Ui

π p1

ϕi

where p1 denotes the projection onto the first component. The space E is called the total space of
the principal G-bundle (E, π).

Notice that since G acts trivially on B we have that π factors through the orbit space
E/G. Moreover, we also have that Ui × G has a right G-action given by

(Ui × G)× G −→ Ui × G
((x, h), g) 7→ (x, hg),

hence we obtain that G acts freely on E. Therefore π factors through E/G with an homeo-
morphism π : E/G −→ B

E B

E/B

π

π
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In conclusion, we can understand a principal G-bundle over B as a locally trivial free G-
space with orbit space B.

Definition B.2. Let (E, π) be a principal G-bundles over B and let (E′, π′) be principal G-bundles
over B′. A morphism of principal G-bundles is a G-map σ : E −→ E′.

Notice that for σ : E −→ E′ a morphism of principal G-bundles we have an associated
map σ : B −→ B′ which makes the following diagram commutative

E E′

B B′σ

π′π

σ

defined by σ(b) = π′(σ(e)), where π(e) = b. We have that σ is well-defined because if
e1, e2 ∈ π−1(b) we have that e1 = e2g for some g ∈ G and then

π′(σ(e1)) = π′(σ(e2g)) = π′(σ(e2)g) = π′(σ(e2)).

We also have that σ is continuous because for each b ∈ B there exists some open set Ui ⊂ B
such that b ∈ Ui and there exists a local section s : Ui −→ π−1(Ui) ∼= Ui × G. Then we have
that

σ|Ui
= π′ ◦ σ ◦ s,

hence σ is continuous on Ui, and since B =
⋃

i∈I Ui we deduce σ is continuous on B.

With the following result we can observe that morphisms of principal G-bundles are
very rigid structures.

Proposition B.3. Let σ : E −→ E′ be a morphism of principal G-bundles such that σ : B −→ B′ is
the identity. Then σ is an isomorphism.

Proof. To see ϕ is injective consider e1, e2 ∈ E such that σ(e1) = σ(e2). From the commuta-
tive diagram

E E′

B BId

π′π

σ

it follows that π′ ◦ σ = π, hence we obtain π(e1) = π(e2), which implies that e1 = e2g for
some g ∈ G. Therefore we have that

σ(e1) = σ(e2g) = σ(e2)g = σ(e2)
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and since the action of G on E′ is free we deduce that g = e, thus e1 = e2. To prove
subjectivity let e2 ∈ E′ and consider b = π′(e2). We can take e ∈ π−1(b) and again from the
above commutative diagram it follows that

π′(σ(e)) = π(e) = b = π′(e2),

thus σ(e) = e2g for some g ∈ G. Then if we define e1 = eg−1 we can observe that

σ(e1) = σ(eg−1) = σ(e)g−1 = e2gg−1 = e2,

thus ϕ is surjective. It remains to see that ϕ−1 is continuous. For b ∈ B we choose Ui ⊂ B
with b ∈ Ui and such that the bundles are trivial over Ui, hence there exist G-equivariant
homeomorphisms

ϕ : Ui × G −→ π−1(Ui) ϕ′ : Ui × G −→ (π′)−1(Ui).

Since σ is surjective we have that ϕ(π−1(Ui)) = (π′)−1(Ui), and we have a well-defined
morphism of principal G-bundles

Ui × G Ui × G

Ui Ui
Id

that is necessarily of the form

ϕ−1
2 ◦ ϕ ◦ ϕ1(x, g) = (ϕ−1

2 ◦ ϕ ◦ ϕ1(x, e))g = (x, τ(x, e))g = (x, τ(x, e)g),

with τ : U −→ G a continuous map. We can observe that the inverse map is given by

ϕ−1
1 ◦ ϕ−1 ◦ ϕ2(x, g) = (x, τ(x, e)−1g),

which is also continuous, and then we obtain that ϕ is continuous on ϕ−1
2 (U). Finally, since

B =
⋃

i∈I Ui we are done. □

B.1 Equivariant maps and sections of bundles

If (E, π) is a principal G-bundle over B and X is a left G-space, we can define the associated
fiber bundle to (E, π) by X as

πX : E×G X −→ B
[p, x] 7→ π(p)

where E ×G X corresponds to the space E × X modulo the equivalence relation (p, x) ∼
(pg, g−1x) for each g ∈ G. In this section we will see that we have a bijective correspondence
between sections of the above fiber bundle and G-equivariant maps E −→ X.
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Theorem B.4. Let (E, π) be a principal G-bundle over B, let X be a G-space and consider E×G X
the associated bundle. For any open set U ⊂ B we have a bijective correspondence

Γ(U, E×G X)←→ Hom(π−1(U), X)G,

where Γ(U, E×G X) denotes the set of sections from U to E×G X and Hom(π−1(U), X)G is the
set of G-equivariant maps π−1(U) −→ X.

Proof. Let U ⊂ B be an open subset. Consider ϕ : π−1(U) −→ E×G X a G-map and define
the section

sϕ : U −→ E×G X
b 7→ [p, ϕ(p)]

The section sϕ is well-defined because for p, q ∈ π−1(b) we have that p = qg for some g ∈ G
and then

[p, ϕ(p)] = [qg, ϕ(qg)] = [qg, g−1ϕ(q)] = [q, ϕ(q)].

Moreover, it is clear that πX ◦ sϕ = IdU . It remains to prove that sϕ is continuous. Take
an open set Vi = Ui ∩U ⊂ U such that the bundle is trivial over Vi and consider a local
section sVi : Vi −→ E. For each v ∈ Vi we have that

sϕ(b) = [sVi(b), ϕ ◦ sVi(b)],

hence we have that sϕ |Vi
is continuous. Finally, since

⋃
i∈I Ui ∩U = U we obtain that sϕ is

continuous on U. Therefore we conclude that we have defined a map

Hom(π−1(U), X)G −→ Γ(U, E×G X).

To show that this map is bijective we will construct its inverse. Consider a section s ∈
Γ(U, E×G X) and define the map given by

ϕs : π−1(U) −→ E×G X
p 7→ f

where s(π(p)) = [p, f ]. Notice that this map is well-defined because if s(π(p)) = [p, f1] =

[p, f2], then we have that (p, f1) = (pg, g−1 f2) for some g ∈ G, and since the action is free
we deduce g = e, hence f1 = f2. Observe then that s(π(p)) = [p, ϕs(p)]. To see that ϕs is
G-equivariant take g ∈ G and notice that for any p ∈ π−1(U) we have that

[p, ϕs(p)] = s(π(p)) = s(π(sg)) = [pg, ϕs(pg)],

where we have used that π(pg) = π(g). Thus there exists h ∈ G such that (pg, ϕs(pg)) =
(ph, h−1ϕ(p)). We have that pg = ph and again since the action is free we deduce g = h,
hence we obtain ϕs(pg) = g−1ϕ(p) as we desired. Finally, to prove that ϕs is continuous
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we consider an open subset Vi = Ui ∪U ⊂ U such that the bundle is trivial over Vi, hence
we have an G-equivariant homeomorphism

ϕ : Vi × G −→ π−1(Vi).

This induce a local trivialization on the associated bundle given by

ϕX : Vi × X −→ (E×G X)|Vi

(b, x) 7→ [ϕ(b, e), x]

If we consider ϕ−1
X (q) = (πX(q), τX(q)), where τX : (E ×G X)|Vi

−→ X is a G-equivariant
map, we obtain that

(b, x) = ϕ−1
X ([ϕ(b, e), x]) = (πX ◦ ϕ(b, e), τX([ϕ(b, e), x])) = (b, τX([ϕ(b, e), x])),

so we have that x = τX([ϕ(b, e), x]) for all x ∈ X. Moreover, we also have that

τX ◦ s(b) = τX ◦ s ◦ π1(b, e) = τX ◦ s ◦ π ◦ ϕ(b, e) = τX([ϕ(b, e), ϕs(ϕ(b, e))]) = ϕs ◦ ϕ(b, e).

Therefore ϕs ◦ϕ is continuous, so ϕs is continuous on ϕ−1(Vi). Finally, since
⋃

i∈I Ui ∩U = U
we conclude that ϕs is continuous on π−1(U), as we desired. Thus we conclude that we
have constructed a map

Γ(U, E×G X) −→ Hom(π−1(U), X)G

and it is immediate to check it is an inverse to the previous map, which finishes the proof.
□

If particular, for U = X we obtain the bijective correspondence

Γ(B, E×G X)←→ Hom(E, X)G.

As a consequence of the previous result we can state the following Corollary.

Corollary B.5. Let (E, π) be a principal G-bundles over B and let (E′, π′) be principal G-bundles
over B′. There is a bijective correspondence

Γ(B, E×G E′)←→ HomG(E, E′),

where HomG(E, E′) denotes the set of morphisms of principal G-bundles.

Proof. By Definition B.2 we have that HomG(E, E′) corresponds to Hom(E, E′)G, hence the
result follows from Theorem B.4. □
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B.2 Universal principal G-bundles and classifying spaces

Let (E, π) be a principal G-bundle and let f : B′ −→ B be a continuous map, with B′ another
trivial G-space. We can consider the pullback bundle E′ = f ∗E = B′ ×B E

f ∗E E

B′ B

π

f

π

and we can observe that ( f ∗(E), π) has a natural structure of principal G-bundle over B′.
It is clear that π : f •E −→ B′ is a G-map. Moreover, if {Ui}i∈I is a open cover of B with
{ϕi : π−1(Ui) −→ Ui × G}i∈I local trivializations, then we consider { f−1(Ui)}i∈I as an open
cover of B′ and it follows from the definitions that the following diagram commutes

π−1( f−1(Ui)) f−1(Ui)× G

f−1(Ui)

π

ϕ′i

with ϕi = π2 ◦ ϕ, where π2 denotes the projection onto the second component.

With the following result we can observe that pullback bundles preserve homotopies.

Proposition B.6. Let X be a topological space, let (E, π) be a principal G-bundle over X and let
B be a CW-complex. If f , g : B −→ X are homotopic maps, then f ∗E and g∗E are isomorphic as
principal G-bundles.

Proof. Consider H : B× I −→ X a homotopy between f and g and let H∗E be the pullback
bundle

F∗E E

B× I X
F

π

Then the result is deduced from the following Lemma B.7. □

Lemma B.7. Let π : Q −→ B× I be a principal G-bundle and consider Q0 its restriction to B×{0}.
Then Q is isomorphic to Q0 × I. In particular, Q0 is isomorphic to Q1.

Proof. To say that Q0 is the restriction of Q to B×{0} means that Q0 is the pullback bundle
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Q0 Q

B× {0} B× I
i0

π

where i0 denotes the natural inclusion. By Proposition B.3 it suffices to find an equivariant
map Q −→ Q0 × I of principal G-bundles over (B × {0})× I. Moreover, by Theorem B.4
this is equivalent to find a section of the associated bundle

Q×G (Q0 × I) −→ B× I.

However, again by Theorem B.4 we can assure that we have a section s0 : B × {0} −→
Q ×G (Q0 × I) associated to the equivariant map Q −→ Q0 × I that makes the following
diagram commutative

Q Q0 × I Q

B× {0} B× {0} B× I
i0Id

π π

Finally, by a general property of Serre fibrations (see Corollary 5.3 in [Mit01b]) we can
extend s0 to a global section over B× I as we desired. Therefore we obtain that Q0 × I is
isomorphic to Q1 × I, which implies the last statement. □

If we denote by [X, B] the set of homotopic classes of maps X −→ B, from Proposition
B.6 if follows that we have a well-defined map given by

[X, B] −→ PG(X)

f 7→ f ∗E,

where PG(X) denotes the set of isomorphism classes of morphisms of principal G-bundles
over X. From this observation it arises the natural question of which conditions are needed
so as the above map is a bijection, from which arises the definition of universal principal G-
bundles. Recall that we say that a topological space X is weakly contractible if πi(X) = 0
for each i > 0.

Definition B.8. A principal G-bundle π : EG −→ BG is universal if the total space EG is weakly
contractible.

We will prove that when π : EG −→ BG is a universal principal G-bundle and X is a
CW-complex, then the map [X, B] −→ PG(X) is a bijection. We start with a Lemma.

Lemma B.9. Let (B, A) a CW-complex pair and let π : E −→ B be a fiber bundle with fiber F.
Assume that πk(F) = 0 whenever B \ A contains a (k + 1)-dimensional cell. Then any section
s ∈ Γ(A, E) can be extended to a global section s ∈ Γ(B, E). In particular, the fiber bundle
π : E −→ B admits a global section if A = ∅ and F is weakly contractible.
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Proof. We will proceed by induction on the skeleton of the CW-complex pair (B, A), so we
will see that any section s|Ak : Ak −→ E can be extended to a global section sk : Bk −→ E.
If k = 0 the result is immediate because any extension of s|A0 is continuous because B0 is
a discrete space. Assume that s|Ak : Ak −→ E extends to a global section sk : Bk −→ E. We
denote by ek

α an arbitrary k-dimensional cell in B and we define

Ck+1
1 = {α : ek+1

α ⊂ A} Ck+1
2 = {α : ek+1

α ⊂ B \ A}.

We distinguish the following two cases.
a) If Ck+1

2 = ∅, then there are no (k + 1)-dimensional cells in B \ A. We define sk+1 :
(
⋃

α Dk+1
α ) ⊔ Bk −→ E by

sk+1 =

{
sk on B,
s ◦ ϕk+1

α on Dk+1
α

}
,

where ϕk+1
α : Dk+1

α −→ B is the characteristic map of the cell ek+1
α , that satisfies ϕk+1

α (Dk+1
α ) ⊂

A. It is clear that sk+1 is continuous so it only remains to prove that sk+1 induces a contin-
uous map on Bk+1. We consider the attaching maps φk+1

α : ∂Dk+1
α −→ Bk given by ϕk+1

α |∂Dk+1
α

.
Since for each x ∈ ∂Dk+1

α we clearly have that

sk+1(x) = sk+1(φk+1
α )

we obtain a continuous map sk+1 : Bk+1 −→ E. It is immediate to check that π ◦ sk+1 = IdBk+1

and sk+1|Ak+1 = s|Ak+1 , so we conclude that sk+1 : Bk+1 −→ E is a section that extends
sk+1|Ak+1 .
b) If Ck+1

2 ̸= ∅, let ek+1
α be a (k + 1)-dimensional cell in B \ A and let ϕk+1

α : Dk+1
α −→ B be

its characteristic map. We have that ϕk+1
α (∂Dk+1

α ) ⊂ Bk, so the composition map

sk
α = sk ◦ ϕk+1

α : ∂Dk+1
α −→ E

is well-defined and one may notice that π ◦ sk
α = ϕk+1

α |∂Dk+1
α

. Therefore, sk
α defines a section

of the pullback bundle (ϕk+1
α |∂Dk+1

α
)∗(E) over ∂Dk+1

α

(ϕk+1
α |∂Dk+1

α
)∗(E) E

∂Dk+1
α B

ϕk+1
α |∂Dk+1

α

sk
α

Since Dk+1
α is contractible, it follows from Proposition B.6 that the pullback bundle (ϕk+1

α )∗(E)
over Dk+1

α

(ϕk+1
α )∗(E) E

Dk+1
α B

ϕk+1
α
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is trivial, that is that (ϕk+1
α )∗(E) ∼= Dk+1

α × F. Therefore, we also have that the bundle
(ϕk+1

α |∂Dk+1
α

)∗(E) is also trivial, as we can observe in the following diagram

∂Dk+1
α × F Dk+1

α × F E

∂Dk+1
α Dk+1

α B
ϕk+1

α
i

sk
α

We can consider sk
α as a map sk

α = (x, τk
α(x)), where τk

α : ∂Dk+1
α −→ F. By hypothesis we

have that πk(F) = 0, so we can extend τk
α to a continuous map τk+1

α : Dk+1
α −→ F. Therefore

we can extend sk
α to a continuous section sk+1

α : Dk+1
α −→ (ϕk+1

α )∗(E). Finally, we define
sk+1 : (

⋃
α Dk+1

α ) ⊔ Bk −→ E by

sk+1 =


sk on B,
sk+1

α on Dk+1
α if α ∈ Ck+1

2 ,
s ◦ ϕk+1

α on Dk+1
α if α ∈ Ck+1

1

 .

It is clear that sk+1 is continuous and as before we can check that for attaching maps
φk+1

α : ∂Dk+1
α −→ Bk given by ϕk+1

α |∂Dk+1
α

we have that sk+1(x) = sk+1(φk+1
α ) for all x ∈ ∂Dk+1

α .
Therefore sk+1 induces a continuous map sk+1 : Bk+1 −→ E and as before it is immediate to
see that π ◦ sk+1 = IdBk+1 and sk+1|Ak+1 = s|Ak+1 , hence sk+1 is the desired section. □

Finally, we will prove the main theorem of this section.

Theorem B.10. Let π : EG −→ BG be a universal principal G-bundle and let X be a CW-complex.
Then we have a bijective correspondence

[X, BG] −→ PG(X)

f 7→ f ∗(EG).

Proof. To prove subjectivity we consider a principal G-bundle (E, π) over X and we want
to prove that there exists a map f : X −→ BG such that f ∗(EG) is isomorphic to E. By
Proposition B.3 this it suffices to find a morphism of G-bundles σ : P −→ f ∗(EG) such that
σ : X −→ X is the identity

E f ∗(EG)

X XId

π

σ

Moreover, since pullback objects are unique up to isomorphism the above is again equiv-
alent to obtaining a G-equivariant map ϕ : P −→ EG which makes the following diagram
commutative
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E EG

X BG
f

π

ϕ

By Corollary B.5 we know that this is equivalent to find a section of the associated bundle
E ×G EG −→ X, which can be obtained using Theorem B.9 since the fiber EG is weakly
contractible. Therefore the map is surjective. On the other hand, let us consider f0, f1 : X −→
BG two maps which satisfy that the pullback bundles are isomorphic f ∗0 (EG) ∼= f ∗1 (EG).
We want to see that f0 and f1 are homotopic maps. We have an induced morphism of
principal G-bundles f0 : X −→ BG

f ∗0 (EG) EG

X BG
f0

ππ0

ϕ0

Moreover, the isomorphism of principal G-bundles f ∗0 (EG) ∼= f ∗1 (EG) is equivalent to the
existence of a morphism of principal G-bundles ϕ1 : f ∗0 (EG) −→ EG that makes the follow-
ing diagram commutative

f ∗0 (EG) EG

X BG
f1

ππ0

ϕ1

From the above two commutative diagrams and by Proposition B.4 we obtain two sections
s0, s1 : X −→ f ∗0 (EG)×G EG defined by

s0(π0(x)) = [x, ϕ0(x)] s1(π0(x)) = [x, ϕ1(x)]

for x ∈ X. We denote P = f ∗0 (EG) × I and Xt = X × {t}. If we see si as a section
in Γ(Xi, P ×G EG) for i = 0, 1, we can consider s0 ⊔ s1 ∈ Γ(X0 ⊔ X1, P ×G EG) given by
(s0 ⊔ s1)|Xi

= si for i = 0, 1. Since (X× I, X0 ⊔ X1) is a CW-complex pair and EG is weakly
contractible, it follows from Lemma B.9 that there exists a section s ∈ Γ(X × I, P×G EG)

that extends s0 ⊔ s1. Let ϕ : P −→ EG be the associated morphism, which satisfies that
s(ϕ(z), t) = [(z, t), ϕ(z, t)], and which induces a commutative diagram

P EG

X× I BGF

π(π0,Id)

ϕ
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If follows from the definition that s(π0(z), 0) = s0(π0(z)) and s(π1(z), 1) = s1(π0(z)), we
deduce that

ϕ(z, 0) = ϕ0(z) ϕ(z, 1) = ϕ1(z).

Therefore, for all x ∈ X we have that F(x, 0) = f0(x) and F(x, 1) = f1(x), that provides us
with the desired homotopy between f0 and f1. This concludes the proof. □

We say that the space BG is the classifying space of the group G in view of the fact
given X a CW-complex the space BG classifies isomorphism classes of principal G-bundles
over X. Moreover, we have uniqueness of universal principal G-bundles up to G-homotopy
equivalence. To prove this we would first need to show that the classifying space BG admits
a structure of CW-complex. For a proof see [Nab18]

Lemma B.11. The classifying space BG admits a structure of CW-complex

Theorem B.12. Let EG −→ BG and E′G −→ B′G be two universal principal G-bundles. Then there
exists an homotopy equivalence B′G −→ BG and a G-equivariant homotopy equivalence E′G −→ EG
which makes the following diagram commutative

E′G EG

B′G BG

Proof. We consider maps f : B′G −→ BG and g : BG −→ B′G such that E′G ∼= f ∗(EG) and
EG ∼= g∗(E′G). Then the composition map f ◦ g : BG −→ BG satisfies that

( f ◦ g)∗(EG) ∼= g∗( f ∗(EG)) ∼= g∗(E′G) ∼= EG.

Therefore, by Lemma B.11 we have a bijective correspondence

[BG, BG]↔ PG(BG)

and we obtain that the map f ◦ g is homotopic to the identity IdBG. With a similar argument
we obtain that g ◦ f is homotopic to the identity IdB′G. Therefore we conclude that f :
B′G −→ BG is a homotopy equivalence, as we wanted to see. □

It can also be proved that the total space of the universal principal G-bundle has a
structure of a G-CW-complex in the sense of Definition 1.4. For an explicit construction see
[AP93](1.1.2). To finish this section we will consider two examples of universal principal
G-bundles.

One of the most simple examples arises from G = Z. We can consider the usual covering
map of the unit sphere

R −→ S1,
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which is clearly a universal principal Z-bundle, since R is clearly contractible.

In the discussion of the Borel construction for G = (Z2)n in Sections 1.3 and 1.4 we
strongly use the case G = Z2. For this discussion we need to define the infinite unit sphere
by

S∞ = lim−→
n

Sn.

Lemma B.13. The infinite unit sphere S∞ is contractible.

Proof. To prove that S∞ is contractible we will construct an homotopy between the identity
on S∞ and the constant map

f : S∞ −→ S∞

given by f (x1, x2, x3, . . .) = (1, 0, 0, . . .). Consider the linear transformation map g : S∞ −→
S∞ given by a shift of coordinates g(x1, x2, x3, . . .) = (0, x1, x2, . . .), which is continuous
because ∥g(x)∥ = ∥x∥. Then we can define an homotopy between g and the identity given
by

H : S∞ × I −→ S∞

(x, t) 7→ tg(x)+(1−t)x
∥tg(x)+(1−t)x∥

Since f (x) and x are linearly independent for all x ∈ S∞ we have that H is well-defined, and
it is clearly continuous. Moreover we have that H(x, 0) = x and H(x, 1) = g(x), thus g is
homotopic to the identity. On the other hand we can consider another homotopy between
g and f given by

H : S∞ × I −→ S∞

(x, t) 7→ t f (x)+(1−t)g(x)
∥t f (x)+(1−t)g(x)∥

which follows similarly. □

We can consider a structure of G-space on S∞ given by

Z2 × S∞ −→ S∞

(g, x) 7→ gx

which is clearly continuous because the restriction of the action on Sn is continuous. In
particular, this action is free. Therefore, the orbit map on S∞ induces a principal Z2-
bundle S∞ −→ S∞/Z2 with contractible total space, hence we obtain a universal principal
Z2-bundle

EZ2 = S∞ −→ S∞/Z2 = BZ2.

With this computation we finish our this introduction to universal principal G-bundles.
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