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Abstract

The following project deals with two main topics: General Linear methods (GLM) and jet
transport. For their presentation, we have divided it in three chapters. In Chapter 1, we
introduce the family of numerical integrators known as General Linear methods, which arise
as a natural generalization of the so-known linear multistep (LMM) and Runge-Kutta (RK)
methods. Throughout the chapter, we present the main properties of LMM and RK methods so
that they can be compared with those obtained for GLM with greater generality. In Chapter 2,
we introduce the technique known as jet transport for the numerical integration of variational
equations. It is in this chapter where the main contributuion of this project is found: we prove
that the numerical integration of an initial value problem using jet transport with General Linear
methods is equivalent to the numerical integration of their variational equations with the same
method. Not only that, but we also successfully derive the expressions that the higher order
coefficients of the jets must satisfy to be a solution of an implicit system, thus allowing the
effective implementation of implicit General Linear methods. In Chapter 3 we conclude this
project by studying how implicit Runge-Kutta methods can be efficiently implemented using jet
transport and we apply this implementation to study a few scenarios in the field of dynamical
systems, where the computation of variational equations is of interest.
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Chapter 1

General Linear Methods

In the study of the numerical solution of Ordinary Differential Equations (ODEs), different
methods have been developed which are capable of exploiting distinct aspects of the problem to
obtain better approximations. The main representatives in this field are the Euler method, linear
multistep methods (LMM), Runge-Kutta (RK) methods and the Taylor method. It is interesting
to observe that the last three are designed to be an improvement of the first, in the sense that
to obtain a better solution, linear multistep methods reuse the information of previous steps;
Runge-Kutta methods do more computations per step, known as stages; and the Taylor method
computes high order derivatives of the solution. In this sense, these methods are respectively
referred to as multistep, multistage and multiderivative. Unsurprisingly, it is of great value
to combine these methods to obtain a more powerful one. While there are other interesting
possibilities, we will focus on introducing the multistep-multistage methods, commonly known
as General Linear methods. A practical way to illustrate these possible combinations is depicted
in Figure 1.1, where moving to the left represents increasing the steps, to the right the stages
and up the derivatives. Furthermore, we remark that this generalization is natural in the sense
that; as we will see later, both LMM and RK methods suffer limitations respectively known
as the Dahlquist and Butcher barriers, thus it is expected that by giving them more flexibility,
similar methods will emerge that are not constrained by these restrictions.

•

•

Taylor

•

LMM

GLM

Euler

RK

Figure 1.1: Visual representation (adapted from [But16]) of multistep, multistage and multi-
derivative methods and their combinations.
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2 Chapter 1. General Linear Methods

Another particularly interesting aspect of numerical integrators of ODEs is their ability
to handle ‘stiff’ problems. Even though there is no globally accepted rigorous mathematical
definition for stiffnes, the intuitive idea is that, as cited in [HW96], “stiff equations are equations
where certain implicit methods [...] perform better, usually tremendously better, than explicit
ones”. Many mathematical tools have been developed in an attempt to solve these problems
efficiently (the book [HW96] is mainly dedicated to them). We will present a few of them, like
the properties of A-stability and L-stability, which are devised to ensure a sufficiently stable
numerical solution to deal with stiffnes. In addition, in Chapters 2 and 3 we will study certain
new possibilities for implicit methods.

1.1 Framework
Let us consider the initial value problem (IVP) or Cauchy problem

y′(x) = f(x, y(x)), y(x0) = y0, (1.1)

where f : R × RN → RN . The independent variable x is often thought in physical systems as
time, and the dependent variable y(x) is the solution. In many situations, it will be useful to
work with an autonomous version of the problem (1.1); that is, with no dependence of time.
Observe that the IVP can always be presented in autonomous form by increasing the dimension
of the problem by 1 and considering the following

u(x) =
[

x

y(x)

]
, g(u(x)) =

[
1

f(u(x))

]
, u0 =

[
x0

y0

]
, (1.2)

thus obtaining the autonomous initial value problem

u′(x) = g(u(x)), u(x0) = u0, (1.3)

where g : RN+1 → RN+1. We also remark that by studying these IVP we are in fact also
studying higher order IVP problems like the following

y(N+1)(x) = f(y(x), y′(x), . . . , y(N)(x)),
y(x0) = y0,(0), y

′(x0) = y0,(1), . . . , y
(N)(x0) = y0,(N),

because to obtain a formulation like the one of (1.3), we just need to consider

u(x) =


u1(x)
u2(x)

...
uN+1(x)

 =


y(x)
y′(x)

...
y(N)(x)

 , g(u(x)) =


u2(x)
u3(x)

...
f(u(x))

 , u0 =


y0,(0)

y0,(1)
...

y0,(N)


As we will study the numerical solutions of problems of this kind, it is essential to consider

if such a solution even exists and if it is unique. For answering that question for both exact and
numerical solutions, we will refer to the Lipschitz condition.

Definition 1.1. A function f : RN → RN satisfies the Lipschitz condition if there is a constant
L and a norm ∥·∥ such that for any a, b ∈ RN ,

∥f(a) − f(b)∥ ≤ L∥a− b∥ .

Theorem 1.1. There exists a unique solution for an IVP (1.1) when f : R × RN → RN is
continuous in the independent variable and satisfies the Lipschitz condition in the dependent
variable.
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1.2 Linear Multistep Methods

A linear multistep method (LMM) with k-steps or linear k-step method is of the form

k∑
i=0

αiyn−i = h
k∑

i=0
βif(xn−i, yn−i) , (1.4)

where the values yn−i are approximations of y(xn−i) for i = 0, . . . , k. In order to be able to
compute the value yn from the formula (1.4), the values yn−i for i = 1, . . . , k must be known
and also, it should be α0 ̸= 0. The sequences of coefficients (αi)k

i=0, (βi)k
i=0 are characteristic

of the method and we will require that |αk| + |βk| > 0; that is, that αk and βk are not both 0,
so that the method actually involves k steps, but that can always be achieved by reducing k if
necessary.

For certain LMM, it is customary to use a different notation where the value yn is in the left-
hand side and all the others on the right-hand side. The idea is that, as we require α0 ̸= 0, we
can choose α0 = 1 and rescale the other coefficients accordingly. If we also take the coefficients
αi for i = 1, . . . , k with opposite sign, we can rewrite the expression of LMM on (1.4) as

yn =
k∑

i=1
αiyn−i + h

k∑
i=0

βif(xn−i, yn−i) . (1.5)

As the value to compute yn appears explicitly defined if β0 = 0 and implicitly otherwise, the
method is called explicit in the first case and implicit in the second.

In the study of the properties of LMM (1.4) it is convenient to introduce the so-called
generating polynomials (ρ, σ), and it is even customary to identify LMM with the pair, where

ρ(w) =
k∑

i=0
αiw

k−i, σ(w) =
k∑

i=0
βiw

k−i .

Example. We introduce two of the most representative families of LMM methods: the Adams-
Bashforth and Adams-Moulton methods. For simplicity, we display the coefficients in a table
together with the number of steps k. These coefficients belong to the representation using
notation (1.5), which is appropriate because they satisfy αi = 0 for i > 1.

We notice that the first family has β0 = 0 and the second does not, thus the Adams-
Bashforth methods are explicit and the Adams-Moulton methods are implicit. In particular, it
is interesting to mention that the Adams-Bashforth with k = 1 is the explicit Euler method and
the Adams-Moulton with k = 0 is the implicit Euler method.

Adams-Bashforth methods

k α0 α1 α2 α3 α4 β0 β1 β2 β3 β4

1 1 1 0 1
2 1 1 0 0 3

2 −1
2

3 1 1 0 0 0 23
12 −16

12
5
12

4 1 1 0 0 0 0 55
24 −59

24
37
24 − 9

24

Adams-Moulton methods

k α0 α1 α2 α3 β0 β1 β2 β3

0 1 1 1 0
1 1 1 0 1

2
1
2

2 1 1 0 0 15
12

8
12 − 1

12
3 1 1 0 0 9

24
19
24 − 5

24
1
24

Let us also introduce another important family of methods, the ‘Backward Differentiation
Formulas’ or BDF methods. Again, we give them in a table, displaying the number of steps
k and their associated coefficients, but using the formulation (1.4) this time. It is interesting
to remark how different is the usage of coefficients αi and βi between this family and the ones
introduced before. Notice that, as β0 ̸= 0, the BDF methods are implicit.
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BDF methods

k α0 α1 α2 α3 α4 α5 α6 β0 β1 β2 β3 β4 β5 β6

1 1 −1 1 0
2 3

2 −2 1
2 1 0 0

3 11
6 −3 3

2 −1
3 1 0 0 0

4 25
12 −4 3 −4

3
1
4 1 0 0 0 0

5 135
60 −5 5 −10

3
5
4 −1

5 1 0 0 0 0 0
6 147

60 −6 15
2 −20

3
15
4 −6

5
1
6 1 0 0 0 0 0 0

1.2.1 Local error and order

Definition 1.2. The local error of the LMM (1.4) is

y(xn) − yn

where the numerical solution yn has been obtained from (1.4) using exact starting values; i.e.
yn−i = y(xn−i), i = 1, . . . , k.

Observe that the assumption of knowing the exact starting values when defining the local
error of a LMM is rather unusual. The idea of this definition is to consider only the error of the
actual method and not that of the underlying method to approximate the required initial steps.
When dealing with General Linear methods we will face the same problem, so the discussion on
this topic will be delayed until they are introduced.

Definition 1.3. The LMM (1.4) is of order p if one of the following conditions is satisfied:

i) for all sufficiently regular functions y(x), we have L(y, x, h) = O(hp+1), where

L(y, x, h) =
k∑

i=0

(
αiy(x+ (k − i)h) − hβiy

′(x+ (k − i)h)
)
.

ii) for all sufficiently regular differential equations (1.1), the local error of (1.4) is O(hp+1).

It can be easily shown (see [HWN93]) that both conditions above are equivalent. Studying
them we can derive the so-called order conditions, stated at the following theorem.

Theorem 1.2. The LMM (1.4) is of order p if and only if one of the following equivalent
conditions hold:

i)
k∑

i=0
αi = 0 and

k∑
i=0

αi(k − i)j = j
k∑

i=0
βi(k − i)j−1 for all j = 1, . . . , p.

ii) ρ(eh) − hσ(eh) = O(hp+1) for h → 0.

These order conditions can be easily derived (see [HWN93]) by inserting the Taylor series
with respect to h of the exact solution and its derivative in the expression L(y, x, h). We will
later see that this is not as simple for Runge-Kutta methods nor General Linear methods.

Example.

1. The family of Adams-Bashforth methods has order p = k.

2. The family of Adams-Moulton methods has order p = k + 1.

3. The family of BDF methods has order p = k.
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1.2.2 Convergence, stability and consistency

We now introduce the concept of convergence of a LMM, which states that the numerical solution
actually approaches the exact solution as the step size decreases. Then, we will characterize it
in terms of what we will call consistency and zero-stability. There are several equivalent ways
of defining these properties, but we will do so in a manner that allows us to compare them with
the ones of General Linear methods when they are introduced.

Definition 1.4. A LMM (1.4) is convergent if for any IVP (1.1) defined for x ∈ [x0, X] that
satisfies the Lipschitz condition 1.1, we have that yn computed using n steps of the LMM with
h = (x− x0)/n converges to y(x) for any x ∈ [x0, X], where y is a solution to (1.1).

Dahlquist famously studied in [Dah56] the situation in which LMM, even having high order
and small local error had an ‘unstable’ solution; that is, the numerical solution given by the
LMM was ‘bad’ even for very small step sizes h. One way of defining the condition for the
method to be ‘stable’ is to require that the numerical solution yn given by the LMM of the IVP

y′ = 0 , y(x0) = 0

is bounded as n → ∞. Observe that for this IVP, the value yn of the LMM (1.4) satisfies

α0yn + α1yn−1 + · · · + αkyn−k = 0 ,

where this is related to the generating polynomial ρ(w) by the substitution yn−i = wk−i. This
fact is what motivates the definition of zero-stability. In the definition below, the condition
given induces the boundedness of the solution yn.

Definition 1.5. The LMM (1.4) is called zero-stable if the generating polynomial ρ(w) satisfies
the root condition; that is,

i) The roots of ρ(w) lie in the closed unit disc {z ∈ C ; |z| ≤ 1}.

ii) The roots on the unit circle {z ∈ C ; |z| = 1} are simple.

In the same spirit as in the definition above, we can understand the concept of consistency
of a LMM (1.4) as its capacity to solve an IVP. For that, we will first require the LMM to solve
exactly the IVP

y′ = 0 , y(x0) = 1

starting from the exact initial value. It is clear that this happens when

k∑
i=0

αi = 0 , (1.6)

and in that case we will say that the method is preconsistent. If a preconsistent LMM method
is also able to solve the IVP

y′ = 1 , y(x0) = 0

exactly starting from the exact initial value, we will say that it is consistent, and again, it can
be checked that this happens when the LMM (1.4) satisfies (1.6) and also

k∑
i=0

(k − i)αi =
k∑

i=0
βi .

We observe that the conditions needed for a LMM (1.4) to be consistent are equivalent to the
order conditions of order 1 given in Theorem 1.2 i), and also, that they can be stated in terms
of the generating polynomials of the LMM. These facts motivate the following definitions.
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Definition 1.6. A LMM (1.4) is preconsistent if it satisfies

ρ(1) = 0.

Definition 1.7. A LMM (1.4) is consistent if it is preconsistent and also satisfies

ρ′(1) = σ(1).

Using these concepts, we can state the culminating theorem on the convergence of LMM.

Theorem 1.3. A LMM (1.4) is convergent if and only if it is zero-stable and consistent.

Example.

1. The first generating polynomial of the Adams-Bashforth and Adams-Moulton families is
ρ(w) = wk − wk−1, so 1 is a simple root and 0 is a root of multiplicity k − 1, therefore
all the methods of these families are zero-stable. It can also be checked that they all are
consistent, so by the last theorem, they are convergent.

2. The first generating polynomial of the BDF family is ρ(w) = ∑k
j=1

1
jw

k−j(w − 1)j , so
the study of its roots and thus of its zero-stability is more difficult. It can be proven (see
[HWN93]) that BDF methods are zero-stable if and only if k ≤ 6, thus the ones introduced
in the Table at the beginning of the section are the only ones that are zero-stable. It can
also be checked that they all are consistent, so by the last theorem, for k ≤ 6 they are
convergent.

1.2.3 Linear stability

As in the case of zero-stability, we are interested in the boundedness of the numerical solution
yn given by a LMM when applied to the linear test problem

y′ = λy , λ ∈ C

where we observe that the value of yn given by the LMM (1.4) satisfies for this problem

k∑
i=0

αiyn−i − hλ
k∑

i=0
βiyn−i = 0 .

Using the substitution yn−i = wk−i, we notice that the expression is related with the generating
polynomials (ρ, σ). Choosing z = hλ, the study of the resulting polynomial expression motivates
the definition of the following function.

Definition 1.8. The stability function of a LMM (1.4) is

Φ(w, z) = ρ(w) − zσ(w) .

Definition 1.9. A LMM (1.4) is said to be absolutely stable for a given z ∈ C if all roots
wi = wi(z) i = 1, 2, . . . , k of the stability function Φ(w, z) are inside the unit circle.

Definition 1.10. The region A of absolute stability of a LMM (1.4) is the set of all z ∈ C such
that the method is absolutely stable; that is

A =
{
z ∈ C ; |wi(z)| < 1 , i = 1, 2, . . . , k

}
.

Definition 1.11. A LMM (1.4) is A-stable if its region of absolute stability A contains the
negative complex half-plane C−; that is,{

z ∈ C ; Re(z) < 0
}

⊂ A.
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−1 0.5
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−1 0.5

−i

i

Figure 1.2: Stability region (shaded area) of the Adams-Bashforth methods for k = 2, 3, 4
respectively.

−3 0.5

−3i

3i

−3 0.5

−3i

3i

−1 5

−5i

5i

−1 5

−5i

5i

Figure 1.3: Stability region (shaded area) of the Adams-Moulton methods for k = 2, 3 and the
BDF methods for k = 2, 3 respectively.

Example. Let us plot the stability regions of some of the methods introduced before. We
observe from Figure 1.2 that the Adams-Bashforth methods for k = 2, 3, 4 are not A-stable, as
the region of stability is bounded and thus it does not contain C−. Furthermore, we observe
that the region shrinks as k increases.

Recalling their definition, the Adams-Moulton and BDF families are implicit so we expect
them to perform better in terms of A-stability. We observe from Figure 1.3 that the Adams-
Moulton methods for k = 2, 3 display a similar behavior to the Adams-Bashforth methods in
Figure 1.2, and in particular they are not A-stable. Nevertheless, we can see that BDF methods
do not have a bounded stability region and in particular the method for k = 2 is A-stable.
Despite including almost all C−, the BDF method with k = 3 is not A-stable, because there is
a small sector of the stability region around −i/2 and i/2 that is not contained in C−.

1.2.4 Order and stability barriers

Recalling the order conditions of Theorem 1.2, one can see that for a method of order p, the
parameters have to satisfy p + 1 linear equations. We have seen that we can write the LMM
(1.4) as in (1.5), so there are 2k free parameters, what suggests that the highest order that can
be attained is 2k. The following result, usually known as the first Dahlquist barrier, shows why
such high order methods are not of interest.
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Theorem 1.4. The order p of a zero-stable LMM with k steps is bounded by

p ≤


k + 2 if k is even,

k + 1 if k is odd,

k if βk/αk ≤ 0 (in particular if the method is explicit).

The next result, known as the second Dahlquist barrier, shows that there are no high-order
A-stable LMM, proving what we observed in the last section when studying the stability regions
of some LMM.

Theorem 1.5. The order of an A-stable linear multistep method cannot be greater than 2.

1.3 Runge-Kutta Methods
An s-stage Runge-Kutta method (RK) is of the form

ki = f
(
xn−1 + cih, yn−1 + h

s∑
j=1

aijkj

)
, i = 1, . . . , s, (1.7)

yn = yn−1 + h
s∑

i=1
biki . (1.8)

Observe that the method is characterized by the coefficient matrix A = [aij ] and vectors b =
[bi], c = [ci], so it is customary to identify the method by what is known as the Butcher tableau

c1 a11 . . . a1s
...

... . . . ...
cs as1 . . . ass

b1 . . . bs

= c A

bT

.

When the matrix A of coefficients is lower triangular with null diagonal elements; that is, aij = 0
for i ≤ j, we say that the RK method is explicit (ERK), as the stages k1, . . . , ks define an explicit
system, and implicit otherwise. Some particular structures of the matrix A are of great interest,
like diagonal implicit Runge-Kutta methods (DIRK), with A lower triangular with at least one
non-zero diagonal element, or singly diagonal implicit Runge-Kutta methods (SDIRK), with A
lower triangular with all identical diagonal elements.

In the literature, some authors use another representation for RK methods (1.7), given by
considering

Yi = yn−1 + h
s∑

j=1
aijkj , i = 1, . . . , s,

and observing that we the RK method (1.7) can be rewritten as

Yi = yn−1 + h
s∑

j=1
aijf(xn−1 + cjh, Yj) , i = 1, . . . , s

yn = yn−1 + h
s∑

i=1
bif(xn−1 + cih, Yi)

(1.9)

Example. We introduce a few representatives of the multiple families of RK methods by giving
their Butcher tableau. First, we show how the explicit and implicit Euler methods are formulated
as RK methods. We also present the RK4 method, which is explicit and of order 4, and usually
known as ‘The’ Runge-Kutta method or the ‘Classic’ Runge-Kutta method, which is probably
the most popular RK method.
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Explicit
Euler

0

1

Implicit
Euler

1 1

1

RK4

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

As an example of implicit RK methods, we have included the representative of order 4 of the
Gauss methods, which are based on the Gaussian quadrature formulas, and the representative
of order 5 of the Radau IIA methods which are based on the Radau quadrature formulas.

Gauss 4

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

Radau IIA 5

2
5 −

√
6

10
11
45 − 7

√
6

360
37
255 − 169

√
6

1800 − 2
255 +

√
6

75

2
5 +

√
6

10
37
255 + 169

√
6

1800
11
45 + 7

√
6

360 − 2
255 −

√
6

75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

1.3.1 Local error and order

Definition 1.12. The local error of the RK method (1.7) is

y(xn−1 + h) − yn .

Definition 1.13. A RK method (1.7) has order p if for sufficiently smooth problems (1.1)

y(xn−1 + h) − yn = O(hp+1) .

It is well known that deriving the order conditions for RK methods is not as straightforward
as for LMM, as we need to compute high order derivatives of y to compare the coefficients of
the Taylor expansion of the exact and numerical solutions. For that, we could use the elegant
theory of rooted trees and B-series to give a general expression for the conditions, but that is
out of the scope of this text (see [But06], [But16], [HWN93]). Nevertheless, we give the order
conditions up to p = 4 for reference:

p = 1 : bT e = 1,

p = 2 : (p = 1), bT c = 1
2 ,

p = 3 : (p = 2), bTAc = 1
6 , b

T c2 = 1
3 ,

p = 4 : (p = 3), bTA2c = 1
24 , b

TAc2 = 1
12 , b

TCAc = 1
8 , b

T c3 = 1
4

where e = [1, . . . , 1]T ∈ Rs, ck = [ck
1, . . . , c

k
s ]T for each k ∈ N and C = diag(c) is a diagonal

matrix with c on the diagonal.

Example.

1. Although they have not been formally presented, the s-stage Gauss method is of order 2s.

2. Similarly, the s-stage Radau IIA methods is of order 2s− 1.
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1.3.2 Convergence, stability and consistency

In contrast with LMM, the concept of zero-stability is not an issue for RK methods as it is
implied by their consistency. Moreover, we will see that consistency conditions are equivalent
to the order conditions of order 1, thus deducing that convergence is not an issue for RK methods.

Analogously to LMM, a RK (1.7) method is said to be preconsistent if it is able to solve
exactly the IVP

y′ = 0 , y(x0) = 1 .

Applying the RK method (1.7) to this problem, we notice that it is of the form

ki = 0 , i = 1, . . . , s ,

yn = yn−1 + h
s∑

i=1
biki

and thus it must be that yn = yn−1, obtaining the exact solution of the IVP. We then deduce
that all RK methods are preconsistent. For consistency we will proceed in a similar fashion and
consider the IVP

y′ = 1 , y(x0) = 0 , (1.10)

and observe that the RK method (1.9) applied to it is of the form

yn = yn−1 + h
s∑

i=1
bi .

Being the exact solution of the IVP y(x) = x, the RK method is consistent if

xn−1 + h = xn−1 + h
s∑

i=1
bi =⇒ bT e = 1 ,

which is the same as the order condition of order 1.

Another thing that we must have in consideration is that, by applying a RK method to a
non-autonomous IVP, the vector of coefficients c is used, but it will not if we convert it to an
autonomous IVP using (1.2). In order to obtain the same solution regardless of the formulation,
let us study this ‘phenomenon’. Applying the RK method (1.7) to the non-autonomous IVP
(1.1), we obtain the following expression for the stages

Yi = yn−1 + h
s∑

j=1
aijf(xn−1 + cjh, Yj) , i = 1, . . . , s

and when we apply it to the ‘autonomization’ of the problem (1.3), we obtain.

Ui = un−1 + h
s∑

j=1
aijg(Uj) , i = 1, . . . , s

If we now rewrite the last expression in terms of (1.1), we get Ui,0

Yi

 =

 xn−1

yn−1

+ h
s∑

j=1
aij

 1
f(Uj,0, Yj)

 , i = 1, . . . , s
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or equivalently, for all i = 1, . . . , s

Ui,0 = xn−1 + h
s∑

j=1
aij

Yi = yn−1 + h
s∑

j=1
aijf(Uj,0, Yj)

=⇒ Yi = yn−1 + h
s∑

j=1
aijf(xn−1 + h

s∑
k=1

ajk, Yj) ,

so we deduce that for the expression of the stages Yi to coincide regardless of the formulation,
it happen that

cj =
s∑

k=1
ajk or equivalently, Ae = c .

This condition is usually known as stage-consistency, as in fact, we are requiring the stages Yi to
be approximations of order 1 to y(xn−1 +cih); that is, that they are consistent. This condition is
usually used for high order methods, as it simplifies the order conditions, but it is not necessary.

When we introduce General Linear methods, we will use for simplicity IVP in autonomous
form, so in order to deal with this issue, we will also define the concept of stage-consistency and
require the stages to be (possibly low order) approximations of the solution.

1.3.3 Linear stability

Let us study the boundedness of the numerical solution yn when applied to the linear test
problem

y′ = λy , λ ∈ C .

Observe that the RK method (1.9) applied to this problem is of the form

Yi = yn−1 + h
s∑

j=1
aijλYj , i = 1, . . . , s,

yn = yn−1 + h
s∑

i=1
biλYi ,

so by defining Y = [Y1, . . . , Ys]T , e = [1, . . . , 1]T ∈ Rs, we have that the first relation is

Y = yn−1e + hλAY =⇒ Y = yn−1(I − hA)−1e ,

and substituting Y into the second and defining z := hλ, we obtain

yn = yn−1 + hλbT yn−1(I − hλA)−1e =
(
1 + zbT (I − zA)−1e

)
yn−1 ,

what motivates the following definitions.

Definition 1.14. The stability function of a RK method (1.9) is

R(z) = 1 + zbT (I − zA)−1e .

Definition 1.15. The region A of stability of a RK method (1.7) is the set

A =
{
z ∈ C ; |R(z)| ≤ 1

}
.

Definition 1.16. A RK method (1.7) is A-stable if its region of stability A contains the negative
complex half-plane C−; that is, {

z ∈ C ; Re(z) ≤ 0
}

⊂ A.
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Definition 1.17. A RK method (1.7) is L-stable if its A-stable and

lim
z→∞

R(z) = 0 .

Example.

1. The stability function of the explicit and implicit Euler methods are respectively

R(z) = 1 + z , R(z) = 1
1 − z

.

2. The stability function of the Radau IIA 5 method is

R(z) = 1 + 2z/5 + z2/20
1 − 3z/5 + 3z2/20 − z3/60 .

Example.

1. All Gauss methods are A-stable (see [But16]).

2. All Radau IIA methods are L-stable (see [But16]).

1.3.4 Order barriers

When studying LMM we discussed the Dahlquist barriers, where the order of a stable method
was limited by the number of steps. In a similar manner, we see in the following theorems (see
[But16]), that the order of an explicit RK method is limited by its number of stages, known as
the Butcher barriers.

Theorem 1.6. No explicit RK method exists of order p with s < p stages.

In fact, this situation gets even worse as the order increases, as shown in the next theorem.

Theorem 1.7.

i) For p ≥ 5 no explicit RK method exists of order p with s = p stages.

ii) For p ≥ 7 no explicit RK method exists of order p with s = p+ 1 stages.

iii) For p ≥ 8 no explicit RK method exists of order p with s = p+ 2 stages.

1.4 General Linear Methods

An s-stage r-step General Linear method (GLM) is of the form

Yi
[n] = h

s∑
j=1

aijf(Yj
[n]) +

r∑
j=1

uijyj
[n−1], i = 1, . . . , s,

yi
[n] = h

s∑
j=1

bijf(Yj
[n]) +

r∑
j=1

vijyj
[n−1], i = 1, . . . , r,

(1.11)

where the method is characterized by the vector c = [c1, . . . , cs]T and four coefficient matrices

A = [aij ] ∈ Rs×s , U = [uij ] ∈ Rs×r , B = [bij ] ∈ Rr×s , V = [vij ] ∈ Rr×r .
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The internal stages Yi
[n] are (possibly low order) approximations to y(xn−1 + cih) and the

external stages yi
[n] are approximations to the linear combination of the derivatives of y at xn.

It is customary to represent the GLM by the vector c and the partitioned (s+r)×(s+r) matrix A U
B V

,
as this is a simplification of the matrix that appears when introducing the notation

Y [n] =


Y1

[n]

...
Ys

[n]

 , F (Y [n]) =


f(Y1

[n])
...

f(Ys
[n])

 , y[n] =


y1

[n]

...
ys

[n]

 ,
and writing the GLM (1.11) in the form Y [n]

y[n]

 =

 A ⊗ I U ⊗ I
B ⊗ I V ⊗ I

 hF (Y [n])
y[n−1]

 ,
where I here denotes the indentity matrix of dimension N , and ⊗ is the Kronecker (or tensor)
product of two matrices, which for Z = [zij ] ∈ Rζ1×ζ2 , W ∈ Rω1×ω2 (where ζ1, ζ2, ω1, ω2 ∈ N) is
defined as the block matrix

Z ⊗ W =


z11W . . . z1ζ2W

... . . . ...
zζ11W . . . zζ1ζ2W

 ∈ Rζ1ω1×ζ2ω2 .

Example. We understand GLM as a generalization of LMM and RK methods, so we expect
that those are included as particular cases. As the notation suggests, we want LMM with k
steps to be 1-stage k-step GLM, and RK methods with s stages to be s-stage 1-step GLM.

1. The most straightforward expression of a GLM is that of RK methods (1.9), as we just
need to use the notation Yi

[n] for the stages and y1
[n] for the step to obtain

Yi
[n] = h

s∑
j=1

aijf(Yj
[n]) + y1

[n−1] , i = 1, . . . , s,

y1
[n] = h

s∑
j=1

b1jf(Yj
[n]) + y1

[n−1] ,

where, being r = 1, the matrices B,U are vectors and V a scalar, so it is more intuitive
to change the notation to give them a more fitting name. In this case, it will be

B =: bT = [bj ]T ∈ R1×s , U =: e = [1, . . . , 1] ∈ Rs×1 , V =: 1 ∈ R1×1 .

and so the partitioned matrix that represents RK methods as GLM is

 A e
bT 1

 =


a11 . . . a1s 1
... . . . ...

...
as1 . . . ass 1
b1 . . . bs 1

.
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2. For LMM, the representation is not as immediate. Let us first try to construct it in the
most natural way and then solve the issues that appear with that representation. To
simplify the notation, we will use the representation of LMM given in (1.5) when studying
them as GLM. As it is clear that the only stage of a LMM is that where we compute yn,
we can just define Y1

[n] = yn, and from (1.5) it is natural to define the steps y[n] as

y[n] =



yn

yn−1
...

yn−k+1

hf(yn)
hf(yn−1)

...
hf(yn−k+1)



,

and so the LMM (1.5) can be written as

Y1
[n] = hβ0f(Y1

[n]) +
k∑

j=1
αjyj

[n−1] +
k∑

j=1
βjyk+j

[n−1] ,

y1
[n] = Y1

[n] ,

yk
[n] = hf(Y1

[n]) ,
yi

[n] = yi−1
[n−1] , i = 2, . . . , k, k + 2, . . . , 2k ,

where the first relation is what can be deduced from (1.5), where we shall observe that
the term hβ0f(Y1

[n]) is just hβ0yn that has been separated from the other terms in the
sum to correctly define the method as GLM; the second is due to the nature of the only
stage of the method (commented above), the third is an implication of the second, and the
last relation is immediate from the definition of y[n], so the LMM (1.5) has the following
representation as a GLM

 A U
B V

 =



β0 α1 . . . αk−1 αk β1 . . . βk−1 βk

β0 α1 . . . αk−1 αk β1 . . . βk−1 βk

0 1 0 0 0 0 0

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0 1 0



.

Even though it is not necessarily an issue, we observe that with this representation we
have accomplished s = 1 but we have r = 2k. The natural question now is whether we
can find another representation for the LMM (1.5) as GLM with s = 1 and r = k. The
answer is yes, but for that we must renounce to the intuitive definition for the steps y[n]
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given above and instead use the following

yi
[n−1] =

k∑
j=k−i+1

(
αjyn+k−i−j + hβjf(yn+k−i−j)

)
, i = 1, . . . , k .

Defining the steps this way, we can simply write (1.5) as

Y1
[n] = hβ0f(yn) +

k∑
j=1

(
αjyn−j + hβjf(yn−j)

)
= hβ0f(Y1

[n]) + yk
[n−1]

where we have that for each i = 1, . . . , k, we can write

yi
[n] =

k∑
j=k−i+1

(
αjyn+1+k−i−j + hβjf(yn+1+k−i−j)

)
=

= αk−i+1yn + hβk−i+1f(yn) +
k∑

j=k−i+2

(
αjyn+1+k−i−j + hβjf(yn+1+k−i−j)

)
=

= (αk−i+1β0 + βk−i+1)hf(Y1
[n]) + αk−i+1yk

[n−1] + yi−1
[n−1] ,

and thus we obtain the desired alternative representation

 A U
B V

 =



β0 0 0 0 . . . 0 1
αkβ0 + βk 0 0 0 . . . 0 αk

αk−1β0 + βk−1 1 0 0 . . . 0 αk−1

αk−2β0 + βk−2 0 1 0 . . . 0 αk−2
...

...
... . . . ...

...
α2β0 + β2 0 0 0 0 α2

α1β0 + β1 0 0 0 . . . 1 α1


.

1.4.1 Convergence, stability and consistency

Let us observe that in the formulation of GLM there is not necessarily a ‘natural’ interpretation
of what the value y[n] represents. We have seen this in the formulation of LMM as GLM, where
in the case r = 2k, y[n] represents the last k steps and their image by f ; and in the case r = k the
definition of y[n] was even less intuitive. As mentioned in [But06], this is also related to the fact
that, similarly to LMM, it is necessary to known some approximation of the first steps in order
to be able to apply GLM. For that purpose, we introduce the concept of ‘starting procedures’
to obtain an initial vector y[0] from the initial condition y0. In order to study the convergence
of GLM, let us simply assume that such an starting procedure exists

Sh : RN → Rr·N (1.12)

which associates with every step size h a starting vector y[0] such that

lim
h→0

Sh(y0) = lim
h→0

y[0] = (q0 ⊗ I)y(x0)

where q0 ∈ Rr is a nonzero vector.
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Definition 1.18. A GLM is convergent if for any IVP (1.1) satisfying the Lipschitz condition,
there is a nonzero vector q0 ∈ Rr and a starting procedure Sh satisfying (1.12), such that the
sequence of vectors y[n] computed using n steps of the GLM (1.11) with y[0] = Sh(y0) and
h = (x− x0)/n converges to q0y(x) for any x ∈ [x0, X], where y is a solution to (1.1).

Let us recall that the convergence of LMM was characterized by the consistency and sta-
bility of the method, so the idea now is to define those properties for GLM and prove the
equivalent version of Theorem 1.3. For that, we proceed analogously and say that a GLM (1.11)
is preconsistent if it solves exactly the IVP

y′ = 0 , y(x0) = 1 ,

at the beginning and end of each step. For this problem, the GLM (1.11) has the form

Y [n] = Uy[n−1] ,

y[n] = Vy[n−1] ,

and so taking into account the initial condition of the IVP, this motivates the next definition.

Definition 1.19. A GLM (1.11) is preconsistent if there is a vector q0 ∈ Rr such that

Uq0 = e , Vq0 = q0 ,

where e = [1, . . . , 1]T ∈ Rs. In that case, q0 is called preconsistency vector.

Analogously, we say that it is consistent if it is preconsistent and solves exactly the IVP

y′ = 1 , y(x0) = 0 ,

at the beginning and end of each step. For this problem the GLM (1.11) is

Y [n] = hAe + Uy[n−1] ,

y[n] = hBe + Vy[n−1] ,

so this motivates the following definitions, where we distinguish between the consistency of the
solution y[n] and that of the stage Y [n], as we did for RK methods.

Definition 1.20. A GLM (1.11) is consistent if it preconsistent with preconsistency vector q0
and there is a vector q1 ∈ Rr such that

Be + Vq1 = q0 + q1 .

In that case, q1 is called consistency vector.

Definition 1.21. A GLM (1.11) is stage-consistent if

Ae + Uq1 = c ,

Example. Let us compare these definitions with those given for LMM and RK methods.

1. For RK as GLM, observe that for the method to be preconsistent, consistent and stage-
consistent, it must satisfy respectively

eq0 = e , 1q0 = q0 , bT e + 1q1 = q0 + q1 Ae + eq1 = c ,

where r = 1, so q0,q1 ∈ R. That being the case, we choose q0 = 1,q1 = 0 and removing
the redundant conditions, we are left with

bT e = 1 , Ae = c .
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2. For the case of LMM as GLM with r = 2k, we can choose

q0 =
[

1 k. . . 1 0 k. . . 0
]T

∈ R2k ,

q1 =
[

0 −1 k. . . −(k − 1) 1 k. . . 1
]T

∈ R2k ,

and for the case with r = k,

q0 =



αk

αk−1 + αk
...

k∑
j=1

αj


∈ Rk , q1 =



βk

βk−1 + βk − αk
...

k∑
j=1

βj −
k∑

j=1
(j − 1)αj


∈ Rk ,

and the conditions for the method to be preconsistent, consistent and stage-consistent
become (notice that as s = 1, we have e = 1)

k∑
j=1

αj = 1 ,
k∑

j=1
αj = 1 ,

k∑
j=0

βj −
k∑

j=2
(j − 1)αj = 1 ,

k∑
j=0

βj −
k∑

j=2
(j − 1)αj = c .

so combining them and removing the redundant ones, we obtain (recall we follow notation
(1.5))

k∑
j=1

αj = 1 ,
k∑

j=1
jαj =

k∑
j=0

βj , c = 1 .

When considering the stability of a GLM (1.11), we will proceed as we did for LMM and
study when the numerical solution y[n] of the GLM (1.11) is bounded as n → ∞ for the IVP

y′ = 0 , y(x0) = 0 .

Observe that for this problem we have that the GLM (1.11) is

Y [n] = Uy[n−1]

y[n] = Vy[n−1] =⇒ y[n] = Vny[0] ,

and so this motivates the next definition.

Definition 1.22. A GLM is zero-stable if there is a constant C such that for all n ≥ 0 ,

∥Vn∥ ≤ C.

In fact, we could have defined zero-stability as the following equivalent condition, but for
convenience it is customary to state it as a theorem.

Theorem 1.8. A GLM is zero-stable if the minimal polynomial ρV of the coefficient matrix V
has no zeros with magnitude greater than 1 and all zeros with magnitude equal to 1 are simple.

Example. By applying this definition of zero-stability to LMM and RK methods, we observe
the following.

1. The minimal polynomial ρV of the matrix V = 1 of the RK method as GLM is

ρV(w) = w − 1 ,

so we can see that all RK methods as GLM are zero-stable.
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2. In the case of LMM, the minimal polynomial of the matrix V of the LMM as GLM with
r = 2k and r = k is of the form (see [Jac09])

ρV(w) = wkρ(w) or ρV = ρ(w) ,

where ρ(w) is the first generating polynomial of the LMM (1.5), so we deduce that the
zero-stability of LMM as GLM is equivalent to the root condition introduced for LMM.

As for LMM, we conclude this section by stating the theorem that characterizes the conver-
gence of GLM in terms of zero-stability and consistency.
Theorem 1.9. A GLM (1.11) is convergent if and only if it is zero-stable and consistent.

1.4.2 Local error and order

For defining the convergence of a GLM we used the concept of starting procedures. Recalling
their definition, as discussed in [But06], we can understand them as some sort of particular GLM
with one ‘input’ and several ‘outputs’ that allows to approximate the initial vector y[0] from y0.
It is clear then that using such a ‘loose’ definition could affect how the order of a GLM is defined.
For example, for a RK method as a GLM we could construct a starting procedure such that the
resulting RK method as GLM has s = p = 5, and that is something that we do not expect for a
RK method, as it contradicts the Butcher barriers. Also, when studying the order of a LMM we
do not want it to be affected by the order of the approximations of the initial steps. Taking all
this into account, what we will do is define the order of GLM relative to the starting procedure.

Let Eh denote the exact solution after a time step h and M the main GLM. The idea then is
to study the difference of M◦Sh and Sh ◦E (see Figure 1.4), motivating the following definition.
Definition 1.23. A GLM (1.11) has order p relative to a starting procedure Sh if

M ◦ Sh − Sh ◦ Eh = O(hp+1) .

y[1]

y[0] ·

y(x0) y(x1)

Sh Sh

Eh

Eh

M O(hp+1)

Figure 1.4: Visual representation of the definition of order of a GLM

As mentioned before, the order conditions for LMM can be easily derived, but those of RK
where avoided because of their complexity. Being GLM a generalization of both, we expect that
their order conditions are hard to derive, and in fact that will be the case.

For studying the order conditions of GLM, we first need to explicitly characterize the order
of the values that appear in the formulation (1.11). For that, in order for p to be the order of
the method and q the order of the stages, we must require that the y[n−1] and y[n] satisfy

yi
[n−1] =

p∑
k=0

qikh
ky(k)(tn−1) + O(hp+1) , i = 1, . . . , r (1.13)

yi
[n] =

p∑
k=0

qikh
ky(k)(tn) + O(hp+1) , i = 1, 2, . . . , r (1.14)
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for some parameters qik ∈ R for i = 1, . . . , r, k = 0, 1, . . . , p. Also, for the stages Y [n] to be of
order q, they must satisfy

Yi
[n] = y(tn−1 + cih) + O(hq+1) , i = 1, . . . , s (1.15)

Deriving the conditions of GLM for general values of order p and stage order q “is quite com-
plicated requires sophisticated algebraic tools developed by Butcher” as mentioned in [Jac09].
Nevertheless, for methods with high stage order; that is, q = p or q = p− 1 it is simpler and can
be done using complex analysis. For developing those cases, it is necessary to define

qk =
[
q1k q2k . . . qrk

]T
, k = 0, 1, . . . , p ,

(notice that q0 and q1 are the preconsistency and consistency vectors), and also

ecz =
[
ec1z ec2z . . . ecsz

]T
, w(z) =

p∑
k=0

qkz
k .

Theorem 1.10. Assume that y[n−1] satisfies (1.13).

i) The GLM (1.11) of order p and stage order q = p satisfies (1.15) and (1.14) iff

ecz = zAecz + Uw(z) + O(zp+1) ,
ezw(z) = zBecz + Vw(z) + O(zp+1) .

ii) The GLM (1.11) of order p and stage order q = p− 1 satisfies (1.15) and (1.14) iff

ecz = zAecz + Uw(z) +
(cp

p! − Acp−1

(p− 1)! − Uqp

)
zp + O(zp+1) ,

ezw(z) = zBecz + Vw(z) + O(zp+1) .

1.4.3 Linear stability

As for LMM and RK methods, the analysis of linear stability is based on the boundedness of
the numerical solution y[n] when applied to the IVP

y′ = λy , λ ∈ C .

We want to study the influence of a single step of the method, so for that we want to find an
r × r matrix such that

y[n] = My[n−1] .

Let us observe that the GLM (1.11) for this particular problem has the form

Y [n] = hλAY [n] + Uy[n−1] ,

y[n] = hλBY [n] + Vy[n−1] ,

so if we define z := hλ, from the first equation we get

Y [n] = (I − zA)−1Uy[n−1] ,

and substituting it into the second equation, we obtain

y[n] =
(
V + zB(I − zA)−1U

)
y[n−1] ,

thus motivating the following definition.
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Definition 1.24. The stability matrix of a GLM (1.11) is

M(z) = V + zB(I − zA)−1U .

To study the boundedness of y[n] as n → ∞ we consider the characteristic polynomial of
the matrix M(z). It is interesting to observe that M(0) = V, so we can in fact understand
zero-stability as a particular case of this study.

Definition 1.25. The stability function of a GLM (1.11) is

Φ(w, z) = det(wI − M(z)) .

Definition 1.26. A GLM (1.11) is said to be absolutely stable for a given z ∈ C if all roots
wi = wi(z) for i = 1, 2, . . . , r of the stability function Φ(w, z) are inside the unit circle.

Definition 1.27. The region A of absolute stability of a GLM (1.11) is the set of all z ∈ C such
that the method is absolutely stable; that is

A =
{
z ∈ C ; |wi(z)| < 1 , i = 1, 2, . . . , r

}
.

Definition 1.28. A GLM (1.11) is A-stable if its region of absolute stability A contains the
negative complex half-plane C−; that is,{

z ∈ C ; Re(z) < 0
}

⊂ A.

Definition 1.29. A GLM (1.11) is L-stable if its A-stable and

lim
z→∞

ρ(M(z)) = 0 ,

where ρ(M(z)) is the spectral radius of the matrix M(z).

Example.

1. In the case of RK methods as GLM, being r = 1, the stability matrix M(z) is the function

M(z) = 1 + zbT (I − zA)−1e ,

which coincides with the function R(z). As we can understand M(z) as 1 × 1 matrix, we
have that Φ(w, z) = w−M(z), with its only root being M(z), so we recover the definitions
of the region of stability and A-stability of a RK method. In fact, as a 1 × 1 matrix,
we could consider R(z) to be the only eigenvalue of M(z), and thus we also recover the
definition of L-stability.

2. For LMM as GLM, for r = 2k it is proven in [Jac09] that the stability matrix is

M(z) =



α1
1 − zβ0

. . .
αk−1

1 − zβ0

αk

1 − zβ0

β1
1 − zβ0

. . .
βk−1

1 − zβ0

βk

1 − zβ0
1 . . . 0 0 0 . . . 0 0
... . . . ...

...
... . . . ...

...
0 . . . 1 0 0 . . . 0 0
α1z

1 − zβ0
. . .

αk−1z

1 − zβ0

αkz

1 − zβ0

β1z

1 − zβ0
. . .

βk−1z

1 − zβ0

βkz

1 − zβ0
0 . . . 0 0 1 . . . 0 0
... . . . ...

...
... . . . ...

...
0 . . . 0 0 0 . . . 1 0


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and the stability function

Φ(w, z) = 1
β0z

wk(ρ(w) − zσ(w)) ,

while for r = k the stability matrix takes the from

M(z) =



0 . . . 0 αk + z

1 − β0
(αk + β0 + βk)

1 . . . 0 αk−1 + z

1 − β0
(αk−1 + β0 + βk−1)

... . . . ...
...

0 . . . 1 α1 + z

1 − β0
(α1 + β0 + β1)


and the stability function

Φ(w, z) = 1
β0z

(ρ(w) − zσ(w)) ,

so we observe that the study of stability using the roots of such polynomials is in accordance
with the theory introduced before for LMM.





Chapter 2

Jet transport

When studying dynamical systems given by the flow of an ODE there are several scenarios in
which the ability to compute the variational equations is of great utility. Some of these, detailed
in [Sim90], are the computation of periodic orbits, their stability, and their dependence with
respect to parameters. In particular, the numerical integration of the variational equations can
be used to compute the derivatives of the flow, and as we will see in Chapter 3, this is of great
use to obtain the derivatives of the Poincaré map, which would otherwise be challenging because
they usually lack of a closed expression.

For the numerical integration of the variational equations, we will follow [Gim+23] to present
the technique called jet transport, based on the manipulation of formal power series. Further-
more, we will present our main contributions: Theorems 2.2 and 2.6. At the first one, we prove
that the integration of an initial value problem using jet transport with General Linear meth-
ods is equivalent to the integration of its variational equations using the same method. In the
second, we find the exact relations that must be satisfied by the high-order coefficients of the
jets for them to be solutions of an implicit system. The results obtained in both theorems will
therefore allow the effective implementation of jet transport for General Linear methods.

2.1 Framework
Let us recall the initial value problem (1.1) considered in Chapter 1; i.e.,

y′(x) = f(x, y(x)) , y(x0) = y0 (2.1)

where f : R × RN → RN . Let us denote by y(x;x0, y0) the solution of the IVP (2.1) and
suppose that the derivative of f with respect to y exists and is continuous. Then, y(x;x0, y0) is
differentiable with respect to y0 with derivative

V (x) := Dy0y(x;x0, y0) ,

and V satisfies the linear differential equation

V ′(x) = Dyf(x, y(x))V (x) , V (x0) = I ,

where I denotes the identity matrix of dimension N . It is customary to write this equation
together with the IVP, obtaining the so-called first order Variational Equations (VE)

y′(x) = f(x, y(x)) , y(x0) = y0

V ′(x) = Dyf(x, y(x))V (x) , V (x0) = I .
(2.2)

We observe that there is no dependence between the columns of the matrix V , so in general,
instead of working with the VE in the form (2.2), we will consider the equivalent formulation

y′(x) = f(x, y(x)) , y(x0) = y0

v′(x) = Dyf(x, y(x))v(x) , v(x0) = v0 .
(2.3)

23
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where v represents any column of the matrix V , so by setting the initial value v0 to be the
appropriate column of I we can recover the form (2.2). Moreover, if f is sufficiently differen-
tiable, as detailed in [Sim90], by successive differentiation of the IVP we obtain the higher order
variational equations.

Let us remark that the methods studied in Chapter 1 can be applied to the study of VE, as
these can be written as an IVP by simply considering

u(x) =
[
y(x)
v(x)

]
, g(x, u(x)) =

[
f(x, y(x))

Dyf(x, y(x))v(x)

]
, u0 =

[
y0

v0

]
.

2.2 Automatic differentiation
Automatic differentiation is a technique to compute high-order derivatives of the output of an
algorithm. It is customary to introduce this concept through the manipulation of formal power
series. For that, we will follow [Gim19].

2.2.1 Formal power series in one variable

We define a formal power series in one variable s as∑
k≥0

aks
k ,

where the coefficients ak belong to a field. If we have a function f ∈ C∞ defined in a neighbor-
hood of 0, we can consider the following power series∑

k≥0
f [k]sk ,

where the coefficients are this time the k-th normalized derivative of f at 0, defined as

f [k] := 1
k!f

(k)(0) .

As formal power series are characterized by their coefficients, we can express their arithmetic
in terms of the coefficients of the resulting formal power series.

Lemma 2.1. Let us consider the following formal power series

A :=
∑
k≥0

aks
k , B :=

∑
k≥0

bks
k , C :=

∑
k≥0

cks
k .

i) For the addition or subtraction A±B = C, the coefficients ck are given by

ck = ak ± bk .

ii) For the multiplication A ·B = C, the coefficients ck are given by

ck =
k∑

j=0
ajbk−j .

iii) For the division A/B = C, if b0 ̸= 0, the coefficients ck are given by

c0 = a0/b0

ck = 1
b0

(
ak −

k∑
j=1

bjck−j

)
, k ≥ 1 .
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iv) For the power Ap = C, if p ∈ R, p ̸= 0, 1 and a0 ̸= 0, the coefficients ck are given by

c0 = ap
0

ck = 1
ka0

k−1∑
j=0

(pk − (p+ 1)j)ak−jcj , k ≥ 1 .

v) Let h be a derivable function such that there are some mappings α, β, γ with

α(A) · h′(A) − β(A) · h(A) = γ(A) .

If we denote by αk, βk, γk the coefficients of α(A), β(A), γ(A) respectively and if a0 ̸= 0, the
coefficients ck are given by

c0 = h(a0)

ck = 1
kα0

( k∑
j=1

(
γk−j +

k−j∑
i=0

βick−i−j

)
jaj −

k−1∑
j=1

jαk−jcj

)
, k ≥ 1 .

Let us observe a few things in the last lemma. First, in cases iii), iv) and v), the coefficient
ck depends on other coefficients cj for j < k, so they need to be computed recursively. Also,
observe that case iv) includes interesting particular cases like the inversion for p = −1 and the
square root for p = 1/2. Finally, even though not all functions fall under the scope of case
v), as shown in [Gim19], the formula given can be used to obtain h(A) for functions like the
logarithm, exponential, sine, cosine and so on, so it indeed covers a broad family of functions.
As an example, for h(A) = log(A) it is enough to choose α(A) = A, β(A) = 0 and γ(A) = 1.

2.2.2 Formal power series in several variables

In an analogous way, we can define formal power series of K variables s = (s1, . . . , sK)∑
m≥0

∑
|k|=m

aks
k ,

where k = (k1, . . . , kK) ∈ NK is a multi-index and we define |k| = k1 + · · · + kK and sk =
sk1

1 · · · skK
K . As before, being f a multivariate C∞ function defined in a neighborhood of 0, we

can consider the following formal power series

∑
m≥0

∑
|k|=m

f [k]sk , where f [k] = ∂kf

k1! . . . kK ! (0) .

The arithmetic of formal multivariate power series is defined by reducing it to the one of
formal power series in one variable, where in fact, we will use the expressions of Lemma 2.1 by
proceeding as follows. Let us first consider a new symbolic variable z and replace si by siz for
all i = 1, . . . ,K. Observe that the formal multivariate power series above can be rewritten as∑

m≥0
Amz

m , where Am =
∑

|k|=m

aks
k ;

that is, we have expressed the multivariate power series as a formal power series of only one
variable, where the coefficients Am are homogeneous polynomials of degree m. To obtain the
arithmetic of multivariate power series, we then only need to refer to Lemma 2.1, where we just
have to notice that the operations between the coefficients will be that of formal power series of
one variable. Finally, setting z = 1 we recover the original formal multivariate power series.
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2.2.3 Jet transport

Let us remark that when implementing the technique of automatic differentiation on a computer,
we will limit the power series up to certain order; that is, we will in fact consider truncated power
series. From now on, we fix such a maximum order to be M , and let us consider the fact that,
when using equalities between truncated power series, we will understand that they coincide
just up to order M .

In the literature, the set of derivatives of a function or the set of partial derivatives of a
multivariate function, is usually called the jet of derivatives. Let us then notice that the formal
series with coefficients f [k] of a function f ‘codifies’ its jet of derivatives, and in particular, for
truncated power series of order M , it codifies them up to order M . We can understand that the
power series of h ◦ f codifies the jet of derivatives of the composition, so the operations with
power series can be seen as the ‘transport’ of the jet of derivatives, thus naming this chapter.

2.3 Jet transport for General Linear methods

It is shown in [Gim+23] that using jet transport; that is, using the arithmetic of truncated
power series to integrate an IVP (2.1) using a Runge-Kutta method is equivalent to integrating
the VE (2.2) using the same Runge-Kutta method. Following the same ideas, we will prove the
analogous for General Linear methods.

In order to do so, we must first note that it is enough to prove that the statement holds
after a single integration step. We also remark that it is enough to consider the equivalence on
the case of first order VEs and jet transport of order 1 for the IVP, as higher order cases can be
reduced to order 1 by increasing the dimensionality of the IVP.

Theorem 2.2. Let the external and internal stages of a GLM (1.11) applied to the VE (2.2) be
respectively (yi

[n], vi
[n]) and (Yi

[n], Vi
[n]), where the first component refers to the coordinates y

and the second to v. When using jet transport of order 1 on the GLM (1.11) applied to the IVP
(2.1), the external and internal stages obtained are respectively yi

[n] + vi
[n]s and Yi

[n] + Vi
[n]s.

Proof. First, observe that the GLM (1.11) applied to the VE (2.2) is of the form

Yi
[n] = h

s∑
j=1

aijf(Yj
[n]) +

r∑
j=1

uijyj
[n−1], i = 1, . . . , s,

Vi
[n] = h

s∑
j=1

aijDyf(Yj
[n])Vj

[n] +
r∑

j=1
uijvj

[n−1], i = 1, . . . , s,

yi
[n] = h

s∑
j=1

bijf(Yj
[n]) +

r∑
j=1

vijyj
[n−1], i = 1, . . . , r,

vi
[n] = h

s∑
j=1

bijDyf(Yj
[n])Vj

[n] +
r∑

j=1
vijvj

[n−1], i = 1, . . . , r,

(2.4)

Now, let us study the result of applying jet transport of order 1 to the GLM (1.11) when
applied to the IVP (2.1); that is, to us study the method when using the following truncated
power series of order 1 and their arithmetic

Y i
[n] + V i

[n]
s , i = 1, . . . , s

yi
[n] + vi

[n]s , i = 1, . . . , r .

The goal is then to show that these coefficients indeed coincide with the ones in (2.4). For that,
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notice that the GLM (1.11) applied to the IVP (2.1) has the form

Y i
[n] + V i

[n]
s = h

s∑
j=1

aijf(Y j
[n] + V j

[n]
s) +

r∑
j=1

uij

(
yj

[n−1] + vj
[n−1]s

)
, i = 1, . . . , s,

yi
[n] + vi

[n]s = h
s∑

j=1
bijf(Y j

[n] + V j
[n]
s) +

r∑
j=1

vij

(
yj

[n−1] + vj
[n−1]s

)
, i = 1, . . . , r,

where we notice that, expanding f(Y j
[n] +V j

[n]
s) as a truncated power series of order 1 around

Y j
[n], we obtain the relation

f(Y j
[n] + V j

[n]
s) = f(Y j

[n]) +Dyf(Y j
[n])V j

[n]
s ,

thus the method above becomes

Y i
[n] + V i

[n]
s = h

s∑
j=1

aij

(
f(Y j

[n]) +Dyf(Y j
[n])V j

[n]
s
)

+
r∑

j=1
uij

(
yj

[n−1] + vj
[n−1]s

)
, i = 1, . . . , s,

yi
[n] + vi

[n]s = h
s∑

j=1
bij

(
f(Y j

[n]) +Dyf(Y j
[n])V j

[n]
s
)

+
r∑

j=1
vij

(
yj

[n−1] + vj
[n−1]s

)
, i = 1, . . . , r,

and the statement follows from pairing the coefficients by their corresponding power of s and
comparing with the expression in (2.4).

2.3.1 Solving implicit systems

As implicit GLM (and in particular LMM and RK methods) require solving an implicit equation
in order to compute the next step of the integration, we will need to study that issue in the
context of this section; that is, when integrating using jet transport. For that, we need a
technique that allows to solve implicit systems while dealing with the arithmetic of truncated
power series.

Before doing so, let us start by introducing some notation to simplify the expressions that
we will obtain. First, as it is customary in the context of numerical integration to use subindices
to denote steps, we will use the notation of normalized derivatives to denote the coefficients of
formal power series. For example, a truncated power series of order M and one symbol s will
be denoted

a[0] + a[1]s+ · · · + a[M ]sM ,

while a truncated power series of order 2 and 2 symbols s1, s2 will be

a[0] + a[1,0]s1 + a[0,1]s2 + a[2,0]s2
1 + a[1,1]s1s2 + a[0,2]s2

2 .

In general, we will follow the next naming convention for truncated power series, as it displays
all the information needed

[a]MK :=
M∑

m=0

∑
|k|=m

a[k]sk ,

where M is the truncation order, K the number of symbols, and we use the multiindex notation
k = (k1, . . . , kK), |k| = k1 + · · · + kK , where s = (s1, . . . , sK) and sk = sk1

1 · · · skK
K . As an

example, the two truncated power series above are, with this notation,

[a]M1 , [a]22 .

Also, as the jet of derivatives is codified in the power series, we will usually refer to them as jets.
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Implicit Euler method

Let us consider the simplest setting, in which we are willing to integrate an IVP (1.3) using an
implicit Euler method (or GLM with one step and one stage), where we have a known value a,
an unknown value b and they related by the expression

F (a, b) = 0 , (2.5)

where F : RN ×RN → RN depends on the method and on the function f : RN → RN of the IVP.
In that case, the value b can be approximated by using an iterative method, like the Newton
method. Nevertheless, in the context of jet transport of one symbol s and M , we have a known
jet [a]M1 and an unknown jet [b]M1 related by the expression

F ([a]M1 , [b]M1 ) = 0 . (2.6)

Let us study how can we obtain the coefficients that determine the unknown jet [b]M1 . First,
observe that truncating the jets at order 0; that is, for M = 0 we have that the jets [a]01 = a[0],
[b]01 = b[0] are just values, so we are in the context of (2.5) and the coefficient of order 0 can
be determined using a Newton method. For higher orders, the coefficients will be obtained
iteratively using the next theorem.

Theorem 2.3. In the setting of (2.6), the coefficients of the jet [b]M1 are determined by

DbF (a[0], b[0])b[1] = −DaF (a[0], b[0])a[1] ,

DbF (a[0], b[0])b[m] = −
(
F ([a]m−1

1 , [b]m−1
1 )[m] +DaF (a[0], b[0])a[m]

)
, m = 2, . . . ,M ,

where [a]M1 is known and b[0] has been previously computed.

Proof. Let us proceed by induction on the order, computing the coefficient b[m] for each m.

• m = 1: To compute b[1], let us consider the jets only up to order 1. Taking the power
expansion of F ([a]11, [b]

1
1) around ([a]01, [b]

0
1), we obtain

F ([a]11, [b]
1
1) = F ([a]01, [b]

0
1) +DaF ([a]01, [b]

0
1)a[1]s+DbF ([a]01, [b]

0
1)b[1]s+ O(s2)

truncating and recalling [a]01 = a[0], [b]01 = b[0], we get

= F (a[0], b[0]) +DaF (a[0], b[0])a[1]s+DbF (a[0], b[0])b[1]s .

We want this expression to be identically 0 (up to order 1), and by hypothesis the coefficient
b[0] of order 0 has been chosen so that F (a[0], b[0]) = 0. Hence, we must impose the
coefficients of s to be 0, and thus b[1] must satisfy the relation

DbF (a[0], b[0])b[1] = −DaF (a[0], b[0])a[1] .

• m− 1 → m: Let us assume that we have computed the coefficients of order 1, . . . ,m− 1,
so we have determined [b]m−1

1 . To compute b[m], let us consider the jets only up to order
m. Taking the power expansion of F ([a]m1 , [b]

m
1 ) around ([a]m−1

1 , [b]m−1
1 ), we obtain

F ([a]m1 , [b]
m
1 ) = F ([a]m−1

1 , [b]m−1
1 ) +DaF ([a]m−1

1 , [b]m−1
1 )a[m]sm+

+DbF ([a]m−1
1 , [b]m−1

1 )b[m]sm + O(sm+1)
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where, by induction hypothesis, [b]m−1
1 has been chosen so that F ([a]m−1

1 , [b]m−1
1 ) = 0 (up

to order m − 1). In that case, it has some coefficient of order m which will be named
F ([a]m−1

1 , [b]m−1
1 )[m] following the current notation (notice that higher order terms are not

considered, as jets are truncated at order m). Expanding the remaining terms in power
series around (a[0], b[0]), we get

= F ([a]m−1
1 , [b]m−1

1 )[m]sm +
(
DaF (a[0], b[0]) + O(s)

)
a[m]sm+

+
(
DbF (a[0], b[0]) + O(s)

)
b[m]sm + O(sm+1) ,

and truncating at order m, we obtain the expression

= F ([a]m−1
1 , [b]m−1

1 )[m]sm +DaF (a[0], b[0])a[m]sm+
+DbF (a[0], b[0])b[m]sm .

Imposing the coefficients of sm to be 0, b[m] must satisfy

DbF (a[0], b[0])b[m] = −
(
F ([a]m−1

1 , [b]m−1
1 )[m] +DaF (a[0], b[0])a[m]

)
.

In order to apply Theorem 2.3, it will be useful to have a way to obtain the derivatives that
appear in the expression that determine the coefficients. Luckily, they can be easily obtained
using jet transport as seen in the following Lemma.

Lemma 2.4. Let us consider jets of order 1 and the N symbols s = (s1, . . . , sN ). In the context
of (2.6), the derivatives of Theorem 2.3 are given by

DaF (a[0], b[0]) =
[
F (a[0] + s, b[0])[e1] . . . F (a[0] + s, b[0])[eN ]

]
,

DbF (a[0], b[0]) =
[
F (a[0], b[0] + s)[e1] . . . F (a[0], b[0] + s)[eN ]

]
,

where ei is the i-th vector of the canonical basis of RN ; that is, a vector in RN with all zeros
except for a one in the i-th position.

Proof. As a, b ∈ RN , let us denote a = (α1, . . . , αN ), b = (β1, . . . , βN ). Taking the power
expansion of F (a[0] + s, b[0]) around (a[0], b[0]), we obtain

F (a[0] + s, b[0]) = F (a[0], b[0]) +Dα1F (a[0], b[0])s1 + · · · +DαNF (a[0], b[0])sN + O(|s|2) ,

and so it is clear that the components of the derivativeDaF (a[0], b[0]) are coefficients of se1 , . . . , seN

of F (a[0] + s, b[0]). Analogously, taking the power expansion of F (a[0], b[0] + s) around (a[0], b[0]),

F (a[0], b[0] + s) = F (a[0], b[0]) +Dβ1F (a[0], b[0])s1 + · · · +DβN
F (a[0], b[0])sN + O(|s|2) ,

thus the components of DbF (a[0], b[0]) are coefficients of se1 , . . . , seN of F (a[0], b[0] + s).

Implicit General Linear methods

Once the simplest case has been studied, let us generalize it by considering the setting of implicit
General Linear methods; that is, several known values a1, . . . , aϱ and several unknown values
b1, . . . , bς related by a system of ς equations F = (F1, . . . , Fς) as follows

F (a1, . . . , aϱ, b1, . . . , bς) =


F1(a1, . . . , aϱ, b1, . . . , bς) = 0 ,
...

Fς(a1, . . . , aϱ, b1, . . . , bς) = 0 ,

(2.7)
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where F : (RN )ϱ × (RN )ς → (RN )ς depends on the method and on the function f : RN → RN

of the IVP. In the same way as for the case of the implicit Euler method, the values b1, . . . , bς

can be approximated by using an iterative method, like the Newton method. Nevertheless, in
the context of jet transport of order M with K symbols s = (s1, . . . , sK), we have several known
jets [a1]MK , . . . , [aϱ]MK and several unknown jets [b1]MK , . . . , [bς ]MK related by the expression

F ([a1]MK , . . . , [aϱ]MK , [b1]MK , . . . , [bς ]MK ) =


F1([a1]MK , . . . , [aϱ]MK , [b1]MK , . . . , [bς ]MK ) = 0 ,
...

Fς([a1]MK , . . . , [aϱ]MK , [b1]MK , . . . , [bς ]MK ) = 0 .

(2.8)

For convenience, we introduce the following notation to denote the several known and un-
known variables and their related coefficients and jets.

a = (a1, . . . , aϱ) , b = (b1, . . . , bς) ,
a[k] = (a1

[k], . . . , aϱ
[k]) , b[k] = (b1

[k], . . . , bς
[k]) ,

[a]MK = ([a1]MK , . . . , [aϱ]MK ) , [b]MK = ([b1]MK , . . . , [bς ]MK ) .

Let us study how can we obtain the coefficients to determine the unknown jets [b1]MK , . . . , [bς ]MK .
As before, observe that truncating the jets at order 0; that is, for M = 0 we have that the jets
[a1]0K = a1

[0], . . . , [aϱ]0K = aϱ
[0] and [b1]0K = b1

[0], . . . , [bς ]0K = bς
[0] are just values, so we are in

the context of (2.7) and the coefficients of order 0 can be determined using a Newton method.
For higher orders, let us notice that as we are using K symbols, there will no longer be one
coefficient per order. In fact, for order m, there will be as many coefficients as multiindices
k = (k1, . . . , kK) satisfying |k| = m, which is exactly characterized in the following Lemma.

Lemma 2.5. The number of coefficients of order m of a formal power series of K symbols is(
m+K − 1
K − 1

)
= (m+K − 1)!

m!(K − 1)! .

Having this into account, the coefficients of higher order of the jets [b1]MK , . . . , [bς ]MK can be
obtained iteratively using the next theorem.

Theorem 2.6. In the setting of (2.8), the coefficients of the jets [b1]MK , . . . , [bς ]MK are given by

DbF (a[0],b[0])


b1

[k]

...
bς

[k]

 = −DaF (a[0],b[0])


a1

[k]

...
aϱ

[k]

 , |k| = 1

DbF (a[0],b[0])


b1

[k]

...
bς

[k]

 = −F ([a]m−1
K , [b]m−1

K )[k] −DaF (a[0],b[0])


a1

[k]

...
aϱ

[k]

 , |k| = m , m = 2, . . . ,M

where [a1]MK , . . . , [aϱ]MK are known and b1
[0], . . . , bς

[0] have been previously computed.

Proof. Let us proceed by induction on the order, computing the coefficients for each order.

• m = 1: To compute b1
[k], . . . , bς

[k] for all k with |k| = 1, let us consider the jets only
up to order 1. Taking the power expansion of F ([a1]1K , . . . , [aϱ]1K , [b1]1K , . . . , [bς ]1K) around
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([a1]0K , . . . , [aϱ]0K , [b1]0K , . . . , [bς ]0K), we obtain

F ([a1]1K , . . . , [aϱ]1K , [b1]1K , . . . , [bς ]1K) = F ([a1]0K , . . . , [aϱ]0K , [b1]0K , . . . , [bς ]0K)+

+
ϱ∑

i=1

∑
|k|=1

DaiF ([a1]0K , . . . , [aϱ]0K , [b1]0K , . . . , [bς ]0K)ai
[k]sk +

+
ς∑

i=1

∑
|k|=1

Dbi
F ([a1]0K , . . . , [aϱ]0K , [b1]0K , . . . , [bς ]0K)bi

[k]sk + O(|s|) .

truncating and recalling [a1]0K = a1
[0], . . . , [aϱ]0K = aϱ

[0], [b1]0K = b1
[0], . . . , [bς ]0K = bς

[0],

F ([a1]1K , . . . , [aϱ]1K , [b1]1K , . . . , [bς ]1K) = F (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])+

+
ϱ∑

i=1

∑
|k|=1

DaiF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])ai
[k]sk +

+
ς∑

i=1

∑
|k|=1

Dbi
F (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0])bi

[k]sk + O(|s|) .

We want this expression to be identically 0 (up to order 1), and by hypothesis the coeffi-
cients b1

[0], . . . , bς
[0] of order 0 have been chosen so that F (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0]) =

0. Hence we must impose the coefficients of sk to be 0 for each k, and thus b1
[k], . . . , bς

[k]

must satisfy the following relation for all k with |k| = 1
ς∑

i=1
Dbi

F (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])bi
[k] = −

ϱ∑
i=1

DaiF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])ai
[k]

where we observe that the sum of derivatives on both sides can be rewritten as

[
Db1F (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0]) . . . DbςF (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0])
]
b1

[k]

...
bς

[k]

 =

−
[
Da1F (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0]) . . . DaϱF (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0])
]
a1

[k]

...
aϱ

[k]


where we identify the constructed matrix with the Jacobian, obtaining the relation

DbF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])


b1

[k]

...
bς

[k]

 =

−DaF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])


a1

[k]

...
aϱ

[k]

 .
• m− 1 → m: Let us assume that we have computed the coefficients of order 1, . . . ,m− 1,

so we have determined [b1]m−1
K , . . . , [bς ]m−1

K . To compute the coefficients of order m, let
us consider the jets only up to order m. Taking the power expansion of the expression
F ([a1]mK , . . . , [aϱ]mK , [b1]mK , . . . , [bς ]mK) around ([a1]m−1

K , . . . , [aϱ]m−1
K , [b1]m−1

K , . . . , [bς ]m−1
K ), we

obtain
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F ([a1]mK , . . . , [aϱ]mK , [b1]mK , . . . , [bς ]mK) = F ([a1]m−1
K , . . . , [aϱ]m−1

K , [b1]m−1
K , . . . , [bς ]m−1

K )+

+
ϱ∑

i=1

∑
|k|=m

DaiF ([a1]m−1
K , . . . , [aϱ]m−1

K , [b1]m−1
K , . . . , [bς ]m−1

K )ai
[k]sk +

+
ς∑

i=1

∑
|k|=m

Dbi
F ([a1]m−1

K , . . . , [aϱ]m−1
K , [b1]m−1

K , . . . , [bς ]m−1
K )bi

[k]sk + O(|s|m+1) ,

where, by induction hypothesis, [b1]m−1
K , . . . , [bς ]m−1

K have been chosen so that we have
F ([a1]m−1

K , . . . , [aϱ]m−1
K , [b1]m−1

K , . . . , [bς ]m−1
K ) = 0 (up to order m− 1). In that case, it has

some coefficient of order m for each k with |k| = m, which will be named (following the
current notation) F ([a1]m−1

K , . . . , [aϱ]m−1
K , [b1]m−1

K , . . . , [bς ]m−1
K )[k], and notice that higher

order terms are not considered, as jets are truncated at order m. Expanding the remaining
terms in power series around (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0]), we get

F ([a1]mK , . . . , [aϱ]mK , [b1]mK , . . . , [bς ]mK) = F ([a1]m−1
K , . . . , [aϱ]m−1

K , [b1]m−1
K , . . . , [bς ]m−1

K )[k]sk+

+
ϱ∑

i=1

∑
|k|=m

(
DaiF (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0]) + O(|s|)

)
ai

[k]sk +

+
ς∑

i=1

∑
|k|=m

(
Dbi

F (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0]) + O(|s|)
)
bi

[k]sk + O(|s|m+1) ,

and truncating at order m, we obtain the expression

F ([a1]mK , . . . , [aϱ]mK , [b1]mK , . . . , [bς ]mK) = F ([a1]m−1
K , . . . , [aϱ]m−1

K , [b1]m−1
K , . . . , [bς ]m−1

K )[k]sk+

+
ϱ∑

i=1

∑
|k|=m

DaiF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])ai
[k]sk+

+
ς∑

i=1

∑
|k|=m

Dbi
F (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0])bi

[k]sk .

Imposing the coefficients of sk to be 0 for each k, the values b1
[k], . . . , bς

[k] must satisfy the
following relation for all k with |k| = m

ς∑
i=1

Dbi
F (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0])bi

[k] =

− F ([a1]m−1
K , . . . , [aϱ]m−1

K , [b1]m−1
K , . . . , [bς ]m−1

K )[k] −
ϱ∑

i=1
DaiF (a1

[0], . . . , aϱ
[0], b1

[0], . . . , bς
[0])ai

[k]

and if we proceed as before, this can be written in terms of Jacobian matrices as

DbF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])


b1

[k]

...
bς

[k]

 =

− F ([a1]m−1
K , . . . , [aϱ]m−1

K , [b1]m−1
K , . . . , [bς ]m−1

K )[k] −DaF (a1
[0], . . . , aϱ

[0], b1
[0], . . . , bς

[0])


a1

[k]

...
aϱ

[k]

 .



Jet transport for General Linear methods - Philip Pita Forrier 33

As in the last section, in order to apply Theorem 2.6, it will be useful to have a way to obtain
the derivatives that appear in the expression that determine the coefficients. Again, they can
be easily obtained using jet transport as seen in the following Lemma.

Lemma 2.7. Let us consider jets of order 1 and the ϱ ·N and ς ·N symbols u, v given by

u = (u1, . . . , uϱ) , ui = (ui1, . . . , uiN ), i = 1, . . . , ϱ ,
v = (v1, . . . , vς) , vi = (vi1, . . . , viN ), i = 1, . . . , ς .

In the context of (2.8), the derivatives of Theorem 2.3 are given by

DaF (a[0],b[0]) =[
F (a[0] + u,b[0])[U1,1] . . . F (a[0] + u,b[0])[U1,N ] . . . F (a[0] + u,b[0])[Uϱ,1] . . . F (a[0] + u,b[0])[Uϱ,N ]

]
,

DbF (a[0],b[0]) =[
F (a[0],b[0] + v)[V1,1] . . . F (a[0],b[0] + v)[V1,N ] . . . F (a[0],b[0] + v)[Vς,1] . . . F (a[0],b[0] + v)[Vς,N ]

]
,

where Ui,j and Vi,j are the ((i − 1)N + j)-th vector of the canonical basis of RϱN and RςN

respectively; that is, vectors with all zeros except for a one in the ((i− 1)N + j)-th position.

Proof. As a1, . . . , aϱ ∈ RN , let us denote ai = (αi1, . . . , αiN ) for each i = 1, . . . , ϱ. Being
F = (F1, . . . , Fς), let us study each Fℓ for ℓ = 1, . . . , ς individually. Taking the power expansion
of Fℓ(a1

[0] + u1, . . . , aϱ
[0] + uϱ,b[0]) around (a[0],b[0]), we obtain

Fℓ(a1
[0] + u1, . . . , aϱ

[0] + uϱ,b[0]) = Fℓ(a[0],b[0])+
+Dα11Fℓ(a[0],b[0])u11 + · · · +Dα1NFℓ(a[0],b[0])u1N +
...
+Dαϱ1Fℓ(a[0],b[0])uϱ1 + · · · +DαϱNFℓ(a[0],b[0])uϱN + O(|u|2) ,

and so it is clear that the components of the derivative DaFℓ(a[0],b[0]) are the coefficients of
ue1 , . . . ,ueN , . . . ,ue(ϱ−1)N+1 , . . . ,ue(ϱ−1)N+N of Fℓ(a[0] +u,b[0]). The expression of DaF (a[0],b[0])
follows from the fact that its rows are given by DaF1(a[0],b[0]), . . . , DaFς(a[0],b[0]).

Analogously, let us denote bi = (βi1, . . . , βiN ) for each i = 1, . . . , ς and let us study each
Fℓ for ℓ = 1, . . . , ς individually. Taking the power expansion of Fℓ(a[0], b1

[0] + v1, . . . , bς
[0] + vς)

around (a[0],b[0]), we obtain

Fℓ(a[0], b1
[0] + v1, . . . , bς

[0] + vς) = Fℓ(a[0],b[0])+
+Dβ11Fℓ(a[0],b[0])v11 + · · · +Dβ1N

Fℓ(a[0],b[0])v1N +
...
+Dβς1Fℓ(a[0],b[0])vς + · · · +DβςN

Fℓ(a[0],b[0])vςN + O(|v|2) ,

and proceeding as before, the statement follows.





Chapter 3

Applications, implementation and
numerical experiments

Given the nature of the ideas developed in the preceding chapters, it is of interest to study some of
their applications and to perform some numerical experimentation. The efficient implementation
of some implicit General Linear methods is discussed in [Jac09], and is out of the scope of this
text. With this in mind, we have considered illustrative the particular case of implicit Runge-
Kutta methods. This section therefore has two goals: first, to discuss how to implement implicit
RK methods using jet transport and perform some tests with that implementation; and second,
to study implicit RK methods when applied to some problems of interest in dynamical systems.
Once documented, the code developed for this section will be available on GitHub1.

For that purpose, we start by introducing the van der Pol problem, which we will use as a
representative example for the results of our numerical experiments.

3.1 The van der Pol problem

Balthazar van der Pol proposed in the 1920’s the problem that now bears his own name. It
originates from electronics, but it has become one of the most famous tests for ODE solvers, as
it depends on a parameter µ which, if ‘large’, makes the problem alternate from stiff to non-stiff
with a rapidly changing solution. It has been widely studied and appears in standard test sets
for IVP, like the ‘Geneva test set’ [HW96] and the ‘Bari test set’ [MM08].

The van der Pol problem, henceforth referred to as VDPOL, is simply stated for z ∈ R and
µ > 0 as

z′′(x) = µ(1 − z2(x))z′(x) − z(x) ,

and as mentioned in Section 1.1, increasing by one its dimension we can rewrite it as system of
order 2 of the form [

y1(x)
y2(x)

]′

=
[

y2(x)
µ(1 − y2

1(x))y2(x) − y1(x)

]
,

As mentioned in [HWN93], there exists a unique limit cycle for the VDPOL problem; that is,
a stable periodic solution to which all other solutions converge. This property together with its
stiffness make the VDPOL problem the ideal example for the upcoming sections.

1https://github.com/PhilPF/Jet-Transport-Implicit-RK
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3.2 The taylor package

The first version of the taylor package was introduced in [JZ05] as “an ODE solver generator.
It reads a system of ODEs and outputs an ANSI C routine that performs a single step of
a numerical integration using the Taylor method [...] meant to be called from a user main
program”, as described in the user’s manual [GJZ23]. The latest version of taylor also includes
support of jet transport which will be the usage we will focus on, as it allows to generate
files specifying a suitable polynomial arithmetic that can then be used in another program. In
our case, these will be the files that will allow to implement implicit RK methods with the
appropriate arithmetic for jet transport.

In order to use them later in this text, let us review the usage of certain features of this
package by providing some examples (see [GJZ23]).

• To use taylor, we must create an input file with the system of ODEs. For example, the
file vdpol.eq specifies the ODE of the VDPOL problem

vdpol.eq

extern double mu;

x' = y;
y' = mu*(1-x^2)*y-x;

where eps is declared as an undefined parameter using a statement of the form

extern [MY_FLOAT|double|float|int|short|char] [var_list];

so that it can be initialized later on our main program.

• To declare jet variables, we can use an statement of the form

jet [var_list] symbols [number_of_symbols] deg [degree];

so, for example, to treat the variables x and y as jets of 2 symbols of order 3 in the VDPOL
problem, we could use the file vdpol_2_3.eq

vdpol_2_3.eq

extern double mu;

x' = y;
y' = mu*(1-x^2)*y-x;

jet x,y symbols 2 deg 3;

• For generating the necessary files to integrate, for example, the VDPOL problem with the
arithmetic specified in vdpol_2_3.eq, we can execute the next commands in our terminal
(once taylor is installed, and from the folder containing vdpol_2_3.eq)

taylor -header -o [name].h -name [name] vdpol_2_3.eq
taylor -header_name [name].h -jet -name [name] -step -o [name].c vdpol_2_3.eq

which will create, when specifying [name], the files [name].c and [name].h.
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• We remark that the header file [name].h must be included in our main file, say main.c,
as it contains the macro definitions for the arithmetic operations and function calls to
[name].c. Finally, the file [name].c must be compiled together with our main file, using
for example

gcc main.c [name].c -lm

3.3 Implementation of jet transport for implicit Runge-Kutta
methods

As in Section 2.3, let us consider the setting of an autonomous IVP (1.3). In that case, the
formulation (1.9) of an implicit RK method is

Yi = yn−1 + h
s∑

j=1
aijf(Yj) , i = 1, . . . , s

yn = yn−1 + h
s∑

i=1
bif(Yi) ,

where, for the method to be implicit, the matrix A = [aij ] is considered to not be lower triangular
with null diagonal elements. As the method is implicit, in order to compute the new step yn,
we must solve an implicit system, so this is a particular case of the problem studied in (2.7),
where we have one known value yn−1 and s unknown values Y1, . . . , Ys related by a system of s
equations F = (F1, . . . , Fs) as follows

F (yn−1, Y1, . . . , Ys) = 0 , (3.1)

where, for all i = 1, . . . , s, the functions Fi are given by

Fi(yn−1, Y1, . . . , Ys) = Yi − yn−1 + h
s∑

j=1
aijf(Yj) . (3.2)

In order to reduce round-off errors in the computation of the solution, it is customary to
introduce the smaller quantities

zi = Yi − yn−1 , i = 1 . . . , s ,

and thus the functions of the system F = (F1, . . . , Fs) are rewritten for all i = 1, . . . , s as

Fi(yn−1, z1, . . . , zs) = zi + h
s∑

j=1
aijf(yn−1 + zj) . (3.3)

Before proceeding with the discussion of the implementation when using jet transport, let
us first study how to find a solution of (3.1). For a general system, it has to be approximated
iteratively, so one possibility is to consider a simple fixed-point iteration, but as remarked in
[HW96], “this transforms the algorithm into a an explicit method and destroys the good stability
properties”, thus it is not convenient for stiff problems. That being the case, we will use a
practical modification of Newton’s method.

3.3.1 Simplified Newton iterations

When applying the Newton method to find a solution

z = (z1, . . . , zs),
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of the system (3.1), we will require the Jacobian of F with respect to z; that is,

DzF (yn−1, z) =


I − ha11Dyf(yn−1 + z1) . . . −ha1sDyf(yn−1 + zs)

...
...

−has1Dyf(yn−1 + z1) . . . I − hassDyf(yn−1 + zs)

 .
This matrix can be easily computed using jet transport as shown in Lemma 2.7. Nevertheless,
it is important to observe that each step the values z change, and thus the matrix must be
recomputed. That being the case, it is customary to consider the approximation

Dyf(yn−1 + zi) ≈ Dyf(yn−1), i = 1, . . . , s ,

and so we obtain an approximated Jacobian for the Newton method given by

DzF (yn−1, z) ≈ DzF (yn−1,0) = I − hA⊗Dyf(yn−1) ,

where 0 = (0, . . . , 0) ∈ Rs. Using this simplified Newton method, we observe that the simplified
Jacobian can be computed using jet transport following Lemma 2.7 and, being the same for
all iterations, we only need to compute its LU-decomposition once and use it for all Newton
iterations.

Starting value

For the Newton method we will require an starting value for z. As the exact solution of (3.3)
satisfies zi = O(h), i = 1, . . . , s, it is customary to choose

z0 = 0.

However, as mentioned in [HW96], better choices for particular cases can be considered.

Stopping criterion

As the Jacobian used in the simplified Newton iterations is approximated, the convergence of
the method is no longer quadratic. In fact, as mentioned in [HW96], it is linear. Nevertheless,
this can be used to devise an appropriate stopping criterion. For that, let zk+1 denote the value
obtained at the (k + 1)-th iteration of the Newton method, and ∆zk given by the relation

zk+1 = zk + ∆zk .

Then, for a desired tolerance NTOL of the Newton method, we should stop the iterations when

ηk∥∆zk∥ ≤ κ · NTOL

where it is recommended (see [HW96]) to choose the following values

η0 = max{ηold,UROUND}0.8 , ηk = ∥∆zk∥/∥∆zk−1∥
1 − ∥∆zk∥/∥∆zk−1∥

for k ≥ 1 , κ ∈ [10−1, 10−2] ,

where η0 is chosen this way to ensure that we are able to stop after the first iteration (which is
necessary for linear systems), where ηold is the value of the last ηk of the preceding integration
step and UROUND the rounding unit (e.g., 10−16 for double precision).
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3.3.2 Obtaining high order coefficients of the jets

Once we are able to approximate the solution of the system (3.1), we are ready to discuss the
case in which we are using jet transport of, say, order M with K symbols s = (s1, . . . , sK). That
is, following the same notation as in Section 2.3.1, we have a known jet [yn−1]MK and s unknown
jets [z]MK = ([z1]MK , . . . , [zs]MK ) related by the expression

F ([yn−1]MK , [z]MK ) = 0 . (3.4)

As discussed in Section 2.3.1, before applying Theorem 2.6 for obtaining the coefficients
of high order of the jets, we first require to know that of order 0, but as F (yn−1

[0], z[0]) = 0
is exactly system (3.1), we can do so using the simplified Newton iterations presented above.
That being the case, let us assume that the coefficients of order 0 are already computed and let
us apply the formulas derived in Theorem 2.6 for this particular problem. In this setting, the
coefficients of the jets [z]MK = ([z1]MK , . . . , [zs]MK ) are determined by the expressions

DzF (yn−1
[0], z[0])


z1

[k]

...
zs

[k]

 = −Dyn−1F (yn−1
[0], z[0])yn−1

[k] , |k| = 1

DzF (yn−1
[0], z[0])


z1

[k]

...
zs

[k]

 = −F ([yn−1]m−1
K , [z]m−1

K )[k] −Dyn−1F (yn−1
[0], z[0])yn−1

[k], |k| = m,

, m = 2, . . . ,M .

We observe that the matrices DzF (yn−1
[0], z[0]) , Dyn−1F (yn−1

[0], z[0]) only depend on the
current integration step and not on m, so they only need to be computed once at the beginning
of this procedure. Furthermore, as the matrix DzF (yn−1

[0], z[0]) is the same for all the linear
systems that must be solved, we only need to compute its LU-decomposition once, so the costs
of the procedure are therefore lower. In fact, they can be reduced even more by noticing that
for each m, all the terms on the right-hand side can be computed simultaneously. As they share
the same matrix, we can use a package like LAPACK (Linear Algebra PACKage) that allows to
solve linear system with several columns of right-hand side, thus saving some computations.

3.3.3 Automatic step size control

In order to adjust the step size h of the method, we require a practical tool to estimate the error.
Based on the simple idea: “to repeat the computations with halved step sizes and to compare
the results”, we present the Richardson Extrapolation as detailed in [HWN93] and [But16].

Studying carefully the known behavior of the error of a RK method of order p as a function of
h, we obtain that, starting from yn−1 and being y(h/2)

n the solution obtained after two consecutive
steps of step size h/2 and y

(h)
n that obtained after one long step of step size h, the local error

(Definition 1.12) of y(h)
n can be extrapolated as

y(xn−1 + h) − y(h)
n = y

(h/2)
n − y

(h)
n

1 − (1/2)p
+ O(hp+2) ,

thus we can obtain the following approximation ŷn of order p+ 1 to y(xn + h)

ŷn = y(h)
n + y

(h/2)
n − y

(h)
n

1 − (1/2)p
.

Although other tools can be used to obtain an approximation ŷn, like embedded Runge-
Kutta fomulas (they are not presented in this text, but are of great interest for step size control.
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See [HWN93]), what follows should be applied in the same way. The main idea is to control
componentwise the error by

|yn,i − ŷn,i| ≤ TOLi , where TOLi := ATOLi + max{|yn−1,i|, |yn,i|} · RTOLi ,

being ATOLi and RTOLi the desired tolerances for the absolute and relative errors respectively.
For that, we consider the following measure of the error (recall that N is the order of the IVP)

ERR =

√√√√ 1
N

N∑
i=1

(
yn,i − ŷn,i

TOLi

)2
,

and we compare it with 1 to construct the optimal step size hopt, given by (recall that p is the
order of the RK method)

hopt = h · (1/ERR)1/(p+1) .

For good code, it is necessary to avoid abrupt changes in the step size, and thus the new step
size hnew (derived from hopt) is not allowed to increase of decrease too fast

hnew = h · min
(
facmax,max

(
facmin, fac · (1/ERR)1/(p+1)))

where some reasonable choices (see [HWN93]) for the constant values in the formula are

facmax ∈ [1.5, 5] , facmin ∈ [0.1, 0.5] , fac ∈ {0.8, 0.9, 0.251/(p+1), 0.381/(p+1)} .

In the case that ERR ≤ 1, the step is accepted and the solution is advanced with yn, choosing
hnew as the step size for the next step. Otherwise, the step is rejected and the computations are
repeated with the new step size hnew. Also, it is recommended to put facmax = 1 for the step
right after a rejection.

3.3.4 Implementation with taylor and some numerical results

We have already seen in Section 3.2 how to generate the necessary files to use jet transport with
a desired arithmetic. The goal of this section is to discuss what is necessary for a successful
integration of an implicit RK method using taylor and to present some numerical results.

For ease and comprehension, let us limit the discussion to the integration of the VDPOL
problem using the Radau IIA 5 method, and using jet transport of 2 symbols and order 3.

1. First, we must create the file specifying the ODE and the arithmetic for the integration.
Conveniently, in this case, the file should be vdpol_2_3.eq introduced in Section 3.2.
Using the commands introduced in that same section we can generate the necessary files.
For simplicity, we have named ([name]=taylor) them taylor.c and taylor.h.

2. Now, notice that the desired arithmetic for the integration is not the only that is needed,
because as described in Lemma 2.7, to be able to compute the matrix DzF (yn−1

[0], z[0]) we
will require an arithmetic of s·N symbols and order 1, and to compute Dyn−1F (yn−1

[0], z[0])
an arithmetic of N symbols and order 1.
In this case, the Radau IIA 5 method has s = 3 stages and the VDPOL problem is of
dimension N = 2, so we will require two files similar to vpol_2_3.eq but, for the file with
arithmetic of s ·N = 6 symbols, we should change the last line to

jet x,y symbols 6 deg 1;

and for the one with N = 2 symbols, we should change it to

jet x,y symbols 2 deg 1;
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In order to handle better different files, it is useful to follow a naming convention. In our
case, we follow

[ODE_name]_[symbols]_[degree].eq

so these two files should be named vdpol_6_1.eq and vdpol_2_1.eq respectively. As
before, we must also generate the corresponding files using the commands introduced in
Section 3.2. We have named them taylor_sigma.c, taylor_sigma.h and taylor_rho.c,
taylor_rho.h respectively.

3. Once the auxiliary files have been created, we can use them in our program. For that, we
can crate three files, say, main.c, sigma.c and rho.c that include respectively taylor.h,
taylor_sigma.h and taylor_rho.h. In each of them, we must include a function, say
stage_F(), that allows to evaluate the system (3.4) with their corresponding arithmetic.
As this also involves evaluating the function of the IVP, we can take advantage of the fact
that it has been defined in the *.eq files and do so using taylor (see [GJZ23]). Now, we
proceed as follows:

• In the main.c file, we need to create a function that allows to compute the next step
of the integration using the implicit RK method (in this example, the Radau IIA 5
method). For that, we must write all operations between jets using the macros of
the taylor.h file that define the arithmetic. Also, we must implement all that has
been commented in this section, like the simplified Newton iterations, the automatic
step size control and how to obtain the higher order coefficients of the jets during
the integration. For the latter, at each step, we will need to compute the necessary
matrices DzF (yn−1

[0], z[0]) , Dyn−1F (yn−1
[0], z[0]).

• To compute the necessary matrices, we should be able to call from our main.c file
some functions defined in the respective files sigma.c and rho.c that receive the
values yn−1

[0] and z[0], and following Lemma 2.7 evaluate them in stage_F() together
with the respective identity matrix of symbols (again, each using its own arithmetic).
Using this, both matrices can be constructed and returned to the main.c file so that
they can be used to compute the higher order coefficients.

• We remark that the Jacobian DzF (yn−1,0) of the simplified Newton iteration can
also be computed using the procedure above by simply changing the value z[0] sent
to sigma.c by 0.

3.4 Computing the power expansion of Poincaré maps

As detailed in [GJ20], “a Poincaré section is defined as a codimension 1 smooth manifold
transversal to the flow. [...] They are a standard tool to study the dynamics in regions of
the space where orbits have some kind of recurrence.” In this section we will follow [Sim90]
and [GJ20] to study how to compute the power expansion of Poincaré maps and periodic orbits
using jet transport. We remark that this process is independent of the choice of the numerical
integrator. Nevertheless, we will also apply the theory of this section do the VDPOL problem,
so given its stiffness, it will be of interest to study its behavior using implicit RK methods.

Henceforth, Φ(x;x0, y0) denotes the solution at time x of an autonomous IVP (1.3) of di-
mension N with initial condition y(x0) = y0. We will denote Poincaré sections by Σ and the
corresponding Poincaré map by P .
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3.4.1 Computing the return time

First, we will follow [Sim90] to show how to compute the return time to the section. For that,
instead of considering the first return map to a section Σ, we will present the more general
setting where we have two sections transversal to the flow given by

Σ1 = {y ∈ RN ; g1(y) = 0} , Σ2 = {y ∈ RN ; g2(y) = 0} ,

and the initial and final points y(0) and y(1) are in Σ1 and Σ2 respectively. That being the case,
we define

P : Σ1 −−→ Σ2

y(0) 7−→ y(1) = Φ(T (y(0)); 0, y(0))
.

where, so that y(1) ∈ Σ2, we must impose that

g2
(
Φ(T (y(0)); 0, y(0))

)
= 0 . (3.5)

The value that we aim to approximate is the arrival time T (y(0)) to Σ2, which we stress that
depends on the initial point y(0) in Σ1. To compute it, we notice that it is enough to study
condition (3.5); that is, we can deduce that we have crossed Σ2 by studying the changes of sign
of the following function

ψ(x) = g2
(
Φ(x; 0, y(0))

)
.

Once we have located a point t0 where ψ has changed sign for the first time (in the case that
we are looking for the k-th sign change, everything is equivalent), to refine the approximation
to T (y(0)) we can proceed by applying a Newton method to ψ; thus the Newton iterations will
be of the form

tk+1 = tk −
g2
(
Φ(tk; 0, y(0))

)
〈

∇g2
(
Φ(tk; 0, y(0))

)
, f
(
Φ(tk; 0, y(0))

)〉 ,

and iterations can be stopped when ψ(tk+1) is sufficiently close to 0. In that case, tk+1 ≈ T (y(0)).

One particular case that is of interest is that where the Poincaré section is of the form

Σ = {y = (y1, . . . , yN ) ∈ RN ; yℓ = C} .

where ℓ ∈ {1, . . . , N} is a certain index and C some constant value. In that case, the function
ψ is given by

ψ(x) = πℓΦ(x; 0, y(0)) − C ,

where we denote by πℓΦ(x; 0, y(0)) the ℓ-th coordinate of Φ(x; 0, y(0)). Noticing that

ψ′(x) = πℓDtΦ(x; 0, y(0)) = πℓf
(
Φ(x; 0, y(0))

)
the Newton iterations take the form

tk+1 = tk − πℓΦ(tk; 0, y(0)) − C

πℓf
(
Φ(tk; 0, y(0))

) .
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3.4.2 Power expansion of Poincaré maps

Even though other possibilities exist for Poincaré sections, we will consider only those based on
spatial sections, known as ‘spatial Poincaré sections’. For computing their power expansion we
will follow [Gim19]. For that, let the Poincaré section Σ be a hyperplane in general position, n⃗
its normal vector and y(0) ∈ Σ. Without loss of generality, we can choose linearly independent
unitary vectors v1, . . . , vN−1 such that

Σ = {y ∈ RN ; y = y(0) + v1s1 + · · · + vN−1sN−1} .

In this setting, we assume that for after some time τ0 := T (y(0)) (that depends on the initial
point and can be computed using last section), the trajectory returns to the section; that is,
Φ(τ0; 0, y(0)) ∈ Σ. The Poincaré map is then defined as

P : Σ −−→ Σ
y(0) 7−→ Φ(τ0; 0, y(0))

We observe that by integrating the IVP starting from the point y(0) + s, where s = v1s1 +
· · · + vN−1sN−1 using jet transport of order M with N − 1 symbols s = (s1, . . . , sN−1) up to
time τ0, we obtain the power expansion up to order M of the flow at time τ0 with respect to
the N − 1 variables that are coordinates on Σ. Nevertheless, we must notice that this is not
the power expansion of the Poincaré map because it does not lay inside Σ; that is, using the
notation introduced in Section 2.3.1, the jet Φ(τ0; 0, y(0) + s) is such that

Φ(τ0; 0, y(0) + s)[0] = Φ(τ0; 0, y(0)) ∈ Σ ,

Φ(τ0; 0, y(0) + s)[k] /∈ Σ , for |k| = m , m = 1, . . . ,M.

In order to ensure that the higher order coefficients also lay in Σ, let us recall that the return
time to the Poincaré section depends on the initial point, thus it also depends on s; that is, we
have to write is as a formal power series on s

T (y(0) + s) = T (y(0)) +
M∑

|k|=1
τks

k =: τ0 +
M∑

|k|=1
τks

k =: [τ ]MN−1

where the coefficients τk := T (y(0) + s)[k] are real numbers that must be determined by the
condition

Φ(T (y(0) + s); 0, y(0) + s) ∈ Σ ,

what can be done recurrently degree by degree.

Theorem 3.1. The values τk for |k| = m and m = 1, . . . ,M that determine the power expansion
of the return time to the Poincaré section so that the condition (3.4.2) is satisfied are given by

τk = −

〈
Φ(τ0; 0, y(0) + s)[k], n⃗

〉
〈
f
(
Φ(τ0; 0, y(0))

)
, n⃗
〉 , |k| = 1

τk = −

〈
Φ
(

[τ ]m−1
N−1; 0, y(0) + s

)
[k], n⃗

〉
〈
f
(
Φ(τ0; 0, y(0))

)
, n⃗
〉 , |k| = m , m = 2, . . . ,M .
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Proof. Starting from m = 1, let us consider the power expansion of the flow at time τ0+∑|k|=1 τk

around τ0, considering jets only up to order 1

Φ
(
τ0 +

∑
|k|=1

τks
k; 0, y(0) + s

)
=

= Φ(τ0; 0, y(0) + s) +DtΦ(τ0; 0, y(0) + s)
∑

|k|=1
τks

k

where we observe that the first term is also a jet with the symbols s, so let us write its expansion
explicitly up to order 1. Also, notice that DtΦ is multiplying a term of order 1, so we should
only consider the coefficient of order 0; that is,

= Φ(τ0; 0, y(0) + s)[0] +
∑

|k|=1
Φ(τ0; 0, y(0) + s)[k]sk +DtΦ(τ0; 0, y(0))

∑
|k|=1

τks
k

and as we have that Φ(τ0; 0, y(0) + s)[0] = Φ(τ0; 0, y(0)) and, by definition of the flow of the IVP,
DtΦ(τ0; 0, y(0)) = f

(
Φ(τ0; 0, y(0))

)
, we obtain

= Φ(τ0; 0, y(0)) +
∑

|k|=1
Φ(τ0; 0, y(0) + s)[k]sk + f

(
Φ(τ0; 0, y(0))

) ∑
|k|=1

τks
k . (3.6)

Finally, to impose condition (3.4.2) up to order 1 (recall that it is already satisfied for order 0),
we must ask that ∑

|k|=1

〈
Φ(τ0; 0, y(0) + s)[k] + τkf

(
Φ(τ0; 0, y(0))

)
, n⃗
〉

= 0 ,

that is, the coefficients τk for |k| = 1 are given by

τk = −

〈
Φ(τ0; 0, y(0) + s)[k], n⃗

〉
〈
f
(
Φ(τ0; 0, y(0))

)
, n⃗
〉 .

Now, for the higher order coefficients, let us assume that we have computed the values τk for
|k| ≤ m− 1; that is, all the coefficients of τ0 +∑m−1

|k|=1 τks
k = [τ ]m−1

N−1 are known and we want to
determine the τk for |k| = m. Let us then proceed as before by considering the power expansion
of the flow at time [τ ]mN−1 = [τ ]m−1

N−1 + ∑
|k|=m τks

k around [τ ]m−1
N−1, considering jets only up to

order m

Φ
(

[τ ]m−1
N−1 +

∑
|k|=m

τks
k; 0, y(0) + s

)
=

= Φ
(
[τ ]m−1

N−1; 0, y(0) + s
)

+DtΦ
(
[τ ]m−1

N−1; 0, y(0) + s
) ∑

|k|=m

τks
k

as before, we can write the explicit expansion of the first term as a jet up to order m, and, as
DtΦ is multiplying a term of order m, we should only consider the coefficient of order 0, which
we have seen that is exactly f

(
Φ(τ0; 0, y(0)

)
, obtaining

=
∑

|k|≤m−1
Φ
(
[τ ]m−1

N−1; 0, y(0) + s
)

[k]sk +
∑

|k|=m

Φ
(
[τ ]m−1

N−1; 0, y(0) + s
)

[k]sk + f
(
Φ(τ0; 0, y(0))

) ∑
|k|=m

τks
k

Analogously, to impose condition (3.4.2) up to order m, as it is already satisfied up to order
m− 1, we must ask that∑

|k|=m

〈
Φ
(
[τ ]m−1

N−1; 0, y(0) + s
)

[k] + τkf
(
Φ(τ0; 0, y(0))

)
, n⃗
〉

= 0 ,
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that is, the coefficients τk for |k| = m are given by

τk = −

〈
Φ
(
[τ ]m−1

N−1; 0, y(0) + s
)

[k], n⃗

〉
〈
f
(
Φ(τ0; 0, y(0))

)
, n⃗
〉 .

There are a few things to consider about the above. First, we notice that the case M = 1 is
much simpler than M > 1, as for the first we don’t have the need to consider the time variable
as a jet on our numerical integrator; that is, for M = 1 we can simply compute the values τk

for |k| = 1 using the expression in Theorem 3.1 and then, to obtain the flow at τ0 +∑|k|=1 τks
k,

we can apply the formula derived in (3.6), as all needed values are known. For the case that
M > 1, we can proceed recursively on m for m = 1, . . . ,M by computing τk for |k| = m and
then perform a step of step size

h =
∑

|k|=m

τks
k (3.7)

with our numerical integrator. Another thing that must be noted in this context is that, as
explained in [Gim+23], for a numerical integrator with local error of the form O(hp+1), after
a step of the form (3.7), the error contains terms of order p + 1 in s, so it is impossible to
obtain a power expansion of the Poincaré map of order higher than p. Therefore, the numerical
integration for this recursive process should be done using a method like the Taylor method, as
it allows to easily obtain a high order truncation error.

3.4.3 Implementation with implicit RK methods and some numerical results

Let us discuss in this section how to proceed when computing, for example, the power expansion
of the Poincaré map of the periodic orbit of the VDPOL problem (for a fixed µ) using an implicit
RK method. For that, we should explain two aspects: first, how to obtain periodic orbits; and
second, how to compute their power expansion.

For the first topic, it is fundamental the idea that, to find the periodic orbit of the VDPOL
problem (for a fixed µ) we should find the fixed point of the Poincaré map. For that, we choose
the Poincaré section

Σ = {y = (y1, y2) ∈ R2 ; y2 = 0} ,

and the Poincaré map given by

P : Σ −−→ Σ
y 7−→ Φ(T (y); 0, y)

and, as explained in [Sim90], the periodic orbit will be determined by some y∗ ∈ Σ such that
P (y∗) = y∗. To determine it, we proceed as follows:

1. Let us choose an initial point y(0) ∈ Σ. As mentioned in [MM08], y∗ ≈ (2, 0), so we could
choose y(0) = (2, 0).

2. We compute an approximation to the second return time T (y(0)) (i.e., given by the second
sign change) using Section 3.4.1. We will do so integrating with an implicit RK method
using jet transport of 1 symbol and order 1 as described in Section 3.3, with initial value

(state var.) s1

y1 y
(0)
1 1

y2 0 0



46 Chapter 3. Applications, implementation and numerical experiments

3. From step 2, if we recall Section 3.4.2, by using jet transport of 1 symbol and order 1,
we have also computed the first derivative of the flow at time T (y(0)) with respect to y1.
Using Section 3.4.2 we can project this derivative to the section to obtain the derivative
of the Poincaré map at y(0) with respect to y1; that is, Dy1P (y(0)).

4. We apply one step of Newton’s method to π1P (y) − y1, using as initial value y(0)
1 by doing

y
(1)
1 = y

(0)
1 − π1P (y(0)) − y

(0)
1

π1Dy1P (y(0)) − 1

where by π1 we denote the projection to the first coordinate.

5. In step 4 we have obtained a better approximation y(1) = (y(1)
1 , 0) of y∗. We check if

P (y(1)) − y(1) is (close to) 0. If it is not, we go back to step 2 substituting y(0) by y(1).

Using the algorithm above, we have obtained the results in Table 3.1 for y∗
1 and T (y∗)

for different values of µ, integrating with the Radau IIA 5 method, choosing the tolerances
ATOL = RTOL = 10−12, NTOL = 10−15 and initial step size h = 10−10. We have compared
the computed periods T (y∗) with the reference values in [Amo22], underlining all the coincident
digits.

µ y∗
1 T (y∗)

1 2.008619860874817 6.663286859322704
10 2.014285360925673 19.078369566919214
100 2.001318681176584 162.837071092175393

Table 3.1: First coordinate and period of the fixed points of the periodic orbit of the VDPOL
problem for different values of µ, computed with the Radau IIA 5 method.

In order to visualize this algorithm, we have plotted in Figure 3.1 two iterations of this
method for the simple case µ = 1, choosing the more illustrative initial value y(0) = (1, 0).
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Figure 3.1: Two iterations of the method used to compute periodic orbits of the VDPOL problem
as fixed points of the Poincaré map.
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Once that the periodic orbit is determined (for a given µ), let us compute the power expansion
of its Poincaré map with respect to µ. For that, as detailed in [Sim90], we can increase the
dimensionality of the system by 1 introducing a new variable y3 satisfying

y′
3 = 0 , y3(0) = µ

and so being y = (y1, y2, y3) ∈ R3, the VDPOL problem can be rewritten as

y′ = f(y1, y2, y3) =


y2

µ(1 − y2
1)y2 − y1

0

 ,
We remark that this has to be reflected in taylor; that is, we must modify the *.eq file. For

example, to compute the power expansion up to orderM = 3, we could use the file vdpol_1_3.eq

vdpol_1_3.eq

x' = y;
y' = mu*(1-x^2)*y-x;
mu' = 0;

jet x,y,mu symbols 1 deg 3;

With this consideration, let us show how to compute the power expansion of the Poincaré
map with respect to µ of order M of the periodic orbit.

1. Let us fix a value µ and its corresponding fixed point of the Poincaré map y∗ and period
T (y∗). We integrate up to time T (y∗) with an implicit RK method using jet transport of
1 symbol and order M as described in Section 3.3, using as initial value

(state var.) s1 s2
1

y1 y∗
1 0 0

y2 0 0 0
y3 µ 1 0

. . .

sM
1

0
0
0

2. From step 1, if we recall Section 3.4.2, by using jet transport of 1 symbol and order M ,
we have also computed the power expansion of the flow at time T (y∗) with respect to y3;
that is, with respect to µ. Using Section 3.4.2 we can project this power expansion to the
section to obtain the power expansion of the Poincaré map at y∗ with respect to µ.





Conclusions

Throughout this project we have introduced two relevant topics: General Linear methods (GLM)
and the numerical integration of variational equations (VE). In addition, we have taken a suc-
cessful step towards the study on how GLM can be applied to solve VE.

In Chapter 1, we have first presented Linear multistep methods (LMM) and Runge-Kutta
(RK) methods, studying their most fundamental properties and observing that they possess
strengths and weaknesses in terms of both their numerical behavior and their theoretical devel-
opment. In pursuit of a natural extension of these methods, we have introduced the multistep-
multistage family of General Linear methods, studying their convergence, order and linear stabil-
ity properties. As we have seen, their study is much harder than for the methods that preceded
them. Nonetheless, this broadens the range of possibilities to more powerful methods, which
could be introduced and developed in future work.

In Chapter 2, we have studied the technique of jet transport for the numerical integration
of variational equations. It is in this section where we have presented our main contribution,
showing that the numerical integration of an IVP using jet transport with a General Linear
method is equivalent to the integration of its VE using the same method, also deriving the
relation that the higher order coefficients of the jets must satisfy in order to be solutions of an
implicit system defined by the stages of a GLM.

In Chapter 3, we have discussed the implementation of theory developed in the preceding
sections. However, we have not done so with the most possible generality, leaving the imple-
mentation of jet transport with General Linear methods for future work. On the other hand, we
have successfully applied this theory for the particular case of implicit Runge-Kutta methods,
commenting a few results in the numerical integration of VE when applied to the computation
of interesting mathematical objects in the theory of dynamical systems.

In conclusion, I personally believe that this project has allowed me to learn a lot about
numerical integration and its use in dynamical systems, paving up the way for many potential
future work options.
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