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ABSTRACT

In this thesis we study and develop in detail the research paper Differ-
ential equations driven by fractional brownian motion by D. Nualart and
A. Rascanu, [7]. It is a landmark paper in which the authors prove the
existence and uniqueness of solution to stochastic differential equations
driven by fractional Brownian motion of Hurst parameter H ∈ (1/2, 1).
Moreover, they show that, under additional hypothesis, the solution has
finite moments of all orders. They take a path-by-path approach given
the Hölder-continuity property of the paths of the fractional Brownian
motion.
On our part, after a gentle introduction to the fractional integrals and
derivatives and to the generalized Stieltjes integral, we fully develop the
results and proofs of this paper. Not only that but we insert our own re-
marks and comment on the obtained results regarding the measurability
of the solution. As a result, this thesis could be considered a companion
paper intended to the reader interested in this important result but not
versed in the foundations of stochastic differential equations.
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1. Introduction

One application in stochastic calculus is to predict behaviours modeled by a differential
equation which depend on some indeterminable factors. These behaviours and factors
are mainly described with stochastic processes. In the particular framework where
these behaviours evolve with time and we cannot give an accurate inference on these
behaviours, we have to consider any prediction we obtain for every possible outcome of
the indeterminable factors.

In this thesis we study the results in the research paper [7] which constructs a regres-
sion model based on a stochastic differential equation under the assumption that the
previously mentioned indeterminable factors are fractional Brownian motions of Hurst
parameter H ∈ (1/2, 1). More specifically, given (σi,j)i,j and (bi)i the named diffusion
and drift coefficients respectively and Bt a m-dimensional Brownian motion of Hurst
parameter H ∈ (1/2, 1), we aim to find the path-by-path existence and uniqueness of
solution Xt =

(
X1

t , . . . , X
d
t

)
to

(1) Xi
t = Xi

0 +

m∑
j=1

∫ t

0

σi,j(s,Xs)dB
j
s +

∫ t

0

bi(s,Xs)ds , ∀t ∈ [0, T ], i ∈ {1, . . . , d},

in some space of functions. Under additional hypothesis, we also present interesting
properties on the solution Xt. However, we must first give a meaning to the inte-
grals

(2)

∫ t

0

σi,j(s,Xs)dB
j
s ,

where the integrator is a fractional Brownian motion.

We have organized the contents in the following way. The first milestone we set is to
define the generalized Stieltjes integral. Hence, we first dedicate chapter 4 to introduce
the fractional integrals and derivatives, that is, we define the Riemann-Liouville frac-
tional integrals and Weyl operators. We also present some of their properties such as the
first and second composition and integration by parts formulas. These notions allow us
in the next chapter, 5, to define the generalized Stieltjes integral and prove some of its
properties. These properties allow us to verify the additivity property of the generalized
Stieltjes integral.

We set the second milestone on finding estimates on the operators G
(σ)
t and F

(b)
t (not

defined yet) which involve the drift and diffusion coefficients and the generalized Stieltjes
integral. For this purpose we need to consider more regular spaces. In chapter 6 we
introduce some fractional Sobolev spaces and verify we can use the generalized Stieltjes
integral on them. Then, in chapter 7 we present and prove the previously mentioned

estimates involving G
(σ)
t and F

(b)
t defined on these fractional Sobolev spaces.

These estimates in chapter 7 are not useful on their own. Instead, they are tailor-made in
order to prove a Theorem on the existence and uniqueness of solution to the differential
equation (20). This Theorem is obviously the third milestone, together with Proposition
8.5 both in chapter 8. This proposition, under addition hypothesis, provides a bound
for the solution in terms of the integrator function in (20).

Finally, in chapter 9 we use a path-by-path approach so that by applying the results in
the previous sections we get the existence and uniqueness of solution to (1), and with
Proposition 8.5 we prove the solution has finite moments of all orders. Then, chapter
10 is a summary of what we have achieved.
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Even though we have neither defined integral (2) nor introduced the space of functions
where the solution exists and is unique, we name the hypothesis set on σ, b that will
be used in the following sections. Let’s consider d,m ∈ N and (Ω,F ,P) a complete
probability space. We take σ : Ω × [0, T ] × Rd → Rd×m and b : Ω × [0, T ] × Rd → Rd

measurable functions with σ differentiable with respect to the last argument such that
for almost every ω ∈ Ω and ∀i ∈ {1, . . . , d}

H1
σ



• (Lipschitz continuity): there exists M0 > 0 with

|σ(t, x)− σ(t, y)| ≤M0|x− y| ∀t ∈ [0, T ], ∀x, y ∈ Rd

• (Local Hölder continuity): there exists δ ∈ (0, 1],MN > 0 ∀N ≥ 0 with

|∂xi
σ(t, x)− ∂yi

σ(t, y)| ≤MN |x− y|δ ∀t ∈ [0, T ], ∀|x|, |y| ≤ N

• (Hölder continuity in time): there exists β ∈ (0, 1],M0 > 0 with

|σ(t, x)− σ(s, x)|+ |∂xiσ(t, x)− ∂xiσ(s, x)| ≤M0|t− s|β

∀t, s ∈ [0, T ], ∀x ∈ Rd

H2
σ

{
• (Boundedness): there exists γ ∈ [0, 1], K0 > 0 with

|σ(t, x)| ≤ K0

(
1 + |x|γ

)
∀t ∈ [0, T ], ∀x ∈ Rd

Hb


• (Local Lipschitz continuity): there exists LN > 0 ∀N > 0 with

|b(t, x)− b(t, y)| ≤ LN |x− y| ∀t ∈ [0, T ], ∀|x|, |y| ≤ N

• (Boundedness): there exists L0 > 0, ρ ≥ 2 and b0 ∈ Lρ(0, T ;Rd) with

|b0(t, x)| ≤ L0|x|+ b0(t) ∀t ∈ [0, T ], ∀x ∈ Rd

2. Motivation and objectives

Stochastic differential equations are very useful as regression models whenever we can
express a variation of the predicting variables in terms of a variation in our available
variables and a one-dimensional variable ranging a bounded interval (i.e. time). In such
models we obtain the distribution of the predicting variables but we must first describe
our available variables with stochastic processes and at the same time, have well-defined
the stochastic differential equation driven by these same stochastic processes. The goal
in research papers such as [7] is to broaden the range of stochastic processes in which a
stochastic differential equation can be considered.

We aim to reproduce step-by-step the results in [7] and do an analysis on the obtained
results. For the first goal we need to properly introduce the required notions, add some
results on their well-definiteness and add detail to the already existing proofs and in
some cases, we need to provide the entire proof. As for the second goal, we focus our
attention on the measurability of the solution.
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3. Background

We expect the reader to be familiarized with function analysis and probability theory.
Even so, we give a brief introduction to the fractional Brownian motion. We also recall
the Beta and Gamma functions and their most known properties.

3.1. The fractional Brownian motion. There are several definitions of fractional
Brownian motion (f.B.m). We will use the following one.

Definition 3.1. A stochastic process B = {Bt : t ∈ I} with I an interval in R+ and
with values in R is a f.B.m of Hurst parameter H ∈ (0, 1) if it is a Gaussian process
with covariance function

CH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
.

If B denotes a f.B.m of Hurst parameter H, we can easily deduce that E
(
|Bt −Bs|2

)
=

|t − s|2H . In fact, in [1] it is proved that the increments of B are normally distributed
and consequently, we have

(3) ||Bt −Bs||p = cp|t− s|H

for t, s in its parameter set.

In chapter 9 we prove that B has λ-Hölder continuous paths for λ ∈ (0, H) for al-
most every realization. However, its paths are nowhere differentiable. This last fact
causes difficulties for taking B the integrator in (2) and that is the reason we need the
generalized Stieltjes integral.

The multivariate fractional Brownian motion (m.f.B.m) is a stochastic process with
values in Rn with n ∈ N whose components are f.B.m. The m.f.B.m is determined by its
covariance matrix and by the fact that it is a Gaussian process. Unless it has independent
components and all Hurst parameters are the same, the covariance function becomes
difficult to work with. Given that we only work with the m.f.B.m when its components
are independent and have the same Hurst parameter, its covariance function is simplified
to

RH(s, t) = CH(s, t) · Idn,
where Idn is the identity matrix of dimension n, the output dimension of the m.f.B.m.
Then, cp in equation (3) will depend on n as well, and how it will depend will be
determined by the norm we set on Rn.

3.2. Beta and Gamma functions. Beta and Gamma functions are well-known in
several fields of mathematics. In particular, in the theory of fractional integration.
We give the definition of Beta and Gamma functions necessary to define the Riemann-
Liouville fractional integrals and the Weyl operators. We also state some properties of
these two functions which will be useful to prove future results.

We start defining the Beta function in a more general setting than what we need.

Definition 3.2. For z, w ∈ C with ℜ(z),ℜ(w) > 0, we define the Beta function at z, w
with

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt.

Proposition 3.3.

(a) The Beta function takes finite values.
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(b) B(z, w) = B(w, z) ∀z, w ∈ C with ℜ(z),ℜ(w) > 0.

Proof.

(a) Taking in account that for x, y ∈ R xiy = eiy log(x) and |xiy| = 1 if x > 0, we
have

|B(z, w)| =
∣∣∣ ∫ 1

0

tz−1(1− t)w−1dt
∣∣∣

z = a + bi , w = c + di , a, b, c, d ∈ Ry
=

∣∣∣ ∫ 1

0

ta−1(1− t)c−1tbi(1− t)didt
∣∣∣ =

≤
∫ 1

0

ta−1(1− t)c−1dt =

∫ 1/2

0

ta−1(1− t)c−1dt+

∫ 1

1/2

ta−1(1− t)c−1dt ≤

≤ max{1, 21−c}
∫ 1/2

0

ta−1dt+max{1, 21−a}
∫ 1

1/2

(1− t)c−1dt <∞.

(b) It follows from the change of variable s = 1− t.

□

Now we introduce the Gamma function and give minimal results we need of the func-
tion.

Definition 3.4. For z ∈ C with ℜ(z) > 0, we define the Gamma function at z with

Γ(z) =

∫ ∞

0

tz−1e−tdt.

Proposition 3.5.

(a) The Gamma function takes finite values.

(b) The Gamma function restricted to R+ takes real and strictly positive values. In
particular, Γ(1) = 1.

Proof.

(a) Taking in account that for x, y ∈ R xiy = eiy log(x) and |xiy| = 1 if x > 0, we
have

|Γ(z)| ≤
∫ ∞

0

tℜ(z)−1e−tdt =

∫ 1

0

tℜ(z)−1e−tdt+

∫ ∞

1

tℜ(z)−1e−tdt,

where
∫ 1

0
tℜ(z)−1e−tdt ≲

∫ 1

0
tℜ(z)−1dt < ∞ and

∫∞
1
tℜ(z)−1e−tdt is finite inte-

grating by parts ⌊ℜ(z)− 1⌋+ 1 times.

(b) For x ∈ R+, we have

Γ(x) =

∫ 1

0

tx−1e−tdt+

∫ ∞

1

tx−1e−tdt

tx−1e−t ≥ 0 in (1,∞)y
>

∫ 1

0

tx−1e−tdt >

∫ 1

0

tx−1dt = 1/x > 0,

so Γ(x) > 0. Also, the equality Γ(1) = 1 follows from the fact that
∫∞
0
e−tdt = 1.

□

Finally, we give the most important result which relates the Beta and Gamma func-
tions.
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Proposition 3.6. Let z, w ∈ C with ℜ(z),ℜ(w) > 0. Then,

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
.

Proof. Using Proposition 3.5, we can apply Fubini-Tonelli Theorem and we have

Γ(z)Γ(w) =

∫ ∞

0

euuz−1du

∫ ∞

0

e−vvw−1dv =

∫ ∞

0

∫ ∞

0

e−(u+v)uz−1vw−1dudv =

=

∫ ∞

0

∫ 1

0

e−ssz+w−1tz−1(1− t)w−1dtds =

=

∫ ∞

0

e−ssz+w−1ds

∫ 1

0

tz−1(1− t)w−1dt = Γ(z + w)B(z, w),

using the change of variables u = st for t ∈ (0, 1) and v = s(1− t) for s ∈ (0,∞).

□
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4. Fractional integrals and derivatives

We introduce the notions of fractional integrals and derivatives for functions in Lp(a, b)
with p ≥ 1 and (a, b) a bounded interval in R. These concepts and some properties
stated will allow us to properly define the generalized Stieltjes integral.

Even though we closely follow [7], we require some results found in [8] and [10], and
omit other unnecessary results as well. More specifically, these results are on properties
of the Riemann-Liouville integration properties and help us on proving properties of the
generalized Stieltjes integral.

We start by defining the Riemann-Liouville fractional (right and left)-sided integrals for
functions in Lp(a, b) with p ≥ 1 and with respect to the Lebesgue measure. We deal
with intervals (a, b) of finite measure so Lp(a, b) ⊂ L1(a, b) and the following definition
does not depend on p.

Definition 4.1. Let f ∈ L1(a, b) and α > 0. The Riemann-Liouville fractional integrals
are defined as

Iαa+(f)(x) :=
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy,

Iαb−(f)(x) :=
(−1)−α

Γ(α)

∫ b

x

(y − x)α−1f(y)dy,

where (−1)α := e−iπα.

The following result is a strong inequality which bounds the Riemann-Liouville fractional
integrals under some settings. This result is needed in order to prove Proposition 4.3.
However, we do not add its proof since it is involved and it requires results beyond the
scope of this thesis.

Theorem 4.2. Hardy-Littlewood-Sobolev’s inequality
Let α ∈ (0, 1), 1 < p < 1/α and −∞ ≤ a < b ≤ ∞. Then, ∀f ∈ Lp(a, b)

||Iαa+(f)||q ≤ C||f ||p (resp.Iαb−),

where C is a constant which only depends on p and q, and q > 1 satisfies 1/q = 1/p−α.

Proof. The proof is given in [3] under more general settings.

□

Proposition 4.3. If f ∈ Lp(a, b) with p ≥ 1, then, both sides of the Riemann-Liouville
fractional integrals of f belong to Lp(a, b). In particular, the Riemann-Liouville frac-
tional integrals of f converge for almost all x ∈ (a, b).
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Proof. First, we prove that Iαa+(L
1(a, b)) ⊂ L1(a, b). Both functions f(y) and (x −

y)α−1
1(a,x)(y) are measurable in L1(a, b). If α ̸= 1

||Iαa+(f)(x)||1 =

∫ b

a

∣∣∣ 1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy
∣∣∣dx ≤

≤ 1

|Γ(α)|

∫ b

a

∫ x

a

(x− y)α−1|f(y)|dydx

Fubini-Tonelli theoremy
=

=
1

|Γ(α)|

∫ b

a

|f(y)|
∫ b

y

(x− y)α−1dxdy =

=
1

α|Γ(α)|

∫ b

a

(b− y)α|f(y)|dy ≤ (b− a)α

α|Γ(α)|
||f ||1 <∞.

Instead, if α = 1

||Iαa+(f)(x)||1 =

∫ b

a

∣∣∣ 1

Γ(α)

∫ x

a

f(y)dy
∣∣∣dx ≤ 1

|Γ(α)|

∫ b

a

∫ x

a

|f(y)|dydx ≤

≤ 1

|Γ(α)|

∫ b

a

∫ b

a

|f(y)|dydx ≤ b− a

|Γ(α)|
||f ||1 <∞.

Now, we take p > 1 and we prove that Iαa+(L
p(a, b)) ⊂ Lp(a, b). If α ≥ 1, we can

bound (x− y)α−1 with the constant (b− a)α−1 and applying Jensen’s inequality on the
function | · |p, we obtain the result. Instead, if α ∈ (0, 1), we first give the proof when
α < 1

p and then we extend it to when α ≥ 1
p . Let’s take q > 1 such that 1

q = 1
p − α so

1 < p < q < ∞. Applying Theorem 4.2, we have ||Iαa+(f)(x)||q ≤ Cp||f ||p < ∞ where
Cp is a constant that only depends on p. Given that Lq(a, b) ⊂ Lp(a, b) with Hölder
inequality, we have proved Iαa+(L

p(a, b)) ⊂ Lp(a, b) when α < 1
p . Finally, we extend

this result when α ≥ 1
p . If α ≥ 1

p , let’s consider p′ = 1
α+ε with ε ∈ (0, 1 − α). Then,

1 < p′ = 1
α+ε <

1
α ≤ p so Lp(a, b) ⊂ Lp′

(a, b) and applying Theorem 4.2 we obtain

||Iαa+(f)(x)||q′ ≤ Cp′ ||f ||p′ <∞,

where q′ = p′

1−αp′ . However, q′ =
(

1
α+ε

)
/
(
1 − α

α+ε

)
= 1

ε and we can choose ε small

enough such that q′ > p and in consequence, ||Iαa+(f)(x)||p <∞.

The same result with the right-sided Riemann-Liouville fractional integral follows with
the same procedure.

□

Remark 4.4. The Riemann-Liouville fractional integrals are linear operators on L1(a, b).
In addition, since Lp(a, b) is a vector space for any p ≥ 1, Iαa+

(
Lp(a, b)

)
(resp. Iαb−) is

a vector space.

The Riemann-Liouville fractional integral has an interesting property, which we call
the first composition formula. This formula, will allow us to verify properties of the
generalized Stieltjes integral.

Proposition 4.5. First composition formula
Let f ∈ L1(a, b) and α, β > 0. Then,

Iβa+
(
Iαa+(f)

)
= Iα+β

a+ (f)

(resp. Iαb−, I
β
b− everywhere).
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Proof. We complete the proof for the left-sided operator, the right-sided follows with
the same argument. We previously proved that Iγa+(L

1(a, b)) ⊂ L1(a, b), ∀γ > 0. Hence,
Iαa+(f) ∈ L1(a, b) and we have

Iβa+
(
Iαa+(f)

)
=

1

Γ(β)Γ(α)

∫ x

a

(x− y)β−1

∫ y

a

(y − z)α−1f(z)dzdy

Fubini-Tonelli Theoremy
=

=
1

Γ(β)Γ(α)

∫ x

a

f(z)

∫ x

z

(x− y)β−1(y − z)α−1dydz

y = z + s(x − z)y
=

=
1

Γ(β)Γ(α)

∫ x

a

f(z)

∫ 1

0

(x− z − s(x− z))β−1sα−1(x− z)α−1(x− z)dsdz =

=
1

Γ(β)Γ(α)

∫ x

a

f(z)(x− z)α+β−1dz

∫ 1

0

(1− s)β−1sα−1ds =

=
Γ(α+ β)

Γ(β)Γ(α)
B(α, β)Iα+β

a+ (f)

Proposition 3.6y
= Iα+β

a+ (f).

□

When α ∈ (0, 1), we define the (left and right)-sided Weyl operators which we will see
later that they are the opposite operators to the Riemann-Liouville fractional integral
operators.

Definition 4.6. Let f ∈ Iαa+(L
1(a, b)) (respectively Iαb−) and α ∈ (0, 1). Then the

left-sided (respectively the right-sided) Weyl derivative of f with parameter α is defined
as:

Dα
a+(f)(x) =

1

Γ(1− α)

( f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
1(a,b)(x)

(respectively),

Dα
b−(f)(x) =

(−1)α

Γ(1− α)

( f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

)
1(a,b)(x).

Proposition 4.7. If 1 ≤ p < ∞ and f = Iαa+(φ) (respectively Iαb−) with φ ∈ Lp(a, b),
then, the corresponding Weyl operator is in Lp-sense, the function φ.

Proof. This result is presented as a Theorem in [8], chapter 13.1.

□

Remark 4.8. The Weyl operators are linear on Iαa+
(
Lp(a, b)

)
(resp. Iαb−) for any p ≥ 1.

The first composition formula which involves the Riemann-Liouville fractional integral
can be rewritten with the Weyl derivative operators due to Proposition 4.7.

Proposition 4.9. Second composition formula

For p ≥ 1, let f ∈ Iα+β
a+

(
Lp(a, b)

)
(resp. Iα+β

b− ) with α, β ∈ (0, 1) and α+ β < 1. Then,

Dα
a+

(
Dβ

a+(f)
)
= Dα+β

a+ (f)
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(resp. Dα
b−, D

β
b− and Dα+β

b− ).

Proof. We complete the proof for the left-sided operator, the right-sided follows with the

same argument. If f ∈ Iα+β
a+

(
Lp(a, b)

)
, there exists ψ ∈ Lp(a, b) such that Iα+β

a+ (ψ) = f .

Let’s denote ψα = Iαa+(ψ) and by the first composition formula, f = Iα+β
a+ (ψ) = Iβa+(ψα).

Then,

Dα
a+

(
Dβ

a+(f)
)
= Dα

a+

(
Dβ

a+(I
β
a+(ψα))

)Proposition 4.7y
= Dα

a+(ψα) = Dα
a+

(
Iαa+(ψ)

)Proposition 4.7y
= ψ,

where ψ = Dα+β
a+ (f) again due to Proposition 4.7.

□

We present a last property on fractional integration, which proves to be a useful tool
when dealing with generalized Stieltjes integrals.

Proposition 4.10. Integration-by-parts formula
For p, q ≥ 1 with 1

p + 1
q ≤ 1 and α ∈ (0, 1), if f ∈ Iαa+

(
Lp(a, b)

)
and g ∈ Iαb−

(
Lq(a, b)

)
,

then,

(−1)α
∫ b

a

Dα
a+(f)(x)g(x)dx =

∫ b

a

f(x)Dα
b−(g)(x)dx.

Proof. If f ∈ Iαa+
(
Lp(a, b)

)
and g ∈ Iαb−

(
Lq(a, b)

)
, there exists φ ∈ Lp(a, b) and ψ ∈

Lq(a, b) such that Iαa+(φ) = f and Iαb−(ψ) = g. With Proposition 4.7 Dα
a+(f) = φ ∈

Lp(a, b) and with Proposition 4.3 g ∈ Lq(a, b). Then, with Hölder inequality, the integral∫ b

a
Dα

a+(f)(x)g(x)dx is well-defined in L1(a, b). In fact,

(−1)α
∫ b

a

Dα
a+(f)(x)g(x)dx = (−1)α

∫ b

a

φ(x)g(x)dx = (−1)α
∫ b

a

φ(x)Iαb−(ψ)(x)dx =

=
1

Γ(α)

∫ b

a

φ(x)

∫ b

x

(y − x)α−1ψ(y)dydx

Fubini-Tonelli Theoremy
=

1

Γ(α)

∫ b

a

ψ(y)

∫ x

a

(y − x)α−1φ(x)dxdy =

=

∫ b

a

Iαa+(φ)(y)ψ(y)dy

Proposition 4.7y
=

∫ b

a

f(y)Dα
b−(g)(y)dy,

as we wanted to prove.

□

Remark 4.11. The result can be extended to when 1
p + 1

q ≤ 1 + α with Theorem

4.2. However, the simplification we present is sufficient for proving properties of the
generalized Stieltjes integral.
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5. Generalized Stieltjes integral

We are interested in defining an integral where the integrator is a Hölder-continuous
function. Such integral, under more general settings is called the generalized Stieltjes
integral.

The generalized Stieltjes integral is defined using the notions on fractional integrals of
Riemann-Liouville. However, we will need to add more hypothesis on the functions
involved.

Definition 5.1. Let f be a measurable mapping from (a, b) to R such that

f(a+) = lim
ε↘0

f(a+ ε)
(
resp. f(b−) = lim

ε↘0
f(b− ε)

)
exists and it is finite. Then, we define the function fa+ (resp. fb−) as

fa+(x) = f(x)− f(a+)
(
resp. fb−(x) = f(x)− f(b−)

)
.

Definition 5.2. Let f, g : (a, b) → R be Lebesgue-measurable functions such that f(a+),
g(a+), g(b−) exist and they are finite. Assume fa+ ∈ Iαa+(L

p(a, b)) and gb− ∈
I1−α
b− (Lq(a, b)) with α ∈ (0, 1) and p, q ≥ 1 such that 1/p + 1/q ≤ 1. Then, the integral
of f with respect to g is defined as∫ b

a

fdg := (−1)α
∫ b

a

Dα
a+(fa+)(x)D

1−α
b− (gb−)(x)dx+ f(a+)

(
g(b−)− g(a+)

)
,

where the integral is with respect to the Lebesgue measure.

In order for this definition to have meaning, we need to check that the integral involved
is well-defined and it does not depend on α.

Proposition 5.3. Under the assumptions in Definition 5.2, the generalized Stieltjes
integral is well-defined and takes finite values.

Proof. By definition of fa+ and gb−, there exists φ ∈ Lp(a, b) and ψ ∈ Lq(a, b) such
that fa+ = Iαa+(φ) and gb− = I1−α

b−
(
ψ
)
. With Proposition 4.7, φ = Dα

a+(fa+), ψ =

D1−α
b− (gb−). Applying Hölder inequality, the integral part of

∫ b

a
fdg satisfies:∣∣∣(−1)α

∫ b

a

Dα
a+(fa+)(x)D

1−α
b− (gb−)(x)dx

∣∣∣ = ∣∣∣ ∫ b

a

φ(x)ψ(x)dx
∣∣∣ ≤

≤
∫ b

a

|φ(x)| · |ψ(x)|dx ≤ ||φ||p||ψ||p′

where p′ ≥ 1 is such that 1/p + 1/p′ = 1. If p = 1, p′ = q = ∞ so ||φ||p||ψ||p′ < ∞.

Otherwise, q ≥ p′ = p
p−1 and ||φ||p||ψ||p′ <∞ since Lq(a, b) ⊂ Lp′

(a, b).

□

Proposition 5.4. The generalized Stieltjes integral does not depend on the parameter
α.

Proof. Let’s take α, α′ ∈ (0, 1) with α′ > α. Assume that for γ ∈ {α, α′}, fa+ ∈
Iγa+

(
Lp(γ)(a, b)

)
and gb− ∈ I1−γ

b−
(
Lq(γ)(a, b)

)
where p(γ), q(γ) ≥ 1 and 1/p(γ)+1/q(γ) ≤
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1. Then, the generalized Stieltjes integral of f with respect to g is well-defined either
taking α or α′. We define β = α′ − α > 0 and we have:

(−1)α
′
∫ b

a

Dα′

a+(fa+)D
1−α′

b− (gb−)dx =

= (−1)α(−1)β
∫ b

a

Dα+β
a+ (fa+)D

1−α−β
b− (gb−)dx

Proposition 4.9y
=

= (−1)α(−1)β
∫ b

a

Dβ
a+

(
Dα

a+(fa+)
)
D1−α−β

b− (gb−)dx

Proposition 4.10y
=

= (−1)α
∫ b

a

Dα
a+(fa+)D

β
b−

(
D1−α−β

b− (gb−)
)
dx

Proposition 4.9y
= (−1)α

∫ b

a

Dα
a+(fa+)D

1−α
b− (gb−)dx

so the generalized Stieltjes integral does not depend on α.

□

The following result simplifies the computation of the generalized Stieltjes integral under
more restricting settings.

Proposition 5.5. Let α ∈ (0, 1) and p, q ≥ 1 such that 1/p + 1/q ≤ 1. Assume
f, g : (a, b) → R are Lebesgue-measurable functions such that f(a+), g(a+), g(b−) exist
and they are finite. If αp < 1, then,

(a) f ∈ Iαa+
(
Lp(a, b)

)
if and only if fa+ ∈ Iαa+

(
Lp(a, b)

)
,

(b) if f ∈ Iαa+
(
Lp(a, b)

)
and gb− ∈ I1−α

b−
(
Lq(a, b)

)
, we can rewrite the generalized

Stieltjes integral as∫ b

a

f dg = (−1)α
∫ b

a

Dα
a+

(
f
)
(x)D1−α

b−
(
gb−

)
(x)dx.

Proof.

(a) The double implication, due to Remark 4.4, is simplified to prove that under
αp < 1, f(a+) ∈ Iαa+

(
Lp(a, b)

)
. If we find φ ∈ Lp(a, b) such that Iαa+(φ) =

f(a+), then, point (a) will be proved.

We consider φ(x) = 1
Γ(1−α)

f(a+)
(x−a)α which belongs to Lp(a, b) since αp < 1. Then,

Iαa+(φ) =
f(a+)

Γ(α)Γ(1− α)

∫ x

a

(x− y)α−1

(y − a)α
dy

z = (y − a)/(x − a)y
=

f(a+)

Γ(α)Γ(1− α)

∫ 1

0

z−α(1− z)α−1dz =

= f(a+)
B(1− α, α)

Γ(α)Γ(1− α)

Proposition 3.6y
= f(a+)/Γ(1)

Proposition 3.5y
= f(a+).

(b) Due to point (a), both f, fa+ ∈ Iαa+
(
Lp(a, b)

)
and with Remark 4.8, f(a+) ∈

Iαa+
(
Lp(a, b)

)
. In fact, in point (a) we have seen that h(x) := 1

Γ(1−α)
f(a+)
(x−a)α ∈

Lp(a, b) with Iαa+(h) = f(a+) and applying Proposition 4.7, Dα
a+

(
f(a+)

)
=
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1
Γ(1−α)

f(a+)
(x−a)α . Hence, we can split the integral part in the Stieltjes integral∫ b

a
fdg∫ b

a

fdg = (−1)α
∫ b

a

Dα
a+(f)D

1−α
b− (gb−)dx− (−1)α

∫ b

a

Dα
a+(f(a+))D1−α

b− (gb−)dx+

+ f(a+)
(
g(b−)− g(a+)

)
,

where∫ b

a

Dα
a+

(
f(a+)

)
D1−α

b− (gb−)dx =
f(a+)

Γ(1− α)

∫ b

a

1

(x− a)α
D1−α

b− (gb−)dx.

Now, there exists φ ∈ Lq(a, b) such that I1−α
b− (φ) = gb− and with Proposition

4.7, φ = D1−α
b− (gb−). However,

f(a+)

Γ(1− α)

∫ b

a

(x− a)−αD1−α
b− (gb−)dx =

f(a+)

Γ(1− α)

∫ b

a

(x− a)(1−α)−1φ(x) dx =

= (−1)1−αf(a+)I1−α
b− (φ)(a) = (−1)1−αf(a+)gb−(a+) =

= (−1)1−αf(a+)
(
g(a+)− g(b−)

)
.

With this equality, we can rewrite the generalized Stieltjes integral as∫ b

a

fdg = (−1)α
∫ b

a

Dα
a+(f)D

1−α
b− (gb−)dx− (−1)α(−1)1−αf(a+)

(
g(a+)− g(b−)

)
+

+ f(a+)
(
g(b−)− g(a+)

)
= (−1)α

∫ b

a

Dα
a+(f)D

1−α
b− (gb−)dx.

□

Before jumping to the next section, we give a last property of the generalized Stieltjes
integral. We have defined the integral on the whole domain (a, b) but we might be inter-
ested in integrating only a sub-interval (c, d) ⊂ (a, b). We want to define the indefinite
generalized Stieltjes integral and show it satisfies the additivity property.

The formal expression
∫ b

a
fdg is well-defined under the hypothesis in Definition 5.2 but

such hypothesis might not be enough to have well-defined
∫ d

c
fdg as well. Thus, our

aim is to see under what additional assumptions, the integral
∫ d

c
fdg is well-defined and

how we can rewrite it in terms of an integral of domain (a, b). We start by giving some
results on the corresponding function f .

Theorem 5.6. Let α ∈ (0, 1), p ∈ (1, 1/α) and (a, b) ⊂ R a finite interval with (c, d) ⊂
(a, b). Then,

(a) f ∈ Iαa+(L
p(a, b)) implies f |(c,d) ∈ Iαc+(L

p(c, d)).

(b) f ∈ Iαc+(L
p(c, d)) implies 1(c,d)f ∈ Iαa+(L

p(a, b)).

Proof. The Theorem is stated as a Corollary in [8], chapter 13.3. The proof follows
from the previous Theorems and it involves the Riemann-Liouville fractional integral
operator on the whole real line.

□
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Under the hypothesis of Proposition 5.5 over the interval (a, b) and with Theorem 5.6,
we know f |(c,d) ∈ Iαc+(L

p(c, d)). If we additionally assume that there exists g(d−) finite

and gd− ∈ I1−α
d− (Lq(c, d)), then, the integral

∫ d

c
fdg is well-defined.

Once seen
∫ d

c
fdg is well-defined we want to write the integral in terms of an integral of

domain (a, b).

Theorem 5.7. Under the hypothesis of Proposition 5.5, if we further assume that there
exists g(d−) finite and gd− ∈ I1−α

d− (Lq(c, d)), then,

(4)

∫ d

c

fdg =

∫ b

a

1(c,d)fdg.

Proof. The Theorem is stated and proved in [10]. Notice that with Theorem 5.6, the
left side of equation (4) is well-defined. Also, we can easily write Dα

c+(f) in terms of

Dα
a+(1(c,d)f) but we need more involved results in order to write D1−α

d− (gd−) in terms

of D1−α
b− (gb−) and for equality (4) to hold.

□
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6. The generalized Stieltjes integral on fractional Sobolev spaces

We have been working with Lp functions and their image with respect to the Riemann-
Liouville fractional integrals. Now, we consider functions in fractional Sobolev spaces
which satisfy Hölder continuity properties. Our goal is to check that the indefinite
generalized Stieltjes integral is well-defined on these new type of functions.

From now on, we set α ∈ (0, 1/2), a = 0 and b = T for 0 < T < ∞ since these are the
parameters α and intervals we will work with from now on.

We start by introducing these type of function spaces with Wα,1
0 (0, T ;Rd).

Definition 6.1. For T > 0, d ∈ N and α ∈ (0, 1/2) we define Wα,1
0 (0, T ;Rd) the set of

Lebesgue-measurable functions f : [0, T ] → Rd such that

||f ||α,1 :=

∫ T

0

|f(s)|
sα

ds+

∫ T

0

∫ s

0

|f(s)− f(y)|
(s− y)α+1

dyds <∞,

where | · | is the norm in Rd. In particular, we denote such set by Wα,1
0 (0, T ) when

d = 1.

Remark 6.2. Wα,1
0 (0, T ;Rd) is actually a normed vector space with respect to || · ||α,1.

Remark 6.3. For T > 0 and α ∈ (0, 1/2), Wα,1
0 (0, T ) ⊂ Iα0+(L

1(0, T )).

With Remark 6.3, notice that condition f ∈ Wα,1
0 (0, T ) is stronger than Dα

0+(f) ∈
L1(0, T ), that is, not only both components of Dα

0+(f) must be in L1(0, T ) but we also
take the differences f(s)− f(y) in absolute value.

We define the set W 1−α,∞
T (0, T ;Rd), now, centered at T instead of at 0.

Definition 6.4. For T > 0, d ∈ N and α ∈ (0, 1/2), we consider W 1−α,∞
T (0, T ;Rd) the

set of Lebesgue-measurable functions f : [0, T ] → Rd such that

||f ||1−α,∞,T := sup
0≤s<t≤T

{ |f(t)− f(s)|
(t− s)1−α

+

∫ t

s

|f(y)− f(s)|
(y − s)2−α

dy
}
<∞,

where | · | is the norm in Rd. In particular, we denote such set by W 1−α,∞
T (0, T ) when

d = 1.

Remark 6.5. W 1−α,∞
T (0, T ;Rd) is actually a normed vector space with respect to || ·

||1−α,∞,T .

Remark 6.6. For T > 0 and α ∈ (0, 1/2), if g ∈ W 1−α,∞
T (0, T ) and g(T−) exists and

it is finite, then, gT− ∈ I1−α
T− (L∞(0, T )).

We intent to integrate functions f ∈ Wα,1
0 (0, T ;Rd) with respect to some function g ∈

W 1−α,∞
T (0, T ;Rd). However, the following sections require f to satisfy further conditions

so we will consider the space Wα,∞
0 (0, T ;Rd) which is a subset of Wα,1

0 (0, T ;Rd).

We can relate the spacesWα
0 (0, T ;Rd) andW 1−α,∞

T (0, T ;Rd) with the spaces of Hölder-
continuous functions. The Hölder-continuity property is essential for defining the indef-
inite generalized Stieltjes integral and proving results in the following sections. Thus,
we introduce these spaces.



16

Definition 6.7. For T > 0, d ∈ N and γ ∈ (0, 1], we denote by Cγ(0, T ;Rd) the set of
Lebesgue-measurable functions f : [0, T ] → Rd such that

||f ||γ := ||f ||∞ + sup
0≤s<t≤T

{ |f(t)− f(s)|
(t− s)γ

}
<∞,

where | · | is the norm in Rd. In particular, we denote such set by Cγ(0, T ) when d = 1.

Remark 6.8. Cγ(0, T ;Rd) is actually a normed vector space with respect to || · ||γ .

Proposition 6.9. For T > 0, d ∈ N and α ∈ (0, 1/2), W 1−α,∞
T (0, T ;Rd) ⊂

C1−α(0, T ;Rd).

Proof. We need to check that for f ∈ W 1−α,∞
T (0, T ;Rd), ||f ||1−α < ∞. On one hand,

we have

sup
0≤s<t≤T

{
|f(t)− f(s)|

}
≤ T 1−α sup

0≤s<t≤T

{ |f(t)− f(s)|
(t− s)1−α

}
≤ T 1−α · ||f ||1−α,∞,T <∞,

that implies |f(t)| <∞ ∀t ∈ [0, T ] (not just a set of plenty measure) and ||f ||∞ <∞.

On the other hand, the second term that appears in ||f ||1−α is bounded by ||f ||1−α,∞,T .

□

As an immediate corollary, g ∈ W 1−α,∞
T (0, T ) is continuous, g(t−) exists and it is

finite ∀t ∈ (0, T ]. In fact, together with Remark 6.6, we can easily check that gt− ∈
I1−α
t− (L∞(0, t)) and we would like to apply Theorem 5.7 to have the additivity property
of the indefinite integral. However, this procedure would require applying Theorem
5.6 to check that f |[0,t] ∈ Iα0+(L

1(0, t)) and 1(0,t)f ∈ Iα0+(L
1(0, T )) but we are taking

p = 1 ≯ 1 in Theorem 5.6.

Instead, we can bypass Theorem 5.6 by checking that f |[0,t] ∈ Wα,1
0 (0, t) and 1(0,t)f ∈

Wα,1
0 (0, T ) which is straightforward. Hence, we can apply Theorem 5.7 and we obtain

the additivity of the indefinite integral.

As promised previously, we introduce the set Wα,∞
0 (0, T ;Rd).

Definition 6.10. For T > 0, d ∈ N and α ∈ (0, 1/2), we denote Wα,∞
0 (0, T ;Rd) the

set of Lebesgue-measurable functions f : [0, T ] → Rd such that

||f ||α,∞ := sup
t∈[0,T ]

{
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds
}
<∞,

where | · | is the norm in Rd. In particular, we denote such set by Wα,∞
0 (0, T ) when

d = 1.

Remark 6.11. Wα,∞
0 (0, T ;Rd) is a Banach space with respect to the norm ||f ||α,∞.

Proposition 6.12. For T > 0, d ∈ N and α ∈ (0, 1/2),Wα,∞
0 (0, T ;Rd) ⊂Wα,1

0 (0, T ;Rd).

Proof. The result follows from the Hölder inequality.

□

Proposition 6.13. For T > 0, d ∈ N and α ∈ (0, 1/2), C1−α(0, T ;Rd) ⊂Wα,∞
0 (0, T ;Rd).
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Proof. It’s sufficient to prove that for f ∈ C1−α(0, T ;Rd), ||f ||α,∞ <∞. In fact, we can
bound ||f ||α,∞ with ||f ||1−α multiplied by a constant. That is,

||f ||α,∞ = sup
t∈[0,T ]

{
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds
}
≤

≤ ||f ||∞ + sup
t∈[0,T ]

{∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds
}
=

= ||f ||∞ + sup
t∈[0,T ]

{∫ t

0

(t− s)−2α · |f(t)− f(s)|
(t− s)1−α

ds
}
≤

≤ ||f ||∞ + sup
t∈[0,T ]

{∫ t

0

(t− s)−2αds · sup
s∈[0,t]

{ |f(t)− f(s)|
(t− s)1−α

}}
≤

≤ ||f ||∞ +
T 1−2α

1− 2α
sup

0≤s≤t≤T

{ |f(t)− f(s)|
(t− s)1−α

}
≤ max{1, T

1−2α

1− 2α
} · ||f ||1−α <∞.

□

We have introduced the spaces in Definitions 6.1, 6.4, 6.7 and 6.10, proved in the one-
dimensional case their inclusion to more general sets, and shown a way to have the
indefinite generalized Stieltjes integral well-defined. From now on, we will mainly work
with multi-dimensional functions and so, we need to clarify the results seen so far.

Take f ∈ Wα,1
0 (0, T ;Rd) and g ∈ W 1−α,∞

T (0, T ;Rd) with d ∈ N. It’s straightforward

to check that all components of f and g belong to Wα,1
0 (0, T ) and W 1−α,∞

T (0, T ) re-
spectively, thus, we can extend the Weyl operator in Definition 4.6 to a component-wise
operator.

Hence, the results seen in this section hold for every component and it’s easy to check
that in terms of the indefinite generalized Stieltjes integral,∫ t

0

f dg =
(∫ t

0

fi dgi

)d

i=1
= (−1)α

∫ t

0

Dα
0+(f)(s) ⋆ D

1−α
t− (gt−)(s)ds

where ⋆ denotes the broadcasting product.
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7. A priori estimates

The indefinite generalized Stieltjes can be thought either as a function in time or as an
operator with respect to the function we integrate once t is fixed. We present bounds
for the indefinite generalized Stieltjes integral in terms of the norm of the functions we
integrate.

These bounds are Tailor-made for proving the existence and uniqueness of solutions to
a differential equation of the form (20).

However, the generalized Stieltjes integral depends on the integrator function as well.
Thus, we before define the notion of Λα(g) which will appear in these estimates.

Definition 7.1. For T > 0, m ∈ N, α ∈ (0, 1/2) and g ∈W 1−α,∞
T (0, T ;Rm), we denote

Λα(g) :=
1

Γ(1− α)
sup

0≤s≤t≤T

{∣∣D1−α
t− (gt−)(s)

∣∣}.
Remark 7.2. Λα(g) is well-defined since all components in gt− always exists in
I1−α
t− (L∞(0, T )) with Remark 6.6 and Proposition 6.9. In particular, the indices in the
supremum can be written 0 < s ≤ t < T and the value of Λα(g) does not change.

Remark 7.3. Notice that we can upper-bound Λα(g) with

Λα(g) ≤
1

Γ(α)Γ(1− α)
||g||1−α,∞,T <∞.

We can think of the indefinite generalized Stieltjes integral as an operator from
Wα,1

0 (0, T ;Rd) with values in Rd.

Definition 7.4. For T > 0, d ∈ N, α ∈ (0, 1/2), f ∈Wα,1
0 (0, T ;Rd), g ∈

W 1−α,∞
T (0, T ;Rd) and t ∈ [0, T ], we denote

Gt(f) :=

∫ t

0

f dg.

Remark 7.5. Under the hypothesis in the definition, we also know f ∈ Wα,1
0 (0, t;Rd),

g ∈W 1−α,∞
t (0, t;Rd) and the operator Gt(f) is thus well-defined and coincides with the

integral
∫ T

0
1(0,t)fdg.

We can check Gt is linear (as an operator) from either Wα,1
0 (0, T ;Rd) or Wα,1

0 (0, t;Rd)
to Rd and with Proposition 7.6, when d = 1, bounded.

Proposition 7.6. For T > 0, α ∈ (0, 1/2), f ∈ Wα,1
0 (0, T ), g ∈ W 1−α,∞

T (0, T ) and
t ∈ [0, T ], we have

|Gt(f)| ≤ Λα(g) · ||f ||α,1.

Proof. With the help of the previous results, we can apply Proposition 5.5 and we can
write the indefinite generalized Stieltjes integral as∫ t

0

fdg = (−1)α
∫ t

0

Dα
0+(f)(s) ·D1−α

t− (gt−)(s)ds.
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Given that Dα
0+(f) and D

1−α
t− (gt−) belong to L1(0, t) and L∞(0, t) respectively, we apply

Hölder inequality and we have∣∣∣ ∫ t

0

fdg
∣∣∣ ≤ ∥∥D1−α

t− (gt−)
∥∥
∞

∫ t

0

|Dα
0+(f)(s)|ds ≤ Λα(g) · ||f ||α,1.

□

The first estimate we present under a more general setting than the following ones but
we restrict ourselves to one-dimensional functions.

Proposition 7.7. For T > 0, α ∈ (0, 1/2), f ∈ Wα,1
0 (0, T ) and g ∈ W 1−α

T (0, T ), if
s, t ∈ [0, T ] with s < t, we have

(5) |Gt(f)−Gs(f)| ≤ Λα(g)

∫ t

s

( |f(r)|
(r − s)α

+ α

∫ r

s

|f(r)− f(y)|
(r − y)α+1

dy
)
dr

and

|Gt(f)|+
∫ t

0

|Gt(f)−Gs(f)|
(t− s)α+1

ds ≤

Λα(g)c
(1)
α,T

∫ t

0

(
(t− r)−2α + r−α

)(
|f(r)|+

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr,(6)

where c
(1)
α,T is a constant which only depends on α and T .

In addition, if f ∈Wα,∞
0 (0, T ), then, Gt(f) ∈ C1−α(0, T ) and

(7) ||Gt(f)||1−α ≤ Λα(g)c
(2)
α,T ||f ||α,∞,

where c
(2)
α,T is again a constant which only depends on α and T .

Proof. With the additivity property of the indefinite generalized Stieltjes integral, we
have

|Gt(f)−Gs(f)| =
∣∣∣ ∫ t

s

fdg
∣∣∣.

In the previous section, we proved that for f, g under the hypothesis of this Proposition,
we can apply Proposition 5.5, and

|Gt(f)−Gs(f)| =
∣∣∣ ∫ t

s

Dα
s+(f)(r) ·D1−α

t− (gt−)(r)dr
∣∣∣

Hölder inequalityy
≤

≤ ||D1−α
t− (gt−)||∞ ·

∫ t

s

|Dα
s+(f)(r)|dr ≤ Λα(g)

∫ t

s

( |f(r)|
(r − s)α

+ α

∫ r

s

|f(r)− f(y)|
(r − y)α+1

dy
)
dr,

which proves equation (5).

We multiply by (t − s)−α−1 and integrate with respect to s in (0, t) at both sides of
equation (5) and by monotony,∫ t

0

|Gt(f)−Gs(f)|
(t− s)α+1

ds ≤ Λα(g)

∫ t

0

(t− s)−α−1
(∫ t

s

|f(r)|
(r − s)α

dr+

+ α

∫ t

s

∫ r

s

|f(r)− f(y)|
(r − y)α+1

dy dr
)
ds.
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We do not know if the right-side of the inequality converges but since all terms are pos-
itive, we can still apply Fubini-Tonelli Theorem and split the integral with the additive
property. The first term satisfies

∫ t

0

(t− s)−α−1

∫ t

s

|f(r)|
(r − s)α

dr ds =

∫ t

0

∫ t

s

(t− s)−α−1 |f(r)|
(r − s)α

dr ds

0 ≤ s ≤ r ≤ ty
=

=

∫ t

0

|f(r)|
∫ r

0

(t− s)−α−1

(r − s)α
ds dr

s = r − (t − r)yy
=

∫ t

0

|f(r)|(t− r)−2α

∫ r/(t−r)

0

(1 + y)−α−1y−αdy dr ≤

≤
∫ t

0

|f(r)|(t− r)−2αB(2α, 1− α) dr,

meanwhile the second term satisfies

α

∫ t

0

(t− s)−α−1

∫ t

s

∫ r

s

|f(r)− f(y)|
(r − y)α+1

dy dr ds =

= α

∫ t

0

∫ t

s

∫ r

s

(t− s)−α−1 |f(r)− f(y)|
(r − y)α+1

dy dr ds

0 ≤ s ≤ y ≤ r ≤ ty
=

= α

∫ t

0

∫ r

0

|f(r)− f(y)|
(r − y)α+1

∫ y

0

(t− s)−α−1ds dy dr ≤
∫ t

0

∫ r

0

|f(r)− f(y)|
(r − y)α+1

(t− y)−αdy dr.

If we join both estimations, we obtain∫ t

0

|Gt(f)−Gs(f)|
(t− s)α+1

ds ≤

≤ Λα(g)
[ ∫ t

0

|f(r)|(t− r)−2αB(2α, 1− α)dr +

∫ t

0

∫ r

0

|f(r)− f(y)|
(r − y)α+1

(t− y)−αdy dr
]
.

(8)

Now, once proved equation (5), with s = 0

|Gt(f)| ≤ Λα(g)

∫ t

0

( |f(r)|
rα

+ α

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr

and together with equation (8), we have

|Gt(f)|+
∫ t

0

|Gt(f)−Gs(f)|
(t− s)α+1

ds ≤ Λα(g)
[ ∫ t

0

|f(r)|
(
r−α + (t− r)−2αB(2α, 1− α)

)
dr+

+

∫ t

0

∫ r

0

|f(r)− f(y)|
(r − y)α+1

(
α+ (t− y)−α

)
dy dr

]
.

We need to find a constant bound that might only depend on α and T , c
(1)
α,T , so that

∀y ∈ [0, r] and r ∈ (0, t)

max
(
r−α + (t− r)−2αB(2α, 1− α) , α+ (t− y)−α

)
≤ c

(1)
α,T

(
r−α + (t− r)−2α

)
.

If we consider c
(1)
α,T = max(B(2α, 1 − α), 1) + Tα, then, the condition above holds and

equation (6) follows.

Finally, we assume f ∈Wα,∞
0 (0, T ) and we have to prove Gt(f) ∈ C1−α(0, T ) satisfying

equation (7). With Proposition 6.12, f ∈ Wα,1
0 (0, T ) so Gt(f) is well-defined and with

Proposition 7.6, |Gt(f)| <∞ ∀t ∈ [0, T ].
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On one hand, we bound the ||Gt(f)||∞ term of C1−α(0, T )-norm. From equation (7),

||Gt(f)||∞ ≤ Λα(g) sup
0≤t≤T

{∫ t

0

( |f(r)|
rα

+ α

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr
}
=

= Λα(g)

∫ T

0

( |f(r)|
rα

+ α

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr =

= Λα(g)

∫ T

0

r−α
(
|f(r)|+ αrα

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr

Hölder inequalityy
≤

≤ Λα(g)
T 1−α

1− α
sup

0≤r≤T

{
|f(r)|+ αrα

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
}
≤

≤ Λα(g)
T 1−α

1− α
max{1, αTα} · ||f ||α,∞.

On the other hand, we bound the Hölder term of C1−α(0, T )-norm. Applying estimate
(5) with t > s

|Gt(f)−Gs(f)| ≤ Λα(g)

∫ t

s

( |f(r)|
(r − s)α

+ α

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr ≤

≤ Λα(g)

∫ t

s

(r − s)−α
(
|f(r)|+ α(r − s)α

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr ≤

Hölder inequalityy
≤ Λα(g)

∫ t

s

(r − s)−αdr sup
s≤r≤t

{
|f(r)|+ α(r − s)α

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
}
≤

≤ Λα(g)
(t− s)1−α

1− α
max{1, αTα} · ||f ||α,∞.

Combining both terms of the C1−α(0, T )-norm we obtain

||Gt(f)||1−α ≤ Λα(g) · c(2)α,T · ||f ||α,∞

with c
(2)
α,T = max{1,αTα}

1−α

(
1 + T 1−α

)
which proves the last part of the Proposition.

□

Once defined the notion Gt as an operator on Wα,1
0 (0, T ), we introduce a very similar

operator which is closer to what we work with in the following sections. This new
operator will focus only on functions in Wα,∞

0 (0, T ) but instead of integrating some
function f ∈Wα,∞

0 (0, T ), we integrate σ(t, f(t)) where σ satisfies hypothesis H1
σ.

Another important remark is that we will possibly deal with multi-dimensional functions
so the previous results must be applied carefully.

Definition 7.8. For T > 0, d,m ∈ N, α ∈ (0, 1/2), f ∈ Wα,∞
0 (0, T ;Rd), g ∈

W 1−α,∞
T (0, T ;Rm) and t ∈ [0, T ], we denote

G
(σ)
t (f) :=

( m∑
j=1

∫ t

0

σi,j(s, f(s)) dg
j
s

)d

i=1

where σ : [0, T ] × Rd → Rd×m satisfying hypothesis H1
σ in the introduction with β > α

and gj is the j-th component of g.
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Proposition 7.10 proves the well-definiteness of G
(σ)
t as an operator on Wα,∞

0 (0, T ;Rd)
and gives continuity results with respect to the parameter t. However, we first need to
introduce an equivalent norm to the current one on Wα,∞

0 (0, T ;Rd).

Definition 7.9. For T > 0, d ∈ N, α ∈ (0, 1/2), f ∈ Wα,∞
0 (0, T ;Rd) and λ ≥ 0, we

define

||f ||α,λ := sup
t∈[0,T ]

{
e−λt ·

(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds
)}
.

We can easily check that the norms || · ||α,∞ and || · ||α,λ are equivalent, and given that
Wα,∞

0 (0, T ;Rd) is a Banach space with the norm || · ||α,∞,
(
Wα,∞

0 (0, T ;Rd), || · ||α,λ
)
is

Banach as well.

Proposition 7.10. For T > 0, d,m ∈ N, f ∈ Wα,∞
0 (0, T ;Rd), g ∈ W 1−α,∞

T (0, T ;Rm)
and σ deterministic under the hypothesis H1

σ,

(a) G
(σ)
t (f) ∈ C1−α(0, T ;Rd) ⊂Wα,∞

0 (0, T ;Rd).

(b) There exists C(2) constant with respect to f and g such that

||G(σ)
t (f)||1−α ≤ Λα(g)C

(2)
(
1 + ||f ||α,∞

)
.

(c) There exists C(3) constant with respect to f and g such that ∀λ ≥ 1

||G(σ)
t (f)||α,λ ≤ Λα(g) · C(3)

λ1−2α

(
1 + ||f ||α,λ

)
.

(d) If h ∈ Wα,∞
0 (0, T ;Rd) such that ||f ||∞, ||h||∞ ≤ N , then, there exists C

(4)
N

constant with respect to f, g, h such that ∀λ ≥ 1

||G(σ)
t (f)−G

(σ)
t (h)||α,λ ≤

Λα(g)C
(4)
N

λ1−2α

(
1 + ∆(f) + ∆(h)

)
· ||f − h||α,λ

where

∆(f) = sup
r∈[0,T ]

{∫ r

0

|f(r)− f(s)|δ

(r − s)α+1
ds
}
.

Proof. We prove the Proposition in the simplified case where d = m = 1.

(a) We first check that σ(t, f(t)) ∈Wα,∞
0 (0, T ), that is, we must verify that

||σ(t, f(t))||α,∞ < ∞. Applying Lipschitz continuity and Hölder continuity on
time properties,

|σ(r, f(r))|+
∫ r

0

|σ(r, f(r))− σ(s, f(s))|
(r − s)α+1

ds ≤ |σ(r, 0)|+ |σ(r, f(r))− σ(r, 0)|+

+

∫ r

0

|σ(r, f(r))− σ(r, f(s))|+ |σ(r, f(s))− σ(s, f(s))|
(r − s)α+1

ds ≤

≤ |σ(0, 0)|+ |σ(r, 0)− σ(0, 0)|+M0|f(r)|+M0

∫ r

0

|f(r)− f(s)|+ (r − s)β

(r − s)α+1
ds ≤

≤ |σ(0, 0)|+M0r
β +M0

rβ−α

β − α
+M0|f(r)|+M0

∫ r

0

|f(r)− f(s)|
(r − s)α+1

ds.

Hence,

(9) ||σ(r, f(r))||α,∞ ≤ C +M0||f ||α,∞ <∞
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with C = |σ(0, 0)| + M0

(
T β + Tβ−α

β−α

)
. Applying Proposition 7.7, we obtain

G
(σ)
t (f) ∈ C1−α(0, T ).

(b) The proof follows from applying again Proposition 7.7 on σ(t, f(t)) and equation
(9) afterwards so that

||G(σ)
t (f)||1−α ≤ Λα(g)c

(2)
α,T ||σ(t, f(t))||α,∞ ≤ Λα(g)c

(2)
α,T

(
C +M0||f ||α,∞

)
≤

≤ Λα(g)c
(2)
α,T

(
C +M0

)(
1 + ||f ||α,∞

)
= Λα(g)C

(2)
(
1 + ||f ||α,∞

)
.

(c) Right from the definition of || · ||α,λ,

||G(σ)
t (f)||α,λ = sup

t∈[0,T ]

{
e−λt ·

(
|G(σ)

t (f)|+
∫ t

0

|G(σ)
t (f)−G

(σ)
r (f)|

(t− r)α+1
dr
)}Proposition 7.7y

≤

≤ Λα(g)c
(1)
α,T sup

t∈[0,T ]

{
e−λt

∫ t

0

(
(t− r)−2α + r−α

)
×

(
|σ(r, f(r))|+

∫ r

0

|σ(r, f(r))− σ(y, f(y))|
(r − y)α+1

dy
)
dr
}
≤

Proof in (a)y
≤ Λα(g)c

(1)
α,T sup

t∈[0,T ]

{
e−λt

∫ t

0

(
(t− r)−2α + r−α

)
×

(
C +M0|f(r)|+M0

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr
}
=

= Λα(g)c
(1)
α,T sup

t∈[0,T ]

{∫ t

0

e−λ(t−r)
(
(t− r)−2α + r−α

)
×

e−λr
(
C +M0|f(r)|+M0

∫ r

0

|f(r)− f(y)|
(r − y)α+1

dy
)
dr
}
≤

Hölder inequalityy
≤ Λα(g)c

(1)
α,T sup

t∈[0,T ]

{∫ t

0

e−λ(t−r)
(
(t− r)−2α + r−α

)
dr×

sup
s∈[0,t]

{
e−λs

(
C +M0|f(s)|+M0

∫ s

0

|f(s)− f(y)|
(s− y)α+1

dy
)}}

where ∀t ∈ [0, T ],

∫ t

0

e−λ(t−r)
(
(t− r)−2α + r−α

)
dr

x = t − ry
=

∫ t

0

e−λx
(
x−2α + (t− x)−α

)
dx

y = λxy
=

= λ−1

∫ λt

0

e−y
(
λ2αy−2α + λα(λt− y)−α

)
dy ≤

≤ λ2α−1
(∫ λt

0

e−yy−2αdy +

∫ λt

0

e−y(λt− y)−αdy
)
≤

≤ λ2α−1
(
Γ(1− 2α) + sup

z>0

{∫ z

0

e−y(z − y)αdy
})

=: λ2α−1cα.(10)
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Thus, provided that cα is finite, we can bound ||G(σ)
t (f)||α,λ with

||G(σ)
t (f)||α,λ ≤ Λα(g)

c
(1)
α,T cα

λ1−2α
sup

s∈[0,T ]

{
e−λs

(
C +M0|f(s)|+

+M0

∫ s

0

|f(s)− f(y)|
(s− y)α+1

dy
)}

≤ Λα(g)
c
(1)
α,T cα

λ1−2α

(
C +M0||f ||α,λ

)
≤

≤ Λα(g)
c
(1)
α,T cα

λ1−2α
(C +M0) · (1 + ||f ||α,λ) =: Λα(g)

C(3)

λ1−2α
(1 + ||f ||α,λ).

Finally, we need to prove cα is finite. We know that the Gamma function takes
finite values with Proposition 3.5 so we only need to check that the supremum
in (10) is finite. One way to prove it is by splitting the integral domain [0, z]
into [0,min(z, 1)] and [min(z, 1), z], then, applying the sub-additivity property
of the supremum and bound both supremum but since it is tedious, we do not
include the procedure.

(d) Even though the operator G
(σ)
t is not necessarily linear, Gt is and right from

the definition of || · ||α,λ,

||G(σ)
t (f)−G

(σ)
t (h)||α,λ = ||Gt

(
σ(·, f)− σ(·, h)

)
||α,λ =

= sup
t∈[0,T ]

{
e−λt ·

(∣∣Gt

(
σ(·, f)− σ(·, h)

)∣∣+
+

∫ t

0

∣∣Gt

(
σ(·, f)− σ(·, h)

)
−Gs

(
σ(·, f)− σ(·, h)

)∣∣
(t− s)α+1

ds
)}

≤

Proposition 7.7y
≤ Λα(g)c

(1)
α,T sup

t∈[0,T ]

{
e−λt

∫ t

0

(
(t− r)−2α + r−α

)
·
(
|σ(t, f(t))− σ(t, h(t))|+

+

∫ r

0

∣∣σ(t, f(t))− σ(t, h(t))− σ(s, f(s)) + σ(s, h(s))
∣∣

(t− s)α+1
ds
)
dr
}
.

In the item (c) of the proof, we obtained a similar expression so following the
same procedure and using the properties in H1

σ, we obtain

||G(σ)
t (f)−G

(σ)
t (h)||α,λ ≤ Λα(g)

c
(1)
α,T cα

λ1−2α
sup

t∈[0,T ]

{
e−λt ·

(
M0|f(t)− h(t)|+

+

∫ t

0

∣∣σ(t, f(t))− σ(t, h(t))− σ(s, f(s)) + σ(s, h(s))
∣∣

(t− s)α+1
ds
)}
.

Now, using the Local Hölder continuity and Hölder continuity in time properties
of σ, we know ∂xσ is continuous in [0, T ]×R and we can apply the Mean Value
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Theorem so as to obtain

σ(t, f(t))− σ(t, h(t))− σ(s, f(s)) + σ(s, h(s)) =

=
(
f(t)− h(t)

) ∫ 1

0

∂xσ
(
t, h(t) + θ(f(t)− h(t))

)
dθ+

+
(
h(s)− f(s)

) ∫ 1

0

∂xσ
(
s, h(s) + θ(f(s)− h(s))

)
dθ =

=
(
f(t)− h(t)

) ∫ 1

0

[
∂xσ

(
t, h(t) + θ(f(t)− h(t))

)
− ∂xσ

(
s, h(s) + θ(f(s)− h(s))

)]
dθ+

+
(
f(t)− h(t) + h(s)− f(s)

) ∫ 1

0

∂xσ
(
s, h(s) + θ(f(s)− h(s))

)
dθ

Consequently,

|σ(t, f(t))− σ(t, h(t))− σ(s, f(s)) + σ(s, h(s))| ≤
∣∣f(t)− h(t)

∣∣×
×
∫ 1

0

∣∣∂xσ(t, h(t) + θ(f(t)− h(t))
)
− ∂xσ

(
s, h(s) + θ(f(s)− h(s))

)∣∣dθ+(11)

+
∣∣f(t)− h(t) + h(s)− f(s)

∣∣ ∫ 1

0

∣∣∂xσ(s, h(s) + θ(f(s)− h(s))
)∣∣dθ,(12)

where the integral in (11) can be bounded applying the Local Hölder continuity
and Hölder continuity in time properties of σ, and the integral in (12) can be
bounded applying the Lipschitz continuity property of σ on the definition of
derivative. Thus, obtaining

|σ(t, f(t))− σ(t, h(t))− σ(s, f(s)) + σ(s, h(s))| ≤M0|f(t)− h(t) + h(s)− f(s)|+

+M0|f(t)− h(t)| · |t− s|β +MN |f(t)− h(t)| ·
(
|h(t)− h(s)|δ + |f(t)− f(s)|δ

)
.

Finally, putting the results together we have

||G(σ)
t (f)−G

(σ)
t (h)||α,λ ≤

≤ Λα(g)
c
(1)
α,T cα

λ1−2α
sup

t∈[0,T ]

{
e−λt

(
MN |f(t)− h(t)|

∫ t

0

|h(t)− h(s)|δ + |f(t)− f(s)|δ

(t− s)α+1
ds+

+M0(1 +
tβ−α

β − α
) · |f(t)− h(t)|+M0

∫ t

0

|f(t)− h(t) + h(s)− f(s)|
(t− s)α+1

ds
)}

≤

≤ Λα(g)
c
(1)
α,T cα

λ1−2α

(
(1 +

T β−α

β − α
)M0 +MN (∆(f) + ∆(h))

)
||f − h||α,λ

and by taking C(4) = c
(1)
α,T cα(M0 +MN ) · (1 + Tβ−α

β−α ), the estimate in (d) holds.

□

The results on the generalized Stieltjes integral and more specifically the operator G
(σ)
t

will prove useful to have well-defined the integrals (2).

Now, we give some estimates on the drift coefficient. These estimates will be very similar
to the estimates obtained on the diffusion coefficient but fortunately, much easier to
prove since we integrate with respect to time and the functions involved are Lebesgue-
integrable.
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Definition 7.11. For T > 0, d ∈ N and f ∈ L1(0, T ;Rd), we define

Ft(f) :=

∫ t

0

f(s)ds

where the integral operator is applied component-wise.

Proposition 7.12. For T > 0, d ∈ N, α ∈ (0, 1/2) and f : [0, T ] → Rd measurable with

sup
t∈[0,T ]

{∫ t

0

|f(s)|
(t− s)α

ds
}
<∞,

then, Ft(f) ∈Wα,∞
0 (0, T ;Rd) and

(13) |Ft(f)|+
∫ t

0

|Ft(f)− Fs(f)|
(t− s)α+1

ds ≤ Cα,T

∫ t

0

|f(s)|
(t− s)α

ds

with Cα,T = Tα + α−1.

In addition, if f ∈Wα,∞
0 (0, T ;Rd), then, Ft(f) ∈ C1(0, T ;Rd),

(14) |Ft(f)− Fs(f)| ≤ (t− s) · ||f ||∞
and

(15) ||Ft(f)||α,∞ ≤ C ′
α,T ||f ||∞,

with C ′
α,T = Cα,T · T 1−α

1−α .

Proof. We start by proving equation (13). From the hypothesis on f , we can check
f ∈ L1(0, T ;Rd) so we can apply Ft on f ∀t ∈ [0, T ]. Hence,

|Ft(f)|+
∫ t

0

|Ft(f)− Fs(f)|
(t− s)α+1

ds ≤
∫ t

0

|f(s)|ds+
∫ t

0

(t− s)−α−1

∫ t

s

|f(r)|dr ds

Fubini-Tonelli Theoremy
=

=

∫ t

0

|f(s)|ds+
∫ t

0

|f(r)|
∫ r

0

(t− s)−α−1ds dr =

∫ t

0

|f(r)|dr+

+ α−1

∫ t

0

|f(r)| ·
(
(t− r)−α − t−α

)
dr ≤

∫ t

0

|f(r)|dr + α−1

∫ t

0

|f(r)| · (t− r)−αdr =

=

∫ t

0

|f(r)| · (t− r)−α ·
(
Tα + α−1

)
dr,

which proves (13) and implies Ft(f) ∈Wα,T
0 (0, T ;Rd).

For the second part of the Proposition, we use the fact that Wα,∞
0 (0, T ;Rd) ⊂

L∞(0, T ;Rd) and applying Hölder inequality on |Ft(f)− Fs(f)| we get (14) and conse-
quently, Ft(f) ∈ C1(0, T ;Rd).

As for equation (15),

||Ft(f)||α,∞ = sup
t∈[0,T ]

{
|Ft(f)|+

∫ t

0

|Ft(f)− Fs(f)|
(t− s)α+1

ds
}(13)y
≤

≤ Cα,T sup
t∈[0,T ]

{∫ t

0

|f(s)|
(t− s)α

ds
}Hölder inequalityy
≤ Cα,T

T 1−α

1− α
||f ||∞ = C ′

α,T ||f ||∞.

□
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We introduce a similar operator to Ft involving the drift coefficient b satisfyingHb.

Definition 7.13. For T > 0, d ∈ N, f ∈Wα,∞
0 (0, T ;Rd) and t ∈ [0, T ], we denote

F
(b)
t (f) :=

∫ t

0

b(s, f(s))ds,

where b : [0, T ]× Rd → Rd satisfies hypothesis Hb in the introduction.

Applying the Boundedness property of b, we check the operator F
(b)
t has values in Rd

∀t ∈ [0, T ] even for functions in L1(0, T ;Rd).

Proposition 7.14. For T > 0, d ∈ N, α ∈ (0, 1/2), f ∈ Wα,∞
0 (0, T ;Rd) and b deter-

ministic under hypothesis Hb with ρ = 1/α,

(a) F
(b)
t (f) ∈ C1−α(0, T ;Rd).

(b) There exists d(1) constant with respect to f such that

||F (b)
t (f)||1−α ≤ d(1)(1 + ||f ||∞).

(c) There exists d(2) constant with respect to f such that ∀λ ≥ 1,

||F (b)
t (f)||α,λ ≤ d(2)

λ1−2α
(1 + ||f ||α,λ).

(d) If h ∈ Wα,∞
0 (0, T ;Rd) such that ||f ||∞, ||h||∞ ≤ N , then, there exists dN con-

stant with respect to f, h such that ∀λ ≥ 1,

||F (b)
t (f)− F

(b)
t (h)||α,λ ≤ dN

λ1−2α
||f − h||α,λ.

Proof. We prove the Proposition in the simplified case where d = 1.

(a) As for the first term of C1−α(0, T ;R)-norm, applying the Boundedness property
of b,

||F (b)
t (f)||∞ = sup

t∈[0,T ]

{∣∣∣ ∫ t

0

b(s, f(s))ds
∣∣∣} ≤

∫ T

0

|b(s, f(s))|ds ≤

≤ L0

∫ T

0

|f(s)|ds+
∫ T

0

b0(s)ds <∞(16)

and as for the second term, again applying the Boundedness property of b,

|F (b)
t (f)− F (b)

s (f)| ≤
∫ t

s

b(r, f(r))dr ≤ L0

∫ t

s

|f(r)|dr +
∫ t

s

b0(r)dr

Hölder inequalityy
≤

≤ L0(t− s)||f ||∞ + (t− s)1−α||b0||L1/α ≤ (t− s)1−α ·
(
TαL0||f ||∞ +B0,α

)
,(17)

where B0,α = ||b0||L1/α .

(b) Using equations (16) and (17) in (a),

||F (b)
t (f)||1−α ≤ L0T ||f ||∞ + T 1−αB0,α + TαL0||f ||∞ +B0,α =

= (1 + T 1−α) · (B0,α + L0T
α||f ||∞) ≤

≤ (1 + T 1−α) · (B0,α + L0T
α) · (1 + ||f ||∞) =: d(1)(1 + ||f ||∞).



28

(c) We want to apply Proposition 7.12 so we must fulfill the requirements on
b(t, f(t)). Applying the Boundedness property of b,

sup
t∈[0,T ]

{∫ t

0

|b(s, f(s))|
(t− s)α

ds
}
≤ sup

t∈[0,T ]

{∫ t

0

L0|f(s)|+ b0(s)

(t− s)α
ds
}Hölder inequalityy
≤

≤ L0 sup
t∈[0,T ]

{∫ t

0

|f(s)|
(t− s)α

ds
}
+ sup

t∈[0,T ]

{
||b0||L1/α ·

(∫ t

0

(t− s)−α/(1−α)ds
)1−α}

≤

Hölder inequalityy
≤ L0

T 1−α

1− α
||f ||∞ +B0,αT

1−2α
( 1− α

1− 2α

)1−α

<∞,

(18)

where B0,α := ||b0||L1/α .

Hence, we can apply Proposition 7.12 and we have

|F (b)
t (f)|+

∫ t

0

|F (b)
t (f)− F

(b)
s (f)|

(t− s)α+1
ds ≤ Cα,T

∫ t

0

|b(s, f(s))|
(t− s)α

ds

(18)y
≤

≤ Cα,T

(
L0

∫ t

0

|f(s)|
(t− s)α

ds+B0,α

(∫ t

0

(t− s)−α/(1−α)ds
)1−α)

,(19)

which implies

||F (b)
t (f)||α,λ ≤ Cα,TL0 sup

t∈[0,T ]

{
e−λt

∫ t

0

|f(s)|
(t− s)α

ds
}
+

+ Cα,TB0,α

( 1− α

1− 2α

)1−α

sup
t∈[0,T ]

{
e−λtt1−2α

}
.

On one hand,

sup
t∈[0,T ]

{
e−λt

∫ t

0

|f(s)|
(t− s)α

ds
}
≤ sup

t∈[0,T ]

{ |f(t)|
eλt

}
sup

t∈[0,T ]

{∫ t

0

e−λ(t−s)(t− s)−αds
}
,

with

∫ t

0

e−λ(t−s)(t− s)−αds

r = λ(t − s)y
=

∫ λt

0

e−rλα−1r−αdr ≤ λα−1Γ(1− α),

and on the other hand,

sup
t∈[0,T ]

{
e−λtt1−2α

}
= e−λtt1−2α

∣∣∣
t=λ−1(1−2α)

= e2α−1 (1− 2α)1−2α

λ1−2α
.

Consequently, we have

||F (b)
t (f)||α,λ ≤ Cα,TL0λ

α−1Γ(1− α) +
Cα,TB0,α

(λe)1−2α

(1− α)1−2α

(1− 2α)α
≤ d(2)

λ1−2α
(1 + ||f ||α,λ)

with d(2) = Cα,T

(
L0Γ(1− α) +B0e

2α−1(1− α)1−2α(1− 2α)−α
)
since λ ≥ 1.

(d) In section (c) we proved we can apply Proposition 7.12 on b(t, f(t)) when f ∈
L∞(0, T ), in particular, when f ∈Wα,∞

0 (0, T ). Consequently, also applying the
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Local Lipschitz Continuity property of b,

||F (b)
t (f)− F

(b)
t (h)||α,λ ≤ Cα,T sup

t∈[0,T ]

{
e−λt

∫ t

0

|b(s, f(s))− b(s, h(s))|
(t− s)α

ds
}
≤

≤ Cα,TLN sup
t∈[0,T ]

{∫ t

0

e−λ(t−s)e−λs |f(s)− h(s)|
(t− s)α

ds
}
≤

≤ Cα,TLN sup
t∈[0,T ]

{
e−λt|f(t)− h(t)|

}
sup

t∈[0,T ]

{∫ t

0

e−λ(t−s)(t− s)−αds
}
≤

≤ CαTLN ||f − h||α,λλα−1Γ(1− α) =
dN
λ1−α

||f − h||α,λ,

with dN = Cα,TLNΓ(1− α).

□
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8. Deterministic differential equations involving the generalized
Stieltjes integral

For almost every realization ω ∈ Ω, the spectral set, we propose the following differential
equation expecting a solution x : [0, T ] → Rd and with σ, b deterministic under some
hypothesis

(20) x(t) = x0 + F
(b)
t (x) +G

(σ)
t (x) , ∀t ∈ [0, T ].

Notice that ordinary differential equations do not contain the G
(σ)
t term. In this sec-

tion, we prove the existence and uniqueness of solutions to (20) on Wα,T
0 (0, T ;Rd). In

addition, if σ satisfies the Boundedness property, we bound the solution x in terms of
the norm || · ||α,∞.

However, we first state and prove some results required to prove the existence of solutions
and properties on theses solutions. The first result we present is a Banach fixed point
Theorem.

Lemma 8.1. Let (X, ρ) be a complete metric space, ρ0, ρ1, ρ2 equivalent metrics to ρ
and L : X → X such that

(a) there exist r0 > 0, x0 ∈ X so that L(B0) ⊂ B0 for B0 = {x ∈ X : ρ0(x0, x) ≤
r0},

(b) there exist φ : (X, ρ) → [0,+∞] lower semi-continuous and C0,K0 ≥ 0 constant
such that

– L(B0) ⊂ Nφ(C0)

– ρ1(L(x),L(y)) ≤ K0ρ1(x, y) ∀x, y ∈ Nφ(C0) ∩B0

for Nφ(a) = {x ∈ X : φ(x) ≤ a}.

(c) there exists a ∈ (0, 1) such that

ρ2(L(x),L(y)) ≤ aρ2(x, y) x, y ∈ L(B0).

Then, there exists x∗ ∈ L(B0) ⊂ X such that x∗ = L(x∗).

Proof. With hypothesis in (a), given x0 ∈ X and r0 > 0, we consider the sequence
{xn}∞n=0 ⊂ X with xn+1 = L(xn) ∀n ≥ 0. Due to (a), {xn}∞n=1 ⊂ L(B0) and with (b),
there exists C0 ≥ 0 constant with φ(xn) ≤ C0 ∀n ≥ 1. Also, with (c),

ρ2(xn+1, xn) = ρ2(L(xn),L(xn−1)) ≤ aρ2(xn, xn−1) ≤ · · · ≤ anρ2(x1, x0),

so

ρ2(xn+p, xn) ≤ ρ2(xn+p, xn+p−1) + · · ·+ ρ2(xn+1, xn) ≤ ρ2(x1, x0)a
n

p−1∑
j=0

aj =

= ρ2(x1, x0) a
n 1− ap

1− a
≤ ρ2(x1, x0)

an

1− a

n→∞−−−−→ 0.

Given that (X, ρ) is complete, ρ ∼ ρ2 and that B0 is closed with respect to ρ0, then, B0

is closed with respect to ρ and there exists x∗ ∈ B0 such that xn → x∗ with respect to
ρ. Finally, with the lower semi-continuity property of φ

C0 ≥ lim inf
n→∞

φ(xn) ≥ lim inf
x∈L(B0)
x→x∗

φ(x) ≥ φ(x∗),
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so ∀n ∈ N, xn, x∗ ∈ B0 ∩Nφ(C0) and applying (b), there exists K0 ≥ 0 such that

ρ1(L(xn),L(x∗)) ≤ K0ρ1(xn, x
∗)

n→∞−−−−→ 0.

Thus, ∀n ∈ N

ρ(x∗,L(x∗)) ≤ lim
n→∞

{
ρ(x∗,L(xn)) + ρ(L(xn),L(x∗))

}ρ1 ∼ ρy
≤

≤ lim
n→∞

ρ(x∗,L(xn)) +K lim
n→∞

ρ1(L(xn),L(x∗)) ≤

≤ lim
n→∞

ρ(x∗, xn+1) +K0 ·K lim
n→∞

ρ1(xn, x
∗) = 0,

so L(x∗) = x∗.

□

For Lemma 8.1 to guarantee the existence of solutions in (20), we require the operator
∆, defined in Proposition 7.10, to be lower semi-continuous in Wα,∞

0 (0, T ;Rd). The
following Lemma proves it.

Lemma 8.2. For T >, α ∈ (0, 1/2), δ ∈ (0, 1], the operator ∆ is lower semi-continuous
in Wα,∞

0 (0, T ;Rd).

Proof. We consider the operator ∆r : W
α,∞
0 (0, T ;Rd) → [0,+∞] with r ∈ [0, T ] fixed

defined by

∆r(u) :=

∫ r

0

|u(r)− u(s)|δ

(r − s)α+1
ds ∀u ∈Wα,∞

0 (0, T ;Rd)

and prove it is lower semi-continuous, that is, ∀u0 ∈Wα,∞
0 (0, T ;Rd),

lim inf
u→u0

∆r(u) ≥ ∆r(u0).

Given that || · ||∞ ≤ || · ||α,∞, convergence in || · ||α,∞ implies uniform convergence for
functions in Wα,∞

0 (0, T ;Rd) in [0, T ] and applying Fatou’s Lemma, we have

lim inf
u→u0

∫ r

0

|u(r)− u(s)|δ

(r − s)α+1
ds ≥

∫ r

0

lim inf
u→u0

|u(r)− u(s)|δ

(r − s)α+1
ds =

∫ r

0

|u0(r)− u0(s)|δ

(r − s)α+1
ds.

Hence ∆r is lower semi-continuous.

Finally, we can write the operator ∆ as supr∈[0,T ] ∆r and using the fact that the point-
wise supremum of lower semi-continuous functions is lower semi-continuous, we obtain
∆ is lower semi-continuous.

□

Theorem 8.3. Let T > 0, d,m ∈ N, α ∈ (0, 1/2) , g ∈ W 1−α,∞
T (0, T ;Rm) and σ, b

be deterministic under hypothesis H1
σ and Hb with ρ = α−1, β, δ ∈ (0, 1] and α <

min{1/2, β, δ/(1 + δ)}.

Then, the differential equation (20) where G
(σ)
t has g as the Stieltjes integrator, has a

unique solution x(t) ∈Wα,∞
0 (0, T ;Rd). In fact, x(t) ∈ C1−α(0, T ;Rd).
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Proof. In Propositions 7.10 and 7.14 we proved that if f ∈Wα,∞
0 (0, T ;Rd), then,

G
(σ)
t (f), F

(b)
t (f) ∈ C1−α(0, T ;Rd) respectively. Thus, x(t) ∈ Wα,∞

0 (0, T ;Rd) a solution
to (20) is also in C1−α(0, T ;Rd).

Now, we prove uniqueness for solutions in Wα,∞
0 (0, T ;Rd). If x, x̃ ∈ Wα,∞

0 (0, T ;Rd)
are two solutions to (20), we consider N ∈ N with ||x||1−α, ||x̃||1−α ≤ N . Given that
|| · ||∞ ≤ || · ||1−α and || · ||α,∞ ∼ || · ||α,λ ∀λ ≥ 1, we can apply Proposition 7.10 and 7.14
and we have λ ≥ 1

||x− x̃||α,λ ≤ ||F (b)
t (x)− F

(b)
t (x̃)||α,λ + ||G(σ)

t (x)−G
(σ)
t (x̃)||α,λ ≤

≤ dN
λ1−α

||x− x̃||α,λ +
Λα(g)C

(4)
N

λ1−2α

(
1 + ∆(x) + ∆(x̃)

)
||x− x̃||α,λ.(21)

Since ||x||1−α, ||x̃||1−α ≤ N , if r, s ∈ [0, T ], then, |x(r)− x(s)| ≤ N |r − s|1−α and

∆(x) + ∆(x̃) ≤ 2N sup
r∈[0,T ]

{∫ r

0

(r − s)δ(1−α)

(r − s)α+1
ds
}
= 2N

T δ−α(1+δ)

δ − α(1 + δ)
=: CN .

Hence,

||x− x̃||α,λ ≤
( dN
λ1−α

+ (1 + CN )
Λα(g)C

(4)
N

λ1−2α

)
||x− x̃||α,λ =: Kλ,α,g,N · ||x− x̃||α,λ,

and by taking λ ≥ 1 large enough so that Kλ,α,g,N ≤ 1, we conclude ||x− x̃||α,λ = 0 so
x = x̃ in Wα,∞

0 (0, T ;Rd)-norm which implies x = x̃ point-wise in [0, T ].

Finally, we prove the existence of solution in Wα,∞
0 (0, T ;Rd). We consider

(Wα,∞
0 (0, T ;Rd), ρ) the metric space with ρ the metric induced by the norm || · ||α,∞.

Such space is complete with ρ since it is Banach with || · ||α,∞ and in this complete
metric space, we take L : Wα,∞

0 (0, T ;Rd) →Wα,∞
0 (0, T ;Rd) defined by

L(u)(t) = x0 + F
(b)
t (u) +G

(σ)
t (u) ∀t ∈ [0, T ] , ∀u ∈Wα,∞

0 (0, T ;Rd).

With Propositions 7.10 and 7.14, ∀λ ≥ 1

||L(u)||α,λ ≤ |x0|+ ||F (b)
t (u)||α,λ + ||G(σ)

t (u)||α,λ ≤

≤ |x0|+
1 + ||u||α,λ
λ1−2α

(
d(2) + Λα(g)C

(3)
)
,

and if we take λ0 ≥ 1 satisfying

λ1−2α
0 ≥ 2

(
d(2) + Λα(g)C

(3)
)
≤

(
d(2) + Λα(g)C

(3)
)3 + 2|x0|
2 + |x0|

,

then, ||L(u)||α,λ0
≤ 2(1 + |x0|) whenever ||u||α,λ0

≤ 2(1 + |x0|). Hence, by taking
B0 = {u ∈ Wα,∞

0 (0, T ;Rd) : ||u||α,λ0
≤ 2(1 + |x0|)} condition (a) in Lemma 8.1 holds

with ρ0 the metric induced by the norm || · ||α,λ0
. In addition, ∀u ∈ B0

||u||α,∞ ≤ eλ0T ||u||α,λ0
≤ 2eλ0T (1 + |x0|).

With Lemma 8.2 we know ∆ is lower semi-continuous and in consequence, φc := C ·
(1/2 + ∆) with C ≥ 0 is lower semi-continuous as well. If we take u ∈ L(B0), there
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exists u ∈ B0 with u = L(u) and u ∈ C1−α(0, T ;Rd). Applying Propositions 7.10 and
7.14,

||u||1−α ≤ |x0|+ ||F (b)
t (u)||1−α + ||G(σ)

t (u)||1−α ≤

≤ |x0|+ d(1)(1 + ||u||∞) + Λα(g)C
(2)(1 + ||u||α,∞) ≤

≤ |x0|+
(
d(1) + Λα(g)C

(2)
)
·
(
1 + 2eλ0T (1 + |x0|)

)
=: C2.

That is, there exists a common bound C2 for every function u ∈ L(B0). Consequently

∆(u) = sup
r∈[0,T ]

{∫ r

0

|u(r)− u(s)|δ

(r − sα+1)
ds
}
≤

≤ sup
r∈[0,T ]

{∫ r

0

Cδ
2(r − s)(1−α)·(δ−1)ds

}
≤ C2

T δ−α(1+δ)

δ − α(1 + δ)
=: C4.

In addition, we choose N0 ∈ N with N0 ≥ 2eλ0T (1+ |x0|) and apply the same argument
used in (21). That is, ∀u, v ∈ B0 and λ ≥ 1

||L(u)− L(v)||α,λ ≤
( dN0

λ1−α
+

Λα(g)C
(4)
N0

λ1−2α

(
1 + ∆(u) + ∆(v)

))
· ||u− v||α,λ ≤

≤
(
dN0 + Λα(g)C

(4)
N0

)1 + ∆(u) + ∆(v)

λ1−2α
||u− v||α,λ =

=:
C1

λ1−2α

(
1 + ∆(u) + ∆(v)

)
||u− v||α,λ.

We consider the function φ = φC1
= C1(1/2+∆) and we want to check that assumption

(b) in Lemma 8.1 holds. On one hand, given that φ(L(B0)) ∈ [0, C1(1/2+C2)], we take
C0 = C1(1/2 + C2) and the first item in (b) is satisfied. On the other hand, we take
λ1 = 1 and we know that for u, v ∈ B0 ∩Nφ(C0)

||L(u)− L(v)||α,λ1
≤ C1

(
1 + ∆(u) + ∆(v)

)
||u− v||α,λ1

≤
≤

(
φ(u) + φ(v)

)
||u− v||α,λ1

≤ 2C0||u− v||α,λ1
=: K0||u− v||α,λ1

,(22)

and the second item in (b) is satisfied with ρ1 the metric induced by || · ||α,λ1 . Thus,
assumption (b) in Lemma 8.1 is satisfied.

Finally, given that L(B0) ⊂ B0 ∩Nφ(C0) we can repeat the procedure in (22) with any
λ ≥ 1 and we have that ∀u, v ∈ L(B0)

||L(u)− L(v)||α,λ ≤ C1(1 + 2C4)

λ1−2α
||u− v||α,λ

and if we take λ2 ≥ 1 such that 2C1(1 + 2C4) ≤ λ1−2α
2 , then,

||L(u)− L(v)||α,λ2 ≤ 1

2
||u− v||α,λ2 ∀u, v ∈ L(B0),

and condition (c) in Lemma 8.1 is satisfied with ρ2 the metric induced by the norm
|| · ||α,λ2 .

Given that ρ0, ρ1, ρ2, ρ are equivalent metrics in Wα,∞
0 (0, T ;Rd), we can apply Lemma

8.1 to obtain that there exists x∗ ∈ L(B0) ⊂Wα,∞
0 (0, T ;Rd) such that x∗ = L(x∗).

□

Once proved the existence and uniqueness of solution of (20), we give a bound on the
solution. For this purpose, we present Proposition 8.5 which requires the following
lemma.
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Lemma 8.4. Gronwall inequality

For θ ∈ [0, 1), a, b ≥ 0 and f : [0,∞) → [0,∞) continuous such that ∀t ≥ 0,

f(t) ≤ a+ btθ
∫ t

0

(t− s)−θs−θf(s)ds,

then, ∀t ≥ 0,

f(t) ≤ adα exp(cαtb
1/(1−θ)),

with cα = 2Γ(1− θ)1/(1−θ) and dα = 4e2 Γ(1−θ)
1−θ .

Proof. The proof can be found in [7], in the Appendix.

□

Proposition 8.5. Let T > 0, d,m ∈ N, α ∈ (0, 1/2), g ∈ W 1−α,∞
T (0, T ;Rm) and σ, b

be deterministic under hypothesis H1
σ, H

2
σ and Hb with ρ = α−1, β, δ ∈ (0, 1], γ ∈ [0, 1]

and α < min{1/2, β, δ/(1 + δ)}. Then, the solution to (20), x, satisfies

||x||α,∞ ≤ C1e
C2Λα(g)κ ,

where

(23) κ =


1

1−2α if γ = 1

> γ
1−2α , if γ ∈ [ 1−2α

1−α , 1)
1

1−α , if γ ∈ [0, 1−2α
1−α )

and C1, C2 are constant with respect to x and g.

Proof. We consider

h(t) = |x(t)|+
∫ t

0

|x(t)− x(s)|
(t− s)α+1

ds

and the goal is to reach inequality

(24) h(t) ≤ C(1 + Λα(g)) ·
(
1 +

∫ t

0

(
(t− s)−ε(γ) + s−α

)
h(s)ds

)
where ε(γ) ∈ (0, 1) and C a constant with respect to g, x, t. Once we reach inequality
(24), we will apply Lemma 8.4 to the reach the inequality we want to prove.

Given that xt = F
(b)
t (x) +G

(σ)
t (x), applying the triangular inequality we have

h(t) ≤ |x0|+ |F (b)
t (x)|+ |G(σ)

t (x)|+
∫ t

0

|F (b)
t (x)− F

(b)
s (x)|

(t− s)α+1
ds+

∫ t

0

|G(σ)
t (x)−G

(σ)
s (x)|

(t− s)α+1
ds

and we find bounds for these terms which depend on h.
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First, using Proposition 7.7 with s = 0 and applying properties of σ,

|G(σ)
t (x)| ≤ Λα(g)

(∫ t

0

|σ(r, x(r))|
rα

dr + α

∫ t

0

∫ r

0

|σ(r, x(r))− σ(s, x(s))|
(r − s)α+1

ds dr
)
≤

≤ Λα(g)
(
K0

∫ t

0

1 + |x(r)|γ

rα
dr + αM0

∫ t

0

∫ r

0

(r − s)β + |x(r)− x(s)|
(r − s)α+1

ds dr
)
≤

≤ Λα(g)
(
K0

T 1−α

1− α
+

αM0T
β−α+1

(β − α) · (β − α+ 1)
+

+

∫ t

0

[
K0

|x(r)|γ

rα
+
αM0T

α

rα

∫ r

0

|x(r)− x(s)|
(r − s)α+1

ds
]
dr
)
≤

≤ K(1)Λα(g)
(
1 +

∫ t

0

[
|x(r)|γ +

∫ r

0

|x(r)− x(s)|
(r − s)α+1

ds
]
r−αdr

)
,

with K(1) = K0(1 +
T 1−α

1−α ) + αM0(T
α + Tβ−α+1

(β−α)·(β−α+1) ).

Now, from equation (8), applying properties of σ,∫ t

0

|G(σ)
t (x)−G

(σ)
s (x)|

(t− s)α+1
ds ≤

≤ Λα(g)
(
B(2α, 1− α)

∫ t

0

|σ(r, x(r))|
(t− r)2α

dr +

∫ t

0

∫ r

0

|σ(r, x(r))− σ(s, x(s))|
(r − s)α+1(t− s)α

ds dr
)
≤

≤ Λα(g)
(∫ t

0

[
B(2α, 1− α)K0

1 + |x(r)|γ

(t− r)2α
+M0

∫ r

0

(r − s)β + |x(r)− x(s)|
(r − s)α+1(t− s)α

ds
]
dr
)
≤

0 ≤ s ≤ r ≤ ty
≤ Λα(g)

(
B(2α, 1− α)K0

T 1−2α

1− 2α
+M0

∫ t

0

∫ r

0

(r − s)β−α−1

(t− r)α
ds dr+

+
(
B(2α, 1− α)K0 +M0

) ∫ t

0

[ |x(r)|γ

(t− r)2α
+ (t− r)−α

∫ r

0

|x(r)− x(s)|
(r − s)α+1

ds
]
dr
)
≤

≤ K(2)Λα(g)
(
1 +

∫ t

0

[ |x(r)|γ

(t− r)2α
+ (t− r)−α

∫ r

0

|x(r)− x(s)|
(r − s)α+1

ds
]
dr
)
,

with K(2) = B(2α, 1− α)K0(1 +
T 1−2α

1−2α ) +M0(1 +
T 1−2α+β

(β−α)·(1−α) ).

And finally, from equation (19), applying the Boundedness property of b,

|F (b)
t (x)|+

∫ t

0

|F (b)
t (x)− F

(b)
s (x)|

(t− s)α+1
ds ≤

≤ Cα,T

(
L0

∫ t

0

|x(r)|
(t− r)α

dr +B0,α

(∫ t

0

(t− r)−α/(1−α)dr
)1−α)

≤

≤ K(3)
(
1 +

∫ t

0

|x(r)|
(t− r)α

dr
)
,

with K(3) = Cα,T (L0 +B0,αT
1−2α( 1−α

1−2α )
1−α).

Thus,

h(t) ≤ |x0|+
(
Λα(g)(K

(1) +K(2)) +K(3)
)
·
(
1 +

∫ t

0

|x(r)|γ

rα
dr +

∫ t

0

|x(r)|γ

(t− r)2α
dr+

+

∫ t

0

|x(r)|
(t− r)α

dr +

∫ t

0

(
r−α + (t− r)−α

) ∫ r

0

|x(r)− x(s)|
(r − s)α+1

ds dr
)
.(25)
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We obtain different estimates on h(t) depending on the value of γ. First, if γ = 1, h(t)
can be further bounded by

h(t) ≤ |x0|+ 2
(
Λα(g)(K

(1) +K(2)) +K(3)
)
·
(
1 +

∫ t

0

|x(r)| · (r−α + (t− r)−2α) dr+

+

∫ t

0

(
r−α + (t− r)−2α

) ∫ r

0

|x(r)− x(s)|
(r − s)α+1

dsdr
)
≤

≤ C(1 + Λα(g))
(
1 +

∫ t

0

(
r−α + (t− r)−2α

)
h(r)dr

)
,

with C = 2
(
K(1) +K(2) +K(3)

)
. That is, for γ = 1, we have obtained equation (24)

with ε(γ) = 2α.

Now, if γ ∈ [ 1−2α
1−α , 1), we need to apply Hölder inequality on the terms with |x(r)|γ in

equation (25). On one hand, for δ(1) ∈ (0, 2α) with δ(1) < γ and 2α− δ(1) < 1− γ,∫ t

0

|x(r)|γ

(t− r)2α
dr ≤

(∫ t

0

|x(r)|
(t− r)δ(1)/γ

dr
)γ

·
(∫ t

0

(t− r)(−2α+δ(1))/(1−γ)dr
)1−γ

,

so we take δ(1) ∈
(
2α + γ − 1,min{2α, γ}

)
which is a non-empty interval with positive

values and applying the inequality xγ ≤ 1 + x for x ≥ 0 and γ ∈ [0, 1], we obtain∫ t

0

|x(r)|γ

(t− r)2α
≤ K(4)

(
1 +

∫ t

0

|x(r)|
(t− r)δ(1)/γ

dr
)
,

with K(4) =
( ∫ t

0
(t− r)(−2α+δ(1))/(1−γ)dr

)1−γ

.

On the other hand, for δ(2) = αγ, we have∫ t

0

|x(r)|γ

rα
dr ≤

(∫ t

0

|x(r)|
rα

dr
)γ

·
(∫ t

0

r(δ
(2)−α)/(1−γ)dr

)1−γ

≤ K(5)
(
1 +

∫ t

0

|x(r)|
rα

dr
)
,

with K(5) =
(

T 1−α

1−α

)1−γ

Thus, equation (25) leads to

h(t) ≤ |x0|+ C(1 + Λα(g))
(
1 +

∫ t

0

(
r−α + (t− r)−δ(1)/γ

)
h(r)dr

)
,

with C =
(
K(1) + K(2) + K(3)

)
·
(
1 + K(4) + K(5)

)
since δ(1)/γ > α. That is, for

γ ∈ [ 1−2α
1−α , 1), we have obtained equation (24) with ε(γ) = δ(1)/γ.

Finally, if γ ∈ [0, 1−2α
1−α ), we need to apply Hölder inequality again on the terms with

|x(r)|γ in equation (25) provided that γ > 0. Otherwise, these terms can be bounded
by a constant. Following the same procedure as before, now taking δ(1) = αγ and
δ(2) = αγ, we have

h(t) ≤ |x0|+ C(1 + Λα(g)) ·
(
1 +

∫ t

0

(
r−α + (t− r)−α

)
h(r)dr

)
,

with C =
(
K(1)+K(2)+K(3)

)
·
(
1+K(4)+K(5)

)
. If γ = 0, then, the same estimate holds

but with another constant C. That is, for γ ∈ [0, 1−2α
1−α ), we have obtained equation (24)

with ε(γ) = α.
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Once reached inequality (24) with ε(γ) ∈ {2α, δ(1)/γ, α}, given that ε(γ) ≥ α, we have

h(t) ≤ |x0|+ C(1 + Λα(g)) ·
(
1 +

∫ t

0

(
r−α + (t− r)−ε(γ)

)
h(r)dr

)
=

= |x0|+ C(1 + Λα(g)) ·
(
1 +

∫ t

0

(t− r)−ε(γ)r−ε(γ)
[
rε(γ) + (t− r)ε(γ)rε(γ)−α

]
h(r)dr

)
≤

≤ |x0|+ C(1 + Λα(g))
(
1 + (1 + T ε(γ)−α)

∫ t

0

(t− r)−ε(γ)r−ε(γ)tε(γ)h(r)dr
)
.

Finally, h(t) is continuous since x(t) ∈ C1−α(0, T ;Rd) and if we apply Lemma 8.4, we
obtain

||x||α,∞ = sup
t∈[0,T ]

{h(t)} ≤

≤
(
|x0|+ C(1 + Λα(g))

)
dα exp

(
cαT [C(1 + T ε(γ)−α) · (1 + Λα(g))]

1/(1−ε(γ))
)
,(26)

with dα = 4e2 Γ(1−ε(γ))
1−ε(γ) and cα = 2Γ(1 − ε(γ))1/(1−ε(γ)). Given that ∀y ≥ 0 and p ≥ 1,

there exist C
(1)
p , C

(2)
p ≥ 0 constant with respect to y such that (1 + y) ≤ e(1+y) and

e(1+y)p ≤ C
(1)
p eC

(2)
p yp

, equation (26) yields

||x||α,∞ ≤ C1 exp(C2Λα(g)
1/(1−ε(γ)))

for C1, C2 constant with respect to x and g, which concludes the proof.

□
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9. Stochastic integrals and differential equations with respect to the
fractional Brownian motion

We want to apply the results seen so far on stochastic processes with a path-by-path
approach. That is, for almost every ω ∈ Ω, we consider a differential equation of the
form (20). Notice that the resulting solution X : Ω× [0, T ] → Rd will be measurable in
[0, T ] for almost every ω ∈ Ω but it could happen that X is not F-measurable ∀t ∈ [0, T ].
For such purpose, we will prove its measurability in Ω× [0, T ] which will suffice.

Let’s consider B = {Bt : t ∈ [0, T ]} a f.B.m of Hurst parameter H ∈ (1/2, 1), defined in
a complete probability space (Ω,F ,P). In order to use B as the integrator in the gener-

alized Stieltjes integral, we need to check that the paths of B belong to W 1−α,∞
T (0, T )

for some α ∈ (0, 1/2).

We have this result in Proposition 9.3. However, we need first two lemmas.

Lemma 9.1. Garsia-Rademich-Rumsey inequality

For T > 0, d ∈ N, p ≤ 1, α > 1/p and f : [0, T ] → Rd, we have ∀t, s ∈ [0, T ]

|f(t)− f(s)|p ≤ Cα,p|t− s|αp−1

∫ T

0

∫ T

0

|f(x)− f(y)|p

|x− y|αp+1
dx dy,

with the convention 0/0 = 0.

Proof. The proof can be found in [2].

□

Lemma 9.2. For T > 0, let B = {B(t) : t ∈ [0, T ]} be a f.B.m of Hurst parameter H ∈
(0, 1). Then, ∀ε ∈ (0, H) there exists a positive random variable ηε,T with E(ηpε,T ) <∞
∀p ∈ [1,∞) such that ∀t, s ∈ [0, T ]

|B(t)−B(s)| ≤ ηε,T |t− s|H−ε (a.e.).

Proof. Applying Lemma 9.1 with α = H − ε/2 and p = 2/ε, we have ∀t, s ∈ [0, T ]

|B(t)−B(s)|2/ε ≤ CH,ε|t− s|2(H−ε)/ε ξ,

where

ξ =

∫ T

0

∫ T

0

|B(x)−B(y)|2/ε

|x− y|2H/ε
dx dy .

Now, applying Minkowski’s integral inequality on ξε/2 with p = qε/2 where q ≥ 2/ε, we
obtain

||ξε/2||qq = E
([ ∫ T

0

∫ T

0

|B(x)−B(y)|2/ε

|x− y|2H/ε
dx dy

]qε/2)
≤

≤
(∫ T

0

∫ T

0

||B(x)−B(y)||2/εq

|x− y|2H/ε
dx dy

)qε/2

(3)y
=

(∫ T

0

∫ T

0

cq dx dy
)qε/2

= cqε/2q · T qε.

Hence, ξ has finite moments of all orders and by taking ηε,T = CH,εξ
ε/2, we conclude

the proof.

□
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Proposition 9.3. For T > 0, we consider a f.B.m B = {B(t) : t ∈ [0, T ]} of Hurst
parameter H ∈ (1/2, 1) defined in a complete probability space (Ω,F ,P) and α ∈ (1 −
H, 1/2). Then, B has its paths in W 1−α,∞

T (0, T ) P-almost surely.

Proof. Applying Lemma 9.2 with ε = α+H−1
2 , there exists ηε,T a positive random vari-

able with finite moments of all orders such that for almost every ω ∈ Ω

||B(t)||1−α,∞,T = sup
0≤s<t≤T

{ |B(t)−B(s)|
(t− s)1−α

+

∫ t

s

|B(y)−B(s)|
(y − s)2−α

dy
}
≤

≤ ηε,T sup
0≤s<t≤T

{
(t− s)(H+α−1)/2 +

∫ t

s

(y − s)(H+α−3)/2
}H + α − 3 < −2y
<∞.

□

In fact, we also need the estimates computed involving the operator Λα in the deter-
ministic approach. However, we will need the set of Λα(g) for g any path of B. Thus,
we will define the following random variable.

Definition 9.4. For T > 0, we consider B = {B(t) : t ∈ [0, T ]} a f.B.m of Hurst
parameter H ∈ (1/2, 1) and α ∈ (1 − H, 1/2). We denote by G : Ω → R the random
variable

G = Λα(B) =
1

Γ(1− α)
sup

0≤s≤t≤T

{
|D1−α

t− (Bt−)(s)|
}
.

The random variable G is measurable with respect to F and with Proposition 9.3 and
Remark 7.3 it takes finite values almost surely. The following Proposition gives us more
properties on G.

Proposition 9.5. For T > 0, we consider B = {B(t) : t ∈ [0, T ]} a f.B.m of Hurst
parameter H ∈ (1/2, 1) and α ∈ (1−H, 1/2). Then, ∀p ∈ [1,∞)

E
(

sup
0≤s≤t≤T

{
|D1−α

t− (Bt−)(s)|p
})

<∞.

Proof. Given that if ε ∈ (0, α+H − 1), then, ε < H with α+H − 1 > 0, we can apply
Lemma 9.2 with this ε and we know there exists ηε,T a random variable with finite
moments of all orders such that ∀s, t ∈ [0, T ] with s < t

|D1−α
t− (Bt−)(s)| ≤

1

Γ(α)

( |B(s)−B(t)|
(t− s)1−α

+ (1− α)

∫ t

s

|B(s)−B(y)|
(y − s)2−α

dy
)
≤

≤ ηε,T
Γ(α)

(
(t− s)H−ε+α−1 + (1− α)

∫ t

s

(y − s)H−ε+α−2dy
)
=

=
(H − ε) · (t− s)H−ε+α−1

(H − ε+ α− 1) · Γ(α)
ηε,T .

Thus, for p ≥ 1

E
(

sup
0≤s≤t≤T

{
|D1−α

t− (Bt−)(s)|p
})

≤
∣∣∣ (H − ε) · TH−ε+α−1

(H − ε+ α− 1)Γ(α)

∣∣∣p · E(|ηε,T |p) <∞.

□
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Remark 9.6. Under the hypothesis in Proposition 9.5, given that(
sup

0≤s≤t≤T

{
|D1−α

t− (Bt−)(s)|
})p ≤ sup

0≤s≤t≤T

{
max{1, |D1−α

t− (Bt−)(s)|p}
}
,

we know G has finite moments of all orders.

On the integrator side, we have verified that we can apply the results in the previous
sections. Now, we specify what type of functions we are going to integrate so that the
resulting generalized Stieltjes integral is well-defined.

Let’s consider u = {ut : t ∈ [0, T ]} a stochastic process defined in (Ω,F ,P) with paths in

Wα,1
0 (0, T ) with α ∈ (1−H, 1/2) almost surely. Then, the generalized Stieltjes integral∫ T

0
usdBs is well-defined and in fact, with Proposition 7.6∣∣∣ ∫ T

0

usdBs

∣∣∣ ≤ G||u||α,1 (a.e.).

However, we do not need u to be measurable with respect to F for such integral to be
well-defined almost surely. Therefore, the following Theorem guarantees the path-by-
path existence and uniqueness of solution to (1) and under some additional conditions,
the solution has finite moments of all orders.

Before stating the following Theorem, we remark that in this section we have considered
B to be a one-dimensional f.B.m. for simplicity. However, all results in this section
still hold for the m.f.B.m. of independent components and the same Hurst parameter
H ∈ (1/2, 1). In the multivariate case, the constants might depend on its dimension,
and how it depends is determined by the norm in Rd.

Theorem 9.7. For T > 0, d,m ∈ N, we consider X0 a Rd random vector and B =
{Bt : t ∈ [0, T ]} a m-dimensional fractional Brownian motion of Hurst parameter H ∈
(1/2, 1) and with independent components, with X0, Bt defined in a complete probability
space (Ω,F ,P). Let’s take σ, b satisfying hypothesis H1

σ and Hb with β > 1 − H and
δ > 1/H − 1.

If α ∈ (1−H,α0) and ρ ≥ 1/α, then, there exists a unique solution X ∈
L0(Ω,F ,P;Wα,∞

0 (0, T ;Rd)) to the following stochastic differential equation

Xi
t = Xi

0 +

m∑
j=1

∫ t

0

σi,j(s,Xs)dB
j
s +

∫ t

0

bi(s,Xs)ds ∀t ∈ [0, T ] , ∀i ∈ {1, . . . , d}

for almost every ω ∈ Ω, where α0 = min{1/2, β, δ/(1 + δ)} and

L0(Ω,F ,P;Wα,∞
0 (0, T ;Rd)) = {X : Ω →Wα,∞

0 (0, T ;Rd)}
/
{X = Y (a.e.)}.

In this case, for almost every ω ∈ Ω, Xt(ω) ∈ C1−α(0, T ;Rd).

Moreover, if hypothesis H2
σ is also satisfied, α ∈ (1−H,min{α0,

2−γ
4 }) andMN , LN ,K0,

b0 do not depend on ω ∈ Ω almost surely, then, the solution X satisfies

E
(
||X||pα,∞

)
<∞ ∀p ≥ 1.

Proof. As we have seen before in this section, the paths of B are P-almost surely in
W 1−α,∞

T (0, T ;Rm). Then, for almost every ω ∈ Ω, we can apply Theorem 8.3 with
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g = B(ω) and so, we obtain xt(ω) a deterministic solution to (20). This yields to the
unique solution

X : Ω −→Wα,∞
0 (0, T ;Rd)

ω 7−→ xt(ω)

to equation (1) in L0(Ω,F ,P;Wα,∞
0 (0, T ;Rd)). In particular, with Theorem 8.3 Xt(ω) ∈

C1−α(0, T ;Rd) for almost every ω ∈ Ω. This proves the first part of the Theorem.

As for the second part, we first prove the solution X is F × B([0, T ])-measurable. In
the first part of the proof we have applied Theorem 8.3 which proves the existence of
solutions using Lemma 8.1. For almost every ω ∈ Ω, Xt(ω) is the || · ||α,∞-limit of
{yn(ω)}∞n=0 where yn+1(ω) = L(ω, yn(ω)) ∀n ≥ 0 and

L(ω, y) := x0(ω) + F
(b(ω))
t (y) +G

(σ(ω))
t (y).

Taking y0 = X0 which is F ×B([0, T ])-measurable since it is constant in time, {yn}n≥0

are measurable as well. Consequently, X is F × B([0, T ])-measurable.

Now, with this result we can check the solution has finite moments of all orders. Applying
Proposition 8.5 and taking into account thatMN , LN ,K0, b0 inH1

σ,H
2
σ,Hb are constant

with respect to ω ∈ Ω almost surely, we know that there exist C1, C2 ≥ 0 constants such
that

||X||α,∞ ≤ C1 exp(C2G
κ) (a.e.),

where κ is given by (23). This inequality yields ∀p ≥ 1

E(||X||pα,∞) ≤ C1E(exp(C2pG
κ)).

Applying Fernique’s Theorem, whenever κ < 2

(27) E(||X||pα,∞) ≤ C1E(exp(C2pG
κ)) <∞ p ≥ 1.

Therefore, the solution X has finite moments of all orders.

Finally, we need to check that κ < 2 so that (27) holds. Given that α < min{1/2, 2−γ
4 },

we have κ < 2 for all possible values of γ ∈ [0, 1].

□

Remark 9.8. Under the hypothesis of Theorem 9.7, we know there exists a unique
solution X ∈ L0(Ω,F ,P;Wα,∞

0 (0, T ;Rd)). Following the proof of the Theorem, we know
X is measurable in Ω× [0, T ] which implies X(·, t) is F-measurable and {Xt : t ≥ 0} is
a stochastic process with trajectories in Wα,∞

0 (0, T ;Rd) almost surely.

Hence, there exists a unique solution to (1) in the set of stochastic processes of parameter
set [0, T ] with values in Rd and with trajectories in Wα,∞

0 (0, T ;Rd) almost surely.
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10. Conclusions

We have achieved our goal of reviewing and making accessible the research paper [7].
Below, we specify what tasks were done.

In chapter 4 we introduce the notions of Riemann-Liouville fractional integral and Weyl
derivative. We have proved they are well-defined and some results we need afterwards.
This introduction to the fractional integrals and derivatives is briefly mentioned in [7] so
we have included some results in [8, 10, 3, 4], providing the proof when possible.

[7] defines the generalized Stieltjes integral and gives some results related to such integral,
however, without their proof. In chapter 5 we define the generalized Stieltjes integral
and check it is well-defined, we leave out the unused results, and provide the proof for
the used ones. We have devoted a lot of time to these tasks, in particular, to check the
additivity property of the generalized Stieltjes integral, using [8].

In the following chapter, 6, we consider the fractional Sobolev spaces and prove that the
generalized Stieltjes integral is well-defined on them.

In chapter 7, we do not add additional results with respect to [7]. However, we give
exhaustive proofs on the presented estimates.

The corresponding chapter 8 in [7] consists of stating and proving Theorem 8.3 and
Proposition 8.5. However, it makes use of some results from the appendix. In our
thesis, we move these results from the appendix to chapter 8 as lemmas and prove them
as long as they are in the scope of this thesis. In particular, we follow step-by-step the
proofs of Theorem 8.3 and Proposition 8.5 providing the steps taken for granted.

Finally, in chapter 9 we give an extended explanation on how the results in the previous
sections can be applied on the fractional Brownian motion, providing the proof for such
statements. Then, we state and prove the main Theorem, 9.7, and add a Remark on
the measurability of the solution.

As a personal conclusion, I have realized that papers like [7] can not be self-contained
and at the same time have a manageable length: either the length or the completeness
must suffer. Also, it seems to me that a difficult and relatively recent topic like stochastic
calculus needs of a very careful approach from the part of researchers to avoid missing
parts in their complex constructions.



43

References

[1] P. Embrechts and M. Maejima. Self-similar Processes. Princeton University Press, 2002.

[2] A. Garsia, E. Rodemich, and H. Rumsey. A real variable lemma and the continuity of paths of

some gaussian processes. Indiana University Mathematics Journal, 20:565–578, 1970.
[3] G. Hardy and J. Littlewood. Some properties of fractional integrals. i. Mathematische Zeitschrift,

27:565–606, 1928.

[4] R. Hilfer. Threefold introduction to fractional derivatives. In R. Klages, G. Radons, and I. Sokolov,
editors, Anomalous Transport: Foundations and Applications, pages 17–73. Wiley, 2008.

[5] B. Mandelbrot and J. van Ness. Fractional brownian motions, fractional noises and applications.
SIAM Review, 10:422–437, 1968.

[6] E. Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional sobolev spaces, 2011.

[7] D. Nualart and A. Rascanu. Differential equations driven by fractional brownian motion. Col-
lectanea mathematica, 53:55–82, 2001.

[8] S. Samko, I. Marichev, and A. Kilbas. Fractional integrals and derivatives: Theory and applica-

tions. Taylor &amp; Francis, 2002.
[9] A. Shaposhnikov and L. Wresch. Pathwise vs. path-by-path uniqueness. arXiv:2001.02869, 2020.

[10] M. Zähle. Integration with respect to fractal functions and stochastic calculus. i. Probability Theory

and Related Fields, 111(3):333–374, 1998.


	1. Introduction
	2. Motivation and objectives
	3. Background
	3.1. The fractional Brownian motion
	3.2. Beta and Gamma functions

	4. Fractional integrals and derivatives
	5. Generalized Stieltjes integral
	6. The generalized Stieltjes integral on fractional Sobolev spaces
	7. A priori estimates
	8. Deterministic differential equations involving the generalized Stieltjes integral
	9. Stochastic integrals and differential equations with respect to the fractional Brownian motion
	10. Conclusions
	References

