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Application of Mendelian 
randomization to explore 
the causal role of the human gut 
microbiome in colorectal cancer
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Marc Gunter 10, Yi Lin 11, Conghui Qu 12, Mingyang Song 13,14,15, Graham Casey 16, 
Jane C. Figueiredo 17, Stephen B. Gruber 18, Jochen Hampe 19, Heather Hampel 20, 
Mark A. Jenkins 21, Temitope O. Keku 22, Ulrike Peters 12, Catherine M. Tangen 23, Anna H. Wu 24, 
David A. Hughes 1,2, Malte C. Rühlemann 25, Jeroen Raes 26,27, Nicholas J. Timpson 1,2 & 
Kaitlin H. Wade 1,2*

The role of the human gut microbiome in colorectal cancer (CRC) is unclear as most studies on the 
topic are unable to discern correlation from causation. We apply two‑sample Mendelian randomization 
(MR) to estimate the causal relationship between the gut microbiome and CRC. We used summary‑
level data from independent genome‑wide association studies to estimate the causal effect of 14 
microbial traits (n = 3890 individuals) on overall CRC (55,168 cases, 65,160 controls) and site‑specific 
CRC risk, conducting several sensitivity analyses to understand the nature of results. Initial MR 
analysis suggested that a higher abundance of Bifidobacterium and presence of an unclassified 
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group of bacteria within the Bacteroidales order in the gut increased overall and site‑specific CRC 
risk. However, sensitivity analyses suggested that instruments used to estimate relationships were 
likely complex and involved in many potential horizontal pleiotropic pathways, demonstrating that 
caution is needed when interpreting MR analyses with gut microbiome exposures. In assessing reverse 
causality, we did not find strong evidence that CRC causally affected these microbial traits. Whilst our 
study initially identified potential causal roles for two microbial traits in CRC, importantly, further 
exploration of these relationships highlighted that these were unlikely to reflect causality.

Colorectal cancer (CRC) is the third most common cause of cancer death worldwide, with over 16,000 deaths due 
to CRC every year in the UK  alone1,2. Whilst research suggests that over half of CRC cases are likely explained by 
preventable  causes1,3, CRC remains an ever-increasing burden, particularly among young people. Therefore, it is 
important to identify novel modifiable risk factors to help reduce the global incidence of, and deaths from, CRC.

There is increasing evidence that the human gut microbiome—the naturally occurring complex community 
of microorganisms housed within the gastrointestinal tract—plays a role in human health, including influenc-
ing the risk and prognosis of CRC. As the gut microbiome has a substantial impact on host  metabolism4,5, 
 inflammation6,7, and host immune response to both commensal and pathogenic  microbes7,8, there are many 
plausible biological mechanisms by which the gut microbiome could influence cancer  development4,9,10. However, 
findings within this context have been inconsistent and unclear, making it difficult to draw conclusive evidence. 
For example, whilst there have been some compelling results from in vivo and in vitro studies showing a reduced 
incidence of CRC through modification of single or a small consortia of microbial constituents (e.g., with pre- or 
pro-biotics)11, few of these findings have been successfully translated between model organisms and into humans 
harbouring more complex communities.

Despite this emerging evidence, studies generating this body of work have been unconvincing in their abil-
ity to offer causal evidence given their observational nature and lack of temporality. For example, evidence has 
suggested an overall lower diversity in microbiota in cases of CRC compared to controls in addition to lower 
levels of Bifidobacterium and Roseburia spp. and higher levels of Fusobacterium and Porphyromonas  bacteria12–14. 
However, these existing epidemiological studies are usually cross-sectional or case–control designs and have a 
limited ability to discern correlation from causation. In addition, they often have small sample sizes, limiting 
power to detect associations. Furthermore, human randomized controlled trials (RCTs) have been unable to 
conclusively show strong evidence for a reduction in the incidence of CRC using treatments designed to alter 
the gut  microbiome15. Furthermore, discrepancies in the literature are likely due to the challenges in multi-omic 
technologies (e.g., sequencing and metagenomics), sensitive experimental models and important limitations of 
conventional epidemiological studies such as confounding, reverse causation and bias. Evidence that has not 
translated between model organisms impedes opportunity for harnessing the gut microbiome for improving 
population  health16.

In the absence of large-scale RCTs, Mendelian randomization (MR) is a method that offers improved causal 
inference by utilizing human germline genetic variation (usually, single nucleotide polymorphisms [SNPs]) as 
instruments for a clinically relevant trait (here, the gut microbiome) in a manner that is analogous to RCTs to 
mitigate some of the biases present within conventional epidemiological  studies17–20. As germline genetic vari-
ation is randomly inherited and fixed at conception, results of MR analyses should be largely independent from 
confounding and traditional reverse causation (i.e., the outcome leading to variation in the exposure). There 
is an increasing literature utilising MR to assess the causal implications of variation in the gut microbiome 
(using host genetic variation associated with gut microbial composition) on various health outcomes. However, 
there is an unmet requirement for careful examination and interpretation of these estimates given the potential 
complexity of host (i.e., human) genetic effects on the gut microbiome, despite their ability to yield apparently 
causal estimates. In this study, we utilised and explored the properties of two-sample MR analyses based on host 
microbiome genetic effects to interrogate causal relationships between variation in the human gut microbiome 
(specifically, 14 microbial traits representing either relative abundances or the likelihood of presence versus 
absence of certain bacteria) on overall and site-specific CRC risk.

Results
Effects of gut microbial traits on CRC . We used two-sample MR using genome-wide association study 
(GWAS) summary statistics to examine the causal relationship between features of the human gut microbiome 
and the risk of developing overall CRC and site-specific CRC (distal, proximal, colon, and rectal) (see Methods, 
Supplementary Table 1 and Fig. 1). Genetic variants associated with 14 microbial traits were obtained from a 
microbiome GWAS (mGWAS) meta-analyses21 conducted in 3,890 individuals. Specifically, 13 SNPs exceeding 
a genome-wide meta-analysis threshold (P < 2.5 ×  10–08) were selected as genetic instruments for 13 microbial 
traits (with each microbial trait instrumented by a single SNP), in addition to one SNP associated with bacteria 
of the Bifidobacterium genus that has previously consistently been reported in the literature. F-statistics were 
greater than 12 (range: 12.73–38.46) (Supplementary Table 2), suggesting that the likelihood of weak instru-
ment bias was relatively low. The variance explained  (R2) by each associated SNP in each microbial trait ranged 
between 0.8% (the genus, Veillonella) and 1.6% (the unclassified group of bacteria in the Porphyromonadaceae 
family).

In main MR analyses, there was evidence for a causal role of a higher abundance of bacteria within the Bifi‑
dobacterium genus (G. Bifidobacterium) increasing the risk of overall CRC by approximately 41% (odds ratio 
[OR] per standard deviation [SD] higher relative abundance: 1.41; 95% confidence interval [CI]: 1.20, 1.65, 
P = 1.83 ×  10–05; Fig. 2). The presence (versus absence) of an unclassified group of bacteria within the Bacteroidales 
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order (G. unclassified, O. Bacteroidales) was also found to increase the risk of overall CRC (OR per approximate 
doubling of the genetic liability to presence versus absence: 1.08; 95% CI: 1.02, 1.16; P = 0.01). Similar relation-
ships were observed between these two microbial traits and the four CRC sites studied (Table 1). Specifically, 
a higher abundance of Bifidobacterium increased the risk of all four CRC sites: distal colon cancer (OR: 1.61; 
95% CI: 1.26, 2.07; P = 1.40 ×  10–04), proximal colon cancer (OR: 1.31; 95% CI: 1.03, 1.67; P = 0.03), colon cancer 
(OR: 1.40; 95% CI: 1.16, 1.69; P = 3.75 ×  10–04) and rectal cancer (OR: 1.61; 95% CI: 1.26, 2.05; P = 1.16 ×  10–04). 
Results for the unclassified group of bacteria within the Bacteroidales order also showed consistently positive 
directions of effect for all CRC sites: distal colon cancer (OR: 1.04; 95% CI: 0.93, 1.15; P = 0.51), proximal colon 
cancer (OR: 1.12; 95% CI: 1.02, 1.24; P = 0.02), colon cancer (OR: 1.09; 95% CI: 1.01, 1.18; P = 0.03) and rectal 
cancer (OR: 1.11; 95% CI: 1.00, 1.23; P = 0.05). Whilst the effect estimate for distal colon cancer was positive, 
the CIs were wide, likely due to the smaller sample size; therefore, the strength of evidence for a causal effect of 
bacteria within the Bacteroidales order and distal colon cancer was weaker than for other CRC sites. MR effect 
estimates for the remaining 12 microbial traits on overall and site-specific CRC risk were much smaller in size 
and had 95% CIs that crossed the null (Table 1).

Figure 1.  Mendelian randomization framework applied to assess the causal effect of the human gut 
microbiome on CRC risk. CRC = colorectal cancer; MR = Mendelian randomization; SNP = single nucleotide 
polymorphism. MR relies on three key assumptions: (top panel) the SNPs are associated with the exposure 
(here, the gut microbiome); (middle panel) there are no common causes of the SNPs and the outcome (here, 
CRC), meaning any confounders driven by population substructure, dynastic effects or assortative mating (these 
may not and are unlikely to be the same confounders of the association between the exposure and outcome); 
and (bottom panel) the SNPs are not independently associated with the outcome (here, CRC) other than 
pathways through the exposure (here, the gut microbiome). Given these key assumptions, microbiome-related 
variants can be used to assess the causal effect of the human gut microbiome on CRC, overcoming limitations of 
observational epidemiological studies. In two-sample MR analyses, the causal effect of the exposure on outcome 
( βXY ) is generated by a ratio of the SNP-outcome (βZY) and the SNP-exposure (βZX) effect estimates derived 
from two independent samples.
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Sensitivity analyses. Colocalisation. We performed several sensitivity analyses to test the robustness of 
our findings to violations of MR assumptions and explore possible explanations of the observed causal effects of 
G. Bifidobacterium and G. unclassified, O. Bacteroidales on CRC and site-specific CRC risk. Firstly, we performed 
genetic colocalisation to determine whether the single genetic variant being used as an instrument for each 
microbial trait was associated with both variation in that microbial trait and CRC, which is a necessary (but not 
a sufficient) criterion for causality. Specifically, we performed colocalisation on the two microbial traits which 
showed strong evidence of a causal effect in the MR analyses (G. Bifidobacterium and G. unclassified, O. Bacteroi‑
dales) with overall and site-specific CRC (distal CRC was not considered in the colocalisation analyses with G. 
unclassified, O. Bacteroidales since evidence for a causal effect was weaker in the main MR analyses). Genome-
wide data for microbial traits were only available from the Flemish Gut Flora Project (FGFP) GWAS limiting 
analyses to 2223 participants. Additionally, unlike in the mGWAS meta-analysis, neither lead SNP (rs4988235 
and rs116135844) reached genome-wide significance in the FGFP dataset. Therefore, focusing on the difference 
between the tested hypotheses (see Methods), colocalisation results provided little evidence that G. unclassified, 
O. Bacteroidales was likely to share a causal variant with overall or site-specific CRC (Table 2).

Regional association plots confirmed findings from genetic colocalisation for G. unclassified, O. Bacteroi‑
dales (Fig. 3; Supplementary Fig. 1). Whilst there was evidence for genetic colocalisation for G. Bifidobacterium 
with overall (with a posterior probability of 0.87) CRC risk and, to a lower extent, with site-specific CRC risk 
(posterior probabilities ranged from 0.05–0.72), regional association plots suggest the wider genomic region 
surrounding the rs4988235 SNP is important in both abundance of G. Bifidobacterium and CRC risk (Fig. 3; 
Supplementary Fig. 2).

Manual exploration of pleiotropy. In the absence of being able to apply pleiotropy-robust methods, which 
require multiple genetic instruments associated with each microbial trait, we performed a manual exploration 
of horizontal pleiotropy to identify any associations between the microbiome-related SNPs and CRC (either 
directly or indirectly through alternative phenotypes), which would invalidate one of the core MR assumptions 

Figure 2.  MR estimates of the effect of each microbial trait on overall CRC risk. AB = abundance; 
CI = confidence interval; CRC = colorectal cancer; MR = Mendelian randomization; OR = odds ratio; 
P/A = presence versus absence; SD = standard deviation. Letters in the microbial trait name represent the taxon 
classification level from which that microbial trait was observed, with “C”, “F”, “G”, “O” and “P” representing 
“class”, “family”, “genus”, “order” and “phylum”, respectively. All microbial traits that were not confidently 
classified at the genus level were organised into unclassified groups within higher classification levels 
(represented by “unclassified”). MR estimates represent the OR for CRC risk and 95% CI per SD unit change for 
continuous microbial traits (labelled as “AB” in brackets) or per approximate doubling of the genetic liability to 
presence (versus absence) of each binary microbial trait (labelled as “P/A” in brackets).
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(see Methods). We searched summary-level GWAS data collated by  PhenoScanner22 and the IEU  OpenGWAS23 
to identify whether SNPs used to instrument G. Bifidobacterium and G. unclassified, O. Bacteroidales had previ-
ously been reported to be associated with CRC or any other trait that could be an independent cause of CRC. 
Searching GWAS summary statistics collated by PhenoScanner found evidence for potential horizontal plei-
otropy between the SNP used as an instrument for G. Bifidobacterium (rs4988235) and CRC risk. A total of 
51 associations with complex traits and diseases were observed at a defined multiple testing p-value threshold 
(P < 1 ×  10–04, see Methods) including positive associations with numerous anthropometric measures (i.e., fat 

Table 1.  Two-sample MR estimates of the effect of each microbial trait on overall and site-specific CRC risk. 
AB = abundance; CI = confidence interval; CRC = colorectal cancer; MR = Mendelian randomization; OR = odds 
ratio; P/A  = presence versus absence. Letters in the microbial trait name represent the taxon classification level 
from which that microbial trait was observed, with “C”, “F”, “G”, “O” and “P” representing “class”, “family”, 
“genus”, “order” and “phylum”, respectively. All microbial traits that were not confidently classified at the genus 
level were organised into unclassified groups within higher classification levels (represented by “unclassified”). 
Effect estimates represent the OR for CRC risk for a standard deviation higher AB of each continuous 
microbial trait and the OR for CRC for an approximate doubling of the genetic liability to P/A of each binary 
microbial trait.

Microbial trait

MR estimate using the Wald ratio (95% CI); p-value

Overall CRC risk Distal CRC Proximal CRC Colon cancer Rectal cancer

C. Gammaproteobacteria (AB) 0.97 (0.86, 1.00); 0.66 0.94 (0.77, 1.14); 0.52 0.96 (0.80, 1.17); 0.71 0.92 (0.79, 1.07); 0.28 1.04 (0.86, 1.26); 0.66

F. Sutterellaceae (P/A) 1.01 (0.97, 1.05); 0.56 1.02 (0.96, 1.09); 0.50 0.99 (0.93, 1.05); 0.75 1.02 (0.97, 1.07); 0.49 0.99 (0.93, 1.05); 0.65

G. Bifidobacterium (AB) 1.41 (1.20, 1.65); 1.83 ×  10–05 1.61 (1.26, 2.07); 1.40 ×  10–04 1.31 (1.03, 1.67); 0.03 1.40 (1.16, 1.69); 3.75 ×  10–04 1.61 (1.26, 2.05); 1.16 ×  10–04

G. Butyricicoccus (AB) 0.98 (0.86, 1.11); 0.75 0.97 (0.78, 1.19); 0.75 1.02 (0.83, 1.25); 0.83 0.99 (0.85, 1.16); 0.92 0.99 (0.81, 1.22); 0.94

G. Coprococcus (P/A) 1.00 (0.95, 1.07); 0.76 0.97 (0.89, 1.06); 0.54 1.05 (0.96, 1.14); 0.28 1.01 (0.95, 1.08); 0.70 1.04 (0.95, 1.13); 0.40

G. Dialister (P/A) 1.04 (0.98, 1.10); 0.20 1.05 (0.95, 1.16); 0.31 1.00 (0.91, 1.10); 0.95 1.04 (0.97, 1.12); 0.30 1.02 (0.93, 1.13); 0.59

G. Parabacteroides (AB) 1.00 (0.88, 1.12); 0.96 0.92 (0.76, 1.11); 0.39 0.95 (0.79, 1.14); 0.57 0.97 (0.84, 1.12); 0.69 1.03 (0.86, 1.15); 0.71

G. Ruminococcus (P/A) 1.02 (0.98, 1.06); 0.34 1.00 (0.93, 1.07); 0.97 1.00 (0.93, 1.07); 0.96 1.00 (0.95, 1.06); 0.93 1.04 (0.97, 1.11); 0.32

G. unclassified, F. Erysipel‑
otrichaceae (P/A) 1.00 (0.95, 1.06); 0.86 0.99 (0.91, 1.07); 0.76 0.93 (0.86, 1.01); 0.11 0.97 (0.91, 1.04); 0.41 1.00 (0.92, 1.08); 0.95

G. unclassified, F. Porphy‑
romonadaceae (AB) 1.00 (0.90, 1.10); 0.95 1.04 (0.89, 1.21); 0.66 1.00 (0.85, 1.16); 0.96 1.05 (0.90, 1.14); 0.79 0.93 (0.80, 1.09); 0.38

G. unclassified, O. Bacteroi‑
dales (P/A) 1.08 (1.02, 1.16); 0.01 1.04 (0.93, 1.15); 0.51 1.12 (1.02, 1.24); 0.02 1.09 (1.01, 1.18); 0.03 1.11 (1.00, 1.23); 0.05

G. unclassified, P. Firmicutes 
(P/A) 1.00 (0.96, 1.05); 0.89 0.98 (0.91, 1.07); 0.67 1.03 (0.95, 1.11); 0.54 1.01 (0.95, 1.08); 0.64 1.03 (0.95, 1.18); 0.45

G. unclassified, P. Firmicutes 
(AB) 1.08 (0.95, 1.24); 0.24 1.00 (0.81, 1.23); 0.97 1.09 (0.89, 1.34); 0.42 1.06 (0.88, 1.22); 0.65 1.21 (0.98, 1.49); 0.07

G. Veillonella (P/A) 1.03 (0.96, 1.10); 0.41 0.97 (0.86, 1.08); 0.57 1.08 (0.97, 1.20); 0.14 1.07 (0.95, 1.12); 0.50 1.08 (0.98, 1.21); 0.13

Table 2.  Posterior probabilities relating to associations between microbial traits and both overall and site-
specific colorectal cancer. AB = abundance; CRC = colorectal cancer; P/A =  presence versus absence. Letters in 
the microbial trait name represent the taxon classification level from which that microbial trait was observed, 
with “G” and “O” representing “genus” and “order”, respectively. All microbial traits that were not confidently 
classified at the genus level were organised into unclassified groups within higher classification levels 
(represented by “unclassified”). H0: Neither trait has a genetic association in the region, H1: Only the first trait 
(i.e., the microbial trait) has a genetic association in the region, H2; Only the second trait (i.e., CRC risk) has a 
genetic association in the region, H3: Both traits are associated but have different causal variants and H4: Both 
traits are associated and have the same causal variant.

Microbial trait and CRC risk H0 H1 H2 H3 H4

G. Bifidobacterium (AB) and overall CRC 0.01 0.03 0.02 0.07 0.87

G. Bifidobacterium (AB) and distal colon cancer risk 0.03 0.12 0.03 0.11 0.71

G. Bifidobacterium (AB) and proximal colon cancer risk 0.17 0.67 0.02 0.09 0.05

G. Bifidobacterium (AB) and colon cancer risk 0.08 0.31 0.03 0.11 0.47

G. Bifidobacterium (AB) and rectal cancer risk 0.02 0.08 0.04 0.14 0.72

G. unclassified, O. Bacteroidales (P/A) and overall CRC 0.13 0.63 0.02 0.09 0.13

G. unclassified, O. Bacteroidales (P/A) and proximal colon cancer risk 0.12 0.60 0.03 0.13 0.12

G. unclassified, O. Bacteroidales (P/A) and colon cancer risk 0.14 0.66 0.02 0.10 0.08

G. unclassified, O. Bacteroidales (P/A) and rectal cancer risk 0.13 0.63 0.03 0.14 0.07
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mass, body mass index and waist circumference). Additionally, the rs4988235 SNP has also previously been 
associated with 103 expression quantitative traits (eQTs), 6 metabolites, 59 methylation quantitative traits 
(mQTs) and one protein (Supplementary Tables 3–7). In the IEU OpenGWAS, over 230 traits were identified as 
being associated with rs4988235 at the same p-value threshold (Supplementary Table 8). Given the number of 
associations between this SNP and both complex and molecular traits, there are likely many plausible pathways 
between this SNP and CRC, which could be independent of the G. Bifidobacterium.

In contrast, we found very little evidence for horizontal pleiotropy between the SNP used as an instrument 
for the G. unclassified, O. Bacteroidales (rs116135844) and CRC risk, with only three associations observed at 
the pre-defined p-value threshold (P < 1 ×  10–04; Supplementary Tables 9–12). These traits included disorders 
of the patella, which is less likely to be biologically linked to CRC and therefore unlikely to reflect horizontal 
pleiotropy between the instrument and outcome. The other traits implicated in relation to rs116135844 included 
gene expression of the UBE2J2 gene and an uncharacterized genetic probe (2490351). The UBE2J2 gene encodes 

Figure 3.  Colocalisation results for bacteria within the (A) Bifidobacterium AB microbial trait and (B) P/A of 
unclassified genera within the Bacteroidales order with overall CRC. AB = abundance; CRC = colorectal cancer; 
FGFP = Flemish Gut Flora Project; GECCO = Genetics and Epidemiology of Colorectal Cancer Consortium; 
GM = gut microbiome; GWAS = genome-wide association study; P/A = presence versus absence. Regional 
association plots, generated from LocusCompareR, showing the − log10(P-value) where each lead SNP is 
represented by a purple diamond (panel A: rs4988235 associated with the Bifidobacterium AB microbial trait 
and panel B: rs116135844 associated with the unclassified Bacteroidales P/A microbial trait) in relation to overall 
CRC. These plots were created using the FGFP and GECCO full summary-level data for microbial traits and 
CRC, respectively.
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a member of the E2 ubiquitin-conjugating enzyme family that modifies abnormal proteins or short-lived pro-
teins targeted for degradation. The GWAS Catalog showed various associations with UBE2J2, including many 
cardiometabolic measures (e.g., body mass index, systolic blood pressure and coronary heart disease), autoim-
mune diseases (e.g., inflammatory bowel diseases and ulcerative colitis), CRC and others, suggesting UBE2J2 
gene expression could have a downstream impact on CRC. Further to this, no associations of this SNP with any 
phenotypes in the IEU OpenGWAS met our p-value threshold (Supplementary Table 13).

Two‑sample MR using a lenient p‑value threshold for selection of genetic instruments. To allow the use of more 
formal pleiotropy-robust methods, a more lenient p-value threshold of 1 ×  10–05 was used to select genetic instru-
ments for G. Bifidobacterium and G. unclassified, O. Bacteroidales, as is commonly used in the  literature24,25. In 
addition to using this lenient p-value threshold (which may increase the risk of weak instrument bias), associated 
SNPs were also then restricted to those which had directionally consistent effect estimates in each of the three 
studies in the mGWAS (FGFP, FoCus and PopGen). When using a more lenient p-value threshold (P < 1 ×  10–05) 
and restricting to SNPs with directionally consistent effect estimates across the three studies comprising the gut 
microbiome GWAS (Supplementary Table 14), nine of the original 14 microbial traits had additional associated 
SNPs that could be used as theoretical instruments for further MR analyses. Focusing on those microbial traits 
for which there was evidence of a causal effect on CRC risk, G. Bifidobacterium had five associated SNPs and G. 
unclassified, O. Bacteroidales had three associated SNPs in total. Inverse variance weighted (IVW)-derived esti-
mates for the causal effect of these microbial traits on overall CRC were consistent in direction to those obtained 
in the main analyses; however, the magnitude of all estimates was attenuated, and CIs spanned the null (Fig. 4, 
Supplementary Table 15). Specifically, a higher abundance of G. Bifidobacterium and presence of G. unclassified, 
O. Bacteroidales increased the risk of overall CRC by 16% (OR: 1.16; 95% CI: 0.97, 1.38; P = 0.10) and 5% (OR: 

Figure 4.  MR estimates of the effect of each microbial trait on overall CRC risk using a more lenient p-value 
threshold for selecting genetic instruments. AB = abundance; CI = confidence interval; CRC = colorectal 
cancer; mGWAS = microbiome genome-wide association study; MR = Mendelian randomization; OR = odds 
ratio; P/A = presence versus absence; SD = standard deviation. Letters in the microbial trait name represent 
the taxon classification level from which that microbial trait was observed, with "C", "F", "G", "O" and "P" 
representing "class", "family", "genus", "order" and "phylum", respectively. All microbial traits that were not 
confidently classified at the genus level were organised into unclassified groups within higher classification levels 
(represented by "unclassified"). MR estimates represent the OR for CRC risk and 95% CI per SD unit change 
for AB microbial traits or per approximate doubling of the genetic liability to P/A of each binary microbial 
trait. Results for the inverse variance weighted, weighted median, weighted mode and MR-Egger methods are 
presented when using the multi-SNP instrument for each microbial trait using a lenient p-value threshold 
(P < 1 ×  10−05) and directional consistency across cohorts included in the mGWAS and were compared to the 
Wald ratio estimates obtained from the main analysis.
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1.05; 95% CI: 0.95, 1.15; P = 0.34), respectively. Results for other microbial traits were consistent with the main 
analyses and provided little evidence for a causal effect on CRC risk.

Estimates of the causal effect of G. Bifidobacterium on overall CRC risk using the pleiotropy-robust methods 
were inconsistent with those derived using the Wald ratio and IVW methods, where the weighted median esti-
mate was positive but both the MR-Egger and weighted mode-derived estimates were in the inverse direction 
(MR-Egger OR: 0.79; 95% CI: 0.65, 0.95; P = 0.09 and weighted mode OR: 0.99; 95% CI: 0.82, 1.14; P = 0.80). 
The inconsistent results obtained by these approaches suggest that horizontal pleiotropy may in part explain 
the relationship between G. Bifidobacterium and CRC risk, whereby the SNP associated with G. Bifidobacterium 
(rs4988325) may impact the risk of CRC independent of the microbial trait. For G. unclassified, O. Bacteroidales, 
estimates using the weighted median and weighted mode methods were consistent in direction suggesting that 
presence of this group of bacteria increased the risk of overall CRC; however, the effect estimate was in the 
reverse direction using the MR-Egger method and CIs were predictably wide (Fig. 4, Supplementary Table 15).

For site-specific analyses, IVW-derived effect estimates for the effect of G. Bifidobacterium were directionally 
consistent with the main analyses using the Wald ratio, though some estimates had wide CIs. The estimates for 
the causal effect of G. Bifidobacterium on distal, proximal and colon cancer were also consistent; however, results 
using the MR-Egger method were inverse for all sites of CRC with wide CIs. The estimates for the effect of G. 
unclassified, O. Bacteroidales on distal, proximal and colon cancer risk using the IVW and pleiotropy-robust 
methods were all directionally consistent (though with wide CIs) with main analyses, suggesting presence of this 
bacteria also increased the risk of site-specific CRC. However, estimates for the effect of both microbial traits 
on rectal cancer were inconsistent across all models, with the IVW and weighted median-based estimates being 
positive (and thus consistent with the main analyses) but either/both of the MR-Egger and weighted mode-
based estimates were inverse. Overall, these results may indicate that the originally observed causal effects in 
main analyses may be driven by horizontal pleiotropy (and downstream effects), which is also supported by our 
manual exploration of possible horizontal pleiotropic pathways.

Reverse MR. To examine whether the causal effects identified between microbial traits and CRC risk were either 
bi-directional in nature or driven by reverse causation of the microbial trait-associated SNPs (i.e., the “microbial 
trait-related” SNP actually having a direct or indirect effect on CRC, which, in turn, actually impacts microbial 
trait variation), we performed reverse two-sample MR analyses. These analyses aimed to assess whether overall 
and site-specific CRC risk had a causal effect on G. Bifidobacterium and G. unclassified, O. Bacteroidales micro-
bial traits. All of the 57 associated with overall CRC risk and all but one SNP associated with all site-specific CRC 
risk were available in the FGFP GWAS summary-level data for these two microbial traits (i.e., leaving 30, 16, 39 
and 30 independent SNPs associated with distal colon, proximal colon, colon and rectal CRC sites for reverse 
MR analyses). Results gave little evidence that overall CRC or CRC sites had a causal effect on either microbial 
trait, with CIs spanning the null for all IVW-derived estimates (Supplementary Table 16).

Discussion
In this study, we performed analyses to explore the causal role played by the gut microbiome and CRC. Whilst 
our initial MR analyses provided evidence that bacteria within the Bifidobacterium genera and an unclassified 
group of bacteria in the Bacteroidales order may increase the risk of overall and site-specific CRC, our sensitivity 
analyses highlighted that these relationships, and the tools used to assess them, are complex and, certainly in the 
case of Bifidobacterium, are unlikely to reflect causality. Our study therefore highlights the need for performing 
sensitivity analyses exploring the nature of the instruments and derived estimates when attempting to establish 
the causal role of the gut microbiome in health and disease.

Firstly, there was strong evidence for pleiotropy in the relationship between G. Bifidobacterium and both 
overall and site-specific CRC risk, where there were comfortably over 200 other traits that had previously been 
associated with the rs4988235 SNP that could be independently associated with CRC. Furthermore, when using 
multiple SNPs at a more lenient p-value threshold, the direction of effect was inconsistent across pleiotropy-
robust methods. In reverse MR analyses, there was also no evidence to suggest a reverse effect in that a greater 
genetic liability to CRC was unlikely to drive variation in Bifidobacterium abundance. Therefore, the initially 
observed finding suggesting that a higher abundance of bacteria with the Bifidobacterium genus was likely 
not to reflect causality and, instead, reflect horizontal pleiotropy or a complex (potentially gene-environment) 
interaction between the genomic region surrounding the rs4988235 SNP (i.e., the LCT/MCM6 gene) with both 
Bifidobacterium abundance and CRC risk, as indicated by our colocalisation analyses.

Conversely, our main results suggesting that the presence of an unclassified group of bacteria within the 
Bacteroidales order increased risk of CRC seemed not to be driven entirely by horizontal pleiotropy, as there 
were only a small number of plausible traits associated with the rs116135844 SNP that could be independently 
associated with CRC. In addition, results when using a more lenient p-value threshold were consistent with those 
from our main analyses. There was also no evidence to suggest a reverse effect in that a genetic liability to CRC 
was unlikely to change the greater genetic liability to presence of this unclassified group of Bacteroidales bacteria. 
Indeed, these findings support previous observational evidence suggesting that bacteria within the Bacteroidales 
order are more present in CRC cases compared to  controls26–28. There are also many existing studies showing 
a relationship between various Bacteroides species including Bacteroides fragilis and other species including B. 
dorei, B. vulgatus and B. massilensis with CRC 29. Whilst we were unable to classify the specific bacteria within 
this unclassified Bacteroidales microbial trait, these bacteria could plausibly contribute to the effect observed 
in the current analyses. Therefore, research using more granular measures of the gut microbiome (e.g., those 
capturing species- and strain-level bacteria or those able to characterize functionality such as metagenomics) 
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will help provide clarity on these results specifically. Nevertheless, these results provide further evidence that the 
previously reported association between Bacteroidales genera and CRC may reflect causality.

It is worth noting that, whilst limited by power, our colocalisation analyses provided some evidence to sug-
gest that G. Bifidobacterium (but not G. unclassified, O. Bacteroidales) shared causal variants with CRC, which is 
a necessary (but not a sufficient) criterion for causality. Therefore, further analyses with a much larger quantity 
of microbiome-related SNPs, larger GWASs from which these SNPs are discovered and importantly replicated, 
plus a better understanding of the relationships between host genetic variation and the gut microbiome and com-
prehensive sensitivity analyses that we present here are required to provide conclusive evidence in this context.

Recently, a similar two-sample MR study assessing the causal relationship between gut microbiota and CRC 
reported evidence for a causal role of bacteria within two families (Verrucomicrobiaceae and Enterobacteriaceae) 
and three genera (Akkermansia, Blautia, and Ruminococcus) in CRC, which we did not replicate  here30. Whilst 
the estimates for the effect of bacteria within the Ruminococcus genus on CRC risk found in our study were 
directionally consistent with those presented by Ni et al., the magnitude of these estimates was smaller in our 
study, and CIs spanned the null. There are several likely reasons for the difference in findings reported across 
these two papers. Firstly, with the exception of Ruminococcus, we did not consider the other microbial traits 
examined by Ni et al. as exposures in our analyses due to our selection of genetic instruments at the genome-
wide p-value threshold defined by the mGWAS (P < 2.5 ×  10–08), which is best practice in MR analyses. Ni et al., 
selected genetic instruments at a lenient p-value threshold within their study (P < 1 ×  10–05), without consideration 
for heterogeneity across cohorts, which could induce bias through weak instrumentation, horizontal pleiotropy, 
genetic confounding and reverse causation. The sample size of the mGWAS used by Ni et al. was also much 
smaller than that which was used in our study, and was conducted within a single sample.

Generally, there is poor replication of microbiome-related SNPs reaching genome-wide significance across 
different mGWASs (likely due to differences in sampling, data processing and GWAS analysis methodology)16. 
Unlike the majority of the current studies applying MR to understand the causal implications of the gut micro-
biome and various health outcomes, including that published by Ni et al., the main strength of this study is that 
the microbiome-related SNPs used as instruments for the microbial traits are some of the first persistent signals 
across multiple  cohorts21. Whilst acknowledging that instrumentation of the gut microbiome is complex, we used 
genetic variants that were robustly related to each microbial trait (i.e., those reaching a genome-wide p-value 
threshold in the mGWAS). Compared to existing studies of this kind (which tend to use a lenient p-value thresh-
old of 1 ×  10–05 as a main analysis), this reduces the likelihood of including invalid SNPs within MR instruments. 
We did, however, opt to use more lenient p-value threshold for selection of genetic instruments (P < 1 ×  10–05) as 
a sensitivity analysis but importantly restricted SNPs to those which had a consistent direction of effect across 
multiple studies under the assumption that, in a larger GWAS, these SNPs would have reached a traditional 
genome-wide p-value threshold. Together, this provides more confidence that these are biologically relevant SNPs 
or at least those that were consistently associated with the microbial traits in this analysis. Additionally, GECCO 
is the largest GWAS of CRC to date, meaning that we were very well powered to detect a modest association in 
this current MR analysis (i.e., assuming an alpha level of 0.05 and an  R2 of 0.01, we were 89% powered to detect 
an odds ratio of 1.2 in CRC). Generally, our study has shown the importance of performing several sensitivity 
analyses to assess the robustness of MR findings.

Despite this, there are several limitations to this work that centre around the core assumptions of the MR 
framework. Firstly, there must be no pathway between genetic instruments and the outcome (here, CRC) inde-
pendent of the microbial exposure. Given that very little is known about the biology of the host genetic effects 
on the gut microbiome, there is a greater likelihood that the observed GWAS “microbiome-related” signals are 
reflective of either host-driven effects upstream of the gut microbiome (i.e., reverse causation in an MR context) 
or independent associations between these host genetic variants and, in this case, CRC (i.e., horizontal pleiot-
ropy). This will remain a substantial limitation within the field without further large-scale GWASs of the gut 
microbiome and inter-disciplinary analyses clarifying the mechanistic pathways explaining the relationships 
between host genetic variation and gut microbiome variation.

Secondly, there are many microbiota of lower taxonomic units within the group of unclassified genera in the 
Bacteroidales order, emphasising a need to classify the exact species or strain of bacteria that could be driving 
this relationship and understand the mechanisms by which this occurs. Even if these early results do suggest 
causality (with the case of G. unclassified, O. Bacteroidales), we do not currently know whether attempts to alter 
microbiota to reduce CRC risk would have other, unforeseen effects on other aspects of health. This is particularly 
important for the inclusion of the gut microbiome in the development of targeted therapeutics or preventative 
strategies for CRC. Lastly, these analyses were undertaken with only individuals of European ancestry; there-
fore, it is not clear how generalisable these results are to other populations, especially those with differing gut 
microbial compositions.

Our study initially provided evidence that individuals who have a higher abundance of bacteria within the 
Bifidobacterium genus and presence of an unclassified group of bacteria within the Bacteroidales order within 
the gut may be at an increased risk of CRC and its sites. However, through exploration of invalidation of MR 
assumptions, we performed numerous sensitivity analyses which showed that these relationships are complex 
and may not reflect direct or causal relationships. Therefore, caution is required when interpreting these results 
and MR estimates alone are insufficient to determine causality in these contexts. Inter-disciplinary collabora-
tion and triangulation across multiple, complementary study designs are required to understand the causal 
mechanisms that link both host genetic variation with the gut microbiome and the relationships between the 
gut microbiome and human health.
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Materials and methods
Study design. Two-sample MR was used to examine the causal relationship between features of the human 
gut microbiome and both overall and site-specific CRC risk. In brief, SNP-exposure and SNP-outcome associa-
tions were obtained from independent non-overlapping GWASs to generate causal effect estimates of 14 micro-
bial traits on overall and site-specific CRC risk. This study and all methods have been conducted in line with the 
Strengthening the Reporting of Observational Studies in Epidemiology MR (STROBE-MR) reporting guidelines 
for MR  studies31. All methods have been carried out in accordance with relevant guidelines and regulations.

Gut microbiome GWAS data and instrument selection. Genetic variants associated with microbial 
traits were obtained from one of the largest microbiome GWAS (mGWAS) meta-analyses of bacterial abundance, 
presence (versus absence), alpha- and beta-diversity and enterotype conducted within the FGFP (n = 2,223) 
and two independent validation cohorts (the Food-Chain Plus study [FoCus, n = 950] and the PopGen study 
[n = 717])21. Full details of the data sampling, preparation and analyses have been described  previously21,32,33. 
Briefly, DNA was extracted from frozen fecal samples provided by participants and hypervariable regions of the 
16S rRNA gene were amplified and sequenced (the V4 hypervariable region for FGFP and the V1-V2 hyper-
variable regions for both FoCus and PopGen). Resulting sequences were analysed per sample using the DADA2 
pipeline to provide taxonomical classifications of all bacteria in each  sample34. Bacterial classifications that were 
not confidently assigned at the genus level were organised into arbitrary unclassified groups within higher clas-
sification levels. Informed consent and appropriate ethical approval were obtained for each study.

In the FGFP cohort, which was used the discovery cohort in the GWAS analysis, the DADA2 pipeline yielded 
499 taxonomical units across five levels of microbiota phylogeny from phylum to genus. Four metrics on alpha-
diversity (within-individual diversity) and beta-diversity (inter-individual differences) were estimated using 
data for all 288 genus-level taxa. An enterotype phenotype, describing the different phylum-level community 
compositions, was also estimated.

After performing taxa-level quality control (QC), 92 taxa were available for the mGWAS (details previously 
 described21). Given the ecological count nature of the 16S rRNA data, many microbial traits had zero-inflated 
distributions, which is problematic for linear modelling. Of the 92 taxa, 62 contained substantial zero-inflation; 
therefore, these taxa were modelled using a two-step hurdle binary analysis, which includes a binary presence 
(versus absence) analysis (denoted throughout as “P/A”) and a zero-truncated rank normal transformed abun-
dance analysis (denoted throughout as “AB”). All other taxa were relatively normally distributed; therefore, were 
treated as AB phenotypes and rank normal transformed accordingly. Thus, a total of 159 microbial traits (i.e., 
62 P/A, 92 AB, 3 alpha-diversity, 1 beta-diversity and 1 enterotype phenotypes) were analysed in the mGWAS 
conducted in the FGFP cohort.

Individuals from the FGFP cohort were genotyped on the Human Core Exome v1.0 and the Human Core 
Exome v1.1. Imputation was conducted using the 1000 Genomes data (phase 3) as the reference panel. After 
variant-level and individual-level QC followed by imputation, 7,711,310 variants and 2259 individuals remained, 
2223 of whom also had data on the gut microbiome and all covariates used in the mGWAS analysis. All individu-
als were of European ancestry.

All mGWAS analyses were adjusted for extraction type and year, aliquot year, person performing the aliquot, 
library preparation plate, the first 10 genetic principal components, sex and age. Assuming an additive genetic 
model and accounting for genotype uncertainty, all AB and alpha-diversity microbial traits were regressed on 
covariates and residuals were regressed on genotype probability data in univariate linear models, all P/A microbial 
traits were analysed using a multivariate logistic model, all beta-diversity microbial traits were analysed using a 
multivariate model and the enterotype microbial trait was analysed using a multinomial logistic regression for 
categorial traits. All SNPs that reached an inclusive association test p-value threshold of 1 ×  10–05 in the FGFP 
data set (n = 23,735) were taken forward into a targeted meta-analysis including the independent FoCus and 
PopGen studies. Three genera were not present in these German cohorts; therefore, after excluding both P/A 
and AB microbial traits in these three instances (i.e., six microbial traits in total), the meta-analysis was limited 
to 153 microbial traits and 23,067 SNPs.

The FoCus and PopGen cohorts were genotyped using the Illumina Omni Express + Exome array and the 
Affymetrix Genome-Wide Human SNP Array 6.0, respectively. Imputation was conducted using the Sanger 
Imputation Service with the Human Reference Consortium (HRC) version 1.1 as the reference panel. The 
mGWAS meta-analyses were performed using the inverse-variance fixed effects method, with SNPs considered 
“meta-supported” if the p-value of association became smaller in the meta-analysis compared to that obtained in 
FGFP alone. To identify all independent SNPs associated with microbial traits, all meta-supported markers were 
clumped using plink and its default settings. The genome-wide meta-analysis p-value threshold was defined as 
2.5 ×  10–08 and the study-wide p-value threshold was defined as 1.57 ×  10–10 using Bonferroni correction (assum-
ing 2 million independent genetic association tests across 159 microbial traits).

Of the 153 microbial traits tested, two SNPs showed evidence of association that exceeded the study-wide 
meta-analysis p-value threshold and a further 11 exceeded the genome-wide meta-analysis threshold, where 
each SNP was associated with one microbial trait. These 13 SNPs were selected as genetic instruments for the 
13 microbial traits within this two-sample MR analysis with overall and site-specific CRC, in addition to one 
SNP associated with bacteria of the Bifidobacterium genus that has previously been reported in the literature 
(Supplementary Table 2). Effect estimates from the mGWAS represent an increase in the log-transformed OR 
for P/A microbial traits and the standard deviation (SD) change for rank normalised AB microbial traits with 
each effect allele carried.
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Colorectal cancer GWAS data. Data for CRC were obtained from the most comprehensive GWAS of 
overall CRC to date from a meta-analysis of 120,328 individuals (comprising 55,168 CRC cases and 65,160 
controls). The GWAS meta-analysis included the Genetics and Epidemiology of Colorectal Cancer Consortium 
(GECCO), Colorectal Cancer Transdisciplinary Study (CORECT), OncoArray + Custom, OmniExpress + Exome 
Chip, COloRectal cancer Study of Austria (CORSA) and UK Biobank (Supplementary Table 1) and full informa-
tion on genotyping, imputation and QC have been described  previously35,36. Data for CRC sites were available 
across colon cancer (N = 32,002), which is a sum of distal CRC, proximal CRC and cancer cases with unspecified 
sites, distal CRC (N = 14,376), proximal CRC (N = 15,706) and rectal cancer (N = 16,212). CRC case status was 
diagnosed by a physician and approximately 92% of participants were white and of European ancestry. Data 
access was granted and the study was approved by the GECCO Coordinating Centre.

Statistical analyses. Two‑sample Mendelian randomization. In our primary analyses, we performed two-
sample MR using the TwoSampleMR37 package (version 0.5.6) in R to examine the causal relationship between 
14 microbial traits and both overall and site-specific CRC risk.

Summary-level data (i.e., the SNP name [rsid], effect allele, other allele, effect allele frequency, beta coef-
ficient, standard error, p-value and sample size) for each of the 14 microbial trait-associated SNPs associated 
were extracted from both the mGWAS and CRC GWAS meta-analysis. The proportion of variance explained 
 (R2) in each microbial trait by each SNP and the strength of the instrument (assessed through the F-statistic) 
were calculated. For each binary microbial trait, the proportion of variance explained of the liability to presence 
(versus absence) was obtained using the “get_r_from_lor” function of the TwoSampleMR  package37 (the estimate 
of which was then squared to get the  R2). The required parameter for this function describing prevalence of each 
microbial trait was obtained from FGFP alone (as published by Hughes et al.21). For continuous microbial traits 
(i.e., abundances), the  R2 was calculated using the following  formula38:

where β is the effect size (beta-coefficient), MAF is the minor allele frequency and SE(β) is the standard error of 
the effect size for a given SNP, and N is the sample size of the mGWAS. The F-statistic was calculated as follows:

where R2 is the proportion of variance explained in the microbial trait by the SNP, N is the sample size of the 
GWAS, and k is the number of SNPs included in the instrument (i.e., for our main analysis, k = 1 for each micro-
bial trait)39.

The exposure and outcome datasets were harmonized such that the effect of each SNP on the exposure and 
outcome was relative to the same effect allele. For ambiguously coded SNPs (i.e., "palindromic” SNPs where the 
effect/other allele were either an A/T or G/C combination), we used the effect allele frequency to resolve strand 
ambiguity, where possible. Non-inferable SNPs (i.e., “palindromic” SNPs with a MAF > 0.42) were removed 
from the analysis.

Given that there was only one SNP associated with each microbial trait, the Wald ratio method was used as 
the main analyses, which estimates the effect of the exposure (here, each microbial traits) on the outcome (here, 
overall and site-specific CRC risk) by dividing the SNP-outcome association by the SNP-exposure association 
(Fig. 1)19.

Sensitivity analyses. Three assumptions, namely (1) the relevance assumption (the genetic instruments 
used to proxy the exposure are strongly associated with that exposure), (2) the independence assumption (there 
is no confounding between the genetic instrument(s) used to proxy the exposure and the outcome) and (3) the 
exclusion restriction assumption (the genetic instruments used to proxy the exposure have no effect on the out-
come other than through the exposure) must be met when assessing evidence for causal relationships between 
an exposure and outcome using  MR17–20. We explored possible invalidations of each of these assumptions in our 
analyses by performing several sensitivity analyses that test the robustness of our findings and explored possible 
explanations of any observed causal effect via a process of elimination.

Firstly, genetic colocalisation was used to evaluate whether there was a shared causal variant at each locus 
responsible for variation in the gut microbiome and for conferring CRC risk, which is necessary but not sufficient 
for establishing causality. Secondly, in the absence of using formal statistical techniques that assess robustness 
of causal estimates owed to having only one SNP associated with each microbial trait, an alternative approach 
was used to test for any invalidation of the third MR assumption (i.e., the exclusion restriction assumption). We 
manually searched SNPs in two databases (PhenoScanner and the IEU OpenGWAS database) to identify traits 
they have previously been associated with. Thirdly, to formally test potential pleiotropy, we selected genetic 
variants to proxy microbial traits at a more lenient p-value threshold of 1 ×  10–05 and repeated MR analyses with 
several complementary, pleiotropy-robust methods. Lastly, to assess whether any causal effect observed between 
microbial traits and CRC in our main analyses was indicative of reverse causation, we additionally performed 
two-sample MR in the reverse direction (i.e., with overall and site-specific CRC as the exposure and microbial 
traits as the outcome). Each of these sensitivity analyses are described in detail below.

Colocalisation. Colocalisation analyses were conducted using the ‘coloc’ R package with default parameters 
(i.e., with the prior probabilities of the SNP being associated with the exposure, the outcome or both traits being 
specified as 1 ×  10–04, and 1 ×  10–05,  respectively40), additionally specifying that the exposures (i.e., microbial 

R
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traits) were continuous and that the outcome (i.e., CRC risk) was binary (with either the ‘quant’ or ‘cc’ option, 
respectively, specified as the type of data). Bayes factor computation was used to generate 5 posterior probabili-
ties (H0-H4) characterised by the following outcomes: (H0) neither trait has a genetic association in the region; 
(H1) only the gut microbiome has a genetic association in the region; (H2) only CRC has a genetic association 
in the region; (H3) both traits are associated but have different causal variants and (H4) both traits are associ-
ated and have the same causal variant. We used a posterior probability threshold ≥ 0.80 to indicate evidence of a 
shared common causal variant between each microbial trait and CRC. Full summary statistics were only avail-
able for the FGFP cohort for gut microbiome variation; therefore, genetic variants ± 1 Mb of the lead SNP associ-
ated with any microbial trait for which there was evidence for a causal impact on CRC in our main analyses were 
extracted from FGFP and GECCO genome-wide datasets. Regional association plots were generated to visualise 
genetic colocalisation using the LocusCompareR  package41.

Manual exploration of pleiotropy. Where there was evidence for a causal effect of any microbial trait on CRC 
risk, summary-level GWAS data collated by PhenoScanner and the IEU OpenGWAS were searched to identify 
whether any SNP used as an instrument for those microbial traits had been reported to be associated with CRC 
or any other trait that could be an independent cause of CRC. A lenient p-value threshold of 1 ×  10–04 was set as 
the multiple testing threshold at which we defined evidence for an association between the SNP and any disease 
or trait in PhenoScanner and the IEU  OpenGWAS22,42. This multiple testing correction was based on the number 
of results returned by the online PhenoScanner interface (i.e., 1000, as of May 2022) and for consistency in the 
inclusive p-value threshold selected across the two platforms, where a 10% Bonferroni correction was applied 
due to the likelihood that traits in those databases were correlated.

Two‑sample MR using a lenient p‑value threshold to select genetic instruments. To allow the use of more for-
mal pleiotropy-robust methods that require multiple genetic instruments, a more lenient p-value threshold of 
1 ×  10–05 was used to expand the number of SNPs associated with each of the microbial traits in the main analy-
ses, reflecting the p-value threshold commonly used in the  literature24,25. However, in addition to increasing this 
p-value threshold (which may increase the risk of weak instrument bias), SNPs reaching this lenient p-value 
threshold were then also restricted to those which had directionally consistent effect estimates in each of the 
three studies in the  mGWAS21 (FGFP, FoCus and PopGen; see list of all directionally consistent SNPs in Supple-
mentary Table 14) to reduce heterogeneity in the effect of each SNP on the exposure. The IVW method was used 
and compared to the main analyses that utilised the Wald ratio estimator. The IVW method meta-analyses effect 
estimates across all SNPs weighted by the inverse variance of the SNP-outcome association using fixed effects.

The caveats of using multiple SNPs defined at a more lenient p-value threshold in MR analyses are increasing 
the likelihood of weak instrument bias and introducing horizontal pleiotropic pathways between the SNPs and 
the outcome. Therefore, to test for horizontal pleiotropy in these sensitivity analyses, the weighted  median43, 
weighted  mode44 and MR-Egger45 regression methods were also applied and consistency of effect estimates were 
compared to those obtained from the IVW method.

The weighted  median43 requires that only half the SNPs are valid instruments (i.e., exhibiting no horizontal 
pleiotropy, no confounders of the instrument-outcome association and a robust association with the exposure) 
for the causal effect estimate to be unbiased. The mode-based estimator clusters the SNPs into groups based on 
similarity of causal effects and returns the causal effect estimate based on the cluster that has the largest number 
of SNPs. The weighted  mode44 introduces an extra element similar to the IVW and weighted median estimators, 
weighting the contribution of each SNP to the clustering by the inverse variance of its outcome effect.

The MR-Egger45 method is similar to the IVW approach but relaxes the “no horizontal pleiotropy” assump-
tion. MR-Egger regression allows a non-zero intercept in the relationship between multiple SNP-outcome and 
SNP-exposure associations, where the intercept provides a formal statistical test for the presence of directional 
(bias inducing) horizontal pleiotropy. The slope of the MR-Egger regression between multiple SNP-outcome 
and SNP-exposure associations can be considered as an unbiased causal effect between the exposure (here, 
microbial traits) and the outcome (here, CRC), assuming any horizontal pleiotropic effects are not correlated 
with the SNP-exposure effects (i.e., strength of the instrument). Violations of the third MR assumption were 
also assessed by visual inspection of  funnel19, forest, scatter and leave-one-out plots, and tests of  heterogeneity18 
of effects between the SNPs using Cochan’s Q  statistic46.

Effect estimates obtained from all two-sample MR analyses represent the OR for both overall and site-specific 
CRC risk for each SD higher abundance of each continuous microbial trait (those denoted with “AB” in tables) 
and the OR for CRC for an approximate doubling of the genetic liability to presence (versus absence) of each 
binary microbial trait (those denoted with “P/A” in tables)47. For all analyses, P-values were interpreted as con-
tinuous indicators of evidence strength and conclusions were drawn based on effect sizes and their precision. 
Given the high correlation between microbial traits, there was no correction for multiple testing. Analyses and 
data visualisation were conducted using the TwoSampleMR R package (version 0.5.5) and the ieugwasr R package 
(0.1.5) in with R (version 4.1.0) and PhenoScanner (version 2)  online22,37,42.

Reverse two‑sample Mendelian randomization. For reverse MR analyses, 57 independent SNPs (i.e., 31 new 
and 26 that were previously known) that reached the conventional genome-wide p-value threshold (P < 5 ×  10–08) 
were selected as instruments for overall CRC risk, obtained from a large GWAS meta-analysis of CRC compris-
ing 34,627 CRC cases and 71,379 controls of European  ancestry48. For CRC sites, 109 SNPs (i.e., 13 new and 
96 that were previously known) associated with each of the four CRC sites (P < 5 ×  10–08) were obtained from 
the largest and most recent GWAS meta-analysis of anatomical site-specific  loci35, where the number of SNPs 
associated with each were 102, 99, 108 and 103 for distal colon, proximal colon, colon and rectal, respectively. 
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These SNPs were then clumped (r-squared = 0.001) to obtain 31, 17, 40 and 31 independent SNPs associated 
with distal colon, proximal colon, colon and rectal, respectively. Summary statistics for CRC-associated SNPs 
were extracted for the 14 microbial traits from the FGFP cohort (n = 2223) from the Hughes et al.,  GWAS21. MR 
analyses were undertaken in the same was as described above, with the IVW method used as the main analyses, 
results of which were compared to those obtained from the MR-Egger, weighted median, and weighted mode-
based estimators that test the assumptions of no pleiotropy among genetic instruments and outcomes.

Data availability
GWAS summary-level data used in this study were publicly available for microbiome GWAS (mGWAS) con-
ducted by Hughes et al.21. Summary-level data for overall and site-specific CRC were obtained directly from 
GECCO (summary-level data are publicly available for the CRC GWASs used in the reverse MR  analyses35,48.
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