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Abstract

Persistent homology is a technique from the field of algebraic topology for the anal-
ysis and characterization of the shape and structure of datasets in multiple dimen-
sions. Its use is based on the identification and quantification of topological patterns
in the dataset across various scales. In this thesis, persistent homology is applied
with the objective of extracting topological descriptors from three-dimensional car-
diovascular magnetic resonance (CMR) imaging. Thereafter, topological descriptors
are used for the detection of cardiovascular diseases by means of Machine Learning
(ML) techniques.

Radiomics has been one of the recently proposed approaches for disease diagno-
sis. This method involves the extraction and subsequent analysis of a significant
number of quantitative descriptors from medical images. These descriptors offer a
characterization of the spatial distribution, texture, and intensity of the structures
present in the images.

This study demonstrates that radiomics and topological descriptors achieve com-
parable results, providing complementary insights into the underlying structures
and characteristics of anatomical tissues. Moreover, the combination of these two
methods leads to a further improvement of the performance of ML models, thereby
enhancing medical diagnosis.
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Resum

L’homologia persistent és una tècnica del camp de la topologia algebraica que per-
met l’anàlisi i la descripció de la forma i l’estructura de conjunts de dades en di-
mensions arbitràries. El seu ús es fonamenta en la identificació i la quantificació
de patrons topològics que persisteixen en els conjunts de dades al llarg de diferents
escales.

En aquest estudi s’aplica l’homologia persistent amb l’objectiu d’extreure des-
criptors topològics de ressonàncies magnètiques cardiovasculars en dimensió 3. Aque-
sts descriptors topològics seran utilitzats per a detectar malalties cardiovasculars
mitjançant tècniques de Machine Learning.

L’ús dels radiomics és un dels procediments proposats en els darrers anys per
resoldre aquest problema. Aquest mètode consisteix en l’extracció i posterior anàlisi
d’un nombre elevat de descriptors quantitatius d’imatges mèdiques. Aquests de-
scriptors ofereixen una caracterització de la distribució espacial, la textura i la
intensitat de les estructures presents en les imatges.

En aquest estudi, es demostra que els radiomics i els descriptors topològics pro-
porcionen resultats comparables, tot i que fan referència a característiques diferents
dels teixits i de les estructures anatòmiques. Mentre que els radiomics se centren
en la quantificació de la forma, la topologia fa referència a la seva textura. També
es demostra que la combinació d’aquests dos mètodes aconsegueix augmentar les
seves mètriques d’avaluació individuals i, per tant, millorar el diagnòstic mèdic.
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1 Introduction

1.1 Motivation

The range of diseases that affect the heart and blood vessels, which are referred
to as cardiovascular diseases, have been categorized as the most common cause of
morbidity and mortality worldwide [13]. To overcome the challenges posed by these
diseases, early and accurate diagnosis is essential [14].

In recent years, there has been a notable surge in the adoption of Artificial Intelli-
gence (AI) in the medical field. One prominent area of application is cardiovascular
imaging [29], including cardiovascular magnetic resonance (CMR) imaging, which
is considered the reference modality for evaluating heart structure and function.
This is primarily due to the large amount of data generated by modern imaging
systems that makes manual assessment of CMR a laborious, time-consuming and
expensive process. At the same time, Machine Learning (ML), a subfield of AI,
holds tremendous potential for automated CMR-based diagnosis by leveraging past
observations to uncover hidden and complex patterns that may otherwise go unno-
ticed. Thereby, efficiency, accuracy, and cost-effectiveness of diagnostic procedures
are improved [12], [19], [30].

Topology is a branch of mathematics that concerns the study of the proper-
ties and characteristics of geometric spaces which are preserved under continuous
transformations. In applied mathematics, topological data analysis (TDA) is an
analytical approach that applies concepts from topology to explore discrete data.
Dealing with high-dimensional, incomplete and noisy data can be difficult, as tra-
ditional methods may struggle to extract meaningful information [2], [16]. TDA
offers a versatile framework to analyze such data, overcoming the limitations of
specific metrics and offering advantages like dimensionality reduction and robust-
ness against noise [1]. Overall, TDA allows a more comprehensive understanding of
the underlying structures. Furthermore, it is assumed that it could provide medical
research with information about the functional features of the systems which are
being studied [1].

Traditionally, CMR data can be represented as a collection of coordinates which
form a discrete set of points in a 4-dimensional stereotactic space due to the fact
that time is included. However, in this study time does not represent an additional
dimension because a 3-dimensional image is considered for each of the two different
time-points which are end-diastole and end-systole. TDA-based descriptors cannot
be extracted directly from this type of structure because it requires a non-discrete
space. Therefore, topological signatures are used in order to detect and represent
shape features such as connectivity, loops, cavities, flares, or clusters [2].

In contrast with other analytical methods, a main branch of TDA named persis-
tence homology, exhibits invariance to small perturbations, which provides a distinct
advantage when considering anatomical applications. Additionally, an important
benefit of using TDA is its ability to recover structure in higher dimensions without
requiring dimensionality reduction [6].
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1.2 Objectives

The aim of this thesis is to improve diagnosis of cardiovascular diseases by lever-
aging Topological Data Analysis and Machine Learning. More precisely, the main
objectives are the following:

• Examine and analyze the structural characteristics derived from images using
topological methods, and particularly persistent homology, leading to the de-
velopment of novel descriptors for assessing cardiac health from CMR images.

• Explore and comprehend the most common machine learning approaches used
in image-based diagnosis.

• Combine the aforementioned topology-based CMR descriptors with state-of-
the-art machine learning algorithms to improve diagnosis of cardiac diseases
using CMR images.

• Enhance the classification outcomes achieved through radiomics by incorpo-
rating topological descriptors.

1.3 Contributions

In this work, topological features were extracted from 3-dimensional CMR images
for subsequent diagnosis of cardiac diseases by means of Machine Learning, resulting
in a novel pipeline for diagnosis. This study also distinguishes itself by the use of
persistence descriptors in homological dimension 2 and their significantly better
contributions to classification than features in homological dimensions 0 and 1.

The proposed model, combining radiomis and topological features, is tested on
a dataset of CMR images from the MICCAI 2017 Automated Cardiac Diagno-
sis Challenge (ACDC), a challenge which was organized for benchmarking CMR
segmentation and classification algorithms [4]. The individual performance of ra-
diomics and TDA-based features is shown to be comparable. Nevertheless, the
integration of these methods yields superior accuracy, thereby enhancing medical
diagnoses. The results yielded by this research demonstrate encouraging outcomes
in the implementation of topological data analysis within the medical domain and
suggests prospective avenues for further investigation.
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2 Mathematical background

Topological data analysis is a mathematical field which combines techniques from
algebraic topology and computational geometry in order to analyze and understand
complex datasets. With this aim, topological features that provide insights into
shape are extracted. The aforementioned shape features encompass connectivity,
loops, cavities, flares or clusters.

For this intention, qualitative and quantitative methods have been developed.
However, in this study only quantitative methods by means of persistent homology
will be carried out.

The references [6], [20], [21] and [28] greatly contributed to the development of
this section.

2.1 Persistent homology

Persistent homology is a feature extraction method which consists of assigning mul-
tiscale topological descriptors to sublevel sets Xα = {x ∈ X : f(x) ≤ α} of a given
real-valued function f : X → R on a set X.

The function f : X → R introduced in the preceding definition is commonly
referred to as the filter function. The aforementioned sublevel sets are naturally
nested, which implies that Xα ⊂ Xβ if α ≤ β.

Moreover, this collection of subsets form a filtration of X, and persistence records
the evolution of the topology of this filtration as a function of α. Further details on
filtrations and calculations of their descriptors will be given in subsequent sections.

2.2 Simplicial complexes

Definition 2.1. Given a set of points S = {u0, u1, . . . , un} in Rd,
∑n

i=0 λiui is
referred to as an affine combination of the set S if

∑n
i=0 λi = 1.

The affine hull of a given set S is defined as the set of all affine combinations,
which will be an n-plane if the n+ 1 points are affinely independent.

A set S = {u0, u1, . . . , un} is affinely independent if for any two identical affine
combinations

∑n
i=0 λiui =

∑n
i=0 µiui it follows that λi = µi for all i.

An affine combination such that λi > 0 for all i is called a convex combination.
The convex hull of a set is the collection of all its convex combinations.

Definition 2.2. A k-simplex σ is defined as a convex hull of a set S of k+1 affinely
independent points.

If σ is the convex hull of {u0, u1, . . . uk}, then the points ui will be referred to as
vertices of σ, while edges are convex hulls of pairs of vertices. The convex hull of a
subset H ⊆ S with H ̸= ∅ is called a face of the k-simplex σ and it is denoted as
τ ≤ σ. A proper face is a face τ satisfying the condition that H ̸⊆ S.
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Therefore, simplicial complexes generalize the notion of graphs, which store the
relationships between data points encoded as 1-dimensional structures. A collection
of simplices is called a simplicial complex if all faces of any simplex in the collection
are also in the collection.

In the following definition, this concept is presented in a more formal manner.

Definition 2.3. A simplicial complex K is defined as a finite collection of simplices
such that for any simplex σ ∈ K, if τ ≤ σ then τ ∈ K. Furthermore, the following
condition must also be satisfied: for all σ, σ′ ∈ K, their intersection is a face of both
σ and σ′ or it is empty.

Simplicial complexes offer a straightforward way to construct filtrations. Each
simplex σ in a complex can be associated with a real value f(σ) that represents
the parameter value at which it enters the filtration. The only requirement for the
filter function f is that it satisfies the following consistency condition: If σ is a face
of a higher-dimensional simplex τ (such as an edge on the boundary of a triangle),
then f(σ) ≤ f(τ).

This ensures that simplices appear in the filtration in a logical order. As the sub-
level sets of a filtered simplicial complex evolve, the introduction of specific edges
or higher-dimensional simplices can alter the topological structure of the underly-
ing space. Homology provides a precise measure of topology by quantifying the
number of connected components (0-dimensional homology), cycles (1-dimensional
homology) or cavities (2-dimensional homology) present in the space. Consequently,
changes in homology occur when connected components merge or new cycles are
formed. These topological changes are attributed to critical simplices. Persistent
homology captures the parameter values at which critical simplices arise, identi-
fies the dimension in which homology changes occur, and pairs critical values by
matching the appearance and disappearance of homological features.

Definition 2.4. The underlying topological space of a geometrical simplicial com-
plex X is the space

|X| = ∪
σ∈X

σ

with the topology induced by the Euclidean topology in RN .

Definition 2.5. An abstract simplicial complex with vertex set V = {vi}i∈I is a
set K of finite subsets of V such that elements of V belong to K and every subset
σ ⊂ K also belongs to K.

Definition 2.6. A point cloud is a finite set of points X = {xi}i∈I in RN for some
N > 1.

Every point cloud X is a metric space with the Euclidean distance restricted to X.

In previous sections, homology was defined as a mathematical tool to be applied
to simplicial complexes. In the present study, training data will be stored as point
clouds. Therefore, two methods for building simplicial complexes from a given
dataset will be described below.
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Definition 2.7. (Čech complex ) Given a point cloud X in RN and ϵ ∈ R+, Cϵ(x)
is the abstract simplicial complex with vertex set X whose k-faces are collections
{xi0 , . . . , xik} such that the intersection of the closed balls B̄ ϵ

2
(xi0) ∩ · · · ∩ B̄ ϵ

2
(xik)

contains at least one point.

Definition 2.8. (Vietoris-Rips complex ) Given a point cloud X in RN and ϵ ∈
R+, Rϵ(x) is the abstract simplicial complex with vertex set X whose k-faces are
collections {xi0 , . . . , xik} of diameter at most ϵ, that is, d(xir , xis) ≤ ϵ for all r, s.

2.3 Cubical complexes

Firstly, the necessary concepts will be presented for the subsequent definition of a
cubical complex. See [16] and [17] for more detailed information.

Definition 2.9. Elementary intervals are divided into non-degenerate and degen-
erate. The first ones are intervals of a form [n, n+1] for n ∈ N and their boundary
is a chain ∂[n, n+ 1] = [n+ 1, n+ 1]− [n, n]. Degenerate intervals are of the form
[n, n] for n ∈ N and their boundary is ∂[n, n] = 0.

Definition 2.10. An elementary cube σ ⊂ Rn, which can be referred to as an
n-cube, is defined as a product of elementary intervals

σ = I1 × · · · × In,

where n represents the number of intervals, degenerate or not, and is called embed-
ding dimension. The number of non-degenerate elementary intervals in the defini-
tion is named the dimension of the cube σ.

Accordingly, 3-cubes are also known as voxels, 2-cubes as squares, 1-cubes as
edges and 0-cubes as vertices.

Definition 2.11. The boundary of a n-cube σ is a chain obtained as follows:

∂σ = (∂I1 × · · · × In) + (I1 × ∂I2 × · · · × In) + · · ·+ (I1 × I2 × · · · × ∂In).

A cubical complex is a combination of cubes closed under the operation of taking
boundary, which means that the boundary of every cube from the collection is in
the collection.

More formally, a cubical complex can be defined as follows:

Definition 2.12. A cubical complex C is a collection of n-cubes satisfying that if
c ∈ C and c′ ⊆ c then c′ ∈ C.

If filtration values are assigned to cubes, a filtered cubical complex is obtained.

It is worth mentioning that cubical complexes can be converted into simplicial
complexes by cutting up cubes into simplicial pieces.
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2.4 Filtrations

Definition 2.13. A filtration of a simplicial complex K is defined as a nested family
of subcomplexes (Kr)r∈T where T ⊆ R satisfying that for all r, r′ ∈ T if r ≤ r′ then
Kr ⊆ Kr′ , and K = ∪

r∈T
Kr.

More generally, a filtration of a topological space M is described as a nested
family of subspaces (Mr)r∈T where T ⊆ R such that for all r, r′ ∈ T and r ≤ r′ then
Mr ⊆ Mr′ , and M = ∪

r∈T
Mr.

2.4.1 Filtrations built on top of data

Definition 2.14. Given a subset X of a compact metric space (M,ρ), theVietoris-
Rips complex (Rϵ(x))r∈R and the Čech complex (Cϵ(x))r∈R are filtrations. The
parameter ϵ is defined as the resolution of the given dataset X.

2.4.2 Sublevel set filtrations

As pointed out in [6], there are two different ways of computing a cubical complex
from a given d-dimensional image:

• Lower-star filtration: Voxels are viewed as vertices and higher dimensional
cubes as coming from voxel adjacencies. In that way, an edge would be formed
by pairs of adjacent pixels and squares would come from adjacent voxels, and
so on.

This can be extended to the entire complex as follows:

Definition 2.15. Given a cube τ and a filter function f , f(τ) is defined as
max

σ
f(σ), where the maximum is taken over all vertices σ < τ .

Therefore, not square can emerge until all the constituent vertices appear.

• Upper-star filtration: Voxels are viewed as d-dimensional cubes and the lower-
dimensional cubes as the faces of these voxels.

This can be extended as before to the entire complex:

Definition 2.16. Given a cube σ and a filter function f , f(τ) is defined as
min
τ

f(τ) where the minimum is taken over all voxels σ contained in τ .

In that way, not until at least one of the voxels which form the cube appears,
can a cube come into view.
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2.5 Persistence diagrams

When applying persistent homology, a collection of intervals called a barcode is
obtained. These intervals represent the lifetime of topological features (such as
connected components, cycles or cavities) as the threshold parameter changes, from
a birth parameter value b until a death parameter value d.

Definition 2.17. A persistence diagram is a topological signature which encodes
a barcode as a collection of points by mapping each interval (b, d) to their corre-
sponding point (b, d) ∈ (R ∪ {−∞} ∪ {∞})2.

Persistence diagrams can be transformed into vectors with a vectorization pro-
cess. The coordinates (b, d) of each point in a persistence diagram correspond to
the birth and death of a homology generator.

The points that exhibit proximity to the diagonal correspond to instances where
death is close to birth. Consequently, the persistence of the topological feature is
minimal and is generally viewed as noise or insignificant fluctuations in the data.

It is important to note that the presence of a point at infinity in homological
dimension 0 is an inherent characteristic of persistence diagrams, owing to the fact
that there is always a connected component that cannot disappear or merge with
other components.

Figure 1: Barcode Figure 2: Persistence diagram

On the one hand, in Figure 1, a barcode of a specific 3-dimensional image is
shown. Red colour represents topological features from dimension 0 which present
the birth and death of connected components; green colour stands for 1-dimensional
features as cycles, and, finally, blue colour corresponds to 2-dimensional features
like cavities.

On the other hand, in Figure 2, its corresponding persistence diagram is ex-
hibited. It can be perceived that the topological features which have the shortest
persistence in the barcode become the closest points to the diagonal in the persis-
tence diagram. It is important to note that the point at the infinity in dimension 0
is not displayed due to the chosen axis limits when plotting.
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2.6 Properties of functional persistence

Some of the properties of functional persistence that support its use are described
below:

• Stability to small perturbations of the input data, although it is not stable
to outliers. This is caused by the fact that distance between the barcodes for
f, g ∈ X is bounded by ∥ f − g ∥∞.

• Functional persistence is said to be flexible because there is a single persis-
tence diagram associated to each pair (X, f). The lack of additional param-
eters makes possible its straightforward application but no data-dependent
featurizations.

Nevertheless, it is important to mention that, due to the fact that there are many
(X, f) producing identical barcodes, there is a difficulty in distinguishing images.

2.7 Persistence descriptors

Persistence descriptors are defined as numerical or vectorized summaries of the in-
formation obtained from persistence diagrams. They are especially significant for
classification tasks, owing to the fact that they characterize different regions in the
data and provide robust and interpretable results. Furthermore, their lower dimen-
sions, compared to persistence diagrams, significantly reduces the computational
costs of classification procedures.

2.7.1 Total persistence

Total persistence can be defined as a quantitative measure derived from persistent
homology which analyzes the evolution of topological features, such as connected
components, loops, or voids.

Total persistence measures the sum of the horizontal lengths of all the intervals
in a barcode. Each interval corresponds to the existence of a topological feature
for a certain range of threshold values. It is worth noting that total persistence
is computed for each of the dimensions in the persistence diagram. Therefore, for
3-dimensional images, total persistence in homological dimensions 0, 1 and 2 is
computed.

Total persistence of a persistence diagram D is computed as follows:

T (D) :=
∑

(b,d)∈D

|d− b|.

By considering total persistence, TDA enables the characterization of the global
topological structure and the identification of meaningful features that persist across
different scales. It provides valuable insights into the robustness and stability of
the topological properties of the dataset.
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2.7.2 Entropy

Entropy is another numerical measure obtained from a persistent diagram. In this
context, it quantifies the degree of dispersion or scattering of points in the diagram.
It provides insight into the complexity and uncertainty associated with the topo-
logical structure of the dataset. The entropy of a given persistence diagram D is
defined as follows:

E(D) := −
n∑

i=1

di − bi
L

log2

(di − bi
L

)
,

where L =
n∑

i=1

(di − bi), and (bi, di) ∈ D for all i ∈ I.
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3 Dataset

In the present work, the methodology was implemented using the Automated car-
diac diagnosis challenge (ACDC) dataset. It was created for the homonymous
challenge, and it is composed of real clinical exams conducted at the University
Hospital of Dijon (France).

The ACDC dataset contains information from 150 patients, evenly divided into
five groups, including four disease categories and one group of normal patients [15].
The classes were equally distributed in both the Train and Test datasets provided
by the challenge organizers, which are formed by 100 and 50 patients respectively.
Therefore, it is said to be a balanced dataset. Data is stored in NIfTI format.

The study includes five distinct groups, each characterized as follows:

• 30 normal subjects (NOR)

• 30 patients with previous myocardial infarction, exhibiting an ejection fraction
of the left ventricle lower than 40% and several myocardial segments with
abnormal contraction (MINF)

• 30 patients with dilated cardiomyopathy, demonstrating a diastolic left ven-
tricular volume >100 mL/m2 and an ejection fraction of the left ventricle
lower than 40% (DCM)

• 30 patients with hypertrophic cardiomyopathy, presenting a left ventricular
cardiac mass higher than 110 g/m2, several myocardial segments with a thick-
ness higher than 15 mm in diastole, and a normal ejection fraction (HCM)

• 30 patients with abnormal right ventricle, characterized by a volume of the
right ventricular cavity higher than 110 mL/m2 or an ejection fraction of the
right ventricle lower than 40% (RV)

The dataset is separated into training and hold-out testing set by the challenge
organizers. The training set includes 100 patients, i.e. 20 patients for each group,
while the testing set includes 50 patients, i.e. 10 patients per group.

As it can be observed, each group has been defined based on different physiolog-
ical parameters.

For each patient, the following data are provided:

• A 4-dimensional CMR image, with the fourth dimension representing the
phase of the cardiac cycle. From this image, 3-dimensional CMR images were
extracted to capture the states of end-systole (ES) and end-diastole (ED).

• 3-dimensional segmentations of the heart corresponding to the two cardiac
phase of interest, ie. ED and ES. It is divided into three regions of interest:
left ventricle (LV), myocardium (MYO) and right ventricle (RV).
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• A file with information regarding the patient, such as the frame of the end-
systole or end-diastole.

The objective of utilizing segmentations is to partition the image into distinct
anatomical structures, allowing for their individual characterization and subsequent
analysis.

Formally, the process of segmentation involves utilizing masks, which are arrays
containing distinct numbers that represent different regions of interest (ROIs) within
an image. These masks serve as multi-class maps, where each number corresponds
to a specific region.

To obtain the texture of the ROIs, the Hadamard product, also referred to
as element-wise multiplication, is performed between the original grayscale CMR
and the segmentation mask. The Hadamard product operates on corresponding
elements of two arrays and produces a new array where each element is the product
of the corresponding elements in the original image and the segmentation mask. It
can be defined as follows:

Definition 3.1. Let us denote the original image as I(x, y, z) where (x, y, z) rep-
resents the spatial coordinates of a voxel, and the segmentation mask as S(x, y, z)
where each value represents a specific structure or region. The segmented image,
denoted as SI(x, y, z), is obtained through the Hadamard product as follows:

SI(x, y, z) = I(x, y, z) ∗ S(x, y, z)

By performing the Hadamard product, the values of the original image are se-
lectively multiplied by the corresponding values in the segmentation mask. This
process suppresses the information outside the regions of interest, facilitating sub-
sequent analysis, visualization, and interpretation.

Figure 3: Cardiac cine-MRI, segmentation mask and segmented images
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The first image located in the top-left corner corresponds to the cardiac cine-
MRI. The adjacent image corresponds to the segmentation, which, when applied,
results in the image in the upper right corner where the isolated heart can be
observed.

The three images at the bottom of Figure 3 exhibit the segmented images ob-
tained according to anatomical and functional characteristics of the heart. The
different structures shown are the right ventricle, the myocardium and the left ven-
tricle from left to right.

The left ventricle is one of the four chambers of the heart which is located in the
lower left portion. It distinguished itself due to its thicker and more muscular walls
compared to the other chambers. On the other hand, the right ventricle is one of
the other chambers of the heart situated in the lower right portion of the heart.
Lastly, the myocardium is a muscular tissue and represents the middle layer of the
heart wall, and it is responsible for the contraction of the heart [31].

Note that, due to their three-dimensional nature, only the middle slice is shown.
However, topological analysis is performed on the 3D image volumes respectively.
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4 Methods

4.1 Topological features extraction

When computing persistence diagrams, filtration is given at the maximal cubes,
and it is then extended by the lower-star filtration to all cubes. So as to invert this
process and compute the persistence diagrams applying the upper-star filtration,
complementary images were computed. These images are calculated substracting
the maximum voxel value of the original image from each voxel value and taking the
absolute value of the difference. Further details on the disparity between the persis-
tence diagrams obtained and therefore the topological descriptors will be detailed
thereafter.

The shape of the initial image is preserved. However, it represents the inverse
of the original image in terms of intensity. The brighter areas in the source image
correspond to the higher voxel values as opposed to the darker areas. On the
contrary, in the complementary image, the higher voxel values come from darker
areas in the source image.

Figure 4: Original and complementary images
corresponding to the middle slice

of the left ventricle at end-diastole CMR
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Figure 5: Persistence diagrams of original and complementary image

On the left, the persistence diagram of a 3-dimensional image of the right ventri-
cle at end-systole is displayed. On the right, the persistence diagram corresponding
to the complementary image is shown.

Note that the red points represent topological features of homological dimension
0, while the green points stand for 1-dimensional features. Lastly, the blue points
represent topological descriptors of homological dimension 2.

As the persistence diagrams state clear dissimilarities from source and comple-
mentary image, the persistence descriptors extracted from them will also be different
as shown in Tables 1 - 2.

Lower-star filtration Upper-star filtration
Total persistence dimension 0 0 3.388
Total persistence dimension 1 3.552 3.608
Total persistence dimension 2 7.173 0.042

Table 1: Total persistences extracted from persistence diagrams in Figure 5

Lower-star filtration Upper-star filtration
Entropy dimension 0 0 2.898
Entropy dimension 1 3.310 3.379
Entropy dimension 2 3.806 0.325

Table 2: Entropies extracted from persistence diagrams in Figure 5
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In Figures 6 and 7 the following function

f(x, y) =
1

x2 + y2 + 1
2

+
3

(x− 3)2 + (y − 3)2 + 1
+

5

(x− 6)2 + (y − 6)2 + 2

is plotted as well as the plane z = 2. Function f is a combination of three Gaussian
functions that simulates the topology of the space. Note that this is a 3-dimensional
simplification due to the fact that in the present work, one higher dimension is
dealt with so as to compute persistence homology in dimension 2 but could not be
graphically represented.

Figure 6: Upper-star filtration computation

On the one hand, in Figure 6, the upper-star filtration is applied. This type
of filtration starts with the entire space as the first subset, treating the voxels as
vertices and gradually including smaller subsets as the parameter decreases or the
scale increases. The subsets are added in a way that preserves the inclusion rela-
tionship, meaning that each subsequent subset contains the previous subset. Each
subset in the filtration corresponds to a specific simplicial complex that captures
the topology of the data at a particular parameter value.

When H0 is computed, 3 connected components are taken into account. Nonethe-
less, there are no cycles to be counted by H1.

Figure 7: Lower-star filtration computation

On the other hand, in Figure 7, the lower-star filtration is applied. Unlike the
upper-star filtration, it starts with the smallest possible subset and progressively
adds larger subsets as the parameter increases or the scale decreases. Similarly to
the upper-star filtration, the subsets are added in a way that maintains the inclusion
relationship, where each subsequent subset contains the previous subset.
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Each subset in the lower-star filtration corresponds to a specific simplicial com-
plex that captures the topology of the data at a particular parameter value. As
the parameter increases or the scale decreases, simplices are gradually added to the
complex, resulting in a sequence of simplicial complexes that represent the evolving
topological features of the data.

When computing the persistent homology in Figure 7 in dimension 0 (H0), the
result is only one connected component. However, there will be 3 cycles counted
for persistent homology in dimension 1 (H1).

It is important to note that while the upper-star filtration builds subsets from top
to bottom (larger to smaller), the lower-starfiltration builds subsets from bottom
to top (smaller to larger). This alternative perspective provides a different lens
through which to analyze the data’s topological properties, potentially revealing
distinct structural insights depending on the chosen filtration approach.
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4.2 Machine learning

Machine Learning can be defined as the automated detection of meaningful pat-
terns in data. It involves the development of computational algorithms and system
programs that have the ability to acquire knowledge and adapt their behaviour so
as to improve their performance over time [8].

It plays an important role in tasks that a human programmer would not be
able to provide specification of how they should be executed. Moreover, machine
learning can also handle large and complex datasets.

Overall, the main aim of machine learning is to progress from individual examples
by means of inductive inference in order to obtain a broader generalization.

The input for learning algorithms is training data, which can be referred to as
experience while their output is expertise. Usually the aformentioned expertise is
in the form of a computer program which can perform some task.

Machine learning algorithms can be divided into two main categories:

• Supervised machine learning : This type of machine learning is based on a
scenario in which the inputs provided contain relevant information that is
missing in the testing set in which the output will be evaluated. In other
words, the model is trained on data that includes relevant information, known
as labels, that may not be available during the evaluation or testing phase.

Therefore, the output is to generate predictions or forecasts for the missing
information in the test dataset. In this context we can conceptualize the envi-
ronment as an instructor that guides the learner by providing the information
regrading the labels.

• Unsupervised machine learning : It presents no distinction between training
and testing data. More precisely, input data is processed so as to capture the
underlying patterns, structures, or relationships within the data, without the
need for explicit labels or predefined outputs as in the supervised case.

In the present work, only supervised machine learning algorithms were used due
to the advantages that they present and the nature of the problem. These types
of algorithms are trained to make highly accurate predictions as they have a clear
aim which is to minimize the difference between predicted and actual values. In
addition, due to the explicit feedback that they receive, an iterative process of
training, evaluation and refinement can be carried out.

However, it is of significance to acknowledge that unsupervised machine learning
has a great impact on fields in which labelled data is scarce or unavailable.

Subsequent definitions will be required for a better understanding of boosting
and bagging methods adopted in this work.
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Definition 4.1. In machine learning, the bias of a predictor is defined as the
difference between the predicted mean value by the model and its actual mean.

High bias values indicate that underfitting process is taking place. Note that
underfitting refers to the incompetence of the model to capture underlying patterns
and relationships in the training data. It arises when a model is overly simplistic
or lacks the required complexity.

Definition 4.2. Variance in machine learning assesses the susceptibility of the
model to fluctuations in the input. Therefore, it determines the extend to which its
predictions may vary.

On the contrast, high variance values denote that the predictor is highly sensitive
to specific characteristics of the training dataset which leads to overfitting.

Some machine learning algorithms rely on the principle of ensembles which lever-
ages the combination of multiple models so as to improve accuracy, robustness and
generalization.

This ensemble techniques can be categorized into two different groups:

• Bagging: This method entails training multiple models separately on diverse
subsets of the training data, often employing techniques like bootstrap sam-
pling. The ultimate prediction is typically derived by aggregating the individ-
ual model predictions through averaging or voting, mitigating the influence
of individual model variances.

• Boosting: It is an iterative procedure in which models are trained sequentially.
Each of the derived models is specifically designed to correct the errors made
by the previous models. The ultimate prediction is obtained by aggregating
the weighted estimations of all the models in the ensemble. This iterative
nature of boosting allows the models to collectively improve its performance
over time, leading to more accurate and robust predictions. In addition, it
focuses not only in variance but also in bias.

4.2.1 Empirical risk minimization

As mentioned before, the machine learning algorithm receives a training set S as
an input which is sampled from an unknown distribution D and labeled by some
target function denoted f . The algorithm aims to produce a predictor hS : X → Y .
Note that the dependence of h on S arises from its definition.

The objective of the algorithm is to discover a predictor hS that minimizes the
discrepancy between the predictions made on unseen data according to the distri-
bution D and the true labels defined by the target function f .

Definition 4.3. The error in which the classifier incurs over the training sample is
called empirical error and is defined as follows:

LS(h) =
|{i ∈ [m] : h(xi) ̸= yi}|

m
,
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where [m] = {1, . . . ,m} and m is the number of samples.

The empirical risk minimization process refers to the process of the algorithm to
provide a predictor h which reduces LS(h).

4.2.2 Gradient Boosting

Gradient Boosting is a general ensemble machine learning method which combines
a set of weak learners so as to obtain a strong predictive model [26], [27].

At an iteration t, the model outcomes are weighted based on the results of the
previous iteration t − 1. The outcomes which are predicted correctly are given a
lower weight while the incorrectly labeled have higher weights.

One of its advantages is that it is robust to overfitting and it is based on the
optimization of an arbitrary differentiable loss function. The aforementioned loss
function chosen by default in Python is the one which refers to binomial and multi-
nomial deviance which is appropriate for classification with probabilistic outputs.

The parameters used by this method that were optimized by means of Grid
Search are explained below and this optimization process will be discussed in detail
in subsequent sections:

• learning_rate: It determines the influence of each tree on the final outcome. In
gradient boosting, the process begins with an initial estimate, which is then
refined using the output of each subsequent tree. The learning parameter
controls the extent to which these estimates are adjusted.

Lower values of the learning parameter are typically preferred as they promote
model robustness, enabling better generalization. However, opting for lower
values implies a larger number of trees to effectively capture all the relation-
ships in the data, which can lead to an increase in computational complexity.

• n_estimators : It refers to the quantity of consecutive trees to be constructed.

• max_depth: It indicates the maximum depth of a generated tree. It is used
to control overfitting due to the fact that a higher depth will result in the
learning of the specific patterns in training data by the predictor.

It should be taken into consideration that the parameter random_state was
initialized to 0 in the coding process so as to ensure that the model produces the
same results or behavior when the code is run multiple times, given the same dataset
and hyperparameters.

4.2.3 XG-Boost classifier

XG-Boost, otherwise referenced as Extreme Gradient Boosting, represents an en-
hanced version of a gradient boosting algorithm [24], [25] .
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One of its main advantages is that regularization is applied so that the complexity
of the objective function is controlled adding a penalty and pushing some of its
coefficients to 0.

In contrast with Gradient Boosting which stops when a negative loss in the
split is reached, XG-Boost makes splits until the maximum depth specified and
afterwards it performs backward tree pruning, eliminating splits that do not provide
any positive gain.

The parameters which have been optimized with the use of Grid Search are
detailed below:

• n_estimators : As in Gradient Boosting, this parameter stipulates the number
of successive trees that will be generated.

• max_leaves : It refers to the maximum number of nodes to be added.

4.2.4 K-nearest neighbors

K-nearest neighbors is a non-parametric and supervised learning method used for
classification and regression. When used for classification tasks, as in the present
work, the output is a class label. The algorithm consists of storing feature vec-
tors with each corresponding class labels. Subsequently, the unlabeled vectors are
assigned the most frequent target among the k training samples which are the near-
est. This method relies on computing the distance between the multidimensional
vectors, which is usually the Euclidean distance. In the library Scikit-learn from
Python used for the computations, the Minkwoski metric is applied.

Definition 4.4. Given two multidimensional vectors X = (x1, . . . , xn) and Y =
(y1, . . . , yn) in Rn, its Minkowski distance of order p ∈ Z is estimated as follows:

D(X, Y ) =

(
n∑

i=1

|xi − yi|p
)1/p

.

Particulary, given an instance domain X endowed with a metric function ρ de-
scribed as ρ : X × X → R which computes the distance as defined previously
between two elements of X.

Let S = (x1, y1), . . . , (xm, ym) indicate a sequence of training examples where
(y1, . . . , ym) represent their corresponding labels.

Definition 4.5. For each x ∈ X, π1(x), . . . , πm(x) denotes a reordering according
to the distance to x so that the condition below is satisfied:

ρ(x,xπi(x)) ≤ ρ(x,xπi+1(x)), for all i < m.

The k-NN rule for binary classification states that the output for every x ∈ X
is the majority label among {yπi(x) : i ≤ k}.
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In the coding implementation, the algorithm by default is the one which chooses
which one of the following algorithms outperforms the others: ball-tree, kd-tree and
brute-force search.

• Ball-Tree: It organizes points in a hierarchical structure where each node
represents a ball containing multiple points. The tree recursively partitions
the dataset based on the bounding spheres. Because of the narrowing of the
search space, fast nearest neighbor queries are achieved.

• kd-tree: It is a k-dimensional tree which represents a binary tree structure or-
ganizing points in a k-dimensional space. In this case, the space is partitioned
into hyperplanes perpendicular to the coordinate axes. By adopting this ap-
proach, the points are divided into two subsets at each node. It represents an
advantage in high-dimensional spaces as it enables efficient search for nearest
neighbors.

• Brute-force search: It is characterized by its straightforward approach which
involves computing the distance between a query point and all the other points
in the dataset and its subsequent comparison. Overall, this method does
not rely on any specific structure or optimization techniques although its
computational cost is elevated.

The number of K nearest neighbors is an integer which can be defined by the user
and its selection depends on the data. Larger values of K reduce the effect of noise
although it can reduce the boundaries between classes. However, this parameter can
be estimated with hyperparameter optimization, which will be discussed in more
detail below.

4.2.5 Support vector machine

Definition 4.6. Given a training sample S = (x1, y1), . . . , (xm, ym) with xi ∈ Rd

and yi ∈ {±1}. We say that S is linearly separable if there exists a halfspace (w, b)
such that yi(⟨w,xi⟩+ b) > 0, for all i ∈ [m].

Definition 4.7. Those (w, b) satisfying the previous condition are called ERM
hypotheses.

It is noteworthy to emphasize that for any linearly separable S many ERM
halfspaces can be computed.

Definition 4.8. The margin of a hyperplane, in relation to a training set, is defined
as the minimum distance between a point in the training set and the hyperplane.
When a hyperplane has a large margin, it remains capable of separating the training
set even when instances are slightly perturbed.

The Hard-SVM learning rule is characterized as the algorithm that produces an
ERM hyperplane with the maximum achievable margin, ensuring complete separa-
tion of the training set.
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Proposition 4.9. The distance between a point x and the hyperplane (w, b) where
∥w∥ = 1 is |⟨w,xi⟩+ b|.

From this proposition, it arises the definition of the closest point in the training
set to the separating hyperplane which is as follows:

min
i∈[m]

|⟨w,xi⟩+ b|.

Definition 4.10. Hard-SVM can be formally reformulated as:

argmax
(w,b):∥w∥=1

min
i∈[m]

|⟨w,xi⟩+ b|

such that yi(⟨w,xi⟩+ b) > 0 for all i.

If the linearly separable case is being considered, we can reformulate the problem
as follows:

argmax
(w,b):∥w∥=1

min
i∈[m]

yi(⟨w,xi⟩+ b) (4.1)

The Hard-SVM rule can be reformulated as a quadratic optimization problem
as its objective is to minimize convex quadratic function and the constraints are
linear inequalities. Its input is the set S = (x1, y1), . . . , (xm, ym) and the aim of the
algorithm will be the computation of

(w0, b0) = argmin
w0,b0)

∥w∥2 (4.2)

such that yi(⟨w,xi⟩+ b) ≥ 1 for all i.

Its final outputs will be ŵ = w0

∥w0∥ and b̂ = b0
∥w0∥ .

By means of the following lemma, the output of hard-SVM will be proved to be
the separating hyperplane with the largest margin.

Lemma 4.11. The output of Hard-SVM is a solution of Equation (4.1).

Proof. Let (w⋆, b⋆) be a solution of equation (4.1) and γ⋆ = min
i∈[m]

yi(⟨w⋆,xi⟩ + b⋆)

the margin achieved.

It follows that for all i,
yi(⟨w⋆,xi⟩+ b⋆) ≥ γ⋆

which can be reformulated as

yi(⟨
w⋆

γ⋆
,xi)⟩+

b⋆

γ⋆
≥ 1.

Therefore, (w⋆

γ⋆ ,
b⋆

γ⋆ ) satisfies the condition of quadratic optimization in (4.2).
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Hence, ∥w0∥ ≤ ∥ w
γ⋆∥ = 1

γ⋆ which implies that for all i,

yi(⟨ŵ,xi⟩+ b̂) =
1

∥w0∥
yi(⟨w0,xi⟩+ b0) ≥

1

∥w0⟩
≥ γ⋆.

As ∥ŵ∥ = 1, (ŵ, b̂) is proved to be an optimal solution for (4.1). □

So as to use Hard-SVM, the strong assumption that the training set is linearly
separable has to be made. However, there is a relaxation named Soft-SVM of this
algorithm in which this suposition is not necessary.

Equation (4.2) imposes the precise restriction yi(⟨w,xi⟩ + b) ≥ 1, ∀i. This
constraint can be breached for some examples in the training set. For this reason,
the variables ξ1, · · · , ξm > 0 are introduced and the previous condition is replaced
as follows:

yi(⟨w,xi⟩+ b) ≥ 1,∀i.

The goals of the Soft-SVM algorithm are to minimize the margin ∥w∥ and reduce
ξi which quantifies the violation of the original constraint. The balance between
these two expressions is controlled by the parameter λ.

Definition 4.12. The input of the Soft-SVM algorithm is the training set S =
(x1, y1), · · · , (xm, ym) which is not required to be linearly separable.

The problem which is aimed to be solved is:

min
w,b,ξ

(λ∥w∥2 + 1

m

m∑
i=1

ξi)

such that ∀i, yi(∥w,xi∥+ b) ≥ 1− ξi, ξi ≥ 0.

Its final output will be w, b.

Kernel based learning

Subsequent definitions will be required for complete understanding of Kernels.

Definition 4.13. Given a vector space V , u, v, w ∈ V and α ∈ R, the inner product
is defined as follows:

⟨·, ·⟩ : V ×X → R

with these constraints:

• Positive-definite and non-degenarate conditions:

⟨v, v⟩ > 0 and ⟨v, v⟩ = 0 if and only if v ≡ 0.

• Symmetric: ⟨v, w⟩ = ⟨w, v⟩.
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• ⟨α v,w⟩ = α ⟨v, w⟩

• ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.

Definition 4.14. A complete space is a vector space in which all Cauchy sequences
converge.

Definition 4.15. A Hilbert space is a vector space with inner product which is also
complete.

Kernels can be defined as inner products in the feature space and represents
a type of a similarity measure between instances. Its more relevant particularity
is that they can be viewed as inner products in some Hilbert spaces or Euclidean
spaces of high dimensions to which the instance space is embedded.

Definition 4.16. Given an embedding ϕ of some domain X into some Hilbert
space, the Kernel function is defined as:

K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩.

K specifies the similarity between instances and the embedding ϕ as mapping the
domain X into a space where the aforementioned similarities are realized as inner
products. Kernel-based learning algorithms enable the development of classifiers
for halfspaces by utilizing the values of the Kernel function calculated for pairs of
input data points. The key advantage of Kernel-based learning lies in its ability
to construct linear separators in high-dimensional feature spaces without explicitly
specifying the points within that space.

The implementation of SVM used in this work follows the Soft-SVM approach
to allow certain degree of misclassifications with the objective of achieving better
generality. Moreover, different Kernel functions were provided as hyperparameters
to be defined through grid-search such as linear, polynomial, Gaussian and radial
basis.

In addition, apart from optimizing the Kernel function used, there is also a
parameter C which must be tuned. This parameter determines the degree of im-
portance placed on correctly classifying each training example. When C is set to a
high value, the optimization prioritizes achieving accurate classification by selecting
a hyperplane with a smaller margin. On contrast, a low value of C prompts the
algorithm to seek a larger-margin hyperplane, even if it means misclassifying more
points.

4.2.6 Grid-search

Grid-search is a hyperparameter optimization approach which involves the exhaus-
tive searching over a predefined set of parameters for an estimator. In this work,
these aforementioned parameters are optimized by cross-validated grid-search over
a parameter grid. All the parameters that were optimized following this procedure
were described in previous sections.
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4.2.7 Cross-validation

When training a model it occurs that it learns the parameters of prediction function
so if we tested it with the same data that was used for training it would have perfect
accuracy. However, it would fail to predict unseen data due to the overfitting
process. This situation is called overfitting. To avoid it, it is common practice
when developing a (supervised) machine learning model to hold out part of the
available data as a test set.

During hyperparameter optimization, overfitting remains a concern as the pa-
rameters can be selected to maximize the model’s performance. To mitigate this,
we could split further split the training data into training and validation using
cross-validation. In that way, the model´s performance would be evaluated on the
validation set before the final evaluation on the hold out testing set.

Druring cross-validation, for each fold, the model is trained using the remaining
k − 1 folds as training data and the k-th fold would be used as a validation set to
assess the model performance.

The performance of the model is measured by the average of the metrics com-
puted for each of the k folds generated.

Figure 8: Cross-validation workflow and k-fold generation

In Figure 8, it is outlined the sequential steps involved in the cross-validation
procedure as well as the generation of the k folds. Furthermore, the grid search
process is incorporated to determine the optimal parameters for the model.

It is noteworthy that, for each iteration, the testing set corresponds to the fold
marked in green (designated as the i-th split), while the model is trained on the
remaining folds marked in blue.
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4.3 Experiment set up

Within this section, the workflow followed in this study will be examined.

Figure 9: Overview of the proposed pipeline

In Figure 9, the methodology of the present study is displayed. Firstly, the
three segmentations are applied to the normalized CMR image and afterwards the
complementary image of each of them is computed. Subsequently, their persistence
diagrams are calculated and the topological features extracted from them. Lastly,
the classification procedure takes place with the normalized features so as to obtain
a predictor.

4.4 Image preprocessing

In the subsequent sections, the different pre-processing techniques will be discussed.

4.4.1 Cropping

No cropping was applied in the CMR images due to the fact that removing part
of their background would not have a significative impact in the changes of the
topological descriptors extracted.

However, it is worth-mentioning that the images did not have the same number
of slices in the third dimension due to the different morphological characteristics of
each of the patients in the dataset. There was no standardization of the number
of slices because when reconstructing the 3 dimensional image so as to obtain the
descriptors, it is important not to miss any part of the heart because it could provide
important information for diagnostic.
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4.4.2 Image normalization

Although there is no direct effect on clinical medical diagnosis by doctors when
no normalization is applied, it aids overcome discrepancies in intensities between
different patients related to the acquisition process. In this work, the images were
first normalized using histogram matching, using as reference one of the studies
from the dataset [35].

Subsequently, normalization in the range of [0, 1] was applied. When normaliz-
ing a n-dimensional gray-scale image I : {X ⊆ Rn} → {min, . . . ,max} with voxel
intensities in the range (min,max) is transformed into a new image IN{X ⊆ Rn} →
{min′, . . . ,max′} with voxel intensities in the range (min′,max′). Linear normaliza-
tion is computed according to the following formula:

IN = (I −min)
max′ −min′

max−min
+ min′.

It should be noted than when reducing the range of voxel values in images and
scaling the data to a smaller range, the subsequent computations of persistence
features were expedited due to the computationally manageable numbers that were
obtained.

4.5 Feature normalization

Standard feature normalization is a common technique used in ML and data analysis
to transform numerical features in a dataset. It aims to ensure that the features
have a similar scale and distribution, which can be beneficial for certain algorithms
that are sensitive to the scale of the input data.

It applies a transformation to each feature by subtracting the mean and dividing
by the standard deviation. This process centers the data around zero and scales it
to have a unit variance.

Mathematically, the transformation for each feature can be represented as:

xnormalized =
x− µ

σ
,

where x is the original feature value and µ and σ refer to the mean and the
deviation of the feature values in the training set respectively.
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5 Results

5.1 Evaluation metrics

Several metrics were employed to evaluate the performance of the proposed method-
ology [32], [33], [34]. Before delving into the definitions of these metrics, it is es-
sential to clarify certain abbreviations used in this section. More precisely, the
following abbreviations will be utilized:

• TP is the abbreviation for true positive which refers to the positive cases
correctly classified.

• FP is an acronym for false positive and it represents the instances in which
the negative cases are incorrectly classified as positive.

• TN is analogous to true positive but referring to the negative cases instead.

• FN stands for false negatives and represents the misclassification of positive
cases as negative.

Subsequently, we proceed with the introduction of the evaluation metrics used
in this work:

• Accuracy: It is defined as the proportion of correctly predicted cases, both
positive and negative, relative to the total number of evaluated cases.

In the context of this work, a high value of accuracy translates to a high ability
of the classifier to correctly predict cases of cardiac and non-cardiac diseases.

Accuracy is computed with the expression below:

Acc =
TP + TN

TP + TN + FP + FP

While accuracy provides an overall measure of correct classifications, there are
other metrics that will be exposed which offer additional insights into the classi-
fier’s behaviour that will be helpful in the evaluation of the model, specially in the
medical field.

• Precision: It is a measure that quantifies the ratio of true positive predictions
to the total number of positive predictions made by the classifier. It reflects
the accuracy of identifying positive cases correctly.

A high precision denotes that the classifier has a low rate of false positives
which guarantees that the majority of cases classified as positive are indeed
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cases of cardiac disease. Furthermore, this is desirable in the medical context
as it helps to avoid incorrect diagnoses.
On the contrary, a low precision indicates that the classifier has a high rate
of false positives, implying that some of the cases classified as positive may
be false or unrelated to cardiac diseases. This can lead to an increase in the
number of unnecessary tests or treatments.
This measure is calculated as follows:

Prec =
TP

TP + FP

• Recall or sensitivity: It is the proportion of positive cases that are correctly
classified among all the positive cases. It refers to the ability of the classifier
to detect all positive cases, minimizing false negatives.
On the one hand, a high recall ensures that the classifier has a high ability
to detect and capture true positive cases, thereby minimizing the chances of
missing patients with the disease.
On the other hand, a low recall indicates that the classifier has a high rate of
false negatives, implying that some cases of cardiac diseases are not detected.
This can result in important diagnoses being missed.
Recall is computed with the following formula:

Rec =
TP

TP + FN

• F1 score: It combines precision and recall into a single metric and is defined as
their harmonic mean. The F1 score is especially valuable in scenarios where
the dataset exhibits class imbalance.
In addition, a high F1 score implies a steady trade-off between precision and
recall signifying the model’s proficiency in correctly identifying true positive
cases while minimizing both false positives and false negatives.
F1 score follows the formula below:

F1 = 2 · Prec ·Rec

Prec+Rec

• Receiver operating characteristic (ROC): It is a graphical plot which demon-
strates the performance characteristics of a binary classifier as the discrim-
ination threshold is adjusted. It plots the true positive rate (TPR) against
the false positive rate (FPR). On the one hand, TPR stands for the fraction
of true positives out of positives cases so it is equivalent to the definition of
recall. On the other hand, FPR is defined as the fraction of false positives
out of negative cases which is computed as follows: FPR = FP

FP+TN
.

Note that in the present study, a multi-class classification problem is faced.
Therefore, the ROC curves are computed for each of the classes against the
others.
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• ROC-AUC: It computes the area under the ROC curve so as to summarize the
information of the curve in a number. It can be calculated with the algorithm
one-vs-rest for multi-class approaches so as to obtain the macro-average ROC-
AUC score.

The ROC-AUC represents the overall discriminative ability of the model in
distinguishing between the positive and negative classes. It quantifies the
model’s ability to correctly rank positive instances higher than negative in-
stances across different threshold settings. In medical applications, a high
ROC-AUC implies that the model can effectively differentiate between indi-
viduals with a specific disease and those without it.

• Confusion matrix: The confusion matrix, denoted as C, provides a tabular
representation of the model’s predictions. Each element Ci,j within the matrix
represents the count of observations that belong to the true class i but have
been predicted to be in class j.

The elements of the diagonal represent the subjects whose classes were cor-
rectly predicted. Therefore, higher numbers in the diagonal indicate better
predictions.

Note that, as it was considered a multi-class classification, all the aforementioned
scores were computed independently for each class. So as to obtain an overall score,
the macro-average was calculated as the unweighted mean. This type of average
does not take label imbalance into account. However, this does not represent a
problem as the ACDC dataset has balanced classes.

5.2 Analysis of the results

Firstly, the classification task was performed separately for each topological descrip-
tor in a specific dimension, taking into account the lower-star filtration at one time
and the upper-star filtration at another time. In this way, the results obtained for
each type of filtration could be contrasted, choosing the most optimal for each de-
scriptor in every dimension. The tables comprising the obtained evaluation metrics
are displayed in Appendix 7.1. It should be noted that the results presented in the
Appendix and throughout this section correspond to the testing set consisting of
50 patients.

According to these results, the lower-star filtration performs best for total per-
sistence in dimension 1 and entropy in dimensions 0 and 1. On the other hand,
upper-star filtration achieves better results for total persistence in dimensions 0
and 2 and entropy in dimension 2.

5.2.1 Total persistence and entropy in three dimensions

In Tables 3 - 4, the classification metrics for total persistence and entropy for each of
the classifiers are shown. The highest accuracy value is highlighted in bold, as well
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as the classifier used in that case. Accuracy was the chosen variable to assess the
efficiency of the classifier, as it provides an overall measure of correct classifications.

Feature Model Acc Prec Rec AUC ROC F1

TP_0_1_2

KNN 0.68 0.73 0.69 0.80 0.68
GB 0.61 0.65 0.62 0.90 0.61
XG-B 0.68 0.69 0.67 0.92 0.68
SVM 0.66 0.73 0.68 0.94 0.66

Table 3: Comparative performance of different classifiers based on total persistence
in the 3 homological dimensions.

Feature Model Acc Prec Rec AUC ROC F1

ENTR_0_1_2

KNN 0.64 0.65 0.65 0.90 0.64
GB 0.62 0.63 0.61 0.87 0.62
XG-B 0.64 0.65 0.64 0.91 0.63
SVM 0.74 0.74 0.73 0.95 0.74

Table 4: Comparative performance of classifiers based on entropy in the 3 homo-
logical dimensions.

Based on the results shown, entropy outperforms total persistence when the three
dimensions are considered. More metrics are provided in 7.2 such as the confusion
matrix and the ROC-curve for the classifier that achieved the highest accuracy.

Moreover, the features that were more relevant for each classifier are presented
in a different histogram for each descriptor also displayed in Figure 7.2. It can be
observed that dimension 2 is of great interest for predictions in both features.

5.2.2 Radiomics

In the following table, the testing metrics obtained for radiomics classification are
shown. The highest accuracy value is 0.76 which is obtained with the use of SVM.
This estimate surpasses the ones obtained with topological descriptors. Neverthe-
less, it is on par with them.

Feature Model Acc Prec Rec AUC ROC F1

RDM

KNN 0.68 0.67 0.68 0.85 0.67
GB 0.72 0.75 0.73 0.91 0.72
XG-B 0.74 0.76 0.76 0.91 0.74
SVM 0.76 0.77 0.76 0.95 0.76

Table 5: Comparative performance of classifiers based on radiomics.

Figures 10 - 11 give a visual oversight of the results obtained with SVM.
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On one hand, the elements in the diagonal of the confusion matrix are close to
10 which is the number of subjects for each class. This suggests that most of the
patients are correctly classified.

Figure 10: Confusion matrix obtained for SVM classification with radiomics

On the other hand, it is important to mention that the macro-average ROC curve
has an AUC close to 1, which indicates that the classifier can notably distinguish
between the positive and negative classes with high accuracy.

Figure 11: ROC curves obtained for SVM classification with radiomics
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When analyzing the top features for the different classifiers in radiomics classi-
fication (Figure 12), it can be observed that all of them regard shape.

This analysis of feature importance is carried out by computing the 5 features
that contributed best for minimizing the empirical risk for each of the classifiers.
Subsequently, a histogram is plotted so as to see the graphical representation of the
descriptors that provided the most relevant information.

Figure 12: Feature importance for the SVM model using radiomics features.

5.2.3 Radiomics and entropy combination

The following table presents the metrics of classification when combining radiomics
with entropy. It is essential to emphasize that the results obtained with Gradient
Boosting are comparable to the output of radiomics classification.

Feature Model Acc Prec Rec AUC ROC F1

RDM + ENTR

KNN 0.72 0.73 0.71 0.90 0.72
GB 0.76 0.79 0.77 0.90 0.76
XG-B 0.74 0.76 0.74 0.92 0.74
SVM 0.74 0.76 0.75 0.96 0.74

Table 6: Comparative performance of models based on radiomics and entropy fea-
tures.

When comparing with the confusion matrix obtained with radiomics features,
it can be noted that the elements in the diagonal are the same although there are
slight changes in the others which leads to a minor divergence between the precision
and recall.
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Figure 13: Confusion matrix obtained for GB classification with radiomics and
entropy

In terms of the ROC-AUC, it is scarcely lower than the previous value, as can be
observed from the fact that the ROC curve exhibits comparatively reduced values.

Figure 14: ROC curves obtained for GB classification with radiomics and entropy

15 exhibits the most important features for classification, which comprise mostly
radiomics descriptors as well as the entropy for dimensions 0 and 1.
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Figure 15: Feature importance for the GB model using radiomics and entropy

5.2.4 Radiomics and total persistence combination

Lastly, the results of combining radiomics with total persistence are presented in
Table 7. It is crucial to highlight that with Gradient Boosting an accuracy of 0.79
was achieved. This value is three % greater than the obtained using only radiomics
features.

Feature Model Acc Prec Rec AUC ROC F1

RDM + TP

KNN 0.70 0.73 0.71 0.9 0.7
GB 0.79 0.79 0.78 0.91 0.78
XG-B 0.68 0.71 0.68 0.92 0.68
SVM 0.76 0.81 0.77 0.96 0.76

Table 7: Comparative performance of models based on radiomics and total persis-
tence

From Figure 16, it can be observed that all patients with previous myocardial
infarction (MINF) have been classified correctly. However, the classifier exhibits
low performance when classifying subjects with dilated cardiomyopathy (DCM).
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Figure 16: Confusion matrix obtained for GB classification with radiomics and total
persistence

The aforementioned disparity in performance between patients with MINF and
DCM can also be observed by comparing the two ROC curves.

Figure 17: ROC curves obtained for GB classification with radiomics and total
persistence
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In this particular scenario, it is notable that topological descriptors exhibit
greater relevance in the classification process compared to entropy (Figure 17).
While topological features primarily capture texture characteristics, the selected ra-
diomics features predominantly describe shape properties. Consequently, the com-
bination of these two types of descriptors offers a full insight into the anatomy of
the heart.

Figure 18: Feature importance for the GB model using radiomics and total persis-
tence
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5.2.5 Overall analysis

The table below presents the best classification results obtained for each feature
type. The first row corresponds to the radiomics (RDM), which achieve an accuracy
of 0.76.

On the other hand, the maximum accuracy achieved with topological descrip-
tors (TDA) is 0.74 and corresponds to the case where entropy was considered in
homological dimensions 0, 1, and 2 using the most optimal filtration type for each
dimension.

Lastly, we observe that the combination of topological descriptors and radiomics
achieves an accuracy of 0.79. This case corresponds to using as features total
persistence in all 3 dimensions with their respective optimal filtration type combined
with radiomics.

Therefore, it can be concluded that by adding topological descriptors to ra-
diomics, the performance of the classifier is improved. The explanation for this
phenomenon is that topological descriptors provide a measure of texture quantifi-
cation, while the selected radiomics measure the shape of the heart. This is the
reason why its combination yields superior results compared to their individual
performances.

Accuracy Precision Recall
RDM 0.76 0.77 0.76
TDA 0.74 0.74 0.73
RDM + TDA 0.79 0.79 0.78

Table 8: General outcomes of classification
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6 Discussion

6.1 Summary and conclusions

This work focuses on evaluating the potential of topological data analysis for im-
proved cardiac disease diagnosis. The hypothesis of this study is that CMR images
contain valuable information that remains hidden even for state-of-the art meth-
ods, such as radiomics, which involves acquiring and analyzing a large number of
quantitative features from medical images. It was postulated that this information
could be extracted in the form of topological features. Consequently, a pipeline was
developed for extracting topological descriptors from 3-dimensional CMR images
and performing subsequent classification.

The study initiates by establishing a comprehensive theoretical foundation, offer-
ing to the reader a profound understanding of the methodologies and tools employed
in this work. Within this theoretical framework, state-of-the art topological analysis
and machine learning techniques are presented. First of all, the notion of persis-
tent homology, which forms the backbone of the analysis, is introduced. As the
study progresses, concepts such as cubical complexes and filtrations are introduced,
providing the necessary tools to define persistence diagrams. These persistence dia-
grams then serve as a crucial basis for introducing topological descriptors that will
be utilized for classification purposes.

The practical part starts with an in-depth exposition of the ACDC dataset, which
serves as the dataset for conducting the experiments. Subsequently, a detailed ex-
planation is presented on the extraction of topological descriptors, with a specific
focus on the observed variations depending on the applied filtration type. Following
that, a comprehensive analysis is presented for the classifiers that will be employed
in this study. This analysis explores the intricacies of each classifier, providing a
thorough examination of their strengths, weaknesses, and performance characteris-
tics. Afterwards, the image preprocessing techniques applied to the CMR images
are elaborated upon, ensuring that the input data is optimized for subsequent anal-
ysis and classification procedures.

Additionally, a range of metrics that support the analysis is outlined. The ra-
tionale behind the selection of these metrics is presented, along with their interpre-
tation and significance in assessing the performance of the classifiers. This com-
prehensive examination of metrics establishes a solid foundation for evaluating and
comparing the classification outcomes.

Finally, the most outstanding results are provided: the addition of topological
descriptors to radiomics enhances the performance of the classification task result-
ing in a three 3% increase in accuracy. This improvement can be attributed to the
complementary nature of these two types of descriptors, where topological features
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capture texture information and the selected radiomics quantify the shape of the
heart. The fusion of these features yields superior results, surpassing the perfor-
mance attained by using each descriptor type individually.

We hope that this work may have a meaningful impact on cardiac disease diagno-
sis, as well as on the readers’ understanding of topological data analysis. Certainly,
we encourage readers to delve into the theory of persistent homology and explore
its promising applications in the field of medicine.

6.2 Future work

During the realization of the project, other approaches were considered, but due
to time limitations could not be pursued. This section aims to shed light on these
alternative approaches and providing directions for future research.

6.2.1 Topological features

In the present study, the topological features extracted are total persistence and
entropy. However, other topological descriptors could be tested. An example could
be Betti numbers or attributes obtained from landscapes, such as the area below.

6.2.2 Convolution with filters

In [6] a new topological featurization of d-dimensional images is used and proved to
extend the capacity of topology to observe patterns in images. Therefore, convolving
the CMR images with various filters before extracting the topological features, may
improve the classification task.

6.2.3 UKBiobank dataset

The UK Biobank (UKBB) 2 is a significant global health resource comprising data
from 500, 000 individuals aged between 40 and 69 years, collected during the period
of 2006 − 2010. This extensive investigation offers a comprehensive understand-
ing of various medical conditions including cancer, cardiovascular diseases, stroke,
diabetes, arthritis, osteoporosis, ocular disorders, depression, and diverse forms of
dementia. Experts worldwide have utilized this dataset to advance strategies in
prevention, diagnosis and treatment.

For a more thorough and comprehensive analysis, the procedures explained in the
present work could be implemented with the UKBB dataset. Owing to the extensive
magnitude of the dataset, the reliability and robustness of the methodology would
be effectively demonstrated. Moreover, the distinct cardiovascular included in the
UKBB would also represent an advantage in terms of generizability of the pipeline
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followed.

6.2.4 Improvements in the base classifier

Ensembling refers to the combination of multiple classifiers so as to reach a better
overall performance than the obtained when using a single model. Its objective is
to improve prediction accuracy as well as reducing overfitting and providing more
robust results.

In addition, advanced feature selection techniques could be explored as well.

6.2.5 Neural networks

As pointed out in [22] and [23] the performance of deep convolutional neural net-
works has been proved to be high in determining the presence of diseases by means
of medical images. Therefore, another promising approach would be to use deep
learning with the topological features extracted.

However, the interpretability of results obtained in deep learning can indeed be
more difficult to understand compared to traditional machine learning methods.
This drawback arises from several factors.

Deep learning models are characterized by their complex architectures and nu-
merous layers, which can make it challenging to interpret the specific factors or
features that contribute to the model’s predictions. Additionally, deep learning
models often involve a high number of parameters, making it more difficult to an-
alyze the relationships between input variables and output predictions.

In contrast, traditional machine learning algorithms, such as those employed in
this work, often have more transparent and interpretable models that allow for a
clearer understanding of how inputs are mapped to outputs.

6.3 Programming details and code

The project was developed in Python programming language using the version 3.9.12
and the code was executed by means of Jupyter Notebook.

So as to compute the persistence diagrams of the CMR images, the library Giotto-
tda was used. As it is described in its documentation, it is a high performance
topological machine learning toolbox built on top of Scikit-learn and distributed
under the GNUAGPLv3 license as a part of the Giotto family of open-source
projects.

The code used to carry out the practical part of the thesis can be found in the
following Google Colab page:

Code link.

2https://www.ukbiobank.ac.uk/
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7 Appendix

7.1 Comparison between lower and upper filtration

In this section, the results of the testing metrics obtained when comparing the lower-
star filtration and the upper-star filtration are shown in different tables. Each of the
tables represents the comparison between the performance of a topological feature
in a specific dimension.

Feature Model Acc Prec Rec AUC ROC F1

TP_0_lower

KNN 0.43 0.53 0.42 0.73 0.45
GB 0.46 0.52 0.45 0.77 0.46
XG-B 0.46 0.43 0.44 0.74 0.43
SVM 0.48 0.52 0.49 0.76 0.49

TP_0_upper

KNN 0.48 0.53 0.47 0.73 0.50
GB 0.36 0.41 0.35 0.72 0.38
XG-B 0.42 0.46 0.41 0.71 0.42
SVM 0.50 0.53 0.49 0.81 0.50

Feature Model Acc Prec Rec AUC ROC F1

TP_1_lower

KNN 0.38 0.44 0.37 0.71 0.40
GB 0.46 0.49 0.47 0.74 0.46
XG-B 0.52 0.52 0.51 0.76 0.52
SVM 0.46 0.51 0.45 0.78 0.47

TP_1_upper

KNN 0.46 0.49 0.45 0.75 0.45
GB 0.50 0.54 0.51 0.78 0.50
XG-B 0.42 0.44 0.41 0.76 0.42
SVM 0.42 0.45 0.41 0.80 0.40

Feature Model Acc Prec Rec AUC ROC F1

TP_2_lower

KNN 0.44 0.43 0.44 0.71 0.43
GB 0.50 0.54 0.56 0.80 0.50
XG-B 0.45 0.48 0.43 0.79 0.45
SVM 0.39 0.40 0.38 0.83 0.38

TP_2_upper

KNN 0.46 0.44 0.45 0.82 0.43
GB 0.48 0.53 0.49 0.79 0.49
XG-B 0.58 0.60 0.57 0.86 0.59
SVM 0.46 0.43 0.46 0.84 0.44
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Feature Model Acc Prec Rec AUC ROC F1

ENTR_0_lower

KNN 0.54 0.53 0.56 0.80 0.54
GB 0.58 0.59 0.57 0.82 0.57
XG-B 0.64 0.67 0.64 0.84 0.64
SVM 0.52 0.51 0.53 0.83 0.51

ENTR_0_upper

KNN 0.50 0.53 0.49 0.72 0.50
GB 0.42 0.42 0.43 0.77 0.42
XG-B 0.47 0.42 0.43 0.77 0.42
SVM 0.42 0.43 0.41 0.76 0.42

Feature Model Acc Prec Rec AUC ROC F1

ENTR_1_lower

KNN 0.44 0.45 0.44 0.71 0.43
GB 0.56 0.58 0.55 0.79 0.56
XG-B 0.44 0.45 0.44 0.75 0.44
SVM 0.44 0.43 0.43 0.80 0.43

ENTR_1_upper

KNN 0.42 0.44 0.42 0.77 0.41
GB 0.50 0.56 0.51 0.76 0.52
XG-B 0.46 0.49 0.45 0.77 0.46
SVM 0.49 0.52 0.51 0.82 0.50

Feature Model Acc Prec Rec AUC ROC F1

ENTR_2_lower

KNN 0.52 0.51 0.50 0.85 0.48
GB 0.54 0.53 0.53 0.81 0.54
XG-B 0.48 0.47 0.48 0.80 0.47
SVM 0.53 0.53 0.54 0.88 0.52

ENTR_2_upper

KNN 0.48 0.41 0.48 0.84 0.44
GB 0.44 0.41 0.43 0.78 0.42
XG-B 0.46 0.42 0.44 0.79 0.43
SVM 0.60 0.58 0.59 0.88 0.58

7.2 ROC curves, confusion matrices and top features for to-
tal persistence and entropy classification

ROC curves and confusion matrices corresponding to the classifier that outper-
formed the others are displayed below.

In the case of total persistence, the selected classifier is k-nearest neighbors while
in the case of entropies the SVM classifier performed best.
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Figure 19: Confusion matrix for classification with KNN and total persistences as
features

Figure 20: ROC curves for classification with KNN and total persistences as features
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Figure 21: Top features for classification with KNN and total persistence

Figure 22: Confusion matrix for classification with SVM and entropies as features
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Figure 23: ROC curves for classification with SVM and entropies as features

Figure 24: Top features for classification with SVM and entropy
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