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Abstract

Understanding the functional organization of molecular networks is an ongoing chal-
lenge. For this purpose, Spatial Analysis of Functional Enrichment (SAFE) frame-
work was proposed to uncover functional regions in a network by embedding it in
2-dimensions (2D) using the Spring embedding algorithm. However, biological net-
works often have a heterogeneous degree distribution, i.e., nodes in the network have
varying numbers of neighbours. In this case, the Spring embedding sometimes pro-
vides uninformative, densely packed embeddings best described as a ‘hairball’. On
the other hand, hyperbolic embeddings, such as the Coalescent embedding, maps
a network onto a disk, so that nodes of high topological importance (i.e., of high
node degree) are placed closer to the center of such disk. Additionally, these em-
bedding methods only capture node connectivity information (i.e., which nodes are
connected) but does not consider network structure (i.e., wiring or topology), which
captures complementary information. The state-of-the-art methods to capture net-
work structure are based on graphlets, which are small, connected, non-isomorphic,
induced sub-graphs (e.g., triangles, paths). To better capture the functional orga-
nization of networks with heterogeneous degree distributions, taking into account
different types of graphlet-based wiring patterns, in this work we introduce the
graphlet-based Spring (GraSpring) and the graphlet-based Coalescent (GraCoal)
embeddings. Furthermore, we extend the popular SAFE framework to take as input
these two newly proposed embedding methods and we use SAFE to evaluate their
performance on three types of molecular interaction networks (genetic interaction,
protein-protein interaction and co-expression) of various model organisms. We show
that the performance in terms of functional information uncovered by each of the
embedding algorithms varies depending on the type of network considered and also
the model organism considered. For instance, we show that GraCoals better capture
the functional and spatial organization of the genetic interaction networks of four
species (fruit fly, budding yeast, fission yeast and E. coli). Moreover, we discover
that GraCoals capture different topology-function relationships depending on the
species. We show that triangle-based GraCoals capture functional redundancy in
GI networks of species whose genome is characterised by high counts of duplicated
genes.
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Chapter 1

Introduction

1.1 Motivation

Systems biology is a discipline in biomedical sciences that studies complex biological
interactions on different levels, allowing the identification of patterns that decode
the complexity of the biological structure and the processes in the cell, tissues and
organ systems (Ideker et al., 2001; Kirschner, 2005). It is the opposite to “reduction-
ism” in biological research, which studies living phenomena at the lowest levels of
complexity (Ayala, 1987; Barabasi & Oltvai, 2004) (e.g., studying a single molecule).
However, it is evident that a particular biological process or function cannot be at-
tributed to an individual molecule. Instead, biological entities interact with each
other in complementary ways to produce a biological product (i.e., a particular phe-
notype). An important field in systems biology focuses on treating such a complex
system of interactions as a network, where the nodes in the network correspond to a
particular type of molecule, such as proteins, and the edges connecting them repre-
sent a type of interaction, such as the physical binding between the proteins in the
cell. In this regard, network biology has been a relevant research area for studying
the structure and dynamics of these complex interactions, allowing a better under-
standing of biological systems, such as the functional or structural properties of the
cell (Barabasi & Oltvai, 2004; Baryshnikova, 2016; Emmert-Streib & Glazko, 2011;
Ideker & Krogan, 2012; P. Wang, 2022).

In recent decades, advances in high-throughput technologies have increased the
availability of genomic, metabolomic, proteomic and transcriptomic data, providing
a valuable resource for the study of such complex biological systems in biology and
medicine (Barabasi & Oltvai, 2004; Cahan et al., 2014; Emmert-Streib & Glazko,
2011; Silverman et al., 2020). This massive increase in omics data can be attributed
primarily to biotechnological breakthroughs achieved in recent decades, including,
but not limited to mass spectrometry (Y. Ho et al., 2002), chromatin immunopre-
cipitation (Iyer et al., 2001) and yeast two-hybrid (Rual et al., 2005; Stelzl et al.,
2005). As molecular interaction data become more abundant, so does the complexity
of the system it represents (i.e, the dimensionality, where each additional measured
molecule adds a dimension to the data). Additionally, despite the biotechnologi-
cal breakthroughs, many interaction data is characterized by being incomplete and
prone to noise (Ning & Lo, 2010; Rajesh et al., 2021). Thus, a constant challenge in
network biology, is the need for new computational methods that are more efficient
and reliable for complex biological network processing and analysis. A common
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technique for processing and analyzing the data, is through network embeddings,
which are methods for extracting a low-dimensional representation of the data (Nel-
son et al., 2019), while conserving the original similarity features in the data (Arsov
& Mirceva, 2019). These lower representations of the data can later be used for
downstream analysis such as for annotation of genes (Garćıa-Dı́az et al., 2020), or
for protein structure prediction (Dhingra et al., 2020).

1.2 Objectives

In this work, we extend popular network embedding methods such as the Spring
embedding and the Coalescent embedding by combining these methods with graphlet
topology. Additionaly, we improve and extend the Spatial Analysis of Functional
Enrichment (SAFE) framework (Baryshnikova, 2016) to include these new methods
and use SAFE to evaluate the performances of these graphlet based embeddings.
Lastly, we use these graphlet based embeddings with SAFE to explore the functional
organization of molecular interaction networks of model organisms to uncover new
biological insights.

1.3 Contributions

In this thesis we introduce new methods for embedding molecular networks based
on graphlets. We generalise the popular Spring embedding to graphlet-based Spring
embedding. In brief, we use the graphlet adjacency matrix of a network instead of
the standard adjacency matrix to embed the nodes in 2D using the Spring embed-
ding. We also generalise the popular Coalescent embedding to the graphlet-based
Coalescent (GraCoal) embedding. In brief, this method performs dimensionality
reduction on the matrix representation of a network such as the Laplacian matrix
to obtain an angular coordinate for each node in the network and computes a ra-
dial coordinate based on the degree of each node in the network. By extending this
method to graphlets, we perform dimensionality reduction on the graphlet Laplacian
matrix to obtain angular coordinates and compute the radial coordinate based on
the graphlet degree of the nodes. We extend the SAFE framework to also consider
graphlet-based Spring embedding and GraCoal embedding as additional embedding
methods. Lastly, because our GraCoal embedding is based on the eigendecompo-
sition of the Laplacian matrix of a particular graphlet, we also extend SAFE to
consider graphlet based Spectral embedding. We compare the three graphlet based
embeddings by annotating different types of molecular networks of various model
organisms with SAFE. We show that when using graphlet based embeddings with
SAFE, additional functional information can be captured as opposed to using SAFE
with standard adjacency matrix (i.e., not based on graphlet information). Because
graphlets capture different wiring patterns, we show for instance, that each GraCoal
embedding used in SAFE captures unique biological functions. This demonstrates
that GraCoal embeddings used in SAFE can be used in complementary ways to
uncover the functional information encoded by molecular networks.
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Resulting Papers

The following manuscript has been submitted for review to Bioinformatics:
Tello D., Windels S.F., Rotkevich M., Malod-Dognin N. and Pržulj N. Graphlet Co-
alescent embeddings capture the functional organization of the cell. Bioinformatics

Posters and Talks

The following poster was presented at ISMB-ECCB 2021:
Tello D., Windels S.F., René Böttcher, Malod-Dognin N. and Pržulj N. Graphlet-
based Coalescent embedding uncovers complementary biological information in yeast
molecular networks.

1.4 Thesis outline

The thesis is outlined as follows:
In Chapter 2 we present all the relevant concepts and definitions related to

molecular biology and network biology that are needed for the development of this
work.

In Chapter 3 we present the new methods developed during this work. In par-
ticular, we introduce the extend version of the Spring embedding used in SAFE (i.e.,
graphlet-based Spring embedding) and also the newly proposed GraCoal embedding.
Furthermore, we describe the modifications done to SAFE to further extend and im-
prove the framework, in particular to embed molecular networks using the newly
proposed graphlet based embeddings.

In Chapters 4-6, we evaluate the graphlet-based embeddings with SAFE on
three different molecular interaction network types for various model organisms.
We first present, in Chapter 4, the results for the genetic interaction (GI) net-
works of Drosophila melanogaster, Escherichia coli, Saccharomyces cerevisiae and
Schizosaccharomyces pombe and also for the genetic interaction similarity (GIS)
network of Saccharomyces cerevisiae. In Chapter 5 we present the results for the
PPI networks of Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli,
Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces
pombe. Lastly, we present, in Chapter 6, the results for the co-expression (COEX)
networks of Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, and
Saccharomyces cerevisiae.
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Chapter 2

Background

In this chapter we introduce key concepts in molecular biology and network biology.
In brief, we present an overview of different types of molecular interaction networks
used in network biology as well as the main types of experimental methods that
allow to identify such interactions. Next, we define key concepts related to network
structural properties and provide an overview of the model networks most commonly
used in network biology that are particularly useful for understanding the global
structure of a network. We also go over higher order network representations such
as the graphlet adjacency matrix and the graphlet Laplacian matrix. Lastly, we
define the three network embedding algorithms used in this work (Spring embedding,
Coalescent embedding and Spectral embedding) and describe in detail the Spatial
Analysis of Functional Enrichment (SAFE) framework.

A well-established approach in systems biology is to analyze large scale omics
data by modeling them as networks, where molecules are represented as nodes that
are connected by an edge if they express any type of interaction. Nodes that are
connected by an edge are commonly referred to as “neighbors” in the network.
For instance, one of the most widely studied types of interactions in the cell are
the physical interactions that occur between proteins, which can be modeled as a
protein-protein interaction (PPI) network. To this end, network biology has facili-
tated the understanding of large and complex interactions that describe biological
systems, solving biological enigmas such as how and where these interactions occur
(Baryshnikova, 2016; Luck et al., 2019; Niu et al., 2012; Rizzolo et al., 2017; Vissi-
ennon et al., 2017; Yan et al., 2018; Youn et al., 2018). The massive increase in
available omics data can be attributed primarily to biotechnological breakthroughs
achieved in recent decades, including, but not limited to mass spectrometry (Y. Ho
et al., 2002), chromatin immunoprecipitation (Iyer et al., 2001) and yeast two-hybrid
(Rual et al., 2005; Stelzl et al., 2005). These methods have allowed for an increasing
availability of molecular interaction data in particular across model organisms, in-
cluding human (Huang et al., 2016; X. Li et al., 2010; Luck et al., 2020; Uetz et al.,
2000). A common task in network biology is to study the structural properties of a
network, providing valuable insights into the topology and geometry of the network
(Bianconi & Rahmede, 2017; Knabe, 2013; Vella et al., 2018; Wu et al., 2015). This
untangled information can later be used for downstream analysis, such as uncovering
associations between disease and RNA molecules (G. Li et al., 2017), or predicting
perturbation patterns in biological networks (Santolini & Barabási, 2018).
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2.1 Molecular interaction networks

In recent decades, advances in high-throughput technologies have increased the avail-
ability of genomic, metabolomic, proteomic and transcriptomic data, providing a
valuable resource for the study of such complex biological systems in biology and
medicine (Barabasi & Oltvai, 2004; Cahan et al., 2014; Emmert-Streib & Glazko,
2011; Silverman et al., 2020).

In this section, we define the main types of molecular interaction networks used
in network biology. In particular, we define protein-protein interaction networks,
genetic interaction networks and co-expression networks. Furthermore, we discuss
different types of annotation data, which are commonly used in parallel with molec-
ular interaction networks.

2.1.1 Protein-protein interaction networks

Protein-protein interaction (PPI) networks represent the physical interactions be-
tween gene products (i.e., proteins). Most studies of PPI networks focus on the
direct physical bindings between proteins, such as an enzyme physically interacting
with another molecule to catalyze a specific reaction that occurs in a living cell
or organism. However, indirect interactions such as those involving proteins in the
same protein complex or level-2 interactions (i.e., proteins that share the same inter-
action neighbors) can also be used, and can be particularly useful for studying and
predicting protein complexes (Chua et al., 2008). In a PPI network, the proteins are
represented as nodes, and the links connecting pairs of nodes (i.e., edges) represent
the physical binding (or indirect interaction) of the proteins (Gligorijević & Pržulj,
2015). When constructing a PPI network, the gene names/labels that encode each
particular protein product are often used over protein names/labels, which may
facilitate downstream analysis, for instance for comparison with other gene-based
molecular networks (e.g., genetic interaction or co-expression). Analysis of PPI net-
works have proved to be useful for various tasks such as protein function prediction,
protein complex prediction, drug discovery, uncovering disease mechanisms and un-
covering the relationships between the proteins within the cell (Athanasios et al.,
2017; Chua et al., 2008; Davis et al., 2015; Dobson et al., 2014; Piovesan et al., 2015;
Safari-Alighiarloo et al., 2014; Vazquez et al., 2003), and to study different biological
phenomena in the cell, such as gene regulation (Jiang et al., 2020; Mercatelli et al.,
2020; J. Wang et al., 2006), disease mechanisms (Chakraborty et al., 2014; Kuz-
manov & Emili, 2013; Safari-Alighiarloo et al., 2014) or signaling pathways (Giot
et al., 2003; S. Li et al., 2004). Some of the most widely used experimental methods
for detecting and identifying protein-protein interactions are the yeast two-hybrid
(Y2H) system (Ito et al., 2001; Ito et al., 2000; Rual et al., 2005; Simonis et al.,
2009; Van Criekinge & Beyaert, 1999) and techniques based on mass spectrometry
(Collins et al., 2007; Gavin et al., 2002; Krogan et al., 2006; Rigaut et al., 1999),
which we define in following sections.

2.1.2 Genetic interaction networks

Genetic interaction (GI) networks are a type of molecular interaction network that
model the interactions between genes in a cell (Costanzo et al., 2010; Costanzo
et al., 2016). In brief, two genes are said to genetically interact if a simultaneous
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mutation in both genes produces a phenotype that differs from the phenotype of each
individual mutated gene (Mani et al., 2008). Thus, in a GI network, the genes are
represented as nodes, and the links connecting pairs of nodes (i.e., edges) indicate
there is a genetic interaction between them. Typically, these types of interactions
are detected with experimental methods, such as genetic screens (Costanzo et al.,
2010; Costanzo et al., 2016; Lehner et al., 2006; Yan Tong & Boone, 2006) that
evaluate, if a particular phenotype in the cell varies significantly when two genes
are simultaneously mutated (i.e., a double mutant) with respect to the phenotype
of each mutated gene (Boucher & Jenna, 2013; Costanzo et al., 2010; Costanzo
et al., 2016). Genetic interactions are classified in two major categories: positive
genetic interactions and negative genetic interactions. Positive interactions occur
when the combined effect of two mutated genes (double mutant) result in a fitness
phenotype that is greater than the fitness phenotype of each individual mutation
(Baryshnikova et al., 2010; Boucher & Jenna, 2013; Kuzmin et al., 2018). On the
other hand, negative interactions occur when the combined effect of two or more
mutations result in a phenotype that is more severe than the phenotype of each
individual mutation (Baryshnikova et al., 2010; Boucher & Jenna, 2013; Kuzmin
et al., 2018). For instance, synthetic lethality is an extreme example of a negative
genetic interaction and occurs when two mutations, neither of which is lethal on its
own, combine and lead to an inviable double mutant phenotype (Bender & Pringle,
1991; Kuzmin et al., 2018; Novick & Botstein, 1985). Lastly, the genetic interaction
profiles of all the genes in a GI network are useful for constructing a similar type
of molecular interaction network, a genetic interaction similarity (GIS) network.
To construct a GIS network, the genetic interaction profiles of all the genes in the
GI network are compared to one another to evaluate how similar their interaction
patterns are. In a GIS network, two genes are connected by an edge if they share
similar interaction profiles. To this end, interaction profiles of pairs of genes are
compared by computing the Pearson correlation coefficient (PCC). Finally, gene
pairs with profile similarity of PCC>0.2 are connected in the newly constructed
GIS network. Larger values of the PCC threshold can be used to construct a more
stringent GIS network (Costanzo et al., 2010; Costanzo et al., 2016).

2.1.3 Co-expression networks

Co-expression (COEX) networks are a type of molecular interaction network that
model the interaction between genes based on their patterns of gene expression. In
a COEX network, each gene is represented by a node and two pairs of nodes are
connected by an edge if they are expressed simultaneously (Stuart et al., 2003). In
this regard, a gene is said to be expressed if the information it encodes (i.e., DNA)
is transcribed into an RNA molecule (i.e., a transcript), which later is translated
and processed into a functional protein. Typically, gene expression can be detected
using experimental methods such as RNA-seq (Z. Wang et al., 2009), which use deep
sequencing technology to measure the level of transcript in a sample to determine if
a particular gene is expressed. Thus, for constructing a COEX network, transcrip-
tomics data is typically used, such as microarrays or RNA-seq, providing expresion
values for all genes in a particular sample. Next, with the expression values from
different experimental conditions, a pair-wise similarity score is computed for all the
genes. For instance, a Pearson correlation coefficient (PCC) is usually used to con-
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struct a PCC matrix. For each gene, all other genes are ranked according to their
correlation values. Finally, a threshold can be applied to the ranks to keep only
the strongest correlation values. For instance, to build a highly reliable network,
keeping the top 1% is typically used (Obayashi et al., 2019).

2.1.4 Annotation data

As molecular interaction data continue to increase, so does the knowledge about
what characterizes each gene or protein in a cell, for instance which particular func-
tions they carry out or in which part of the cell they might be localized. In this
regard, molecular networks annotation data provides the necessary information that
relates the nodes in a molecular network (e.g. proteins or genes) to particular prop-
erties or features such as biological processes, molecular functions or biological path-
ways and are used to understand how the nodes in the network relate to each other.
To date, there exist multiple public databases that provide a valuable resource for
molecular annotation data, such as KEGG (Kanehisa et al., 2023) or GeneOntol-
ogy (Ashburner et al., 2000). The most common types of annotation data include
functional information, such as Gene Ontology (GO) terms (i.e., GO biological pro-
cesses, GO cellular components and GO molecular functions), metabolic pathways,
and protein domains, as well as contextual information, such as subcellular local-
ization and tissue expression patterns. Annotation data and molecular networks go
hand by hand when analysing molecular interaction networks, as annotations are
used to enrich molecular network models providing, for instance, biological insight
into the functional organization of the network. In summary, molecular networks
annotation data provides important information about the properties and functions
of entities in a molecular network and is used to understand the relationships and
processes within the network.

2.2 Experimental methods

Molecular interaction data has become a valuable resource for studying and under-
standing complex biological systems in the cell. The quantity and quality of these
data continues to increase as biotechnological breakthroughs are achieved and ex-
perimental costs become cheaper. In this section we review some of the widely used
experimental methods to detect molecular interactions.

2.2.1 Yeast 2-hybrid

The yeast two-hybrid (Y2H) system is a method for identifying PPIs in living cells
of the budding yeast, Saccharomyces cerevisiae (Uetz et al., 2000). The Y2H system
works by expressing two proteins, one as a bait and one as a prey. The bait protein
is fused to a DNA-binding domain and the prey protein is fused to an activation
domain. If the two proteins interact, they bring the DNA-binding and activation
domains into close proximity, leading to the activation of a reporter gene. The
reporter gene is usually a gene that confers an easy to appreciate phenotype, such
as fluorescence or growth in a medium (Brückner et al., 2009; Uetz et al., 2000).
The Y2H system has become one of the most widely used methods for identifying
protein-protein interactions. One advantage of the Y2H system is that it can be
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used to detect interactions between proteins that are not easily detectable using
other methods, such as interactions between intracellular proteins and membrane
associated proteins (Brückner et al., 2009).

2.2.2 Mass spectrometry

Mass spectrometry (MS) is an experimental method used to measure the mass and
abundance of proteins in a given sample (Glish & Vachet, 2003). To do this, it
ionizes the sample molecules (i.e, charging it positively or negatively) and then
analyzes the resulting ions by measuring the mass to charge ratio m/z. The m/z
ratio of each protein can then be used to computationally identify the proteins in the
sample by searching in large databases specific to the organism of interest (Richards
et al., 2021). A widely used MS based technique for identifying protein-protein
interactions is Crosslinking MS, which involves a chemical reagent (i.e., a cross-
linker) between two functional groups in a protein or a protein complex. The cross-
linker has a defined length, which allows for subsequent breaking of the cross-links
and analyzing the resulting peptides by mass spectrometry (O’Reilly & Rappsilber,
2018; Piersimoni et al., 2021).

2.2.3 Affinity purification

Affinity purification methods are used to isolate a protein of interest or group of
proteins from a given sample. To isolate the protein of interest (i.e., a target protein),
a ligand, covalently attached to a solid support (i.e., a resin or bead), binds with the
protein with high specificity (Kadonaga & Tjian, 1986). In brief, the sample with
the target protein is passed through the affinity resin or bead, such that only the
target protein is bound to it (i.e., to the ligand in the resin or bead). This allows
non-interesting proteins and other molecules to continue passing through the resin.
The resin may be washed to remove any particles or proteins that are not desired.
Finally, to separate and isolate the target protein from the resin, an elusion solution
might be used to break the binding of target and ligand in the resin (Kadonaga
& Tjian, 1986). To detect protein-protein interactions, the proteins isolated with
affinity purification are assessed with mass spectrometry for proper identification.

2.2.4 Tandem affinity purification (TAP)

Tandem Affinity Purification (TAP) is an extension of the affinity purification which
isolates a protein of interest (i.e., a target protein) or group of proteins from a given
sample (Puig et al., 2001). In a TAP, the target protein is sequentially bound to
two different ligands which are covalently attached to two solid supports (i.e., resin
or bead). The first step in a TAP is identical to the traditional affinity purification:
target protein is bound to the resin via the ligand and subsequently purified with
a washing step to remove any non-desired proteins or molecules. The second step
consists in purifying the target protein further by repeating the process through
a second resin with a different ligand which is also highly specific to the target
protein. The washing step is repeated to remove non-desired proteins and molecules
from the second resin and the target protein is eluted. These two rounds of binding
to different ligands make TAP a powerful and highly specific method for protein
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purification. Lastly, mass spectrometry is typically used on the purified protein for
proper identification.

2.2.5 Protein fragment complementation assay

Protein Fragment Complementation Assay (PCA) is a method used to study protein-
protein interactions in vitro (Galarneau et al., 2002; Remy et al., 2007; Remy &
Michnick, 1999). The intuition behind this method assumes that two fragments
of a target protein will interact and reform the full-length functional protein when
brought together in close proximity. The target protein is cleaved into two fragments,
each of which is expressed as a fusion protein with a different, easily identifiable and
measurable reporter protein, such as green fluorescent protein (GFP) or luciferase
(Chalfie, 1995). If there is no interaction, the two fragments remain separate and the
full-length functional protein is not reformed. On the other hand, when the interac-
tion of the two fragments occur, the full-length functional protein is reformed, which
exhibits the activity of the reporter protein (i.e., the fluoresence or luminiscence).

2.2.6 Synthetic genetic array (SGA)

Synthetic genetic array (SGA) is a high-throughput screening method for identify-
ing genetic interactions in yeast. It involves creating libraries of yeast strains that
each contain a deletion of a single gene, and then using these strains to systemati-
cally test all possible pairwise combinations of deleted genes to identify those that
exhibit synthetic growth defects when deleted together. Thus, it is based on the
concept of synthetic lethality, which is when two mutations that are individually
viable (i.e., non lethal) become lethal when combined. By systematically testing
pairs of mutants, SGA can be used to identify genetic interactions between genes,
and to uncover new functional connections within cellular pathways and networks
(Costanzo et al., 2010; Costanzo et al., 2016).

2.2.7 Microarrays

Microarrays are biotechnological tools used in molecular biology and genomics to
study gene expression and detect genetic variations (Cheung et al., 1999). Two
major types of microarrays are typically used, which are based either on DNA chips
(Stoughton, 2005) or gene chips (Johnston, 1998). They consist of a solid support,
usually a glass slide, coated with an array of microscopic spots of nucleic acid probes.
During a microarray experiment, a sample of labeled nucleic acids, typically cDNA
or RNA, is hybridized to the probes on the microarray. The hybridization signals are
then measured and used to quantify the expression level of the genes represented
by the probes. Microarrays can be used to study the expression of thousands of
genes simultaneously, making them a powerful tool for gene expression profiling and
functional genomics.

2.3 Network Analysis

Network analysis studies the patterns in connections (i.e., edges) and relationships
between the elements (i.e., nodes) in a network, providing insights into the global

14



and local structure of the network. In network biology, studying the structure of
molecular interaction networks provides researchers valuable information to under-
stand the underlying processes that occur in complex biological systems. In this
section we review some of the most basic network descriptors, such as the size, di-
ameter and clustering coefficient. Next, we define four common centrality measures
used in network analysis to evaluate the importance of each node in the network.
Lastly, we define graphlets and graphlet based methods for network analysis.

2.3.1 Global network descriptors

2.3.1.1 Size

The size of a network refers to the total number of nodes and edges in the network.

2.3.1.2 Density

The density of a network is the number of edges as a percentage of the max possible
number of edges in the network. Real networks have low density

2.3.1.3 Shortest path lengths

The shortest path length is defined as the minimum number of edges along a path
that needs to be traversed between a pair of any given nodes in a network. This
measure provides a way of quantifying the distance or separation between nodes in
a network. The shortest path length between two nodes is commonly used to study
the structure and properties of networks. For instance, it can be used to analyze the
robustness of a network by measuring how quickly information can be transmitted
from one node to another, or to measure the average distance between all pairs
of nodes in the network, known as the characteristic path length. Shortest path
lengths can be calculated using algorithms such as Dijkstra’s algorithm (Dijkstra
et al., 2021) or Bellman-Ford algorithm (Bellman, 1958). The choice of algorithm
depends on the type of network being analyzed and the specific problem being
solved. In weighted networks, where each edge has an associated weight or cost, the
shortest path length is calculated as the sum of the weights along the shortest path.
In unweighted networks, where all edges have the same weight, the shortest path
length is simply the number of edges in the shortest path.

2.3.1.4 Diameter

The diameter of a network is a measure of its breadth, defined as the longest shortest
path between all pairs of nodes. It is measured as the number of edges along the
shortest path between any given two nodes. Real networks are small world, meaning
they have short diameter

2.3.1.5 Clustering coefficient

The clustering coefficient of a node in a network is a measure of the degree to which
the neighbors of the node are interconnected. It is defined as the ratio of the number
of actual connections between the neighbors of a node to the maximum number of
connections that could exist between the neighbors. Finally, the clustering coefficient
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of a network is the average of the clustering coefficient over all nodes in the network.
Real networks have large clustering coefficient.

2.3.1.6 Degree distribution

Degree distribution is a statistical property of a network that describes the distri-
bution of the number of connections (i.e., edges) that each node in the network has
(i.e., the degree of a node). It is typically represented as a histogram or a proba-
bility distribution function that shows the frequency or probability of nodes with a
given degree (number of connections). It provides insight into the overall structure
of the network and the way information or signals might propagate through it. For
instance, a network with a power-law degree distribution, where the majority of
the nodes in the network have one or very few connections and a small proportion
of nodes have a lot of connections (Broido & Clauset, 2019; Moreira et al., 2009).
These types of networks are said to have a scale-free structure and are characterized
by a high degree of heterogeneity and robustness (Moreira et al., 2009; B. Wang
et al., 2006). The power-law equation can be represented as:

P (k) ∝ k−γ

Where P (k) is the probability that a node has degree k, and γ is the scaling
exponent. The value of γ determines the shape of the degree distribution, with larger
values of γ corresponding to more homogeneous distributions and smaller values of
γ corresponding to more heterogeneous distributions. In scale-free networks, the
exponent of the power-law distribution usually falls in the range of 2 < γ < 3
(Ravasz & Barabási, 2003).

Scale-free networks are commonly observed in many complex systems, including
the internet, social networks, biological networks, and technological networks, among
others. They are considered to be robust and resilient to the removal or failure of
nodes, as the hub nodes provide alternative paths for information or signals to flow
(Barabási & Albert, 1999; Broido & Clauset, 2019; Moreira et al., 2009).

However, they are also vulnerable to targeted attacks on the hub nodes, as their
removal can have a significant impact on the structure and function of the network.
For instance, perturbing highly connected nodes in PPI networks is more likely to
impact cell viability (Jeong et al., 2001b). The scale-free structure of networks can
have important implications for the way information spreads, the way resources are
distributed, and the way the network functions as a whole. Thus, understanding
the scale-free structure of networks and how to manipulate it to achieve a desired
outcome is an important area of research in many fields, including physics, computer
science, biology, and sociology, among others.

2.3.2 Node centralities

Node centrality is a measure of the importance or significance of a node within a
network. Centrality measures provide a way to quantify the relative influence or
importance of nodes in a network, and can be used to identify essential nodes, such
as genes or proteins in complex biological systems.

There are several different centrality measures, each with a slightly different
interpretation and focus. In the following section we define two types of node cen-
tralities: based on connectivity, such as degree centrality and eigenvector centrality,
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and based on occurrence of paths in the network, such as betweenness centrality
and closeness centrality.

2.3.2.1 Degree centrality

The degree centrality of a node is simply the number of connections (edges) it has
to other nodes in the network. It thus considers highly connected nodes to be the
most important nodes in the network.

It can be represented mathematically as:

DC(u) =
n∑

v=1

Au,v

where DC(u) is the degree centrality of node u, and Au,v is the element of the
adjacency matrix that represents the connection between nodes u and v. The sum is
taken over all nodes v in the network, and the resulting value represents the number
of connections node u has to other nodes in the network.

2.3.2.2 Eigenvector centrality

The eigenvector centrality of a node is a measure of the influence of a node (i.e.,
how many connections the node has) but takes into account the influence of the
nodes it is connected to. Thus, a node that has a large degree centrality (i.e., is well
connected) will only have a large eigenvector centrality if the neighbors of the node
also have a large degree centrality. In this way, nodes with large eigenvector central-
ity are considered to be influential not only because of their direct connections, but
also because of their connections to other highly connected nodes. The eigenvector
centrality of node u is defined as the average of the centralities of the n neighbors:

EC(u) =
1

λ

n∑
v=1

EC(v)Auv

where EC is the eigenvector centrality of a node in the network, A is the adja-
cency matrix of the network, and λ is the eigenvalue associated with A.

2.3.2.3 Betweenness centrality

The betweenness centrality of a node measures the extent to which the node lies on
the shortest paths between other nodes in the network. Nodes with high betweenness
centrality are often considered to be important bottlenecks or intermediaries in the
network. Formally, the betweenness centrality of a node is represented as:

BC(u) =
∑
s,t∈V

σst(u)

σst

where BC(u) is the betweenness centrality of node u, V is the set of all nodes in
the network, σst is the number of shortest paths from node s to node t, and σst(u)
is the number of these shortest paths that pass through node u. The betweenness
centrality of a node is proportional to the fraction of all shortest paths in the network
that pass through the node.
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2.3.2.4 Closeness centrality

The closeness centrality of a node measures the inverse of the sum of the shortest
distances from the node to all other nodes in the network. Nodes with high closeness
centrality are considered to be well-connected and influential, as they are able to
reach many other nodes quickly. Thus, the closeness centrality is a measure of the
accessibility of a particular node to all other nodes in the network. Formally the
closeness centrality is represented as:

CC(u) =
1∑n

v=1 d(u, v)/n

where CC(u) is the closeness centrality of node i, n is the total number of nodes
in the network, d(u, v) is the distance between nodes u and v, and the sum is taken
over all nodes v in the network.

2.3.3 Community structure

Community structure refers to the clustering of nodes in a network into groups or
modules based on their connectivity patterns. In a network with a strong community
structure, nodes within the same community are highly interconnected, while nodes
in different communities have relatively few connections (Favila & Halffter, 1997;
Girvan & Newman, 2002). Community structure is a common feature of many
complex networks, such as social networks, biological networks, and technological
networks. It is thought to reflect the underlying organization of the network and
to play a critical role in the network’s function and dynamics (Danon et al., 2005;
M. E. Newman, 2006). The detection of community structure in a network is a
central problem in network analysis, and there are many algorithms and techniques
for detecting communities based on different criteria, such as modularity, cliques, or
core-periphery structure (Ma et al., 2010; M. E. Newman, 2004; Sun et al., 2009).

Once detected, the community structure of a network can be used to study a
variety of questions related to the network’s organization and function, such as how
information spreads, how resources are distributed, and how the network evolves over
time. Thus, understanding the community structure of networks is an important
area of research in many fields, including physics, computer science, biology, and
sociology, among others.

2.3.4 Graphlets

A popular task in network science requires to quantify the network neighborhood
of a node (i.e., the local topology of the node). To this end, one of the widely
used measures for this purpose is the number of neighbors that each node has (i.e.,
the degree of a node). However, because it only considers the direct connections
of a node, the information recovered from this measurement is very limited. Thus,
graphlet-based methods have been proposed as state-of-the-art to quantify the local
topology around each node in a network. Graphlets, illustrated in Fig 2.1, are
defined as small, connected, non-isomorphic induced subgraphs in a graph, (Przulj
et al., 2004) and have been used, for instance, to predict protein function (Davis
et al., 2015) and to identify new cancer genes directly from their interaction patterns
(Milenković et al., 2010) in PPI networks.
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These powerful tools have been used not only for uncovering local structural
(topological) patterns and their relation to biological function, but also for char-
acterization and comparison of complex networks (Aparicio et al., 2017; Apaŕıcio
et al., 2015; Cannoodt et al., 2018; Martin et al., 2017; Przulj, 2007; Sarajlić et al.,
2016). Through functional analysis, it has been demonstrated that graphlets can
capture the functional organization of biological networks (Dale, 2017; Hulovatyy et
al., 2015; Winterbach et al., 2013; Yaveroğlu et al., 2014) and have also been gener-
alized to other applications, such as the graphlet Laplacian matrix, to demonstrate
that different graphlet topology can uncover different biological functions (Windels
et al., 2019).

Formally, we define graphlets as follows. Let G = (V,E) be a graph, where V
is the set of vertices and E is the set of edges. A graphlet g is a subgraph of G,
defined as g = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E such that the subgraph G[V ′]
is connected. Additionally, graphlets are induced subgraphs, meaning they contain
all the vertices of the original graph that belong to the selected subset, as well as
all the edges that connect those vertices. Moreover, graphlets are characterized by
having orbits (See Figure 2.1), also called automorphism orbits, which are defined as
symmetry groups of nodes within a graphlet, and are used to characterize different
topological positions of a node in a graphlet (Yaveroğlu et al., 2014). One particular
characteristic of the automorphism orbits of a graphlets, is such that swapping nodes
within the orbit preserves the structure of the graphlet (Przulj, 2007). Some widely
used graphlet-based measures include the graphlet degree vector (GDV), which can
provide valuable local topological information at the node level; and others, such
as the graphlet correlation matrix (GCM) and the graphlet correlation distance
(GCD), which provide valuable topological information at the entire network level.
We discuss these three widely used graphlet-based measures in the next sections of
the the thesis.
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Figure 2.1. An illustration of graphlets. All nine graphlets with up to four nodes
(G0-G8). Nodes of different shades correspond to the different orbits within each graphlet.
Figure adapted from (Przulj et al., 2004).

2.3.5 Graphlet degree vector

The graphlet degree vector (GDV) is a measure that quantifies the local topology of
a node in a network. The GDV of a particular node is the vector of the number of
occurrences of each possible graphlet that is centered on that node (Milenkoviæ &
Pržulj, 2008) (i.e. the number of times the node touches each particular graphlet).
Thus, it provides a compact summary of the local network structure around each
node, and can be used to compare the local topology of different nodes in a network.
For instance, by comparing the GDVs of different nodes, it is possible to identify
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nodes that have similar local topology and to group nodes into functional modules
or communities. The GDV approach has been used in several studies to analyze the
topology of biological networks, such as protein-protein interaction networks (Sara-
jlić et al., 2013; Sarajlić et al., 2016) and metabolic networks, and also generalized
to edge-based GDV instead of node GDV (Solava et al., 2012). It has been shown to
be effective in detecting meaningful structural modules and in identifying key nodes
in the network.

Let G = (V,E) be a graph, where V is the set of vertices and E is the set
of edges. Let gv = (gv,1, gv,2, ..., gv,k) be the Graphlet Degree Vector (GDV) of
node v, where gv,i is the number of occurrences of the i-th type of graphlet in the
neighborhood of node v. Thus, the GDV of a node provides a representation of the
local neighborhood structure of around the node.

The calculation of GDVs typically requires the use of graphlet counting algo-
rithms, which can be computationally expensive for large networks. However, there
are several algorithms and methods available to reduce the computational complex-
ity and make GDV analysis feasible for large networks. For calculating the GDVs
of the nodes in a network, graphlet orbits, illustrated in Fig 2.1, are used to reduce
the number of graphlets that need to be considered for the computation (Hočevar
& Demšar, 2014).

2.3.6 Graphlet correlation matrix

The graphlet correlation matrix (GCM) is an 11 × 11 matrix that summarizes the
network topology with the Spearman’s correlations between eleven non-redundant
graphlet orbit counts over all nodes in the network (Yaveroğlu et al., 2014). The
GCMuv, i.e., the (u, v)th element of the GCM matrix can be mathematically for-
mulated as follows:

Let GDVu = (gu,0, gu,1, ..., gu,k) be the Graphlet Degree Vector (GDV) of node
u, where gu,i is the number of occurrences of the i-th type of graphlet orbit in the
neighborhood of vertex u. Then the GCMu,v is defined as:

GCMu,v =

∑k
k=1 gu,kgv,k√∑k

k=1(gu,k)
2

√∑k
k=1(gv,k)

2

where GCMu,v is the (u, v)th element of the GCM, representing the similarity
between vertices u and v.

2.3.7 Graphlet correlation distance

The graphlet correlation distance (GCD) is a measure of the similarity between two
networks, based on the GCM (i.e., 11 x 11 matrix containing pairwise correlations
between the 11 non-redundant orbits over all nodes in a network). Thus, the GCD
between two networks G1 and G2, is defined as the Euclidean distance between both
GCMs. This measure is used to quantify the global structural differences between
two networks. The smaller the GCD between any two networks, the more similar the
two networks are in terms of their graphlet profiles. The GCD is formally defined
as:

GCD(G1, G2) = ∥GCM(G1)−GCM(G2)∥2 (2.1)
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where G1 and G2 are two networks, GDM(G) is the graphlet degree vector of
graph G1 and G2, and ||.||2 is the Euclidean norm. Note that this is done on the
upper triangle of the GCM matrices, as the diagonal is always 1, which indicates a
perfect correlation between the entries.

2.4 Model networks

In this thesis we describe the structure of real world molecular interaction networks
by performing model network fitting experiments to compare the real networks to
different types of random model networks commonly used in network biology. In
this section we define the eight random model networks used for this experiment.

2.4.1 ER

The Erdos–Renyi (ER) random graph model consists of a fixed set of nodes and a
fixed set of links (i.e., edges) that are equally likely to exist (i.e., all interactions
have the same probability) (Erdös & Rényi, 1959). To generate the ER networks,
we set the number of nodes and edge density to match those of the real networks,
and by randomly adding edges between uniformly chosen pairs of nodes (out of the
n(n− 1)/2 possible pairs of nodes) until a given density is reached.

2.4.2 ERDD

The ER-DD is the Generalized random graph model and an extension of the ER
model. In the ER-DD, the node degree distribution matches that of an input data
(i.e., a real network) (M. E. J. Newman, 2010). To generate ER-DD networks, we
assign connection capacities (stubs, corresponding to the degree of a node) to the
nodes of the network, and then add edges between nodes that have available stubs
uniformly at random while reducing the available stubs of the newly connected nodes
after each edge addition. The number of nodes and the degree distributions in these
model networks match those of the data networks

2.4.3 GEO

The geometric random graph model (GEO) consists of randomly placing points
(i.e., nodes) in a k-dimensional space and connecting them by a link if the distance
between them is below a certain threshold (Penrose, 2003). We generate GEO net-
works by distributing the set of nodes in three-dimensional space and connecting
them by edges if the Euclidean distances between them are lower than or equal to
threshold r. This value is set so that we obtain a given edge density. The number
of nodes and edge density are set to match those of the real networks.
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2.4.4 GEOGD

The GEOGD model is the GEO model with gene duplication, where the dispersion
of nodes is no longer uniformly random, but according to duplication and divergence
rules which mimics the gene duplication and mutation process in biology (Przulj et
al., 2009). To generate a GEO-GD model network, we start from a seed network
(i.e., two nodes connected by an edge) to which the duplication and mutation pro-
cess is applied. First, a parent node is chosen at random and duplicated, and then
the child node is randomly placed at a distance smaller than or equal to 2r (r is the
same as in the GEO model). This process repeats itself until the required number
of nodes matches that of the input data. The last step creates the edges with the
same rules as in the GEO model until the edge density matches the input data.

2.4.5 NPSO

The Nonuniform Popularity-Similarity Optimization (nPSO) model simulates how
random geometric graphs grow in the hyperbolic space with modular organization
(also termed communities) (Muscoloni & Cannistraci, 2018). It is an extension of
the PSO model, where the similarity between nodes is represented by the hyperbolic
distance between them (i.e., the closer two nodes are in space according to the
angular coordinates, the more likely they are to be connected by an edge). Similarly,
the popularity of the nodes is represented by the radial coordinate in the hyperbolic
plane, where nodes with larger degree are positioned closer to the center of the
circle. To generate nPSO model networks, we set the number of nodes and number
of communities to match those of the input data.

2.4.6 SF

The Barabàsi–Albert scale-free model (SF) is based on the preferential attachment
principle and it is characterized by having a scale-free degree distribution (Barabási
& Albert, 1999). To generate a SF network, we start from a seed network (i.e., two
nodes connected by an edge), and nodes are subsequently added and attached to
existing nodes of the network with a probability proportional to their node degrees.
This is repeated until the desired number of nodes is reached.

2.4.7 SFGD

The SFGD is the scale-free model with gene duplication and divergence. Similar to
the GEO-GD model, the SF-GD mimics the gene duplication and divergence pro-
cesses in biology (Vazquez et al., 2001). The initial process is the same as in the SF
model, starting with a single edge, which is grown through iterative duplication and
divergence events. In brief, for each iteration, a parent node is randomly selected
and duplicated into a child node. The newly produced node is connected to all the
neighbors of the parent node as well as the parent node with probability p. For the
divergence process, a single connection is removed with probability q between all
the shared neighbors of the parent node and the newly duplicated node. Parameter

22



q is set to match the edge density of the input data.

2.4.8 STICKY

The stickiness-index based (STICKY) model assigns a higher probability of interac-
tion between two nodes the higher their degrees are (Pržulj & Higham, 2006). To
generate a STICKY network, we start with n disconnected nodes and we randomly
assign stickiness index values which are proportional to the node degrees of the in-
put data. The probability of connecting two nodes is equal to the product of their
stickiness indexes.

2.5 Higher order network representations

2.5.1 Graphlet adjacency matrix

To formally introduce graphlet adjacency, we first define the the adjacency matrix
of a graph. Let G be a graph with the set of vertices V and the set of edges
E, G = (V,E). Two vertices, u and v, are adjacent (i.e., neighbors) if they are
connected by and edge (u, v) ∈ E in the graph. The adjacency matrix of G is
a symmetric n x n matrix, A (where n is the total number of nodes in G) that
indicates whether pairs of nodes are adjacent or not in the graph: A(u, v) = 1 if
(u, v) ∈ E; 0 otherwise. The node degree represents the number of connections of a
node, which is also the size of the neighborhood of said node. The degree matrix of
G is the diagonal matrix, Dnxn, where D(u, u) corresponds to the degree of node u;
0 otherwise (off diagonal elements are equal to 0). Finally, the graphlet adjacency
matrix is an extension of the adjacency matrix that captures node connectivity
patterns beyond simple direct node connectivity (Windels et al., 2019). It is defined
as:

Ak(u, v) =

{
ckuv/θk if u ̸= v

0 otherwise,
(2.2)

where ckuv is equal to the number of times the nodes u and v simultaneously touch
graphlet k and θk is a scaling constant equal to the number of nodes in graphlet k
minus 1. Similar to the adjacency matrix of a graph, the graphlet adjacency matrix
represents the relationship information of the set of nodes with respect to graphlet
k. The graphlet degree matrix of G for graphlet k is the diagonal matrix Dk, where
Dk(u, u) is the graphlet degree k of node u. The graphlet degree matrix contains
on the diagonal, for each node u the number of times u touches graphlet k, with all
non-diagonal elements being zero.

2.5.2 Graphlet Laplacian matrix

The graphlet Laplacian is a matrix representation of a graph that encodes infor-
mation about the connectivity and node importance of a graph (i.e., connectivity).
First we describe how the traditional graph Laplacian is defined: Let G be a graph
with the set of vertices V and the set of edges E, G = (V,E). Then, the Laplacian
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matrix of G, L is defined as L = D − A. Where A represents the adjacency matrix
of the graph and D the degree matrix of the graph (formerly defined in section
2.5.1). It represents the global structure of a graph because it captures the adja-
cency relationship of the nodes as well as their importance in the network. Finally,
the graphlet Laplacian matrix of a graph is an extension of the Laplacian matrix,
generalized to graphlets. Hence, graphlet Laplacians, also capture the relationship
information between the nodes, as well as how many connections they have with
respect to a given graphlet (Windels et al., 2019). The graphlet Laplacian of a given
graphlet k is defined as Lk = Dk−Ak. Where Ak and Dk are the graphlet adjacency
and graphlet degree matrices with respect to graphlet k, respectively. The graphlet
Laplacian has several important properties, such as being positive semidefinite and
having real, non-negative eigenvalues. These properties make the graphlet Lapla-
cian a useful tool for graph analysis and for characterizing graph structures such as
communities, centrality, and connectivity.

In practical applications, these graphlet-based matrix representations (i.e., graphlet
adjacency and graphlet Laplacian) are usually normalised (e.g., to achieve a more
balanced graphlet-based spectral clustering (Windels et al., 2019)). The symmetri-

cally normalised graphlet adjacency matrix for a given graphlet k, Ãk, is defined as:
Ãk = D

1/2
k AkD

1/2
k . Analogously, the symmetrically normalised graphlet Laplacian,

L̃k is defined as: L̃k = D
1/2
k LkD

1/2
k .

2.5.3 K-path Laplacians

The k-path Laplacian is a generalization of the graph Laplacian. It is a matrix
of a graph that captures the connectivity of the nodes (i.e., the node degrees) but
also takes into account paths or hops of up to length k between each pair of nodes
(Estrada, 2012; Estrada et al., 2017). The entries of the k-path Laplacian matrix
can be defined as:

L(k)uv =


−1 if d(u, v) = k

degk(u) if u = v

0 otherwise

(2.3)

2.5.4 Vicus

Vicus matrix, V , is an alternative to the graph Laplacian and k-path Laplacian
matrices of a graph that captures the local neighborhood structure of the graph
based on network label diffusion (B. Wang et al., 2017). This label diffusion can be
defined as P = BQ, where Q is a nxd matrix that assigns the n nodes of a network
G to one of the d possible labels (in the case of labeled nodes), B is an nxn diffusion
matrix. Lastly, P is the reconstructed matrix nxd that is used for predicting labels
for unlabeled nodes. To give Vicus its ‘local’ interpretation, the label diffusion
process determining B is constrained to diffuse information of each node only to
its direct neighbourhood (see next paragraph). Under given assumptions we define
the Vicus matrix as LV = (I − BT )(I − B). Next it was shown that Q can be
learned as the eigenvectors of LV . As Q captures the local connectivity between
nodes that is implied by the ‘localized’ diffusion matrix B and can be computed as
the eigenvectors of LV , Vicus is interpreted as a Laplacian matrix.
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Lastly, it shares many of the basic properties of the standard Laplacian matrix:

1. It is symmetric and positive semi-definite

2. The smallest eigenvalue is 0 and the corresponding eigenvector is the constant
1

3. It has n non-negative real valued eigenvalues 0 = λ1 ≤ λ2 ≤ λ3 ≤ λn.

4. The multiplicity of the smallest eigenvalue (i.e., 0) of the Vicus matrix V
equals the number of connected components in the graph.

2.6 Network embedding

Due to the complexity of the data, a growing trend in modern network analysis is
to transform the network into a vector-based representation rather than to analyse
the network directly, a process referred to as network embedding (Cai et al., 2018;
Nelson et al., 2019). In brief, these methods extract a low-dimensional representation
of the data while conserving the original similarity features in the data (Arsov &
Mirceva, 2019). In this way, nodes that are in the same network neighbourhood
have a similar vectorial representation. Often, this is interpreted as learning a low-
dimensional embedding space, in which nodes in similar network neighbourhoods
are embedded nearby in the space (i.e., have a similar position). What distinguishes
different embedding algorithms, then, is the notion of what it means for two nodes to
be in each others’ network neighbourhood. For instance, spectral embedding learns
an embedding space so that nodes that cluster in the network, i.e., that tend to
share neighbours, are embedded nearby in space (Belkin & Niyogi, 2003). Spring
embedding, on the other hand, imagines that all edges in the network are springs
and places the nodes in a (euclidean) space so that the forces exerted by the springs
on the nodes are in equilibrium (Kamada, Kawai, et al., 1989). Formally, a network
embedding (also called representation learning) learns a vectorial representation of
each element in the network (i.e., nodes) that captures the structure and semantics
of the network (M. M. Li et al., 2022). Given a network G(V,E), with V nodes
and E edges, and its corresponding adjacency matrix, the goal is to learn a function
V → Rd that maps each node to a d−dimensional (d < |V |) vector that captures
its structural properties (M. M. Li et al., 2022).

To date, several embedding algorithms have been proposed, facilitating tasks
such as classification, clustering, prediction and visualization across various fields
including, biology, economy and social sciences (Cai et al., 2018; Chen et al., 2018;
Grover & Leskovec, 2016; Gutiérrez-Gómez & Delvenne, 2019; Kulmanov et al.,
2018; G. Li et al., 2017; Perozzi et al., 2014; Zong et al., 2017). Classical embedding
approaches include Principal Component Analysis (PCA) and Multi-Dimensional
Scaling (MDS). PCA is used to analyze the structure of a data matrix via dimen-
sionality reduction that preserves most of the variance in the original data by per-
forming eigendecomposition of the covariance matrix. The resulting eigenvectors,
or “principal components” can be more easily visualized and analyzed, for instance
in a 2-dimensional (2D) plot. Similarly, MDS is used to analyze the similarity of a
set of objects by performing dimensionality reduction on a distance matrix of the
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objects from the set and attempting to map the objects in a geometric space by
conserving the original distances between them (Borg & Groenen, 1997).

Force-directed algorithm, or Spring embedding, is a widely used method for vi-
sualization of complex networks. It works as a physical system where nodes act
as charged particles that repel each other and edges as springs that keep every-
thing together (Kobourov, 2012). In this way, between each pair of disconnected
nodes there are repulsive forces inversely proportional to the distance between them,
while for connected nodes, there are attractive forces. Other state-of-the-art embed-
ding algorithms include: DeepWalk, which uses random walks to uncover the latent
representation of a network by treating the walks as if they were sentences, and
was originally used for classification of social networks (Perozzi et al., 2014); and
Node2vec, which also uses random walks to explore the neighborhood of each node
in a network and maximizes the likelihood to preserve these neighborhoods (Grover
& Leskovec, 2016).

Other embeddings such as the Coalescent embedding map a network in a hy-
perbolic space by inferring the angular coordinates of the hyperbolic model and
assigning a radius to each node (Muscoloni et al., 2017). In this method, the angu-
lar distances between nodes represent the similarity between them, while the radius
represents how densely connected they are in the network (nodes of smaller radius,
i.e., those that are more central in the embedding, have more connections in the
network than the peripheral ones). One of the main findings in this study is that
Coalescent embedding can significantly improve the community detection in com-
plex networks (Muscoloni et al., 2017). A community is defined as a group of nodes
or a region in a network that has densely connected nodes that are sparsely con-
nected with the rest of the network. Community detection can provide additional
biological insight, for instance to uncover functional molecular modules in biological
networks (Yang et al., 2016).

In the following sections we explain in more detail the three main embedding
methods used for the development of this work: Spring embedding, Coalescent em-
bedding and Spectral embedding.

2.6.1 Spring embedding

Spring embedding is a type of force-directed layout algorithms, which model an input
graph as a system of attractive and repulsive forces. Spring embedding imagines
that all edges in the network are springs and places the nodes in a space so that the
forces exerted by the springs on the nodes are in equilibrium (Kamada, Kawai, et al.,
1989). The goal is to minimize a cost function that represents the total energy of
the system, which depends on the length of edges and the distance between nodes.
The resulting layout aims to provide a clear, readable representation of the graph
structure, by spreading nodes out evenly, minimizing edge crossings and highlighting
dense clusters or communities in the graph. Some limitations of Spring embedding
is that it relies heavily on node connectivity and it is non-deterministic. When
applied to biological networks, spring embedding is likely to produce uninformative,
close-knit network embeddings resembling “hairball” (Bläsius et al., 2021). This
is because many biological networks, including PPI (Jeong et al., 2001a) and GI
networks (Tong et al., 2004), are scale-free (defined in section 2.3.3.1).In scale-
free networks, the few high-degree nodes (i.e., nodes with many neighbours, known

26



as ‘hubs’) connect to many low-degree nodes (Ravasz & Barabási, 2003). Spring
embedding does not manage to spread the hub-nodes in the (Euclidean) embedding
space, as they are pulled together by the many ‘springs’ connecting them to their
shared low-degree neighbors (Bläsius et al., 2021).

2.6.2 Coalescent embedding

Due to the complexity of many real world data, a proper embedding representation
is crucial for uncovering the latent geometry of complex networks, such as the Eu-
clidean space, which has dominated many areas in science for data representation
and visualization (Clauset et al., 2009; Cross et al., 2006; M. E. Newman, 2004;
Zachary, 1977). More recently, the hyperbolic space has become a highly relevant
space for network embedding representation (Cannistraci & Muscoloni, 2018; Mus-
coloni et al., 2017; Watts & Strogatz, 1998). In the hyperbolic space the data or
network is usually represented in a hyperbolic disk where each data point or node
in the network is assigned a radial coordinate and an angular coordinate. The ra-
dial coordinate of the nodes characterizes their hierarchy in the network, whereas
the angular distance in the disk between the nodes represent their similarity in the
network. In this way, the nodes of high topological importance (for instance highly
connected nodes) are usually placed towards the center of the disk, and less im-
portant nodes (with fewer connections) are placed towards the periphery of such
disk. In addition, the hyperbolic space has been shown to have more capacity than
the Euclidean space, as its volume grows exponentially with the radius. Finally,
hyperbolic geometry is better suited to embed data with tree-likeness or underlying
hierarchical/heterogeneous structure (Adamic & Glance, 2005).

To date, several studies that make use of hyperbolic space have been proposed
for representing the latent geometry behind complex network topologies (Alanis-
Lobato et al., 2016a, 2016b; Bianconi & Rahmede, 2017; Garćıa-Pérez et al., 2019;
Krioukov et al., 2010; Song & Wang, 2019). In this work we chose on focusing
on Coalescent embedding (Muscoloni et al., 2017), which we generalise to graphlet
based Coalescent (GraCoal) embedding (discussed in Chapter 3). In brief, Coales-
cent embedding maps a network onto a disk, assigning an angle and a radius to
each node rather than a Euclidean coordinate. One of our motivations for focusing
on hyperbolic embeddings, such as Coalescent embedding, is that the scale-freeness
of many biological networks stems from an underlying latent hyperbolic geometry,
which hyperbolic embeddings can uncover (Boguna et al., 2009). (Boguna et al.,
2009). Additionally, Coalescent embedding (CE) in particular, was shown to detect
successfully communities in many real world networks (Muscoloni et al., 2017).

Given a graph as input, the CE algorithm can be summarized as follows:
1. Perform dimensionality reduction on the graph, which can be done by us-

ing one of the following approaches: Minimum curvilinearity (MCE) (Cannistraci
et al., 2013; Cannistraci et al., 2010); Isomap (ISO) (Tenenbaum et al., 2000); Non-
centered minimum curvilinearity (ncMCE) (Cannistraci et al., 2013); Noncentered
Isomap (ncISO) (Cannistraci et al., 2013); Laplacian eigenmaps (LE) (Belkin &
Niyogi, 2001, 2003). For MCE, the first dimension is used; for ISO, the 1st and 2nd
dimensions are used; for ncMCE, the 2nd dimension is used; finally, for ncISO and
LE, the 2nd and 3rd dimensions are used.

2. Determine angular coordinates: The vectors obtained from the dimensionality
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reduction are used as coordinates that correspond to every node in the network,
which are transformed into angular coordinates. The vectors corresponding to the
1st and 2nd dimensions for ISO, and 2nd and 3rd dimensions for ncISO and LE
algorithms (and which are commonly used as Cartesian coordinates), are converted
to polar coordinates. For MCE and mcMCE, Cartesian to polar conversion is not
applied because the vectors obtained by these dimensionality reduction techniques
are already given as angles. Next, the angular vector obtained previously by either
method is used for circular adjustment (CA) and equidistant adjustment (EA). First,
CA sets the angular coordinates vector in the range (0, 2π), followed by EA, which
reorganizes the coordinates equidistantly along the circle according to their original
order learned by the dimensionality reduction.

3. Assign radial coordinates: For computing the radius, Coalescent embedding
explicitly assumes that the degree distribution follows a power a power law: P (d) ∼
dλ. So first, coalescent embedding fits a power-law to the degree distribution (i.e.,
estimates λ). Then, the nodes are sorted in descending order according to their
degree. Finally, the radial coordinate of the ith node, ri, is calculated as:

ri = βln(i) + (1− β)ln(N), (2.4)

where i is the rank of the node, N the number of nodes in the network and β =
1/(λ− 1).

2.6.3 Graphlet Spectral embedding

Spectral embedding learns an embedding space such that nodes that share many
neighbors in the network, are embedded close in space (Ng et al., 2001). It makes
use of the Laplacian matrix of a graph to perform dimensionality reduction and sub-
sequently use the vector coordinates corresponding to the second and third smallest
eigenvalues to embed the graph in 2 dimensions (2D). More recently, the Laplacian
matrix was generalized to the graphlet Laplacian and Spectral embedding was ap-
plied to capture functional information from the underlying networks, showing that
different graphlets can uncover different biological functions (Windels et al., 2019).

Thus, here we recall our formal definition of graphlet Spectral embedding, which
embeds nodes nearby in space if they frequently simultaneously touch a given
graphlet (Windels et al., 2019). Formally, given an unweighted network H with
n nodes, we find a low dimensional embedding, Y = [y1, ..., yn] ϵ Rdxn such that if
nodes u and v are frequently graphlet-adjacent with respect to graphlet Gk, then
y(u) and y(v) are close in the d-dimensional space by solving:

minimize
Y

n∑
u=1

n∑
v=1

AGk
(u, v)yu − yv

2

subject to : Y Dk1 = 0 and Y DkY
T = I,

(2.5)

where AGk is the graphlet-based adjacency matrix of G for graphlet Gk, Dk is the
graphlet-based degree matrix of G for graphlet Gk. The columns of Y are found as
the generalized eigenvectors associated with the 2nd to (d+1)th smallest generalized
eigenvalues solving Y LGk = Y Dk, where is the diagonal matrix with the generalized
eigenvalues along its diagonal.
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2.7 SAFE

Despite the abundance of biological network data, our knowledge of the functional
organization of these networks remains incomplete. For instance, for the model
organisms C. elegans and S. pombe, we find that the experimentally validated
biological-process annotations in the Gene Ontology (GO) database cover only 14%
and 15% of their genes (Ashburner et al., 2000). This illustrates the need for auto-
mated functional annotation algorithms for biological networks. A state-of-the-art
network-based functional annotation algorithm is SAFE: Spatial Analysis of Func-
tional Enrichment (Baryshnikova, 2016). Given a biological network and a set of
node annotations, SAFE uncovers local network neighbourhoods where node anno-
tations are over-represented or enriched. The annotations enriched in the same net-
work neighbourhood are automatically aggregated into computationally generated
domains, describing the general function of different local network neighbourhoods.
SAFE provides an intuitive visualisation of the domains by placing the network in
a 2D plane using Spring embedding and overlaying the network embedding with
the different uncovered functional domains. This way, SAFE effectively creates a
functional map of the cell that is powerful yet intuitive to biologists, enabling the
study of the functional organization of the network at hand. As such, SAFE is
widely used to study biological networks. Originally, SAFE was introduced to study
the functional organization of the yeast GI network, and uncovered that cellular
function is organised in hierarchical functional modules (Costanzo et al., 2016). Ho
et al. applied SAFE on PPI data to show how protein abundance levels in the cell
are dependent on the cellular functions they are involved in (B. Ho et al., 2018).
For instance, high-abundance proteins were specifically over- represented biological
processes related to morphogenesis and ribosome biogenesis, while low-abundance
proteins were associated with DNA replication and repair, mitosis, and RNA pro-
cessing. To validate their human proximity-dependent biotinylation PPI data, which
detects PPIs in intact cells, Youn et al. applied SAFE and manage to recover the
spatial organization of the human cell into cellular compartments (Youn et al., 2018).

The SAFE framework consists of 4 algorithmic steps.
In step 1, SAFE takes as an input an unweighted and undirected network H,

and a set of node annotations of interest M to produce a 2D embedding E of this
network.

In step 2, the local neighbourhood of each node is determined. SAFE does so
taking both information from the embedding space into account, as well as informa-
tion directly from the network. First, SAFE computes the pairwise shortest path
distance between all nodes in the network. To take into account information from
the embedding space, each edge between a pair of nodes in the network is weighted
by their Euclidean distance in the embedding space. Then, SAFE considers the
local neighbourhood of each node to be all nodes that are at a weighted shortest
path distance (WSPD) less than a given threshold α.

In step 3, SAFE computes for the local neighbourhood of each individual node,
the node annotations that occur more than expected by chance using a hyper-
geometric test, applying the Benjamini and Hochberg correction for multiple hy-
pothesis testing (Benjamini & Hochberg, 1995).

In step 4, the annotations that are enriched in overlapping local neighbourhoods
are aggregated into more descriptive groups. To do so, first, the attributes that are
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enriched in fewer than β local neighbourhoods are discarded (default: β=10). Then,
agglomerative clustering with average linkage is applied on the remaining attributes,
based on their Jaccard similarity in terms of the local neighbourhoods in which they
are enriched. From this hierarchical clustering, clusters of annotations are extracted,
cutting the tree at γ% of its height (default: γ=75%). The resulting clusters of
annotations are referred to as functional domains. For each functional domain,
the five most repeated words occurring in the annotations names are reported an
aggregated description for the domain.

30



Chapter 3

New methods: embedding omics
networks for new biological
insights

In this chapter we first explain how we extend the Spring embedding algorithm and
generalise it to graphlet-based Spring embedding. Next we explain how we extend
the Coalescent embedding algorithm and generalise it to graphlet-based Coalescent
(GraCoal) embedding. Finally, we briefly go over the modifications done to extend
the SAFE pipeline to consider these newly graphlet-based embeddings, as well as
the already established graphled-based Spectral embedding.

3.1 Graphlet based Spring embedding

We recall from section 2.6.1 how Spring embedding acts as a system of attractive
and repulsive forces where it imagines that all edges in a network work as springs
that attract connecting nodes to each other until the system reaches equilibrium
(Kamada, Kawai, et al., 1989).

In particular, we focus on the Fruchterman-Reingold force-directed algorithm
(Fruchterman & Reingold, 1991), which is the one that the SAFE framework uses.
In this particular force-directed algorithm, all nodes in the network are assumed to
repel each other by a repulsive force, while an attractive force pulls together pairs
of nodes that are connected in the network. These repulsive and attractive forces
between nodes and edges can be formally defined as follows:

Repulsive force Fr between two nodes u and v:

Fruv = − k2

|xu − xv|

Attractive force Fa between two nodes u and v connected by an edge:

Fauv =
|xu − xv|2

k

Where k is a global hyperparameter that determines the strength of the repulsive
and attractive forces and |xu − xv| is the distance in embedding space between nodes
u and v (Fruchterman & Reingold, 1991).
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Having defined the attractive forces determined by the edges, and repulsive forces
determined by the nodes, the following steps are repeated in the spring embedding
algorithm until reaching equilibrium:

1. Calculate the repulsive forces between all pairs of nodes.

2. Calculate the attractive forces between all pairs of connected nodes.

3. Update the positions of all nodes based on the combined effect of the repulsive
and attractive forces.

4. Limit the total displacement of the nodes by the temperature T , which is a
global parameter that regulates the step size of node movement.

To reach equilibrium, the goal is to minimize a cost function that represents the
total energy of the system, which depends on the length of edges and the distance
between nodes. The resulting layout aims to provide a clear, readable representation
of the graph structure, by spreading nodes out evenly, minimizing edge crossings
and highlighting dense clusters or communities in the graph. The Spring embedding
used in SAFE, typically receives as input the adjacency matrix of a given network G,
which if is unweighted, sets the length of all edges in the network to 1 by default. We
apply the Spring embedding to the graphlet adjacency matrix, formerly defined in
section 2.5.4. Specifically, we use the symmetrically normalised graphlet adjacency
matrix for a given graphlet k, Ãk, which is defined as: Ãk = D

1/2
k AkD

1/2
k . In this

way, because the edge weights between nodes in a particular graphlet adjacency
matrix represent how well connected they are with respect to a given graphlet, we
can obtain a different layout for each graphlet based adjacency matrix. We do
this for all up to 4-node graphlets (Ã0 to Ã8) when using the Spring embedding as
opposed to using the Spring embedding with only the traditional adjacency matrix
of the same network. For instance, a pair of nodes that simultaneously touch many
times the four node clique (i.e., they have a large in magnitud edge weight) might
end up embedded close in space when applying graphlet based Spring embedding to
Ã8, but not when applying graphletd based Spring embedding to Ã3, which is based
on the four node path graphlet.

3.2 Graphlet based Coalescent embedding

Coalescent embedding maps a given network onto a hyperbolic circle, by assigning
similar angles to nodes that are in the same network neighborhood (i.e., nodes that
tend to form clusters in the network). Nodes with higher topological importance
(e.g., have a higher degree), are embedded near the circle’s centre (Muscoloni et al.,
2017). After having formally defined the Coalescent embedding algorithm in section
2.6.2, in this section we present an overview of the newly proposed graphlet-based
Coalescent embedding (GraCoal) approach.

1. For a given network and graphlet, we embed the given network into 2D space
using graphlet spectral embedding (see Section: Graphlet spectral embedding).

2. We map the node Cartesian coordinates to an angular coordinate. This step
is identical to step 2 in coalescent embedding.
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3. We determine a radial coordinate for each node applying the following formula:

ri = ln(i), (3.1)

where i is the rank of the node based on its graphlet degree.

Note that our formula to determine the radius of a node (equation 3.1) is a sim-
plified version of the equation applied in standard Coalescent embedding (equation
2.4). We do this because the graphlet degree distributions for our real networks
do not all follow a power-law. In Figures 3.1-3.4 we show the graphlet degree dis-
tributions for the budding yeast GIS, GI, PPI and COEX networks, respectively.
Fitting a power-law to graphlet node degree distributions lead to larger than usual
values of the power-law exponent λ, which usually ranges between 2 and 3 (Ravasz
& Barabási, 2003). This leads to large radial coordinates, pushing the nodes to the
periphery of the hyperbolic space, as shown in Figure 3.5.
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Figure 3.1. Node graphlet degree distributions for all up to 4-node graphlets (G0-G8)
for the Budding yeast genetic interaction similarity (GIS) network. Graphlet G0 is the
only graphlet that appears to have a scale-free node graphlet degree distribution.
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Figure 3.2. Node graphlet degree distributions for all up to 4-node graphlets (G0-G8)
for the Budding yeast genetic interaction similarity (GI) network. None of the graphlets
appear to have a scale-free node graphlet degree distribution.
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Figure 3.3. Node graphlet degree distributions for all up to 4-node graphlets (G0-G8)
for the Budding yeast protein-protein interaction (PPI) network. None of the graphlets
appear to have a scale-free node graphlet degree distribution.
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Figure 3.4. Node graphlet degree distributions for all up to 4-node graphlets (G0-G8) for
the yeast co-expression (COEX) network. Graphlet G0 is the only graphlet that appears
to have a scale-free degree distribution.

Figure 3.5. When using the Coalescent embedding, large values of λ lead to large
radial coordinates, placing the nodes towards the periphery of the embedding space. We
show the Coalescent embedding (left) and the corresponding enrichment landscape (right),
visualized with SAFE when using Equation (3) (main document) with a large value of λ.
The node importance in terms of graphlet degree (i.e., how well connected with respect
to a given graphlet) is lost when applying this algorithm directly on graphlets.
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3.3 Extension of SAFE

The SAFE framework takes as input a network and a set of annotations of the given
network (Baryshnikova, 2016). Typically, a network is provided in edgelist format,
which is, a two column file for unweighted networks where each row represents
an interaction between a particular node (first column) and another node (second
column). For weighted networks, a third column may be present, which contains
the interaction magnitude of the two nodes. For instance, a GI network may be
represented by a three column edgelist, where for each row, the first column contains
the label of a particular gene, the second column the label of a gene that genetically
interacts with the gene in the first column, and the third row the genetic interaction
score of this interaction. We extended this step in the SAFE framework to optionally
include a third input file: a graphlet adjacency matrix, in edgelist format. Similar to
the edgelist previously described, the graphlet adjacency edgelist contains, for each
row a gene in the first column, a different gene in the second column and in the third
column, instead of an interaction score such as in a GI network, the number of times
the two nodes touch a particular graphlet, previously symmetrically normalised.

We recall from section 2.7 that SAFE framework consists of 4 main algorithmic
steps. Below we review the steps that we made modifications to in order to further
extend and provide more functionality to the framework.

In step 1, a given network is embedded in a 2D space by applying the Spring
embedding algorithm. For this step, we extended its functionality so the user can
choose whether to use the default Spring on a the input network, or if a partic-
ular graphlet adjacency matrix (in edgelist format) is available, specify between
‘GraSpring’, ‘GraCoal’ and ‘Spectral’.

In step 2, the local neighborhood of each node is determined. SAFE does so
taking both information from the embedding space into account, as well as informa-
tion directly from the network. First, SAFE computes the pairwise shortest path
distance between all nodes in the network. To take into account information from
the embedding space, each edge between a pair of nodes in the network is weighted
by their Euclidean distance in the embedding space. Then, SAFE considers the
local neighbourhood of each node to be all nodes that are at a weighted shortest
path distance (WSPD) less than a given threshold α. To facilitate the downstream
analysis of graphlet-based embeddings, we modified the way the local neighborhood
of a node is computed. In brief, we fix the average neighborhood size to a user
specified parameter, NS (neighborhood size) to avoid large discrepancies in average
neighborhood sizes when using different graphlet-based embeddings. In this regard,
before evaluating the performance of the different graphlet based embeddings, we
choose an optimal NS based on the enrichment results obtained with SAFE and
fix this value to allow for a comparison across our methods. We run SAFE with
different values of this new user specified hyperparameter with the three embedding
algorithms and compare the percentages of genes enriched in at least one annota-
tion and percentages of annotations enriched with respect to different neighborhood
sizes. In brief, we discover that setting the NS to values above 50 provides no
additional enrichment results in terms of annotations when using SAFE with the
different graphlet-based embeddings (Fig 3.6).

Lastly, in addition to the three output files produced by the SAFE framework,
we added further relevant data as output files. This is particularly useful for when
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having to run the framework over multiple networks and/or graphlet adjacencies.
SAFE now stores all node embedding coordinates for each run as a two column
file where each row represents a node and the two columns represent the X and Y
Cartesian coordinates. An output file named attribute2enrichedgenes containing, for
each enriched annotation, a list of gene indices for which the annotation is enriched
in the neighborhood. All the WSPD are also saved to an output file. Finally, we
also save the plot corresponding to the embedding, as opposed to only the plot with
the functional domains.

Figure 3.6. SAFE enrichment statistics with respect to neighborhood size, Part 1. We
show the percentages of genes enriched in at least one GO-BP (left) and percentages of
enriched GO-BP (right) for different neighborhood sizes used in SAFE (x-axis) for the GI
network of E. coli (top) and Fruit fly (bottom).
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Figure 3.6. SAFE enrichment statistics with respect to neighborhood size, Part 2. We
show the percentages of genes enriched in at least one GO-BP (left) and percentages of
enriched GO-BP (right) for different neighborhood sizes used in SAFE (x-axis) for the GI
network of Fission yeast (top) and Budding yeast (bottom).
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Chapter 4

Application 1: Analysis of GI
networks

In this chapter we evaluate the performance of the graphlet-based embeddings (i.e.,
GraCoal, GraSpring and graphlet based Spectral) with the Spatial Analysis of Func-
tional Enrichment (SAFE) framework on the GI networks of the following species:
Drosophila melanogaster, Escherichia coli, Saccharomyces cerevisiae and Schizosac-
charomyces pombe, which throughout the text we will refer to as fruit fly, E. coli,
budding yeast and fission yeast, respectively. We present the GI network statistics
in Table 4.1. For more information on how we built these molecular networks please
refer to section A.1 in Appendix A. Moreover, we focus mainly on analysing results
based on Gene Ontology Biological Processes (GO-BP), as is one of the most com-
plete set of annotations. For detailed results corresponding to our other annotations
(e.g., GO molecular functions and GO cellular components), please refer to section
A.2 in Appendix.

GI
Nodes Edges Density

Budding yeast 5,842 447,747 0.03
E. coli 3,973 169,594 0.02

Fission yeast 3,577 52,402 0.008
Fruit fly 3,159 10,687 0.002

Table 4.1. GI molecular network data statistics. For each species (row), we report the
number of nodes, the number of edges and the density of the corresponding GI network
(columns 1-3).

In general, we find that GraCoal embeddings outperform both GraSpring embed-
dings and graphlet based Spectral embeddings on every GI network. Additionally,
some GraCoals lead to better enrichments than others, and thus, we perform a de-
tailed investigation of the topology-function relationship captured by the different
GraCoal embeddings. When providing specific examples, we focus mainly on the
budding yeast GI network, as it is the most complete and best annotated GI net-
work. Moreover, we choose to study GI networks in this section over GIS networks,
as the latter is only available for budding yeast, which would excessively limit the
scope of our study in terms of species coverage.
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4.1 Results for GraCoal with SAFE

GraCoal best uncovers the functional organization of the cell

In this section, we evaluate: (1) how well GraCoal embeddings capture the functional
organization of genetic interaction networks and (2) which higher-order topologies
(i.e., graphlets) capture the most function. In both experiments, we apply SAFE-
based enrichment analysis to quantify how well a given embedding captures the
functional organization of a given network. An annotation (e.g., GO-BP) is enriched
if it is over-represented in the local neighborhood of at least one gene. Similarly, a
gene is enriched if it has at least one annotation enriched in its local neighborhood.
As our conclusions are the same for both experiments, whether we focus on gene
enrichment or annotation enrichment, we focus on gene enrichment.

To evaluate how well GraCoals capture the functional organization of our GI
networks, we compare against GraSpring embedding (as GraSpring for graphlet
G0 corresponds to standard Spring embedding, used in the original SAFE) and
Graphlet Spectral embedding (as it underlies our GraCoal embeddings). At this
stage, we want to evaluate which of these embedding methods is best in general,
regardless of the chosen graphlet-based topology. Therefore, we consider for each
embedding method the union of the enriched genes across the different types of un-
derlying graphlet adjacencies (i.e, ÃGi

to ÃG8). We show the results in Figure 4.1.
We observe that for all four of our species, GraCoal outperforms both GraSpring
and graphlet Spectral embedding. In particular, we find GraCoal captures the func-
tional organization of the fruit fly and budding yeast (% enriched genes 90.3 and
71.4) exceptionally well, greatly outperforming GraSpring embedding (% enriched
genes 61.3 and 42.6) and Graphlet Spectral embedding (% enriched genes 76.72 and
61.13). GraCoal also outperforms GraSpring and graphlet Spectral embedding in
fruit fly, budding yeast and fission yeast GI networks when we consider the two
alternative annotation types that describe the spatial organization of the cell (GO
cellular components) and the function of the cell (GO molecular functions) (see
Appendix A.2). Lastly, GraCoal embedding also best capture the functional and
spatial organization of our GIS network, achieving the best enrichment scores for
all three annotation types, both in terms of gene enrichment as well as annotation
enrichment (Appendix Figures A.6, A.9 and A.16).
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Figure 4.1. SAFE GO-BP enrichment analysis for GI networks. For the GI
networks of our four species (x-axis), we show the percentage of enriched genes (y-axis)
and percentage of enriched annotations for each of the embedding algorithms considered
(legend). In the case of GraSpring, we show the average across ten randomised runs and
the standard deviation (error-bars).

GraCoal embeddings spread the nodes more evenly in the
embedding space

To explain why GraCoals best capture the functional organization of GI networks,
we use SAFE’s functionality to visualise the GO-BP enrichment landscapes for our
three different types of graphlet based embeddings. In general, we observe that
when using GraCoal embeddings, the nodes are spread much more evenly than when
using graphlet-based Spring or graphlet-based Spectral embeddings, regardless of the
graphlet adjacency used. For Spring embedding, this is expected, as the budding
yeast GI network is scale-free, which is known to lead to dense, entangled Spring
embeddings (Bläsius et al., 2021). As a consequence, the functional domains based
on GraCoal embeddings are also much more spread out and discernible than those
based on GraSpring embedding and Spectral embedding.

Below we compare the 2D network embedding layouts (left) and functional land-
scapes (right) produced by SAFE of the three graphlet based embeddings for the
Budding yeast GI network. To have a baseline comparison, we show the embeddings
corresponding to the normal graphlet adjacency in Figure 4.2 (i.e., ÃG0). Next, to
compare the embeddings corresponding to both a densely connected graphlet and
a long path, we show, in Figures 4.3 and 4.4, the embeddings based on graphlet
adjacency ÃG2 (i.e., the three-node clique), and graphlet adjacency ÃG3 (i.e., the
four-node path), respectively.

Moreover, as a measure of how well the nodes are spread in the space, we compute
the average distance between each pair of nodes in the embedding space for all
graphlet based embeddings. In Table 4.2, we report the average Euclidean distance
between all nodes when using the three graphlet based embeddings in SAFE over
all GI networks. We observe that the average distance between nodes when using
GraCoal embedding, is 2.11 to 3.56 times larger than when using GraSpring, and
475 to 2,850 times larger than when using graphlet based Spectral.
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Figure 4.2. Functional landscape of the Budding yeast GI network for different types
of network embedding based on graphlet adjacency ÃG0 . We use SAFE to annotate the
Budding yeast GI network with GO-BP for (A) GraCoal embedding, (B) Spring embedding
and (C) Spectral embedding. For each type of network embedding, we show the network
embedding on the left and the SAFE enrichment domains highlighted in colour on the
right.
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Figure 4.3. Functional landscape of the Budding yeast GI network for different types
of network embedding based on graphlet adjacency ÃG2 . We use SAFE to annotate the
Budding yeast GI network with GO-BP for (A) GraCoal embedding, (B) Spring embedding
and (C) Spectral embedding. For each type of network embedding, we show the network
embedding on the left and the SAFE enrichment domains highlighted in colour on the
right.
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Figure 4.4. Functional landscape of the Budding yeast GI network for different types
of network embedding based on graphlet adjacency ÃG3 . We use SAFE to annotate the
Budding yeast GI network with GO-BP for (A) GraCoal embedding, (B) Spring embedding
and (C) Spectral embedding. For each type of network embedding, we show the network
embedding on the left and the SAFE enrichment domains highlighted in colour on the
right.

GraCoal GraSpring Spectral
Budding yeast 0.57 (std=0.00) 0.16 (std=0.03) 0.08 (std=0.05)

E. coli 0.57 (std=0.00) 0.27 (std=0.04) 0.12 (std=0.03)
Fission yeast 0.57 (std=0.00) 0.21 (std=0.05) 0.02 (std=0.02)
Fruit fly 0.56 (std=0.00) 0.22 (std=0.03) 0.02 (std=0.01)

Table 4.2. Average Euclidean distance between nodes in graphlet based embeddings.
For each of our GI molecular networks (rows), we report the average Euclidean distance
between all pairs of nodes across all graphlet adjacencies (i.e., ÃG0 - ÃG8) for GraCoal,
GraSpring and graphlet based Spectral embeddings (columns 1-3).
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GraCoal embeddings uncover complementary biological in-
formation

After having shown that GraCoal embeddings work best for the GI molecular net-
works when using SAFE, we then investigate which topologies (i.e., graphlets) cap-
ture the most function in GI networks by comparing our results between the different
GraCoals. We present our results in Figure 4.5 and observe that for the two species
where GraCoals capture the most function, i.e., fruit fly and budding yeast, there
are clear top performing GraCoals. For budding yeast for instance, the top per-
forming GraCoals, GraCoal2,3,6,7 achieve between 42.0% and 45.2% enriched genes,
which is distinctly better then to the low performing GraCoals, GraCoal0,1,4,5,8,
which achieve between 17.4% and 34.9% enriched genes. Additionally, we observe
that the top performing GraCoals are not the same across species, as those for
fruit fly (GraCoal0,1,3,4,6) are clearly distinct of those for budding yeast (ÃG2,3,6,7).
Notably, GraCoals based uniquely on triangles, GraCoal2,7, perform particularly
well in budding yeast but not in fruit fly. Conversely, GraCoals void of triangles,
GraCoal0,1,3,4 perform particularly well in fruit fly but not in yeast. For Fission
yeast, the best performing GraCoals (GraCoals2,3,6) largely follow those for Bud-
ding yeast, although the differences in performance between the different GraCoals
is less pronounced. For E. coli, there are no clear best GraCoals. In all, these results
imply that the same GraCoals capture different topology-function relationships in
GI networks depending on the species.
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Figure 4.5. SAFE GO-BP enrichment analysis comparing GraCoals in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (top) and the percentage of enriched annotations (bottom)
for each of the different GraCoal embeddings (x-axis).

Next, for each species, we focus on identifying what characterizes each particular
GraCoal (i.e., ÃG0-ÃG8) from a biological perspective. To this end, we explore in
more detail the functional information uncovered by the GraCoal embeddings when
used in SAFE. We do this at the annotation level (i.e., identifying particular GO-
BPs that are characteristic of each GraCoal) and at the functional domain level (i.e.,
identifying particular functional domains that are characteristic of each GraCoal).

First, we identify the uniquely enriched annotations for each GraCoal (i.e., an-
notations enriched in a particular GraCoal that are not enriched in any of the other
GraCoals). For the budding yeast, we find that on average, 22 GO-BPs are uniquely
enriched for each particular GraCoal. This is in line with the literature, as differ-
ent graphlet adjacencies are known to capture complementary topology-function
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relationships in molecular networks (Windels et al., 2019).
We observe that each GraCoal embedding not only uncovers biological infor-

mation that is not uncovered by the other GraCoal embeddings, but that there is
some degree of functional similarity in the information uncovered. For instance,
five of the ten largest GO-BP enriched for GraCoal2 are related to nuclease activ-
ity. This implies some larger function being uniquely captured by each GraCoal.
To further asses that this is the case, we evaluate the biological relevance of the
uniquely enriched annotations (i.e., GO-BPs) for a particular GraCoal, by comput-
ing the semantic similarity of each pair of annotations in the set of annotations. We
define the semantic similarity (SS) as the inverse of the semantic distance between
a given pair of GO terms, where the semantic distance is the minimum number of
connecting branches between the pair of GO terms in the ontology directed acyclic
graph (DAG) (Dessimoz & Škunca, 2017; Rada et al., 1989). Finally, we rank the
uniquely enriched annotations according to their size, defined as the total number
of neighborhoods they are enriched in, as a measure of how well they are cap-
tured by each particular GraCoal. In table (Table 4.3 we report for the budding
yeast, the number of uniquely enriched annotations (column 1), the mean SS for
the uniquely enriched annotations (column 2) as well as the mean SS for the top 10
largest uniquely enriched annotations (column 3) for each GraCoal used in SAFE.
Finally, in column 5, we report the names of the top 10 uniquely enriched annota-
tions and their corresponding size in terms of enriched neighborhoods (column 4).
The lowest and maximum average SS for the sets of uniquely enriched annotations
for the budding yeast GI network are 0.15 (Std=0.06) and 0.29 (Std=0.05) for ÃG1

and ÃG8 , respectively. In general, when evaluating the top 10 enriched annotations,
we observe a larger degree of functional similarity between the annotations, which
ranges from 0.21 (Std=0.04) to 0.33 (Std=0.05) for the budding yeast (ÃG1 , and

ÃG2 , respectively). For the summary of uniquely enriched annotations for our other
GI networks please refer to Tables A.3 to A.5 in Appendix A.
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0
17 0.21 (Std = 0.05) 0.28 (Std = 0.05)

193 protein localization to mitochondrion
193 establishment of protein localization to mitochon-

drion
192 mitochondrial transport
118 ribosome disassembly
110 protein insertion into membrane
95 RNA methylation
88 protein insertion into mitochondrial membrane
85 establishment of protein localization to mitochon-

drial membrane
82 regulation of DNA double-strand break processing
72 tRNA methylation

ÃG1
25 0.15 (Std = 0.06) 0.21 (Std = 0.04)

176 nuclear pore localization
174 tRNA gene clustering
161 positive regulation of attachment of spindle micro-

tubules to kinetochore
112 attachment of spindle microtubules to kinetochore

involved in meiotic chromosome segregation
112 monopolar spindle attachment to meiosis I kineto-

chore
111 spliceosomal complex assembly
103 DNA unwinding involved in DNA replication
91 positive regulation of chromosome segregation
72 positive regulation of DNA-templated transcrip-

tion, initiation
70 U1 snRNA 3’-end processing

Table 4.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 1. We
report, for the budding yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG2
46 0.17 (Std = 0.04) 0.33 (Std = 0.05)

270 double-strand break repair via nonhomologous end
joining

232 positive regulation of DNA metabolic process
231 regulation of reproductive process
195 endonucleolytic cleavage in ITS1 upstream of 5.8S

rRNA from tricistronic rRNA transcript
194 regulation of nuclease activity
190 regulation of deoxyribonuclease activity
173 regulation of endodeoxyribonuclease activity
166 regulation of transcription by RNA polymerase I
161 positive regulation of deoxyribonuclease activity
161 positive regulation of nuclease activity

ÃG3
21 0.19 (Std = 0.04) 0.25 (Std = 0.06)

182 retrograde vesicle-mediated transport Golgi to en-
doplasmic reticulum

165 protein methylation
165 protein alkylation
157 peptidyl-lysine methylation
154 replication fork arrest
146 Golgi organization
140 mitotic DNA damage checkpoint signaling
128 mitotic intra-S DNA damage checkpoint signaling
124 histone H3-K79 methylation
120 organophosphate biosynthetic process

ÃG4
7 0.29 (Std = 0.05) 0.29 (Std = 0.06)

145 resolution of meiotic recombination intermediates
93 positive regulation of cell cycle process
90 positive regulation of cell cycle
33 cellular component disassembly
28 transition metal ion transport
13 phosphatidylcholine biosynthetic process
13 phosphatidylcholine metabolic process

ÃG5
35 0.20 (Std = 0.05) 0.30 (Std = 0.05)

200 response to cell cycle checkpoint signaling
200 cellular response to biotic stimulus
196 response to biotic stimulus
192 cellular response to endogenous stimulus
192 response to endogenous stimulus
74 vacuole organization
74 regulation of signal transduction
74 regulation of signaling
70 regulation of intracellular signal transduction
70 vacuole fusion, non-autophagic

Table 4.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 2. We
report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 1 Na Na 101 ribosomal small subunit export from nucleus

ÃG7
13 0.25 (Std = 0.06) 0.27 (Std = 0.05)

184 leading strand elongation
152 regulation of cellular response to stress
131 regulation of response to stress
100 resolution of recombination intermediates
95 reproduction
87 regulation of response to endoplasmic reticulum

stress
85 protein targeting to membrane
83 regulation of endoplasmic reticulum unfolded pro-

tein response
65 response to unfolded protein
34 organic hydroxy compound metabolic process

ÃG8
34 0.17 (Std = 0.04) 0.22 (Std = 0.03)

239 transcription by RNA polymerase II
159 cellular chemical homeostasis
151 regulation of cellular component organization
139 regulation of microtubule-based process
126 ubiquitin-dependent ERAD pathway
116 autophagy of peroxisome
114 chromosome organization involved in meiotic cell

cycle
111 regulation of microtubule cytoskeleton organiza-

tion
110 sphingolipid metabolic process
110 chemical homeostasis

Table 4.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 3. We
report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).

Thus far, we have shown that GraCoal embeddings outperform GraSpring em-
beddings and Graphlet Spectral embedding in capturing the functional organization
of genetic interaction networks. Additionally, we have shown that different GraCoals
capture different topology-function relationships when applied to different GI net-
works (i.e., for different species). Lastly, we observed that triangle based graphlets
or graphlets void of triangles tend to perform very well depending on the species of
the GI network being looked at. In light of these observations, in the next section we
perform topological analysis to explain why some GraCoals work better depending
on the species and we explore in more detail the functional information uncovered
at the functional domain level.

The topology-function relationships captured by GraCoals

We observed that triangle-based GraCoals (GraCoals2,7) or GraCoals void of trian-
gles (GraCoals0,1,3,4) tend to best capture the functional organization of GI networks
depending on the species. Here, we investigate when triangle based GraCoals work
best. For ease of readability we focus on GraCoal2, although the same conclusion
can be reached based on GraCoals7. In our analysis, we first characterise the organi-
zational principles of our GI networks by comparing their topology (wiring) to that
of model networks (see Section 2.4: Model networks and section A.5 in Appendix A)
and then relate the organizational principles of the GI network to our enrichment
results.
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Our model-fitting results for our GI networks are presented in Figure A.44 in Ap-
pendix section A.5. We observe that all four GI networks have non-random topology,
as they can be distinguished from ER networks (least significant p-value 1.0E-6, see
Table A.21 in Appendix A), implying they are functionally organised. Additionally,
we observe that the topologies of the GI networks for budding yeast, fission yeast
and E. coli are almost indistinguishable from Scale-Free Gene Duplication (SF-GD)
networks (Figure A.45 in Appendix A). Firstly, the scale-freeness of these networks
is in line with the literature, as GI networks are known to be scale-free (Tong et al.,
2004). Secondly, this result implies that numerous gene-duplication events along
the DNA have influenced these GI networks’ topologies. This is consistent with the
literature in case of budding yeast, as its genome has undergone a whole genome
duplication event (Kellis et al., 2004). Similarly, for E. coli, 60% of its genes have
been reported to have at least one paralogous gene (i.e., a homologous gene that
has diverged within one species due to gene duplication events) (Blattner et al.,
1997; Bratlie et al., 2010; Patterson, 1988). Thus, to enable further investigation,
we determine for each species a set of gene-paralogs.

Gene-paralog assessment

After having shown that the SFGD network model is the best fit for the GI molecular
networks, we first identify the sets of gene-paralogs. In brief, for each species,
we collect the corresponding proteome from Ensembl (Cunningham et al., 2022)
and compute the pairwise sequence alignments between all proteins using BlastP
(Altschul et al., 1990) using the procedure and thresholds outlined in Pearson, 2013.
We consider pairs of genes with a percentage of sequence identity of at least 85%,
an E-value equal to or less than 0.001 and a bit score of at least 50 as paralogous
genes. For details on the gene-paralogs per species and network, see Table A.24 in
Appendix A.

Genes enriched in E. coli, Fission yeast and Budding yeast GI networks
cover more paralogous genes than the Fruit fly GI network

Below, we report the total number of genes that have at least one GO-BP enriched
in the neighborhood (i.e., “Enriched genes” in Table 4.4) and the number of genes
that are enriched and are paralogous (i.e., “Paralogs” in Table 4.4). For the fruit fly
GI network, we observe that even when obtaining the largest percentages of genes
enriched, the number of paralogous genes covered are relatively low. In particular,
for GraCoal2 we observe a large difference between the number of paralogs enriched
in budding yeast with respect to the number of paralogs enriched in fruit fly.

We find that the budding yeast, E. coli and fission yeast have close to three
times more paralogous genes in their GI network than fruit fly (see Table A.24 in
Appendix A), whose GI network topology can be distinguished from SF-GD (p-value
9.63E-7); although even for fruit fly it is still the best-fitted model network.

When relating GI topology to our enrichment results, we immediately observe
that our topological findings correlate with our GO-BP enrichment results, as the tri-
angle based GraCoals, GraCoal2 achieve among the best GO-BP enrichment scores
in budding yeast, fission yeast and E. coli (GI networks indistinguishable from SF-
GD) but poor scores in fruit fly (GI network distinguishable from SF-GD). This ob-
servation could imply that, in GI networks, GraCoals2 capture GO-BPs that involve
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functional paralogous genes in species with many duplicated genes in their genome.
We further validate this hypothesis by showing that the genes enriched based on
GraCoals2 for budding yeast, fission yeast and E. coli cover relatively more paralo-
gous gene pairs than for fly (Table 4.4). Moreover, for budding yeast, fission yeast
and E. coli, the genes enriched based on GraCoals2 cover more paralogous genes
than any other GraCoal embedding (except for GraCoal6 in E. coli).

Budding yeast E. coli Fission yeast Fruit fly
Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs

ÃG0 1,189 10.09 1,234 23.26 567 17.64 2,061 7.13

ÃG1 1,476 11.04 1,191 26.87 445 16.85 2,121 6.51

ÃG2 2,640 21.74 1,258 25.51 709 26.23 1,066 8.92

ÃG3 2,551 18.35 1,188 25.67 752 19.28 2,211 7.92

ÃG4 1,017 6.19 978 26.48 222 4.50 1,879 10.27

ÃG5 1,759 16.09 1,223 26.49 549 20.22 1,036 7.24

ÃG6 2,454 17.36 1,174 30.66 833 19.93 1,923 7.28

ÃG7 2,509 20.65 1,220 25.49 708 22.46 944 7.31

ÃG8 2,036 14.00 835 14.73 406 16.26 421 10.22

Table 4.4. Statistics for paralogous genes enriched using SAFE with GraCoal embed-
dings. For each of the four GI networks (Budding yeast, E. coli, Fission yeast and Fruit
fly), we show the number of enriched genes when using SAFE with GraCoal embeddings
(i.e., genes that have at least one annotation enriched in their neighborhood) and the
percentages of genes enriched that are paralogs.

Next, we explain why GraCoal2 best captures GO-BP involving paralogous genes.
First, we show that paralogous genes are statistically significantly more likely to
genetically interact than non-paralogous genes (using a hypergeometric test, least
significant p-value 2.02E-2 over all four species). This observation is consistent with
the literature, as one of the key drivers for the retention of duplicated genes in the
genome is functional redundancy (Kuzmin et al., 2020), in which case duplicated
genes are also likely to genetically interact and interact with the same genes. Conse-
quently, paralogous genes should tend to form triangles in the GI network, in which
two nodes are the two paralogs and a third is a shared neighbour. We confirm this
by showing in Figure 4.6 that duplicated genes occur on statistically significantly
more triangles, i.e., graphlet G2, than randomly selected pairs from the network (i.e.,
the background) (Table 4.5). Moreover, we assess if gene-paralog pairs share simi-
lar wiring patterns by computing the graphlet degree vector similarity (GDV-sim)
between all ‘gene to paralog’ pairs in the network and comparing it to randomly
chosen pairs. We perform a one-sided Mann-Whitney-U test to see if gene-paralog
pairs have a larger GDV similarity with respect to the background. Below we show
that paralogous pairs of genes have statistically larger GDV similarities with re-
spect to randomly chosen pairs of genes from any of the GI networks (Figure 4.7,
left panels and Table 4.5). As a consequence of having more similar wiring patterns
than random, we also show how paralogous pairs are closer in embedding space
than random (Figure 4.7, right panels). Thus, we also perform a one-sided MWU
test to evaluate if paralogous pairs have statistically shorter distances (i.e., shortest
weighted path lengths) than random pairs. We do this for all four GI networks and
in every case the distances for paralogous pairs is statistically shorter with respect
to randomly chosen pairs (Table 4.5). In all, these findings explain why GO-BP
involving paralogs tend to be enriched using SAFE.
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Figure 4.6. Triangle count distribution for pairs of paralogous genes. For each of our
GI molecular networks, we show the triangle count distribution for all pairs of paralogous
genes (i.e., blue ‘gene2paralog’) and the triangle count distribution for random pairs of
genes in the network (i.e., orange ‘random2random’).
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Figure 4.7. GDV similarity and shortest weighted path lengths. On the left panels
we show the GDV similarity distribution between all pairs of paralogous genes (i.e., blue
‘gene2paralog’) and the GDV similarity distribution for random pairs of genes in the
network (i.e., orange ‘random2random’). P-values corresponding to the one-sided MWU
test between these two distributions is statistically significant (p<0.05) in every case. On
the right panels we show the distribution of the shortest weighted path lengths between
all pairs of paralogous genes (blue) and the distribution of shortest weighted path lengths
between random pairs (orange). P-values are also statistically significant in every case
(p<0.05). From top to bottom: results for the Budding yeast, E. coli, Fission yeast and
Fruit fly GI networks.
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Triangle counts GDV-sim SWPL
Budding yeast 1.78E-23 4.90E-32 2.79E-21

E. coli 3.77E-07 1.27E-10 7.29E-07
Fission yeast 0.001 7.38E-05 6.72E-15

Fruit fly 0.16 0.002 6.53E-10

Table 4.5. MWU p-values. We show the resulting p-values after comparing different
distributions by performing a one-sided MWU test. Column “Triangle counts” shows
the p-values for a one-sided MWU test to compare triangle counts in the network for
paralogous pairs vs random pairs of nodes to see if the paralogous pairs participate in
statistically significant more triangles than random. Column ‘GDV-sim’ shows p-values
for one-sided MWU test to see if the GDV similarity is statistically larger in between
paralogous pairs than random pairs. Finally, ‘SWPL’ shows p-values for one-sided MWU
test to see if paralogous pairs of nodes are statistically closer in space than random pairs.

In summary, we find that when the genome of a species contains many duplicated
genes, this is reflected in the topology of their GI networks, as paralogs tend to
interact and share many of their neighbours in the network, leading to dense patches
of triangles in the GI networks. This topology is well captured by GraCoal2 (i.e.,
GraCoal based on the triangle shaped graphlet), leading to high percentages of GO-
BP enrichments, driven by the high enrichment of GO-BPs that including paralogous
genes.

Biological insights of GraCoals at a functional domain level

Lastly, we aim to give insight into the biological function captured by our GraCoals
across species, and in particular when using GraCoal2. To this end, we identify
the most characteristic functional domains in each species, i.e., the domains that
could not be captured by any of the other GraCoals. To quantify this, we measure
the uniqueness of all functional domains obtained with SAFE. To do this, we first
compute the Jaccard similarity index (JI) (Jaccard, 1912; Tanimoto, 1958), which
is defined as the size of the intersection between two sets of elements divided by the
size of the union of the two sets of elements. We compute this between the sets of
enriched annotations of each functional domain in a particular GraCoal and the sets
of enriched annotations of every other functional domain in the other GraCoal em-
beddings. Next, for each functional domain, we keep the maximum JI, as this value
represents the maximum overlap to any other functional domain in the other Gra-
Coal embeddings and thus, reflects how unique to a particular GraCoal a functional
domain is. Additionally, we compute the paralog ratio for each functional domain,
which we define as follows: for a given functional domain, the paralog ratio is the
number of paralogs that are annotated by the enriched annotations in the functional
domain over the total number of genes annotated by the enriched annotations in the
functional domain. In this way, we can evaluate how well a given functional domain
is capturing biological information that involves paralogs.

In Table 4.6 for budding yeast, and Tables A.12 to A.14 in Appendix A for E.
coli, fission yeast and fruit fly, respectively, we summarize, the number of functional
domains (column 1) and the mean paralog ratio (column 2), over each GraCoal
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embedding (i.e., ÃG0-ÃG8). Furthermore, we report the top three most characteristic
functional domains for the GI molecular networks (column 5) according to the lowest
maximum JI (column 4) and the corresponding paralog ratio.

Firstly, we observe that for fruit fly, budding yeast and fission yeast, many do-
mains are highly characteristic to a particular GraCoal, with many domains (7, 14
and 5, respectively) being completely unique, scoring a maximum JI of 0. This is in
line with our earlier results, as we observed big discrepancies in gene enrichment per-
formance between different GraCoals for these species, indicating we capture strong
topology-function relationships. Secondly, we observe that for budding yeast, fission
yeast and E. coli, the top three most characteristic domains of GraCoal2 show on
average the highest paralog ratios of all GraCoals (except in E. coli, where GraCoal2
is just behind GraCoal8 in this regard). This is in line with our previous observation
that GraCoal2 tends to capture GO-BP involving paralogs. Lastly, we can also find
literature support that the paralogs combined in our domains are functional. For
instance, if we focus on the ‘secretion, cell, exocytosis, export’ domain uncovered
by GraCoal2 in budding yeast. This domain has the largest paralog ratio measured
for all domains in budding yeast (0.43) and is strongly characteristic of GraCoal2
(JI=0.12). This domain is composed of GO-BPs such as ‘export from cell’, ‘secretion
by cell’, ‘secretion’ and ‘exocytosis’, which are all vesicle traffic related functions.
Previous studies suggest that gene duplication events enabled the expansion and di-
versification of the vesicle traffic pathway (Purkanti & Thattai, 2022). The authors
show that gene duplications allowed for the formation of paralogous modules. As
paralogs can be differentially expressed or regulated, or can have different interac-
tion partners, paralogous modules contribute to the robustness and versatility of the
vesicle traffic pathway. We can make similar observations for the ‘cell wall chitin
biosynthetic process’ domain, the most characteristic domain of GraCoal8 (JI=0.0,
paralog ratio 0.43). A key element of the biosynthetic process is the ‘exomer’ protein
complex, a heterotetrameric complex assembled at the trans-Golgi network, that is
required for the delivery of a distinct set of proteins to the plasma membrane. Its
cargo adaptors consist of two Chs5 proteins and two out of four paralogous proteins:
Bud7, Bch1, Bch2 and Chs6. The paralogs part of the exomer complex determine
which proteins it can transport (Anton et al., 2018). For instance, transport of
Chs3 is completely dependent on the presence of Chs6 in the exomer. So, in the
chitin biosynthetic process, gene duplication enabled different specialisations of the
exomer to transport different proteins, which is captured by GraCoal8.

In conclusion, we have shown that triangle based GraCoals capture functional
redundancy and functional specialisation in GI networks of species whose GI network
is characterised by many paralogs.
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ÃGi
Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 10 0.16 (std=0.08) 0.32 0.00 cytokinesis, cytoskeleton, septin, organi-
zation, histone

ÃG0 10 0.16 (std=0.08) 0.15 0.07 regulation, attachment, spindle, micro-
tubules, kinetochore

ÃG0 10 0.16 (std=0.08) 0.07 0.13 metabolic, process, glycolipid, liposaccha-
ride

ÃG1 15 0.15 (std=0.06) 0.25 0.00 process, amino, acid, biosynthetic, glu-
tamine

ÃG1 15 0.15 (std=0.06) 0.11 0.05 histone, methylation, lysine, H3, K4

ÃG1 15 0.15 (std=0.06) 0.06 0.13 acetylation, peptidyl, lysine, modification,
internal

ÃG2 15 0.20 (std=0.09) 0.26 0.00 growth, in, filamentous, conjugation, with

ÃG2 15 0.20 (std=0.09) 0.17 0.00 biosynthetic, process, purine, ribonu-
cleotide, nucleotide

ÃG2 15 0.20 (std=0.09) 0.43 0.12 secretion, cell, exocytosis, export, by

ÃG3 15 0.16 (std=0.07) 0.25 0.00 purine, containing, compound, metabolic,
process

ÃG3 15 0.16 (std=0.07) 0.16 0.00 electron, transport, chain, aerobic, respi-
ratory

ÃG3 15 0.16 (std=0.07) 0.18 0.02 receptor, recycling, protein, import, per-
oxisome

ÃG4 11 0.19 (std=0.12) 0.24 0.00 transition, metal, ion, transport

ÃG4 11 0.19 (std=0.12) 0.22 0.00 phosphatidylcholine, process, metabolic,
biosynthetic

ÃG4 11 0.19 (std=0.12) 0.26 0.08 transport, retrograde, endosome, Golgi,
endosomal

ÃG5 11 0.18 (std=0.19) 0.15 0.00 transmembrane, transport, hexose,
monosaccharide, small

ÃG5 11 0.18 (std=0.19) 0.13 0.00 regulation, heterochromatin, assembly,
negative, organization

ÃG5 11 0.18 (std=0.19) 0.17 0.04 positive, regulation, process, cellular, bio-
logical

ÃG6 10 0.18 (std=0.19) 0.18 0.00 rRNA, RNA, splicing, transesterification,
LSU

ÃG6 10 0.18 (std=0.19) 0.12 0.57 rRNA, processing, SSU, RNA, endonucle-
olytic

ÃG6 10 0.18 (std=0.19) 0.14 0.62 catabolic, process, dependent, macro-
molecule, protein

ÃG7 16 0.18 (std=0.19) 0.15 0.00 cellular, response, stimulus, abiotic, os-
motic

ÃG7 16 0.18 (std=0.19) 0.08 0.08 mRNA, cleavage, polyadenylation, pro-
cessing, response

ÃG7 16 0.18 (std=0.19) 0.26 0.44 rRNA, SSU, processing, endonucleolytic,
cleavage

ÃG8 10 0.22 (std=0.06) 0.43 0.00 actin, cytoskeleton, organization, fila-
ment, based

ÃG8 10 0.22 (std=0.06) 0.21 0.00 membrane, cell, wall, chitin, process

ÃG8 10 0.22 (std=0.06) 0.21 0.12 response, compound, organonitrogen,
ERAD, pathway

Table 4.6. Summary of most unique functional domains for Gracoal embeddings. We
report for the budding yeast GI network, for each GraCoal embedding used with SAFE
(column 1), i.e., based on graphlet adjacencies for up to four node graphlets (ÃG0-ÃG8),
the number of functional domains (column 2) the mean paralog ratio (column 3) and the
top three most characteristic functional domains (column 6). Lastly, for each functional
domain we report the paralog ratio (column 4) and the maximum Jaccard similarity index
(JI) (column 5).

4.2 Results for GraSpring with SAFE

In this section we present our results for the different GraSpring embeddings over
the GI networks. Because of Spring embedding’s non-deterministic nature, all of
our results for GraSpring embeddings are based on the average results over 10 inde-
pendent runs.
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GraSpring uncovers the functional organization of the cell

In this section, we evaluate: (1) how well GraSpring embeddings capture the func-
tional organization of genetic interaction networks and (2) which higher-order topolo-
gies (i.e., graphlets) capture the most function. In both experiments, we apply
SAFE-based enrichment analysis to quantify how well a given embedding captures
the functional organization of a given network.

To evaluate how well GraSpring capture the functional organization of our GI
networks, we compare against Spring embedding (as GraSpring for graphlet G0,
which corresponds to standard Spring embedding, used in the original SAFE), Gra-
Coal embedding and graphlet Spectral embedding (as it underlies our GraCoal em-
beddings). In Figure 4.1 we show the union of the enriched genes and the union
of the enriched GO-BPs across the different types of underlying graphlet adjacen-
cies (i.e., ÃG0 to ÃG8). When comparing the three graphlet based embeddings, we
have already established that GraCoal embeddings outperform both GraSpring and
graphlet Spectral embeddings when uncovering the functional organization of GI
networks using SAFE. Additionally, GraSpring embeddings are outperformed most
of the time by graphlet Spectral embeddings as well. For instance, for the fruit fly
GI network, the union of genes enriched in GO-BPs in terms of percentage (Figure
4.1, left), from highest to lowest (i.e., best to worst) are 90.3%, 76.72% and 61.3%
for GraCoal, graphlet Spectral and GraSpring, respectively. Similarly, for budding
yeast, these values are 71.4%, 61.13% and 42.6% for GraCoal, graphlet Spectral and
GraSpring, respectively. This is also the case when considering a different anno-
tation type such as GO-CC, except for the union of enriched GO-CCs for E. coli,
where GraSpring outperforms both GraCoal and graphlet Spectral (Figure A.10).
Finally, for our third annotation type, GO-MF, GraSpring is outperformed again by
the other two graphlet based embeddings, except for the E. coli GI network, where
GraSpring works best both in terms of the union of genes enriched in GO-MF and
the union of enriched GO-MFs.

GraSpring embeddings uncover complementary biological in-
formation

Similar to GraCoal embeddings, we can use GraSpring embeddings to uncover bi-
ological information in complementary ways. Even when obtaining the lowest per-
centages of genes enriched and the lowest percentages of annotations enriched with
respect to GraCoals and graphlet Spectrals across all species and annotations types,
we still recover information across all GraSprings in each GI network. In Figure
4.8 we show the percentages of genes enriched (top) and percentages of GO-BPs

enriched (bottom) for all GraSpring embeddings (i.e., ÃG0 to ÃG8) across our four
GI networks. We observe the largest percentages of both genes and annotations en-
riched in the fruit fly GI network, which is consistent with the previous results with
GraCoal embeddings. On the opposite side, we obtain the lowest percentages of
genes enriched and lowest percentages of annotations enriched for the fission yeast
and E. coli GI networks, respectively. Interestingly, the second best enrichments
in terms of genes are achieved by the budding yeast and E. coli, even though the
latter is clearly the worst in terms of enriched GO-BPs. For GO-CC and GO-MF
we present similar results in Figures A.12 and A.19 in Appendix A.
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Figure 4.8. SAFE GO-BP enrichment analysis comparing Graspring in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (top) and percentage of enriched annotations (bottom) for
each of the different Graspring embeddings (x-axis).

Next, we investigate which topologies capture the most function in GI networks
between different GraSpring embeddings. We observe that in terms of percentages of
genes enriched, the top performing GraSprings for fruit fly, GraSpring0,1,4,5, achieve
between 38.3% and 47.2%, while the low performing, GraSpring2,3,6,7,8 achieve be-
tween 18.4% and 36.1%. This is also consistent for the percentages of enriched
GO-BPs (except for GraSpring5). Similarly, for budding yeast, even though the dif-
ferences between the percentages of genes enriched are not as noticeable than for the
fruit fly, we can also distinguish between top and low performing GraSprings. The
top performing GraSprings, GraSpring0,1,2,5,7,8, achieve between 25.1% and 32% and
the low performing, GraSpring3,4,6 achieve between 21.5% and 24.8%. This is con-
sistent for percentages of GO-BPs enriched (Figure 4.8, bottom). Next, for E. coli,
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the top performing GraSprings, GraSpring0,1,2,5, achieve between 26.2% and 29.7%,
while the low performing, GraSpring3,4,6,7,8, achieve between 22.3% and 25.8%. For
percentages of enriched GO-BPs the differences are almost negligible, achieving be-
tween 13.8% and 16.1% across all GraSprings. For fission yeast, we observe two
clear top performing GraSprings, GraSpring2,3 in terms of genes enriched, achiev-
ing 17.7% and 18.3%, respectively, while the lowest, GraSpring0,1,4,5,6,7,8 achieve
between 7.3% and 16.2%. In terms of enriched GO-BPs, these results are some-
what consistent, as GraSpring2,3 are amongst the top performing, even though
GraSpring0 is clearly the best. In all, when comparing between species, the re-
sults for top and low performing GraSprings are not always the same, though some
overlap exist, which is consistent with our previous results for GraCoal embeddings
across the GI networks. This implies that the same GraSprings capture different
topology-function relationships in the GI networks, depending on the species.

Additionally, for each species, we focus on identifying what characterizes each
particular GraSpring (i.e., ÃG0-ÃG8) from a biological perspective, just as we did
previously for our GraCoal embeddings. To this end, in table 4.7 we present the same
format as previously presented for GraCoals: we report for the budding yeast, the
number of uniquely enriched annotations (column 1), the mean SS for the uniquely
enriched annotations (column 2) as well as the mean SS for the top 10 largest
uniquely enriched annotations (column 3) for each GraCoal used in SAFE. Finally,
in column 5, we report the names of the top 10 uniquely enriched annotations and
their corresponding size in terms of enriched neighborhoods (column 4).

In brief, we first identify the uniquely enriched annotations for each GraSpring
(i.e., annotations enriched in a particular GraSpring that are not enriched in any
of the other GraSprings). For the budding yeast, we find that on average, 29 GO-
BPs are uniquely enriched for each particular GraSpring (Table 4.7), which is more
than we can uncover with GraCoals (Table 4.3). Similar to our GraCoal embed-
ding findings, we observe that each GraSpring embedding (except for GraSpring4,
uncovers biological information that is not uncovered by the other GraSpring em-
beddings, which is again in line with the literature, as different graphlet adjacencies
are known to capture complementary topology-function relationships in molecular
networks (Windels et al., 2019). Aditionally, there is some degree of functional sim-
ilarity in the information uncovered, as shown by the mean semantic similarity of
the set of enriched annotations that each GraSpring uncovers (Table 4.7, column 2).
Finally, we rank the uniquely enriched annotations according to their size, defined
as the total number of neighborhoods they are enriched in, as a measure of how
well they are captured by each particular GraSpring. The lowest and maximum
average SS for the sets of uniquely enriched annotations for the budding yeast GI
network are 0.11 (Std=0.02) and 0.62 (Std=0.01) for ÃG8 and ÃG5 , respectively.
Finally, when evaluating the top 10 enriched annotations when possible, we observe
a larger degree of functional similarity between the annotations, which ranges from
0.23 (Std=0.05) to 0.62 (Std=0.01) for the budding yeast (ÃG2 , and ÃG5 , respec-
tively). Moreover, the average size of the uniquely enriched GO-BPs uncovered by
GraSprings is 149.8 (std=84.1), while the average size of the uniquely enriched GO-
BPs for GraCoals is 129.7 (std=54.9). This implies that the biological information
that is uniquely captured by the different GraSpring embeddings tends to be more
generic than the biological information that is uniquely captured by the different
GraCoals in budding yeast. For the summary of uniquely enriched annotations for
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our other GI networks please refer to Tables A.6 to A.8 in Appendix A.

ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 1 1.00 (std=nan) 1.00 (std=nan) 172.0 protein insertion into ER membrane

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 152.0 gene conversion

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 91.0 maturation of 5.8S rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 86.0 maturation of 5.8S rRNA

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 67.0 lipid droplet organization

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 44.0 thioester biosynthetic process

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 44.0 acyl-CoA biosynthetic process

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 44.0 acetyl-CoA biosynthetic process

ÃG1 8 0.26 (std=0.06) 0.26 (std=0.06) 33.0 nuclear mRNA surveillance

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 258.0 regulation of microtubule cytoskeleton organiza-
tion

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 254.0 regulation of microtubule-based process

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 210.0 sno(s)RNA metabolic process

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 203.0 mitotic spindle checkpoint signaling

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 203.0 spindle checkpoint signaling

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 199.0 sno(s)RNA processing

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 194.0 DNA conformation change

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 185.0 regulation of exit from mitosis

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 178.0 chromosome segregation

ÃG2 92 0.14 (std=0.02) 0.23 (std=0.05) 169.0 establishment of mitotic spindle localization

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 333.0 cellular process

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 299.0 regulation of telomere maintenance

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 220.0 ribophagy

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 189.0 positive regulation of glucose metabolic process

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 189.0 positive regulation of cellular carbohydrate
metabolic process

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 169.0 regulation of cell cycle G2/M phase transition

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 169.0 regulation of G2/M transition of mitotic cell cycle

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 139.0 lipid translocation

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 122.0 regulation of membrane lipid distribution

ÃG3 17 0.23 (std=0.06) 0.25 (std=0.05) 111.0 DNA double-strand break processing

ÃG5 3 0.62 (std=0.01) 0.62 (std=0.01) 163.0 nucleotide-excision repair

ÃG5 3 0.62 (std=0.01) 0.62 (std=0.01) 72.0 protein maturation

ÃG5 3 0.62 (std=0.01) 0.62 (std=0.01) 44.0 protein processing

Table 4.7. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 1.
We report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 43.0 phytosteroid metabolic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 43.0 ergosterol metabolic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 43.0 cellular alcohol metabolic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 39.0 secondary alcohol metabolic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 28.0 cellular alcohol biosynthetic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 28.0 cellular lipid biosynthetic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 28.0 phytosteroid biosynthetic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 28.0 ergosterol biosynthetic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 24.0 secondary alcohol biosynthetic process

ÃG6 13 0.52 (std=0.04) 0.54 (std=0.04) 18.0 sterol biosynthetic process

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 228.0 mRNA polyadenylation

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 210.0 pre-mRNA cleavage required for polyadenylation

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 207.0 RNA polyadenylation

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 206.0 mRNA cleavage involved in mRNA processing

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 203.0 mRNA cleavage

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 181.0 protein lipidation

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 155.0 carbohydrate derivative biosynthetic process

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 108.0 organonitrogen compound catabolic process

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 86.0 protein-containing complex localization

ÃG7 15 0.26 (std=0.05) 0.27 (std=0.05) 47.0 endonucleolytic cleavage in ITS1 to separate SSU-
rRNA from 5.8S rRNA and LSU-rRNA from
tricistronic rRNA transcript (SSU-rRNA, 5.8S
rRNA, LSU-rRNA)

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 263.0 protein modification by small protein conjugation

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 254.0 protein acetylation

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 234.0 actin cytoskeleton organization

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 231.0 protein acylation

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 229.0 tubulin complex assembly

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 228.0 protein ubiquitination

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 225.0 protein methylation

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 225.0 protein alkylation

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 222.0 negative regulation of cellular protein metabolic
process

ÃG8 120 0.11 (std=0.02) 0.28 (std=0.04) 221.0 mitotic DNA damage checkpoint signaling

Table 4.7. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 2.
We report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).

Genes enriched in E. coli, Fission yeast and Budding yeast GI networks
cover more paralogous genes than the Fruit fly GI network

In our analysis of GraCoal embeddings for the GI networks in the previous sec-
tion, we discussed how GraCoals, in particular GraCoal2,7,8 (i.e., based on triangle
topology), lead to higher enrichments because of the presence of paralogs in the
networks. Below we report gene enrichment and paralog enrichment statistics for
the GI networks in the same format as before: total number of genes that have
at least one GO-BP enriched in the neighborhood (i.e., “Enriched genes” in Table
4.8) and the number of genes that are enriched and are paralogs (i.e., “Paralogs” in
Table 4.8). Our observations for the fruit fly are consistent with previous results as
it achieves the lowest percentages of paralogs enriched across all GraSprings, which
is easily explained by the fact that it has the least amount of paralogs in the GI
network. On the other hand, the percentages of paralogs enriched for the budding
yeast, E. coli and fission yeast tend to be higher in GraSprings corresponding to
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the triangle topology. For instance, for budding yeast and fission yeast, GraSpring2
and GraSpring7 achieve the highest and second highest, respectively, percentages of
enriched paralogs. For E. coli, even though the percentages of enriched paralogs are
very close in all GraSprings, GraSpring2 achieves the highgest value. This further
validates our previous observations that when there are lots of duplicated genes (i.e.,
paralogs) in a given GI network, the enrichments tend to be the best when based

on triangle topology (e.g., Ã2, Ã7 or Ã8). Finally, we observe that these results
for GraSprings based on triangle topology, GraSpring2,7,8 are of lower performance
than the ones for GraCoal2,7,8, except for GraSpring2 for E. coli, which further
validates that GraCoals are a better approach for uncovering biological information
from GI networks that contain many paralogs.

Budding yeast E. coli Fission yeast Fruit fly
Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs

ÃG0 1,652 11.38 1,206 22.69 402 6.47 1,575 7.68

ÃG1 1,610 12.52 1,170 22.60 342 9.36 1,282 7.18

ÃG2 1,643 18.32 1,108 27.41 517 10.67 1,101 7.81

ÃG3 1,378 14.13 1,092 26.74 586 9.41 1,103 7.71

ÃG4 1,299 11.55 1,049 25.93 255 5.88 1,185 6.67

ÃG5 1,513 13.66 1,095 26.12 388 3.09 834 7.31

ÃG6 1,622 16.46 1,059 27.20 505 9.31 1,299 7.39

ÃG7 1,693 18.19 1,011 21.27 471 9.55 1,031 7.76

ÃG8 1,791 13.70 911 15.30 491 8.76 576 8.33

Table 4.8. Statistics for paralogous genes enriched using SAFE with GraSpring embed-
dings. For each of the four GI networks (Budding yeast, E. coli, Fission yeast and Fruit
fly), we show the number of enriched genes when using SAFE with GraSpring embeddings
(i.e., genes that have at least one annotation enriched in their neighborhood) and the
percentages of genes enriched that are paralogs.

Biological insights of GraSprings at a functional domain level

Lastly, we aim to give insight into the biological function captured by our GraSpring
embeddings across species at a functional domain level just as we did for our GraCoal
embeddings in previous sections. To this end, we identify the most characteristic
functional domains in each species, i.e., the domains that could not be captured
by any of the other GraSprings. In brief, we measure the uniqueness of all func-
tional domains obtained with SAFE by computing the Jaccard similarity index (JI)
between the sets of enriched annotations of each functional domain in a particular
GraSpring and the sets of enriched annotations of every other functional domain
in the other GraSpring embeddings. For each domain, we report the maximum JI,
which represents the maximum overlap to any other functional domain in the other
GraSpring embeddings, and thus reflects how unique the functional domain is to its
corresponding GraSpring. Finally, we also report the paralog ratio, which we al-
ready defined, as a way to evaluate how well a given functional domain is capturing
biological information that involves paralogs.

In Table 4.9 for budding yeast, and Tables A.15 to A.17 in Appendix A for E.
coli, fission yeast and fruit fly, respectively, we summarize, the number of functional
domains (column 1) and the mean paralog ratio (column 2), over each GraSpring

embedding (i.e., ÃG0-ÃG8). Furthermore, we report the top three most characteristic
functional domains for the GI molecular networks (column 5) according to the lowest
maximum JI (column 4) and the corresponding paralog ratio.
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Our first observation is that across all of our GI networks, there are less do-
mains that are highly characteristic to a particular GraSpring. For instance, for
budding yeast (Table 4.9), only 5 functional domains are completely unique with a
Max JI of 0, while for GraCoals for budding yeast, a total of 14 unique functional
domains could be achieved (Table 4.6). Secondly, on average, fewer functional do-
mains can be achieved with GraSprings with respect to GraCoals. This means that
GraCoals, with budding yeast at least, uncover biological information at a functional
domain level that is more functionally organised (i.e., more functional domains than
with GraSprings) and that is less redundant (i.e., there is less overlap between the
functional domains of each GraSpring), in addition to uncovering more functional
information overall (as seen by the overall enrichments in Figure 4.1).

In general, we observe lower paralog ratios in GraSprings when compared to Gra-
Coals. For instance, the lowest and highest average paralog ratio previously reported
for our GraCoals for the budding yeast is 0.15 (std=0.06) and 0.22 (std=0.06), re-
spectively. On the other hand, with GraSprings we obtain paralog ratios than range
from 0.12 (std=0.07) and 0.20 (std=0.06). Additionally, the largest paralog ra-
tio obtained from the top three most characteristic functional domains across all
GraSprings, the largest value we obtain is 0.32 with a Max JI of 0.0. Interestingly,
this functional domain is uncovered by GraSpring2, which is consistent with our
previous results that indicate that triangle topology is the best for capturing bio-
logical function that involves paralogs. Similarly, the most characteristic functional
domain of GraSpring8, with a Max JI of 0.0, also has one of the highest paralog
ratios (0.22).

In conclusion, we have shown that information captured by GraSprings is less
functionally organised and thus leads to fewer functional domains uncovered with
SAFE. As a consequence, there is more overlap between the different GraSprings, as
shown by the maximum JIs in table 4.9. Finally, even when performing worse than
GraCoals, GraSprings corresponding to triangle topology, for instanceGraSpring2,8,
still uncover biological functions that involve many paralogs, as shown by their
paralog ratios.
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ÃGi
Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 12 0.19 (std=0.05) 0.09 0.09 process, metabolic, biosynthetic, mem-
brane, lipid

ÃG0 12 0.19 (std=0.05) 0.20 0.12 lipid, process, metabolic, cellular, biosyn-
thetic

ÃG0 12 0.19 (std=0.05) 0.23 0.18 aerobic, respiration, generation, precur-
sor, metabolites

ÃG1 16 0.16 (std=0.06) 0.23 0.17 biosynthetic, process, CoA, thioester,
acetyl

ÃG1 16 0.16 (std=0.06) 0.09 0.24 DNA, regulation, replication, heterochro-
matin, assembly

ÃG1 16 0.16 (std=0.06) 0.21 0.27 capping, RNA, 7, methylguanosine, actin

ÃG2 14 0.15 (std=0.09) 0.32 0.00 regulation, kinase, activity, protein, G1

ÃG2 14 0.15 (std=0.09) 0.03 0.01 regulation, mitotic, negative, sister, chro-
matid

ÃG2 14 0.15 (std=0.09) 0.19 0.01 regulation, cell, communication, signal,
transduction

ÃG3 7 0.17 (std=0.05) 0.22 0.00 pH, regulation, monovalent, inorganic,
cation

ÃG3 7 0.17 (std=0.05) 0.13 0.41 process, catabolic, protein, G2, M

ÃG3 7 0.17 (std=0.05) 0.14 0.53 regulation, process, positive, metabolic,
cellular

ÃG4 7 0.20 (std=0.06) 0.08 0.19 DNA, maintenance, repair, checkpoint,
signaling

ÃG4 7 0.20 (std=0.06) 0.24 0.39 regulation, assembly, positive, complex,
organization

ÃG4 7 0.20 (std=0.06) 0.24 0.41 catabolic, process, protein, dependent,
macromolecule

ÃG5 11 0.14 (std=0.07) 0.16 0.32 protein, process, transport, localization,
Golgi

ÃG5 11 0.14 (std=0.07) 0.15 0.33 process, regulation, DNA, protein,
metabolic

ÃG5 11 0.14 (std=0.07) 0.08 0.40 membrane, protein, tethering, processing,
organelle

ÃG6 11 0.14 (std=0.06) 0.19 0.00 process, biosynthetic, metabolic, alcohol,
cellular

ÃG6 11 0.14 (std=0.06) 0.08 0.33 fusion, vesicle, Golgi, membrane, medi-
ated

ÃG6 11 0.14 (std=0.06) 0.20 0.53 regulation, process, protein, assembly,
transcription

ÃG7 10 0.15 (std=0.06) 0.08 0.08 rRNA, endonucleolytic, cleavage, SSU, 5’

ÃG7 10 0.15 (std=0.06) 0.14 0.12 regulation, signaling, positive, TORC1,
TOR

ÃG7 10 0.15 (std=0.06) 0.04 0.50 mitochondrion, organization

ÃG8 13 0.12 (std=0.07) 0.22 0.00 process, purine, ribonucleotide,
metabolic, biosynthetic

ÃG8 13 0.12 (std=0.07) 0.01 0.00 regulation, actin, filament, negative, de-
polymerization

ÃG8 13 0.12 (std=0.07) 0.14 0.09 response, process, stimulus, cellular,
biosynthetic

Table 4.9. Summary of most unique functional domains for GraSpring embeddings. We
report for the budding yeast GI network, for each GraSpring embedding used with SAFE
(column 1), i.e., based on graphlet adjacencies for up to four node graphlets (ÃG0-ÃG8),
the number of functional domains (column 2) the mean paralog ratio (column 3) and the
top three most characteristic functional domains (column 6). Lastly, for each functional
domain we report the paralog ratio (column 4) and the maximum Jaccard similarity index
(JI) (column 5).

4.3 Results for graphlet Spectral with SAFE

In this section we present our results for the different graphlet Spectral embeddings
over the GI networks.

Graphlet Spectral uncovers the functional organization of the
cell

In this section, we evaluate: (1) how well graphlet Spectral embeddings capture the
functional organization of genetic interaction networks and (2) which higher-order
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topologies (i.e., graphlets) capture the most function. In both experiments, we apply
SAFE-based enrichment analysis to quantify how well a given embedding captures
the functional organization of a given network.

To evaluate how well graphlet Spectral capture the functional organization of
our GI networks, we compare against Spectral embedding (as graphlet Spectral for
graphlet G0, which corresponds to standard Spectral embedding), GraCoal embed-
ding and Graspring embedding. In Figure 4.1 we show the union of the enriched
genes and the union of the enriched GO-BPs across the different types of underlying
graphlet adjacencies (i.e., ÃG0 to ÃG8). When comparing the three graphlet based
embeddings, we have already established that GraCoal embeddings outperform both
GraSpring and graphlet Spectral embeddings when uncovering the functional orga-
nization of GI networks using SAFE. However, graphlet Spectral embeddings out-
performs GraSprings most of the time, both in terms of genes enriched and GO-BPs
enriched. For instance, for the fruit fly GI network, the union of genes enriched in
GO-BPs in terms of percentage (Figure 4.1, left), from highest to lowest (i.e., best to
worst) are 90.3%, 76.72% and 61.3% for GraCoal, graphlet Spectral and GraSpring,
respectively. Similarly, for budding yeast, these values are 71.4%, 61.13% and 42.6%
for GraCoal, graphlet Spectral and GraSpring, respectively. This is also the case
when considering a different annotation type such as GO-CC, except for the union
of enriched GO-CCs for E. coli, where GraSpring outperforms both GraCoal and
graphlet Spectral (Figure A.10). Finally, for our third annotation type, GO-MF,
graphlet Spectral embeddings outperform again GraSpring embeddings, except for
the E. coli GI network, where GraSpring works best both in terms of the union
of genes enriched in GO-MF and the union of enriched GO-MFs (Figure A.17 in
Appendix A).

Graphlet Spectral embeddings uncover complementary bio-
logical information

Similar to GraCoal embeddings and GraSpring embeddings, we can use graphlet
Spectral embeddings to uncover biological information in complementary ways. In
Figure 4.9 we show the percentages of genes enriched (top) and percentages of GO-

BPs enriched (bottom) for all graphlet Spectral embeddings (i.e., ÃG0 to ÃG8) across
our four GI networks. We observe the same pattern as with GraCoals or GraSprings,
that is, the largest percentages of both genes enriched and annotations enriched are
obtained for the fruit fly GI network. On the other hand, the lowest percentages of
genes enriched and lowest percentages of annotations enriched when using graphlet
Spectral embeddings are obtained for the fission yeast, although E. coli is not far
behind in terms of enriched annotations. Interestingly, the second best enrichments
in terms of genes are achieved by E. coli, and by the budding yeast in terms of
annotations enriched. For GO-CC and GO-MF we present similar results in Figures
A.13 and A.20 in Appendix A.

Next, we investigate which topologies capture the most function in GI net-
works between different graphlet Spectral embeddings. We observe that in terms
of percentages of genes enriched, the top performing graphlet Spectrals for fruit
fly, Spectral0,1,3,4,6, achieve between 40.3% and 49.6%, while the low performing,
Spectral2,5,7,8 achieve between 6.2% and 24.1%. This is also consistent for the per-
centages of enriched GO-BPs. For the second best in terms of genes enriched, E.
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coli, the top performing graphlet Spectrals, Spectral0,3,4 all achieve around 24%,
while the low performing graphlet Spectrals all achieve less than 20 with Spectral8
performing the worst at 6.8%. Similarly, for budding yeast, only Spectral3 achieves
more than 20% (24.3%), while the lowest, Spectral4, achieves only 2%. This is con-
sistent for enriched annotations, with Spectral3 and Spectral4 performing the best
and worst, respectively. Finally, for fission yeast, the enrichments over all species
are in general very low. However, we observe that Spectral4 is clearly the top per-
forming both in terms of genes enriched (16.8%) and annotations enriched (18.3%).
On the other hand, Spectral2,3,7,8 are the worst performers, achieving between 1.7%
and 2.5% enriched genes and between 3.7% and 6.8% enriched annotations. In all,
when comparing between species, the results for top and low performing graphlet
Spectrals are not always the same, though some overlap exist, which is consistent
with our previous results for GraCoal embeddings and GraSpring embeddings across
the GI networks. This implies that the same graphlet Spectrals capture different
topology-function relationships in the GI networks, depending on the species.

68



AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8

Graphlet adjacency

0

20

40

60

80

100

%
 E

nr
ic

he
d 

ge
ne

s

Fruit fly
Budding yeast
E. coli
Fission yeast

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8

Graphlet adjacency

0

20

40

60

80

100

%
 E

nr
ic

he
d 

an
no

ta
tio

ns

Fruit fly
Budding yeast
E. coli
Fission yeast

Figure 4.9. SAFE GO-BP enrichment analysis comparing graphlet based
Spectral in GI networks. For the GI networks of our four species (legend), we show,
on the y-axis, the percentage of enriched genes (top) and the percentage of enriched
annotations (top) for each of the different Spectral embeddings (x-axis).

Additionally, for each species, we focus on identifying what characterizes each
particular graphlet Spectral (i.e., ÃG0-ÃG8) from a biological perspective, just as we
did previously for our GraCoal embeddings and GraSpring embeddings. To this end,
in table 4.10 we present the same format as previously presented for GraCoals: we
report for the budding yeast, the number of uniquely enriched annotations (column
1), the mean SS for the uniquely enriched annotations (column 2) as well as the
mean SS for the top 10 largest uniquely enriched annotations (column 3) for each
graphlet Spectral used in SAFE. Finally, in column 5, we report the names of the top
10 uniquely enriched annotations and their corresponding size in terms of enriched
neighborhoods (column 4).

In brief, we first identify the uniquely enriched annotations for each graphlet
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Spectral (i.e., annotations enriched in a particular graphlet Spectral that are not
enriched in any of the other graphlet Spectrals). For the budding yeast, we find that
on average, 18 GO-BPs are uniquely enriched for each particular graphlet Spectral
(Table 4.10), which is less than we can uncover with GraCoals (average 22 GO-BPs,
Table 4.3) or GraSprings (average 29 GO-BPs, Table 4.7. We observe uniquely
enriched GO-BPs in every graphlet Spectral except for Spectral4, which is consistent
with previous results for the other graphlet based embeddings, i.e., different graphlet
adjacencies are known to capture complementary topology-function relationships in
molecular networks (Windels et al., 2019). Interestingly, GraSpring4 is the only
GraSpring that could not uncover any uniquely enriched GO-BPs in the budding
yeast GI. For our other species, GraSpring4 also fails to uncover unique information
for the fission yeast. This could indicate that these graphlet based embeddings are
not suitable for uncovering unique information from the star topology.

Additionally, the mean semantic similarities reported also indicate some degree
of functional similarity in the information uncovered by each graphlet Spectral (Ta-
ble 4.10, column 2). For instance, the lowest and maximum average SS for the
sets of uniquely enriched annotations of graphlet Spectrals for the budding yeast
GI network are 0.14 (Std=0.03) and 0.63 (Std=0.01) for ÃG3 and ÃG8 , respectively.
Finally, when evaluating the top 10 enriched annotations when possible, we ob-
serve a larger degree of functional similarity between the annotations, which ranges
from 0.24 (Std=0.05) to 0.63 (Std=0.01) for the budding yeast (Spectral0,5, and
Spectral8, respectively). Next, we rank the uniquely enriched annotations accord-
ing to their size, defined as the total number of neighborhoods they are enriched in,
as a measure of how well they are captured by each particular graphlet Spectral.
The average size of the uniquely enriched GO-BPs uncovered by graphlet Spectrals
is 38.6 (std=29.6), while the average size of the uniquely enriched GO-BPs for Gra-
Coals and GraSprings are 129.7 (std=54.9 and 149 (std=84.1), respectively. This
implies that the biological information that is uniquely captured by the different
graphlet Spectral embeddings could correspond to more specific biological functions
as opposed to what is uncovered by both GraCoals and GraSprings. to be more
generic than the biological information that is uniquely captured by the different
GraCoals in budding yeast. For the summary of uniquely enriched annotations for
our other GI networks please refer to Tables A.9 to A.11 in Appendix A.
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 86.0 negative regulation of biological process

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 82.0 negative regulation of macromolecule metabolic
process

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 74.0 cytoplasm to vacuole transport by the Cvt path-
way

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 70.0 negative regulation of metabolic process

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 50.0 maintenance of DNA trinucleotide repeats

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 44.0 organelle organization

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 39.0 septin ring organization

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 37.0 deoxyribonucleoside triphosphate biosynthetic
process

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 36.0 positive regulation of RNA polymerase II tran-
scription preinitiation complex assembly

ÃG0 44 0.17 (std=0.05) 0.24 (std=0.06) 36.0 positive regulation of transcription initiation from
RNA polymerase II promoter

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 14.0 homeostatic process

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 13.0 cellular homeostasis

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 13.0 chemical homeostasis

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 11.0 negative regulation of chromosome organization

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 10.0 regulation of chromosome separation

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 10.0 regulation of mitotic sister chromatid separation

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 10.0 regulation of sister chromatid segregation

ÃG1 8 0.38 (std=0.06) 0.38 (std=0.06) 10.0 regulation of chromosome segregation

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 15.0 autophagy of nucleus

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 14.0 autophagy of mitochondrion

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 14.0 mitochondrion disassembly

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 14.0 piecemeal microautophagy of the nucleus

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 12.0 organelle disassembly

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 11.0 RNA splicing, via transesterification reactions

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 11.0 RNA splicing, via transesterification reactions
with bulged adenosine as nucleophile

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 11.0 mRNA splicing, via spliceosome

ÃG2 9 0.34 (std=0.05) 0.34 (std=0.05) 10.0 autophagosome organization

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 61.0 chromatin assembly

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 56.0 positive regulation of macromolecule metabolic
process

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 56.0 positive regulation of biosynthetic process

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 56.0 positive regulation of cellular biosynthetic process

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 54.0 regulation of gene expression, epigenetic

Table 4.10. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 1. We report, for the Budding yeast GI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 54.0 heterochromatin assembly

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 54.0 negative regulation of gene expression, epigenetic

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 54.0 heterochromatin organization

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 53.0 mitochondrion organization

ÃG3 76 0.14 (std=0.03) 0.33 (std=0.05) 45.0 positive regulation of biological process

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 56.0 RNA biosynthetic process

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 31.0 translational initiation

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 30.0 mannosyl-inositol phosphorylceramide metabolic
process

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 28.0 sister chromatid cohesion

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 27.0 post-Golgi vesicle-mediated transport

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 24.0 rDNA heterochromatin assembly

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 24.0 facultative heterochromatin assembly

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 20.0 ribonucleoprotein complex disassembly

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 20.0 spliceosomal complex disassembly

ÃG5 10 0.24 (std=0.05) 0.24 (std=0.05) 15.0 cellular component disassembly

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 61.0 RNA phosphodiester bond hydrolysis

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 44.0 nucleic acid phosphodiester bond hydrolysis

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 38.0 positive regulation of nucleobase-containing com-
pound metabolic process

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 37.0 cleavage involved in rRNA processing

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 34.0 monocarboxylic acid metabolic process

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 30.0 nuclear transport

ÃG6 7 0.35 (std=0.05) 0.35 (std=0.05) 30.0 nucleocytoplasmic transport

ÃG7 4 0.62 (std=0.01) 0.62 (std=0.01) 123.0 NAD metabolic process

ÃG7 4 0.62 (std=0.01) 0.62 (std=0.01) 121.0 NADH metabolic process

ÃG7 4 0.62 (std=0.01) 0.62 (std=0.01) 117.0 NADH oxidation

ÃG7 4 0.62 (std=0.01) 0.62 (std=0.01) 47.0 late nucleophagy

ÃG8 5 0.63 (std=0.00) 0.63 (std=0.00) 124.0 ion transport

ÃG8 5 0.63 (std=0.00) 0.63 (std=0.00) 13.0 pyridoxine metabolic process

ÃG8 5 0.63 (std=0.00) 0.63 (std=0.00) 13.0 vitamin B6 metabolic process

ÃG8 5 0.63 (std=0.00) 0.63 (std=0.00) 13.0 pyridoxine biosynthetic process

ÃG8 5 0.63 (std=0.00) 0.63 (std=0.00) 13.0 vitamin B6 biosynthetic process

Table 4.10. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 2. We report, for the Budding yeast GI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).

Genes enriched in E. coli, Fission yeast and Budding yeast GI networks
cover more paralogous genes than the Fruit fly GI network

In our analysis of GraCoal embeddings for the GI networks, we discussed how Gra-
Coals, in particular GraCoal2,7,8 (i.e., based on triangle topology), lead to higher en-
richments because of the presence of paralogs in the networks. Here we assess if this
is also the case for graphlet Spectral embeddings. Below we report gene enrichment
and paralog enrichment statistics for the GI networks in the same format as before:
total number of genes that have at least one GO-BP enriched in the neighborhood
(i.e., “Enriched genes” in Table 4.11) and the number of genes that are enriched
and are paralogs (i.e., “Paralogs” in Table 4.11). In general, our observations for
the fruit fly are consistent with previous results as it achieves low percentages of
paralogs enriched across all graphlet Spectrals. Graphlet Spectrals corresponding
to triangle topology (i.e., Spectral2,7,8) in general perform really well, achieving the
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best paralog enrichments for budding yeast and E. coli. For fission yeast, Spectral2
achieves the highest percentage of enriched paralogs, while Spectral7,8 achieve both
0%, which can be easily explained by an extremely low count of enriched genes in
these two embeddings (55 and 40 enriched genes, respectively). This is consistent
with previous results both for GraSpring embeddings and GraCoal embeddings on
GI networks. We observe that when there are lots of duplicated genes (i.e., par-
alogs) in a given GI network, the enrichments tend to be the best when based on

triangle topology (e.g., Ã2, Ã7 or Ã8). Finally, we observe that these results for
graphlet Spectral embeddings based on triangle topology, Spectral2,7,8 are of lower
performance than the ones for GraCoal2,7,8, which further validates that GraCoals
are a better approach for uncovering biological information from GI networks that
contain many paralogs.

Budding yeast E. coli Fission yeast Fruit fly
Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs

ÃG0 896 14.51 964 22.32 233 6.30 1,373 6.18

ÃG1 339 9.59 792 23.99 266 6.77 1,592 5.99

ÃG2 664 16.96 724 28.97 106 11.89 821 6.58

ÃG3 1,438 12.52 969 21.28 81 1.23 1,361 7.27

ÃG4 140 0.71 949 22.13 494 10.12 1,388 4.10

ÃG5 546 4.21 802 24.55 343 11.08 798 9.27

ÃG6 1,016 11.12 710 22.96 212 4.72 1,296 6.64

ÃG7 843 18.03 692 24.11 55 0.00 777 6.82

ÃG8 577 20.10 300 19.00 40 0.00 179 2.79

Table 4.11. Statistics for paralogous genes enriched using SAFE with graphlet Spectral
embeddings. For each of the four GI networks (Budding yeast, E. coli, Fission yeast and
Fruit fly), we show the number of enriched genes when using SAFE with graphlet Spectral
embeddings (i.e., genes that have at least one annotation enriched in their neighborhood)
and the percentages of genes enriched that are paralogs.

Biological insights of graphlet Spectral embeddings at a func-
tional domain level

Lastly, we aim to give insight into the biological function captured by our graphlet
Spectral embeddings across species at a functional domain level just as we did for
our GraCoal embeddings and GraSpring embeddings in previous sections. To this
end, we identify the most characteristic functional domains in each species across all
graphlet Spectrals, i.e., the domains that could not be captured by any of the other
graphlet Spectrals. In brief, we measure the uniqueness of all functional domains
obtained with SAFE by computing the Jaccard similarity index (JI) between the sets
of enriched annotations of each functional domain in a particular graphlet Spectral
embedding and the sets of enriched annotations of every other functional domain in
the other graphlet Spectral embeddings. For each domain, we report the maximum
JI, which represents the maximum overlap to any other functional domain in the
other graphlet Spectral embeddings, and thus reflects how unique the functional
domain. Finally, we also report the paralog ratio, which we already defined, as a way
to evaluate how well a given functional domain is capturing biological information
that involves paralogs.

In Table 4.12 for budding yeast, and Tables A.18 to A.20 in Appendix A for E.
coli, fission yeast and fruit fly, respectively, we summarize, the number of functional
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domains (column 1) and the mean paralog ratio (column 2), over each graphlet

Spectral embedding (i.e., ÃG0-ÃG8). Furthermore, we report the top three most
characteristic functional domains for the GI molecular networks (column 5) accord-
ing to the lowest maximum JI (column 4) and the corresponding paralog ratio. Our
first observation is that we obtain more unique functional domains (i.e., Max JI =
0.0) for budding yeast when using graphlet Spectrals than using GraSprings or Gra-
Coals. For instance, for budding yeast we obtain 17 completely unique functional
domains while with GraSpring or GraCoal we obtain 5 and 14 completely unique
functional domains, respectively. Moreover, on average, we obtain 6.22 functional
domains for each graphlet Spectral on budding yeast, while this number is almost
twice as many when using GraCoal (average = 12.6). By having less functional do-
mains overall, this can easily explain the low overlap between the different graphlet
Spectrals, as the Max JI = 0.0 on most of the most characteristic funtionanl domains
(Table 4.12). In general, we observe lower paralog ratios in graphlet Spectrals when
compared to GraCoals. For instance, the lowest and highest average paralog ratio
previously reported for our GraCoals for the budding yeast is 0.15 (std=0.06) and
0.22 (std=0.06), respectively. On the other hand, with graphlet Spectrals we obtain
paralog ratios than range from 0.13 (std=0.07) and 0.21 (std=0.28). Additionally,
the largest paralog ratio obtained from the top three most characteristic functional
domains across all graphlet Spectrals, is 0.39 with a Max JI of 0.0. Interestingly, this
functional domain is uncovered by Spectral7, which is consistent with our previous
results that indicate that triangle topology is the best for capturing biological func-
tion that involves paralogs. Similarly, the most characteristic functional domain of
GraSpring8, with a Max JI of 0.0, also has one of the highest paralog ratios (0.26).

In conclusion, we have shown that information captured by graphlet Spectrals is
less functionally organised, as evidenced by low percentages of enriched genes and
low percentages of annotations enriched, which in turn leads to fewer functional
domains uncovered with SAFE. Next, we showed that this biological information
uncovered is different across all graphlet Spectrals (i.e., complementarity). Finally,
even when performing worse than GraCoals, graphlet Spectrals based on triangle
topology, for instance GraSpring7,8, still uncover biological functions that involve
many paralogs, as shown by the mean paralog ratios of the functional domains.
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ÃGi
Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 11 0.19 (std=0.24) 0.33 0.00 transport, transmembrane, hexose, carbo-
hydrate, monosaccharide

ÃG0 11 0.19 (std=0.24) 0.23 0.00 transport, retrograde, endosome, Golgi,
cytosolic

ÃG0 11 0.19 (std=0.24) 0.09 0.00 process, metabolic, biosynthetic, glycol-
ipid, glycerolipid

ÃG1 3 0.15 (std=0.12) 0.30 0.00 homeostasis, cellular, homeostatic, pro-
cess, chemical

ÃG1 3 0.15 (std=0.12) 0.01 0.00 regulation, chromosome, separation, sis-
ter, chromatid

ÃG1 3 0.15 (std=0.12) 0.12 0.09 protein, containing, complex, organiza-
tion

ÃG2 3 0.18 (std=0.06) 0.07 0.07 mitochondrion, disassembly, autophagy,
nucleus, microautophagy

ÃG2 3 0.18 (std=0.06) 0.22 0.40 rRNA, metabolic, process, processing,
ncRNA

ÃG2 3 0.18 (std=0.06) 0.16 0.44 metabolic, process, compound, RNA,
mRNA

ÃG3 15 0.16 (std=0.09) 0.32 0.00 localization, transport, establishment, cel-
lular

ÃG3 15 0.16 (std=0.09) 0.20 0.00 glycosylation, macromolecule, protein

ÃG3 15 0.16 (std=0.09) 0.16 0.00 electron, transport, chain, aerobic, respi-
ratory

ÃG5 7 0.13 (std=0.07) 0.14 0.00 translational, initiation

ÃG5 7 0.13 (std=0.07) 0.12 0.00 RNA, biosynthetic, process

ÃG5 7 0.13 (std=0.07) 0.00 0.00 heterochromatin, assembly, rDNA, facul-
tative

ÃG6 10 0.19 (std=0.07) 0.34 0.00 monocarboxylic, acid, metabolic, process

ÃG6 10 0.19 (std=0.07) 0.10 0.00 phosphodiester, bond, hydrolysis, RNA,
nucleic

ÃG6 10 0.19 (std=0.07) 0.15 0.05 chromatin, organization

ÃG7 5 0.21 (std=0.28) 0.39 0.00 NADH, metabolic, process, oxidation,
NAD

ÃG7 5 0.21 (std=0.28) 0.00 0.00 late, nucleophagy

ÃG7 5 0.21 (std=0.28) 0.20 0.40 metabolic, process, RNA, rRNA, ncRNA

ÃG8 2 0.20 (std=0.08) 0.26 0.00 process, pyridoxine, metabolic, vitamin,
B6

ÃG8 2 0.20 (std=0.08) 0.15 0.00 ion, transport

Table 4.12. Summary of most unique functional domains for graphlet Spectral embed-
dings. We report for the budding yeast GI network, for each graphlet Spectral embed-
ding used with SAFE (column 1), i.e., based on graphlet adjacencies for up to four node
graphlets (ÃG0-ÃG8), the number of functional domains (column 2) the mean paralog ratio
(column 3) and the top three most characteristic functional domains (column 6). Lastly,
for each functional domain we report the paralog ratio (column 4) and the maximum
Jaccard similarity index (JI) (column 5).
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Chapter 5

Application 2: Analysis of PPI
networks

In this chapter we evaluate the performance of the graphlet-based embeddings (i.e.,
GraCoal, GraSpring and graphlet based Spectral) with the Spatial Analysis of Func-
tional Enrichment (SAFE) framework on the PPI networks of the following species:
Drosophila melanogaster, Escherichia coli, Saccharomyces cerevisiae, Schizosaccha-
romyces pombe, Homo sapiens, Mus musculus and Caenorhabditis elegans which
throughout the text we will refer to as fruit fly, E. coli, budding yeast, fission yeast,
human, mouse and roundworm, respectively. We present the PPI network statistics
in Table 5.1. For more information on how we built these molecular networks please
refer to section A.1 in Appendix A. Moreover, we focus mainly on analysing results
based on Gene Ontology Biological Processes (GO-BP), as is one of the most com-
plete set of annotations. For detailed results corresponding to our other annotations
(e.g., GO molecular functions and GO cellular components), please refer to section
A.3 in Appendix A. In the next sections, we summarize the results obtained by
our GraCoal embedding, GraSpring embedding and finally graphlet based Spectral
embedding. Addidionally, we perform model fitting experiments, as we did for our
GI networks in the previous chapter. However, none of our PPI networks were well
fitted by any of the model networks, as seen in section A.5 in Appendix A.

PPI
Nodes Edges Density

Budding yeast 5,726 92,930 0.006
E. coli 2,022 12,788 0.006

Fission yeast 3,530 12,757 0.002
Fruit fly 8,864 54,722 0.001
Human 18,614 398,713 0.002

House mouse 10,164 55,640 0.001
Roundworm 7,628 32,502 0.001

Table 5.1. PPI molecular network data statistics. For each species (row), we report the
number of nodes, the number of edges and the density of the corresponding PPI network
(columns 1-3).
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5.1 Results for GraCoal with SAFE

In general, we observe that GraCoal embeddings appear to be the best perform-
ing in terms of genes enriched with respect to GraSpring embeddings and graphlet
Spectrals. However, this is not always the case in terms of GO-BP annotations
enriched. For instance, when we consider the union of the enrichments over the dif-
ferent embeddings (i.e., over Ã0 to Ã8), we observe GraCoal embeddings outperform
the union of the GraSpring embeddings, on average by 14.1% and 3.27%, in terms
of genes enriched and GO-BP annotations enriched, respectively. The union over
all GraCoal embeddings also outperform the union of graphlet Spectral embeddings
in terms of genes enriched but not in terms of GO-BP annotations enriched (0.7%
and -1.49%, respectively) (Figure 5.1).
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Figure 5.1. SAFE GO-BP enrichment analysis for PPI networks. For the PPI
networks of our seven species (x-axis), we show the percentage of enriched genes (y-axis)
and percentage of enriched annotations for each of the embedding algorithms considered
(legend). In the case of GraSpring, we show the average across ten randomised runs and
the standard deviation (error-bars).

On the other hand, when we take individual enrichments as opposed to the
union over all graphlet based embeddings, we observe that the best scoring Gra-
Coal embeddings (Figure 5.2) outperform the best GraSpring embeddings (Figure
5.3) and graphlet Spectral embeddings (Figure 5.4), on average by 4.50% and 4.29,
respectively in terms of genes enriched. For the percentages of enriched GO-BP an-
notations enriched, the best embedding algorithm is not consistent, as it depends on
the species. Finally, the best performing GraCoal embeddings outperform GraCoal
embedding based on standard graphlet adjacency (i.e., ÃG0) on average by 2.64%
and 1.11% in terms of genes and GO-BP annotations enriched, respectively.
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Figure 5.2. SAFE GO-BP enrichment analysis comparing GraCoals in PPI
networks. For the PPI networks of our seven species (legend), we show, on the y-axis, the
percentage of enriched genes (top) and the percentage of enriched annotations (bottom)
for each of the different GraCoal embeddings (x-axis).

We observe similar results for GO-CC annotations over our PPI networks in
Figure A.26 in Appendix A. The union of the enriched genes and annotations
over the different GraCoal embeddings outperforms those based on the union of the
Spring embedding (on average by 16.6% and 3.43% in terms of genes and GO-CC
annotations enriched, respectively) or Spectral embedding based results (on average
by 3.5% and 1.32% in terms of genes and GO-CC annotations enriched, respectively).
The best scoring GraCoal embeddings (Figure A.27 in Appendix A) outperform the
best GraSpring embeddings (Figure A.28 and graphlet Spectral embeddings (Figure
A.29 in terms of genes enriched (on average by 3.63 % and 4.05%, respectively)
and perform close to the best Spring embeddings and Spectral embeddings in terms
of GO-CC annotations enriched (on average by -1.37% and -2.97%, respectively).
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Finally, the best performing GraCoal embeddings outperform GraCoal based on
standard adjacency (on average by 3.80% and 0.88% in terms of genes and GO-CC
annotations enriched, respectively).

For GO-MF annotations, we observe are not well captured by any of the embed-
ding algorithms for any of our networks, with all embeddings achieving less than
25% enriched annotations across all networks and graphlet adjacencies (i.e., ÃG0 to

ÃG8).

GraCoals uncover complementary biological information in
PPI networks

When applying GraCoal embeddings with SAFE to our PPI molecular networks,
we can uncover biological information in complementary ways, just as we previously
discussed for our GI networks. In Figure 5.2 we show the percentages of genes en-
riched (top) and percentages of GO-BPs enriched (bottom) for all GraCoals (i.e.,

ÃG0 to ÃG8) across our seven PPI networks. We observe the largest percentages of
both genes enriched and annotations enriched for the budding yeast PPI network
(pink label). In terms of genes enriched, we find that the best performing GraCoals
for budding yeast correspond to GraCoal0,2,6,8, achieving between 38.4.2% and 41%
enriched genes, while the low performing, GraCoal1,3,4,5,7, achieve between 31.2%
and 37.4% enriched genes. This is consistent in terms of GO-BP annotations en-
riched, although we can observe an additional GraCoal in the top performing ones
(GraCoal3), which achieve between 37.3% and 39.5%. Next, in terms of genes en-
riched, GraCoals perform best on the fission yeast PPI network, achieving between
17.1% on the lower end with GraCoal7 and 42.4% on the high end with GraCoal0.
However, this is not consistent with respect to enriched GO-BPs, as the second best
percentages of enriched annotations are achieved on the fruit fly PPI network, be-
tween 18.2% (GraCoal7) and 36.1% (GraCoal3). Interestingly, GraCoals perform
relatively well in terms of genes enriched for the E. coli PPI network, but not in
terms of enriched GO-BPs, achieving the worst percentages of enriched annotations
across all PPI networks. In general, besides the top performing species and the worse
performing in the case of E. coli (in terms of GO-BPs), the results for the other
PPI networks are not that different. Finally, we observe that GraCoals based on
paths (i.e., GraCoal0,1,3 tend to capture more biological information than GraCoals
based on more densely connected graphlets such as the two-node and three-node
cliques (i.e., GraCoal2, 8). In all, when comparing between our different PPI net-
works, there is no clear top performing GraCoal, indicating that GraCoals capture
different topology-function relationships that depends on the species.

Additionally, for each specie, we focus on identifying what characterizes each
particular GraCoal (i.e., ÃG0-ÃG8) from a biological perspective, just as we did pre-
viously for our GI networks with our graphlet based embeddings. In table 5.2 we
present the same format as previously presented for GI networks: we report for
the budding yeast, the number of uniquely enriched annotations (column 1), the
mean SS for the uniquely enriched annotations (column 2) as well as the mean SS
for the top 10 largest uniquely enriched annotations (column 3) for each GraCoal
used in SAFE. Finally, in column 5, we report the names of the top 10 uniquely
enriched annotations and their corresponding size in terms of enriched neighbor-
hoods (column 4). Here we recall to the previous chapter to define what a uniquely
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enriched annotation is: annotations enriched in a particular GraCoal embedding
that are not enriched in any of the other GraCoal embeddings. For the budding
yeast, we find that on average, 30.12 GO-BPs are uniquely enriched for each partic-
ular GraCoal (Table 5.2). Our first observation for the budding yeast, is that every
GraCoal uncovers uniquely enriched GO-BPs (column 1), which validates the claim
that graphlet adjacencies capture complementary topology-function relationships in
molecular networks (Windels et al., 2019). Next, the mean semantic similarities (col-
umn 2) indicate some degree of functional similarity uncovered by GraCoals in the
budding yeast. In this regard, the lowest degree of functional similarity is achieved
by GraCoal8 (mean SS = 0.13, std=0.03) while the most functional similarity is
captured by GraCoal4 (mean SS = 0.38, std=0.05). Finally, when evaluating the
top 10 enriched annotations, we observe a larger degree of functional similarity be-
tween the enriched GO-BPs, which ranges from 0.22 (Std=0.01) to 0.38 (Std=0.05)
GraCoal6 and GraCoal4, respectively. Next, we rank the uniquely enriched annota-
tions according to their size, defined as the total number of neighborhoods they are
enriched in, as a measure of how well they are captured by each particular GraCoal.
The average size of the uniquely enriched GO-BPs uncovered by GraCoals in the
budding yeast is 176.99 (std=85.11). For our other PPI molecular networks, we
summarize these statistics in terms of the mean uniquely enriched GO-BPs, mean
size of enriched GO-BPs (i.e., in mean number of neighborhoods they are enriched
in) and mean semantic similarity in Table 5.3.

In general, we observe that GraCoal embeddings uncover complementary infor-
mation in all of our PPI molecular networks (i.e., uniquely enriched annotations
across all GraCoals, represented by the means in column 2 in Table 5.3). Inter-
estingly, the fewer uniquely enriched GO-BPs captured, the higher the semantic
similarity (i.e., more functional relevance of the annotations) and the lower the sizes
in terms of enriched neighborhoods (column 3). This indicates that in species such
as E. coli and fission yeast, uniquely enriched GO-BPs tend to be highly specific
(i.e., enriched in fewer neighborhoods) and very closely related (i.e., large semantic
similarity).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 365.0 ribosomal small subunit export from nucleus

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 199.0 positive regulation of cellular component biogene-
sis

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 180.0 regulation of cellular component biogenesis

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 179.0 regulation of protein complex assembly

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 165.0 cellular protein modification process

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 165.0 protein modification process

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 153.0 positive regulation of cytoskeleton organization

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 130.0 vesicle budding from membrane

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 126.0 karyogamy

ÃG0 34 0.17 (std=0.03) 0.27 (std=0.05) 121.0 intralumenal vesicle formation

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 400.0 regulation of ribosome biogenesis

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 391.0 aggrephagy

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 391.0 ribophagy

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 345.0 regulation of ribosomal subunit export from nu-
cleus

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 265.0 regulation of transcription elongation from RNA
polymerase II promoter

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 250.0 regulation of intracellular transport

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 242.0 regulation of translational initiation

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 225.0 regulation of nucleobase-containing compound
transport

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 169.0 regulation of histone modification

ÃG1 20 0.18 (std=0.03) 0.23 (std=0.01) 148.0 catabolic process

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 319.0 protein localization

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 292.0 regulation of vesicle-mediated transport

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 228.0 pyridine-containing compound biosynthetic pro-
cess

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 222.0 vesicle docking

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 212.0 vesicle tethering

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 209.0 membrane docking

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 209.0 organelle localization by membrane tethering

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 180.0 regulation of vacuole organization

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 178.0 vacuole fusion

ÃG2 32 0.17 (std=0.03) 0.27 (std=0.05) 178.0 vacuole fusion, non-autophagic

Table 5.2. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 1. We
report, for the Budding yeast PPI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 275.0 DNA-templated transcription, termination

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 198.0 cellular protein localization

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 195.0 protein localization to organelle

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 184.0 nucleosome mobilization

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 160.0 regulation of cytoskeleton organization

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 158.0 leading strand elongation

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 158.0 regulation of cell cycle phase transition

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 158.0 regulation of mitotic cell cycle phase transition

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 145.0 proteasomal protein catabolic process

ÃG3 35 0.17 (std=0.05) 0.25 (std=0.05) 139.0 proteasome-mediated ubiquitin-dependent protein
catabolic process

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 260.0 organonitrogen compound biosynthetic process

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 95.0 Golgi vesicle budding

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 45.0 nuclear-transcribed mRNA catabolic process,
deadenylation-dependent decay

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 44.0 negative regulation of cell aging

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 34.0 filamentous growth of a population of unicellular
organisms

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 34.0 invasive growth in response to glucose limitation

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 34.0 growth of unicellular organism as a thread of at-
tached cells

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 34.0 invasive filamentous growth

ÃG4 9 0.38 (std=0.05) 0.38 (std=0.05) 33.0 filamentous growth

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 282.0 organelle organization

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 209.0 positive regulation of organelle organization

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 206.0 rRNA transcription

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 170.0 negative regulation of cell cycle phase transition

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 170.0 negative regulation of mitotic cell cycle phase tran-
sition

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 162.0 negative regulation of chromosome organization

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 102.0 transfer RNA gene-mediated silencing

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 85.0 chromatin silencing at telomere

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 57.0 regulation of actin filament bundle assembly

ÃG5 14 0.20 (std=0.04) 0.23 (std=0.04) 40.0 regulation of SNARE complex assembly

Table 5.2. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 2. We
report, for the Budding yeast PPI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 275.0 positive regulation of translational fidelity

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 274.0 rRNA methylation

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 267.0 nucleolar large rRNA transcription by RNA poly-
merase I

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 244.0 snRNA modification

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 228.0 intracellular protein transport

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 221.0 snoRNA processing

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 214.0 U5 snRNA 3’-end processing

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 197.0 cellular catabolic process

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 127.0 organic substance transport

ÃG6 33 0.15 (std=0.05) 0.22 (std=0.01) 108.0 SRP-dependent cotranslational protein targeting
to membrane, translocation

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 152.0 nuclear polyadenylation-dependent CUT catabolic
process

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 143.0 protein-lipid complex assembly

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 143.0 lipid tube assembly

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 129.0 CUT metabolic process

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 129.0 CUT catabolic process

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 121.0 protein-lipid complex subunit organization

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 104.0 transposition

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 44.0 regulation of actin filament organization

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 40.0 positive regulation of actin filament polymeriza-
tion

ÃG7 12 0.23 (std=0.05) 0.26 (std=0.06) 27.0 organic cyclic compound biosynthetic process

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 253.0 RNA surveillance

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 253.0 nuclear RNA surveillance

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 199.0 cell cycle checkpoint

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 181.0 chromosome organization

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 176.0 nuclear polyadenylation-dependent mRNA
catabolic process

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 176.0 snoRNA 3’-end processing

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 176.0 polyadenylation-dependent mRNA catabolic pro-
cess

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 174.0 recombinational repair

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 146.0 snRNA processing

ÃG8 80 0.13 (std=0.03) 0.28 (std=0.05) 129.0 intracellular protein transmembrane transport

Table 5.2. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 3. We
report, for the Budding yeast PPI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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Organism Mean unique GO-BPs Mean enriched neighborhoods Mean SS
Budding yeast 30.12 (std=20.31) 176.99 (std=85.11) 0.20 (std=0.07)

E. coli 4.25 (std=1.24) 41.09 (std=42.11) 0.55 (std=0.13)
Fission yeast 9.09 (std=4.73) 98.36 (std=74.90) 0.36 (std=0.17)
Fruit fly 40.44 (std=17.82) 237.31 (std=199.47) 0.18 (std=0.03)

House mouse 62.88 (std=27.58) 333.31 (std=266.62) 0.14 (std=0.02)
Human 39.76 (std=22.02) 278.85 (std=195.29) 0.18 (std=0.06)

Roundworm 20.66 (std=15.77) 54.45 (std=81.63) 0.27 (std=0.08)

Table 5.3. Summary statistics of uniquely enriched GO-BPs for Gracoal embeddings on
PPI networks. We report, for the our seven PPI networks (column 1), the mean number of
uniquely enriched GO-BPs obtained with each GraCoal embedding (column 2), the mean
size of the uniquely enriched GO-BPs in terms of the number of neighborhoods that the
annotations are enriched in (column 3) and the mean semantic similarity (column 4).

5.2 Results for GraSpring with SAFE

In the previous section we described how GraCoal embeddings are the best approach
for uncovering biological information of our PPI molecular networks in terms of genes
enriched (Figure 5.1). In this regard, GraSpring embeddings are the worst of the
three methods in terms of gene enrichment, outperformed, on average by 14.1% by
GraCoal embeddings, which are the best of the three methods. For the percentages
of enriched GO-BP annotations, the differences are less noticeable, even though it
is still outperformed by the best method, on average by 4.3% by graphlet Spectral
embeddings. The only two PPI networks where GraSpring manages to perform best
is on the PPI networks of E. coli and fruit fly.

GraSpring uncover complementary biological information in
PPI networks

When applying GraSpring embeddings with SAFE to our PPI molecular networks,
we can uncover biological information in complementary ways, just as we previously
discussed for our PPI networks with GraCoal embeddings. In Figure 5.3 we show
the percentages of genes enriched (top) and percentages of GO-BPs enriched (bot-

tom) for all GraSprings (i.e., ÃG0 to ÃG8) across our seven PPI networks. In terms
of genes, most GraSprings achieve less than 20% genes enriched. The largest values
are achieved on the E. coli PPI network, in particular for GraSpring0,1,3,4,6 with
percentages of genes enriched that range from 26.1% to 27.8%. For the fruit fly, the
percentages of genes enriched are the second largest, achieving more than 20% in 6
out of 9 GraSprings, GraSpring0, 1, 3, 4, 6, 7. Interestingly, the percentages of genes
enriched for the roundworm (brown label) are amongst the worst of all, except for
GraSpring2, which achieves the best score overall across all species (34.3%). More-
over, GraSpring0 performs relatively well in comparison with the other GraSprings,
achieving at least 20% of genes enriched in 5 out of the 7 PPI networks.

Similarly, in terms of annotations, most GraSprings achieve less than 20% en-
riched GO-BPs. The largest percentages are achieved on the fruit fly PPI network,
all GraSprings achieving more than 20% enriched GO-BPs, which is consistent with
the percentages of genes enriched, as is the second best in this regard. For E. coli,
which achieves the best overall percentages of genes enriched, achieves the worst
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percentages of GO-BPs enriched. Our last general observation is also consistent
with the percentages of genes enriched, which is that the percentages of GO-BPs
enriched tend to be larger for GraSpring0 than for the other GraSprings. Finally,
our conclusion when comparing between our different PPI networks, there is no clear
top performing GraSpring, as it varies between each species
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Figure 5.3. SAFE GO-BP enrichment analysis comparing GraSprings in PPI
networks. For the PPI networks of our seven species (legend), we show, on the y-axis, the
percentage of enriched genes (top) and the percentage of enriched annotations (bottom)
for each of the different GraSpring embeddings (x-axis).

Next, we focus on identifying what characterizes each particular GraSpring (i.e.,

ÃG0-ÃG8) from a biological perspective, just as we did previously for GraCoal em-
beddings. In table 5.4 we present the same format as before: we report for the
budding yeast, the number of uniquely enriched annotations (column 1), the mean
SS for the uniquely enriched annotations (column 2) as well as the mean SS for the
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top 10 largest uniquely enriched annotations (column 3) for each GraSpring used in
SAFE. Finally, in column 5, we report the names of the top 10 uniquely enriched an-
notations and their corresponding size in terms of enriched neighborhoods (column
4). We find that on average, 12.03 GO-BPs are uniquely enriched for each particular
GraSpring. Our first observation for the budding yeast, is that every GraSpring un-
covers uniquely enriched GO-BPs (column 1), which is consistent with our previous
findings for GI networks and for GraCoal embeddings on PPI networks. That is,
graphlet adjacencies capture complementary information from molecular networks
(Windels et al., 2019). The mean semantic similarity (column 2) of each particular
GraSpring represents some degree of functional relevance of the GO-BPs uncov-
ered by the differeng GraSprings in SAFE. For instance, the lowest mean semantic
similarity is achieved by GraSpring8 at 0.21 (std=0.05) and the largest semantic
similarity (i.e., of highest functional relevance) is achieved by GraSpring4 at 0.45
(std=0.05). When evaluating the top 10 enriched annotations, we observe a larger
degree of functional similarity between the enriched GO-BPs. Interstingly, the low-
est and highest semantic similarities, at 0.25 (Std=0.06) and 0.45 (Std=0.05) are
achied also for GraSpring8 and GraSpring4, respectively. In the case of GraSpring4
this value does not change, as it only uncovers 6 uniquely enriched GO-BPs. Finally,
the average size of the uniquely enriched GO-BPs uncovered by GraSprings in the
budding yeast is 171.83 (std=134.03). For our other PPI molecular networks, we
summarize these statistics in terms of the mean uniquely enriched GO-BPs, mean
size of enriched GO-BPs (i.e., in mean number of neighborhoods they are enriched
in) and mean semantic similarity in Table 5.5.

In general, we observe that GraSpring embeddings uncover complementary in-
formation in all of our PPI molecular networks (i.e., uniquely enriched annotations
across all GraSprings, represented by the means in column 2 in Table 5.5). Ex-
cept for E. coli and fission yeast, we observe that GraSpring embeddigns uncover
less unique biological information than GraCoal embeddings. For instance, for bud-
ding yeast on average 12.03 unique GO-BPs can be captured with any particular
GraSpring embedding, but almost three times as many (30.12 on average) can be
captured by any particular GraCoal.
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 434.0 negative regulation of cellular amide metabolic
process

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 403.0 organelle organization

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 286.0 positive regulation of cell cycle phase transition

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 286.0 positive regulation of mitotic cell cycle phase tran-
sition

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 219.0 positive regulation of mitotic cell cycle

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 146.0 telomere organization

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 122.0 ATP-dependent chromatin remodeling

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 104.0 chromatin silencing at telomere

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 34.0 ribonucleoprotein complex subunit organization

ÃG0 10 0.31 (std=0.05) 0.31 (std=0.05) 25.0 ribonucleoprotein complex assembly

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 309.0 cellular component assembly

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 88.0 chromatin remodeling at centromere

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 37.0 ribonucleoprotein complex biogenesis

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 17.0 maturation of 5.8S rRNA

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 17.0 maturation of 5.8S rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 13.0 ribonucleoprotein complex export from nucleus

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 13.0 ribosome localization

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 13.0 rRNA-containing ribonucleoprotein complex ex-
port from nucleus

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 13.0 ribosomal subunit export from nucleus

ÃG1 15 0.23 (std=0.06) 0.26 (std=0.05) 12.0 protein export from nucleus

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 432.0 DNA-dependent DNA replication maintenance of
fidelity

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 354.0 small nucleolar ribonucleoprotein complex assem-
bly

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 344.0 peptidyl-threonine phosphorylation

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 344.0 peptidyl-threonine modification

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 330.0 box C/D snoRNP assembly

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 239.0 protein ubiquitination

ÃG2 7 0.35 (std=0.05) 0.35 (std=0.05) 146.0 ncRNA processing

Table 5.4. Summary of uniquely enriched GO-BPs for Graspring embeddings, Part 1.
We report, for the Budding yeast PPI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraSprings based on all graphlet adjacencies for up to four
node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 406.0 regulation of cellular component biogenesis

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 219.0 snoRNA processing

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 23.0 ribosomal large subunit biogenesis

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 20.0 endonucleolytic cleavage in 5’-ETS of tricistronic
rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-
rRNA)

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 18.0 endonucleolytic cleavage in ITS1 to separate SSU-
rRNA from 5.8S rRNA and LSU-rRNA from
tricistronic rRNA transcript (SSU-rRNA, 5.8S
rRNA, LSU-rRNA)

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 16.0 rRNA 5’-end processing

ÃG3 7 0.36 (std=0.04) 0.36 (std=0.04) 16.0 endonucleolytic cleavage to generate mature 5’-end
of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-
rRNA)

ÃG4 6 0.45 (std=0.05) 0.45 (std=0.05) 61.0 RNA transport

ÃG4 6 0.45 (std=0.05) 0.45 (std=0.05) 61.0 establishment of RNA localization

ÃG4 6 0.45 (std=0.05) 0.45 (std=0.05) 57.0 nucleic acid transport

ÃG4 6 0.45 (std=0.05) 0.45 (std=0.05) 56.0 RNA export from nucleus

ÃG4 6 0.45 (std=0.05) 0.45 (std=0.05) 55.0 nuclear export

ÃG4 6 0.45 (std=0.05) 0.45 (std=0.05) 54.0 proteasome assembly

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 318.0 positive regulation of transcription initiation from
RNA polymerase II promoter

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 318.0 positive regulation of DNA-templated transcrip-
tion, initiation

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 282.0 positive regulation of protein complex assembly

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 167.0 positive regulation of cellular component biogene-
sis

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 156.0 DNA strand elongation

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 16.0 organelle membrane fusion

ÃG5 7 0.34 (std=0.05) 0.34 (std=0.05) 12.0 membrane fusion

Table 5.4. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 1.
We report, for the Budding yeast PPI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraSprings based on all graphlet adjacencies for up to four
node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 398.0 nucleobase-containing compound catabolic process

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 330.0 heterocycle catabolic process

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 326.0 aromatic compound catabolic process

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 323.0 cellular nitrogen compound catabolic process

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 283.0 organic cyclic compound catabolic process

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 186.0 nucleic acid phosphodiester bond hydrolysis

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 152.0 RNA phosphodiester bond hydrolysis

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 15.0 regulation of mitotic sister chromatid separation

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 15.0 mitotic spindle checkpoint

ÃG6 27 0.28 (std=0.05) 0.40 (std=0.03) 15.0 regulation of chromosome separation

ÃG7 3 0.38 (std=0.01) 0.38 (std=0.01) 192.0 regulation of response to DNA damage stimulus

ÃG7 3 0.38 (std=0.01) 0.38 (std=0.01) 170.0 histone deubiquitination

ÃG7 3 0.38 (std=0.01) 0.38 (std=0.01) 128.0 regulation of transcription involved in G1/S tran-
sition of mitotic cell cycle

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 300.0 organic substance biosynthetic process

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 288.0 transfer RNA gene-mediated silencing

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 282.0 regulation of histone ubiquitination

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 280.0 biosynthetic process

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 217.0 regulation of phosphorylation of RNA polymerase
II C-terminal domain serine 2 residues

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 217.0 positive regulation of phosphorylation of RNA
polymerase II C-terminal domain

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 217.0 positive regulation of phosphorylation of RNA
polymerase II C-terminal domain serine 2 residues

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 213.0 transcription initiation from RNA polymerase II
promoter

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 190.0 regulation of histone methylation

ÃG8 13 0.21 (std=0.05) 0.25 (std=0.06) 180.0 ncRNA 3’-end processing

Table 5.4. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 3. We
report, for the Budding yeast PPI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).

Organism Mean unique GO-BPs Mean enriched neighborhoods Mean SS
Budding yeast 12.03 (std=6.99) 171.83 (std=134.03) 0.31 (std=0.07)

E. coli 15.33 (std=12.29) 47.72 (std=16.60) 0.52 (std=0.31)
Fission yeast 14.59 (std=6.44) 62.86 (std=59.12) 0.28 (std=0.12)
Fruit fly 31.89 (std=23.11) 192.22 (std=155.52) 0.18 (std=0.04)

House mouse 38.41 (std=21.31) 125.68 (std=81.74) 0.18 (std=0.05)
Human 39.51 (std=27.35) 352.71 (std=156.33) 0.17 (std=0.06)

Roundworm 18.36 (std=12.00) 35.24 (std=39.34) 0.30 (std=0.14)

Table 5.5. Summary statistics of uniquely enriched GO-BPs for GraSpring embeddings
on PPI networks. We report, for the our seven PPI networks (column 1), the mean number
of uniquely enriched GO-BPs obtained with each GraSpring embedding (column 2), the
mean size of the uniquely enriched GO-BPs in terms of the number of neighborhoods that
the annotations are enriched in (column 3) and the mean semantic similarity (column 4).

5.3 Results for graphlet Spectral with SAFE

In the previous sections we described how GraCoal embeddings and GraSpring em-
beddings are the best and worst approaches, respectively for uncovering biological
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information of our PPI molecular networks in terms of genes enriched (Figure 5.1).
Thus, GraSpring embeddings perform second best after GraCoals, although the dif-
ferences are not noticeable. Next, in terms of enriched annotations, graphlet Spectral
achieves the best overall percentages of enriched GO-BPs, outperforming the second
best, GraCoals, by 1.49% and GraSprings by 4.3%. Lastly, the best overall enrich-
ments in terms of the union of genes enriched and GO-BPs enriched are achieved
by graphlet Spectrals on the budding yeast (Figure 5.1 far right).

Graphlet Spectrals uncover complementary biological infor-
mation in PPI networks

When applying graphlet Spectral embeddings with SAFE to our PPI molecular
networks, we can uncover biological information in complementary ways, just as we
previously discussed for our PPI networks with GraCoal embeddings and GraSpring
embeddings. In Figure 5.4 we show the percentages of genes enriched (top) and
percentages of GO-BPs enriched (bottom) for all graphlet Spectral embeddings (i.e.,

ÃG0 to ÃG8) across our seven PPI networks. In terms of genes enriched, less than
half of all graphlet Spectrals across all species achieve greater than 20% enriched
genes. In general, the best enrichments are achieved by the budding yeast, with
all graphlet Spectrals uncovering between 33.3% (Spectral4) and 57.1% (Spectral3)
genes enriched. For the other PPI networks, the enrichments in terms of genes
are more balanced and thus there is no clear second best performer. Interestingly,
Spectral3 tends to outperform the other Spectrals except in house mouse and round
worm, where the best performing are Spectral1 and Spectral2, respectively.
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Figure 5.4. SAFE GO-BP enrichment analysis comparing graphlet Spectrals
in PPI networks. For the PPI networks of our seven species (legend), we show, on the
y-axis, the percentage of enriched genes (top) and the percentage of enriched annotations
(bottom) for each of the different graphlet Spectral embeddings (x-axis).

In terms of annotations enriched, most graphlet Spectrals achieve less than 20%
enriched GO-BPs on all species, except for budding yeast, which performs the best.
In this regard, the percentages of enriched GO-BPs for budding yeast are more
or less consistent with the previous results for genes enriched, achieving between
32.9% (Spectral4) and 54.4% (Spectral3) enriched GO-BPs. For E. coli, we observe
a similar pattern as with GraSpring embeddings, where graphlet Spectrals achieve
the worst in terms of enriched GO-BPs.

Next, we focus on identifying what characterizes each particular graphlet Spec-
tral (i.e., ÃG0-ÃG8) from a biological perspective, just as we did previously for Gra-
Coal embeddings and GraSpring embeddings. In table 5.6 we present the same
format as before: we report for the budding yeast, the number of uniquely enriched
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annotations (column 1), the mean SS for the uniquely enriched annotations (column
2) as well as the mean SS for the top 10 largest uniquely enriched annotations (col-
umn 3) for each graphlet Spectral used in SAFE. Finally, in column 5, we report the
names of the top 10 uniquely enriched annotations and their corresponding size in
terms of enriched neighborhoods (column 4). We find that on average, 43.11 GO-BPs
are uniquely enriched for each particular graphlet Spectral. We first note that every
graphlet Spectral uncovers unique biological information in the budding yeast, i.e.,
this is consistent with the claim that complementary information can be captured
by different graphlet adjacencies (Windels et al., 2019). Next, the mean semantic
similarity (column 2) of each particular graphlet Spectral represents some degree of
functional relevance of the GO-BPs uncovered by the different embeddings in SAFE.
For instance, the lowest mean semantic similarity is achieved by GraSpring3 at 0.12
(std=0.04) and the largest semantic similarity (i.e., of highest functional relevance)
is achieved by GraSpring7 at 0.30 (std=0.05). When evaluating the top 10 enriched
annotations, we observe a larger degree of functional similarity between the enriched
GO-BPs. The lowest and highest semantic similarities for the top 10 enriched GO-
BPs are 0.21 (Std=0.04) for Spectral1 and 0.47 (Std=0.03) for Spectral6. Finally,
the average size of the uniquely enriched GO-BPs uncovered by graphlet Spectrals in
the budding yeast is 355.67 (std=229.33). For our other PPI molecular networks, we
summarize these statistics in terms of the mean uniquely enriched GO-BPs, mean
size of enriched GO-BPs (i.e., in mean number of neighborhoods they are enriched
in) and mean semantic similarity in Table 5.7.

In general, we observe that graphlet Spectral embeddings uncover complemen-
tary information in all of our PPI molecular networks (i.e., uniquely enriched anno-
tations across all graphlet Spectrals, represented by the means in column 2 in Table
5.7). We observe graphlet Spectral embeddings uncover, in general, more unique
functional information than GraSpring embeddings, being E. coli and fission yeast
the exception. With respect to GraCoal embeddings, graphlet Spectrals uncover
more unique functional information in yeast, E. coli and roundworm, but not in
the other four species. For instance, for budding yeast on average 43.11 unique
GO-BPs can be captured with any particular graphlet Spectral embedding, which is
around 30% more than with GraCoal embeddings (30.12 uniquely enriched GO-BPs
on average for budding yeast).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 556.0 organic substance biosynthetic process

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 522.0 cellular biosynthetic process

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 519.0 biosynthetic process

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 355.0 ncRNA transcription

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 283.0 mitochondrial membrane organization

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 181.0 pre-replicative complex assembly involved in nu-
clear cell cycle DNA replication

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 181.0 pre-replicative complex assembly

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 181.0 pre-replicative complex assembly involved in cell
cycle DNA replication

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 96.0 histone deubiquitination

ÃG0 46 0.16 (std=0.04) 0.29 (std=0.06) 75.0 mitochondrial translational initiation

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 457.0 cellular localization

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 347.0 regulation of cell cycle phase transition

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 347.0 regulation of mitotic cell cycle phase transition

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 336.0 protein localization to chromosome

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 296.0 autophagy of peroxisome

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 246.0 negative regulation of chromosome organization

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 213.0 microtubule cytoskeleton organization involved in
mitosis

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 185.0 Golgi vesicle transport

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 174.0 translational termination

ÃG1 50 0.13 (std=0.04) 0.21 (std=0.04) 123.0 endonucleolytic cleavage to generate mature 3’-end
of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-
rRNA)

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 461.0 regulation of cell cycle

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 308.0 regulation of protein modification process

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 249.0 regulation of phosphorus metabolic process

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 249.0 regulation of phosphate metabolic process

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 183.0 negative regulation of MAPK cascade

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 182.0 osmosensory signaling pathway via Sho1 osmosen-
sor

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 136.0 negative regulation of protein kinase activity

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 133.0 negative regulation of DNA damage checkpoint

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 42.0 chromatin remodeling

ÃG2 21 0.19 (std=0.05) 0.24 (std=0.03) 41.0 fungal-type cell wall chitin biosynthetic process

Table 5.6. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 1. We report, for the Budding yeast PPI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 863.0 regulation of cellular macromolecule biosynthetic
process

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 796.0 organic cyclic compound metabolic process

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 758.0 DNA metabolic process

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 684.0 cellular response to stress

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 466.0 telomere organization

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 464.0 DNA biosynthetic process

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 419.0 negative regulation of mitotic cell cycle

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 397.0 positive regulation of cell cycle process

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 377.0 RNA-dependent DNA biosynthetic process

ÃG3 75 0.12 (std=0.03) 0.26 (std=0.04) 373.0 telomere maintenance via telomerase

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 497.0 mRNA metabolic process

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 487.0 regulation of nitrogen compound metabolic pro-
cess

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 484.0 regulation of biosynthetic process

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 480.0 regulation of cellular biosynthetic process

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 458.0 regulation of macromolecule metabolic process

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 184.0 organonitrogen compound biosynthetic process

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 182.0 regulation of chromosome segregation

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 163.0 translation reinitiation

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 119.0 cell redox homeostasis

ÃG4 12 0.25 (std=0.04) 0.27 (std=0.03) 104.0 recombinational repair

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 689.0 cellular macromolecule metabolic process

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 499.0 cellular response to DNA damage stimulus

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 466.0 response to stimulus

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 449.0 response to stress

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 428.0 DNA repair

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 421.0 regulation of RNA metabolic process

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 417.0 regulation of nucleic acid-templated transcription

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 417.0 regulation of RNA biosynthetic process

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 417.0 regulation of transcription, DNA-templated

ÃG5 52 0.15 (std=0.03) 0.31 (std=0.06) 387.0 modification-dependent protein catabolic process

Table 5.6. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 2. We report, for the Budding yeast PPI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 879.0 cellular component organization

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 761.0 negative regulation of nucleobase-containing com-
pound metabolic process

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 751.0 negative regulation of macromolecule biosynthetic
process

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 751.0 negative regulation of cellular macromolecule
biosynthetic process

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 721.0 negative regulation of biosynthetic process

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 721.0 negative regulation of cellular biosynthetic process

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 712.0 negative regulation of RNA biosynthetic process

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 712.0 negative regulation of transcription, DNA-
templated

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 712.0 negative regulation of nucleic acid-templated tran-
scription

ÃG6 56 0.15 (std=0.03) 0.47 (std=0.03) 703.0 negative regulation of RNA metabolic process

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 496.0 positive regulation of biological process

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 469.0 positive regulation of cellular process

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 313.0 regulation of cytoskeleton organization

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 microtubule-based transport

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 transport along microtubule

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 microtubule-based movement

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 nuclear migration along microtubule

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 movement of cell or subcellular component

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 organelle transport along microtubule

ÃG7 13 0.30 (std=0.05) 0.38 (std=0.03) 35.0 cytoskeleton-dependent intracellular transport

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 342.0 regulation of cell cycle process

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 283.0 regulation of signal transduction

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 283.0 regulation of signaling

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 236.0 process utilizing autophagic mechanism

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 236.0 regulation of intracellular signal transduction

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 216.0 protein localization by the Cvt pathway

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 164.0 endoplasmic reticulum to Golgi vesicle-mediated
transport

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 147.0 positive regulation of cell communication

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 91.0 response to endoplasmic reticulum stress

ÃG8 63 0.13 (std=0.05) 0.29 (std=0.04) 64.0 respiratory chain complex II assembly

Table 5.6. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 3. We report, for the Budding yeast PPI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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Organism Mean unique GO-BPs Mean enriched neighborhoods Mean SS
Budding yeast 43.11 (std=21.40) 355.67 (std=229.33) 0.18 (std=0.06)

E. coli 4.69 (std=1.32) 63.00 (std=67.45) 0.57 (std=0.16)
Fission yeast 7.58 (std=5.34) 111.16 (std=122.16) 0.45 (std=0.23)
Fruit fly 26.95 (std=14.36) 96.19 (std=118.52) 0.23 (std=0.12)

House mouse 36.61 (std=18.33) 389.73 (std=353.06) 0.18 (std=0.06)
Human 35.29 (std=28.04) 271.39 (std=367.03) 0.22 (std=0.11)

Roundworm 22.20 (std=13.13) 63.36 (std=63.95) 0.25 (std=0.10)

Table 5.7. Summary statistics of uniquely enriched GO-BPs for graphlet Spectral em-
beddings on PPI networks. We report, for the our seven PPI networks (column 1), the
mean number of uniquely enriched GO-BPs obtained with each graphlet Spectral embed-
ding (column 2), the mean size of the uniquely enriched GO-BPs in terms of the number
of neighborhoods that the annotations are enriched in (column 3) and the mean semantic
similarity (column 4).
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Chapter 6

Application 3: Analysis of COEX
networks

In this chapter we evaluate the performance of the graphlet-based embeddings (i.e.,
GraCoal, GraSpring and graphlet based Spectral) with the Spatial Analysis of
Functional Enrichment (SAFE) framework on the COEX networks of the following
species: Drosophila melanogaster, Saccharomyces cerevisiae, Schizosaccharomyces
pombe, Homo sapiens, and Caenorhabditis elegans which throughout the text we
will refer to as fruit fly, budding yeast, fission yeast, human and roundworm, respec-
tively. We present the COEX network statistics in Table 6.1. For more information
on how we built these molecular networks please refer to section A.1 in Appendix A.
Moreover, we focus mainly on analysing results based on Gene Ontology Biological
Processes (GO-BP), as is one of the most complete set of annotations. For detailed
results corresponding to our other annotations (e.g., GO molecular functions and
GO cellular components), please refer to section A.4 in Appendix A. In the next
sections, we summarize the results obtained by our GraCoal embedding, GraSpring
embedding and finally graphlet based Spectral embedding. We also perform model
fitting experiments for our COEX networks, see section A.5, to show that none of
our COEX networks are well fitted by any of the model networks.

COEX
Nodes Edges Density

Budding yeast 5,879 231,979 0.013
Fission Yeast 5,260 213,970 0.015

Fruit fly 12,173 954,450 0.013
Human 16,795 1,801,441 0.013

Roundworm 14,492 1,324,617 0.013

Table 6.1. COEX molecular network data statistics. For each species (row), we report
the number of nodes, the number of edges and the density of the corresponding COEX
network (columns 1-3).

6.1 Results for GraCoal with SAFE

In general, we observe that GraSpring embeddings appear to be the best perform-
ing embedding method both in terms of genes enriched and annotations enriched
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(Figure 6.1). For instance, when we consider the union of genes enriched over the

different graphlet based embeddings (i.e., over Ã0 to Ã8) GraSpring outperforms
both GraCoal embeddings and graphlet Spectral embeddings on three of the five
COEX networks (GraCoal performs best on human and fission yeast). On aver-
age, GraSpring outperforms GraCoal and graphlet Spectrals by 5.61% and 10.73%,
respectively. Next, when we consider the union of GO-BP annotations enriched,
GraSpring embeddings outperform GraCoal embeddings and graphlet Spectral em-
beddings on every COEX network (except human) by 2.75% and 4.71%, respectively
(Figure 6.1). Lastly, the differences between GraCoal embeddings and graphlet Spec-
tral embeddings are not as noticeable, although GraCoal achieves the second best
enrichments overall, outperforming graphlet Spectral by 5.12% for enriched genes
and 2.1% for enriched GO-BP.
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Figure 6.1. SAFE GO-BP enrichment analysis for COEX networks. For the
COEX networks of our six species (x-axis), we show the percentage of enriched genes
(y-axis) and percentage of enriched annotations for each of the embedding algorithms
considered (legend). In the case of GraSpring, we show the average across ten randomised
runs and the standard deviation (error-bars).

On the other hand, when we take individual enrichments as opposed to the union
over all graphlet based embeddings, we observe that the best scoring GraSpring em-
beddings (Figure 6.3) outperform the best GraCoal embeddings (Figure 6.2) and
graphlet Spectral embeddings (Figure 6.4), on average by 4.89% and 6.77, respec-
tively in terms of genes enriched. This is also the case when we consider GO-BPs
enrichment. That is, the best scoring GraSpring embedddings outperform the best
scoring GraCoal embeddings and graphlet Spectral embeddings, on average by 2.76%
and 5.69%, respectively. We observe similar results for GO-CC annotations on our
COEX networks (Section A.4 in Appendix A). For instance for genes enriched in
GO-CC annotations, the best GraSpring embeddings outperform the best GraCoal
embeddings and graphlet Spectral embeddings by 6.85% and 7.94%, respectively.

GraCoals uncover complementary biological information in
COEX networks

When applying GraCoal embeddings with SAFE to our COEX molecular networks,
we can uncover biological information in complementary ways, just as we previ-
ously discussed for our GI and PPI molecular networks. In Figure 6.2 we show the
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percentages of genes enriched (top) and percentages of GO-BPs enriched (bottom)

for all GraCoals (i.e., ÃG0 to ÃG8) across our six COEX networks. We observe the
largest percentages of both genes enriched and annotations enriched for the budding
yeast COEX network. In terms of genes, GraCoal embeddings achieve at least 40%
genes enriched in GO-BPs across all GraCoals. For GO-BP enrichment, these val-
ues range between 33.4% and 40.2% for GraCoal4 and GraCoal8, respectively. For
genes enriched, we observe that fruit fly and human achieve very similar enrichment
percentrages across all GraCoals (between 18.1% and 23.9%). On the other hand,
roundworm (red label) performs half as good as fruit fly and human, achieving be-
tween 10.2% and 16.5% enriched genes. Finally, fission yeast is the worst, achieving
close to 0% in most cases, except for GraCoal5,8 which achieve close to 5% enriched
genes. For GO-BPs enrichments, fruit fly, human and roundworm all perform very
similar, achieving between 10.2% and 22.3% enriched GO-BPs. Finally, GraCoal
embeddings achieve the worst performance in terms of GO-BPs enrichments with
fission yeast COEX network, achieving close to 0% enriched GO-BPs across all Gra-
Coals (purple label).
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Figure 6.2. SAFE GO-BP enrichment analysis comparing GraCoals in COEX
networks. For the COEX networks of six seven species (legend), we show, on the y-
axis, the percentage of enriched genes (top) and the percentage of enriched annotations
(bottom) for each of the different GraCoal embeddings (x-axis).

Additionally, for each specie, we focus on identifying what characterizes each
particular GraCoal (i.e., ÃG0-ÃG8) from a biological perspective, just as we did pre-
viously for our GI and PPI networks with our graphlet based embeddings. In table
6.2 we present the same format as previously presented for the PPI budding yeast
network: we report for the budding yeast, the number of uniquely enriched annota-
tions (column 1), the mean SS for the uniquely enriched annotations (column 2) as
well as the mean SS for the top 10 largest uniquely enriched annotations (column
3) for each GraCoal used in SAFE. Finally, in column 5, we report the names of
the top 10 uniquely enriched annotations and their corresponding size in terms of
enriched neighborhoods (column 4). We find that on average, 37.57 GO-BPs are
uniquely enriched for each particular GraCoal (Table 6.2). Next, we observe that
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every GraCoal uncovers unique biological information (i.e., GO-BPs), validating
the claim that graphlet adjacencies capture complementary biological information
(Windels et al., 2019). Next, we validate if the sets of uniquely enriched GO-BPs are
biologically relevant (i.e., are functionally related). The mean semantic similarities
for all GraCoal embeddings used with SAFE on the budding yeast COEX network,
ranges from 0.13 (std=0.03) for GraCoal8 to 0.89 (std=0.17) for GraCoal1, indicat-
ing some degree of functional of functional similarity, with GraCoal8 capturing the
most functional relevance between uniquely enriched GO-BPs. Next, we rank the
uniquely enriched annotations according to their size, defined as the total number
of neighborhoods they are enriched in, as a measure of how well they are captured
by each particular GraCoal. The average size of the uniquely enriched GO-BPs
uncovered by GraCoals in the budding yeast is 92.64 (std=52.23). For our other
COEX molecular networks, we summarize these statistics in terms of the mean
uniquely enriched GO-BPs, mean size of enriched GO-BPs (i.e., in mean number of
neighborhoods they are enriched in) and mean semantic similarity in Table 6.3.

In general, we observe that GraCoal embeddings uncover complementary infor-
mation in all of our COEX molecular networks except for fission yeast (i.e., uniquely
enriched annotations across all GraCoals, represented by the means in column 2 in
Table 6.3). In this regard, fission yeast only achieves 9 uniquely enriched GO-BPs
with GraCoal5 and 0 with the other GraCoals.
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 50.0 cysteine biosynthetic process

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 50.0 cysteine biosynthetic process via cystathionine

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 48.0 homocysteine metabolic process

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 43.0 leucine biosynthetic process

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 38.0 leucine metabolic process

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 26.0 pyrimidine deoxyribonucleoside triphosphate
catabolic process

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 26.0 nucleoside triphosphate catabolic process

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 26.0 pyrimidine nucleoside triphosphate catabolic pro-
cess

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 26.0 deoxyribonucleoside triphosphate catabolic pro-
cess

ÃG0 16 0.29 (std=0.05) 0.35 (std=0.05) 26.0 purine deoxyribonucleoside triphosphate
metabolic process

ÃG1 4 0.89 (std=0.17) 0.89 (std=0.17) 140.0 protein localization to organelle

ÃG1 4 0.89 (std=0.17) 0.89 (std=0.17) 112.0 cellular protein localization

ÃG1 4 0.89 (std=0.17) 0.89 (std=0.17) 103.0 cellular macromolecule localization

ÃG1 4 0.89 (std=0.17) 0.89 (std=0.17) 16.0 drug catabolic process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 99.0 RNA biosynthetic process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 91.0 positive regulation of cellular process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 90.0 positive regulation of biological process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 73.0 positive regulation of metabolic process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 72.0 positive regulation of cellular metabolic process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 69.0 positive regulation of nucleobase-containing com-
pound metabolic process

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 68.0 negative regulation of gene expression

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 67.0 positive regulation of nucleic acid-templated tran-
scription

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 67.0 positive regulation of transcription, DNA-
templated

ÃG2 77 0.16 (std=0.04) 0.41 (std=0.05) 67.0 positive regulation of RNA biosynthetic process

Table 6.2. Summary of uniquely enriched GO-BPs for GraCoal embeddings, Part 1. We
report, for the Budding yeast COEX network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 143.0 transcription by RNA polymerase I

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 137.0 transcription, DNA-templated

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 137.0 nucleic acid-templated transcription

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 116.0 nucleolar large rRNA transcription by RNA poly-
merase I

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 108.0 endonucleolytic cleavage in ITS1 upstream of 5.8S
rRNA from tricistronic rRNA transcript (SSU-
rRNA, 5.8S rRNA, LSU-rRNA)

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 89.0 rRNA transcription

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 84.0 mRNA pseudouridine synthesis

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 75.0 protein-heme linkage

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 75.0 cytochrome c-heme linkage

ÃG3 13 0.25 (std=0.06) 0.33 (std=0.05) 75.0 protein-tetrapyrrole linkage

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 384.0 protein-containing complex assembly

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 177.0 mitochondrial proton-transporting ATP synthase
complex assembly

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 177.0 proton-transporting ATP synthase complex as-
sembly

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 172.0 translational frameshifting

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 141.0 protein maturation by [4Fe-4S] cluster transfer

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 134.0 protein maturation by iron-sulfur cluster transfer

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 128.0 mitochondrial RNA processing

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 128.0 gene expression

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 128.0 mitochondrial gene expression

ÃG4 36 0.17 (std=0.05) 0.27 (std=0.04) 117.0 positive regulation of translational elongation

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 191.0 response to stress

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 188.0 cellular response to stress

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 173.0 cellular response to stimulus

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 165.0 response to stimulus

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 90.0 tricarboxylic acid metabolic process

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 86.0 organelle localization

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 74.0 protein-DNA complex assembly

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 52.0 nucleoside metabolic process

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 27.0 homologous recombination

ÃG5 11 0.29 (std=0.06) 0.31 (std=0.06) 27.0 reciprocal meiotic recombination

Table 6.2. Summary of uniquely enriched GO-BPs for GraCoal embeddings, Part 2. We
report, for the Budding yeast COEX network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 91.0 mRNA metabolic process

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 88.0 mitochondrial fusion

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 73.0 polyadenylation-dependent mRNA catabolic pro-
cess

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 73.0 nuclear polyadenylation-dependent mRNA
catabolic process

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 64.0 cellular metabolic compound salvage

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 54.0 beta-alanine biosynthetic process

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 54.0 beta-alanine metabolic process

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 51.0 regulation of phosphorus metabolic process

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 51.0 regulation of phosphate metabolic process

ÃG6 26 0.20 (std=0.04) 0.27 (std=0.05) 49.0 chromatin assembly or disassembly

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 154.0 regulation of organelle organization

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 123.0 regulation of cellular component organization

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 95.0 negative regulation of metabolic process

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 91.0 protein import into mitochondrial intermembrane
space

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 81.0 regulation of gene expression

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 76.0 nuclear DNA replication

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 75.0 2-oxoglutarate metabolic process

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 74.0 aging

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 74.0 cell aging

ÃG7 29 0.16 (std=0.04) 0.26 (std=0.05) 72.0 dicarboxylic acid metabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 103.0 cellular carbohydrate catabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 103.0 tubulin complex assembly

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 101.0 protein refolding

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 100.0 disaccharide catabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 99.0 oligosaccharide catabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 89.0 organic acid catabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 89.0 carboxylic acid catabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 86.0 serine family amino acid metabolic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 82.0 methionine biosynthetic process

ÃG8 106 0.13 (std=0.03) 0.29 (std=0.05) 76.0 sulfate reduction

Table 6.2. Summary of uniquely enriched GO-BPs for GraCoal embeddings, Part 3. We
report, for the Budding yeast COEX network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).

Organism Mean unique GO-BPs Mean enriched neighborhoods Mean SS
Budding yeast 37.57 (std=32.33) 92.64 (std=52.23) 0.24 (std=0.16)
Fission yeast 1.00 (std=3.00) 23.89 (std=41.67) 0.62 (std=0.00)
Fruit fly 27.91 (std=27.41) 53.40 (std=45.80) 0.23 (std=0.07)
Human 57.22 (std=43.06) 190.02 (std=94.23) 0.15 (std=0.03)

Roundworm 26.53 (std=13.58) 43.97 (std=32.53) 0.25 (std=0.11)

Table 6.3. Summary statistics of uniquely enriched GO-BPs for Gracoal embeddings
on COEX networks. We report, for the our six COEX networks (column 1), the mean
number of uniquely enriched GO-BPs obtained with each GraCoal embedding (column 2),
the mean size of the uniquely enriched GO-BPs in terms of the number of neighborhoods
that the annotations are enriched in (column 3) and the mean semantic similarity (column
4).
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6.2 Results for GraSpring with SAFE

GraSprings uncover complementary biological information in
COEX networks

When applying GraCoal embeddings with SAFE to our COEX molecular networks,
we can uncover biological information in complementary ways, just as we previously
discussed for our GI and PPI molecular networks. In Figure 6.3 we show the percent-
ages of genes enriched (top) and percentages of GO-BPs enriched (bottom) for all

Grasprings (i.e., ÃG0 to ÃG8) across our six COEX networks. We observe the same
pattern as when applying GraCoal embeddings on our COEX molecular networks.
That is, the largest percentages of both genes enriched and annotations enriched are
achieved for the budding yeast COEX network. In terms of genes, all GraSpring
embeddings perform better than as previously shown for GraCoals, achieving on av-
erage more than 50% of genes enriched. Similarly, we observe that for fruit fly and
for human, GraSprings achieve very similar percentages of genes enriched as with
GraCoal embeddings across all GraSprings (except for GraSpring3), which range
(between 10.1% and 23.7%). Next, the enrichments for roundworm in terms of genes
are better with respect to GraCoals, achieving between 8.7% and 19.2%. Finally,
fission yeast is the worst, achieving close to 0% in most cases, except for GraCoal2,4,6
which achieve close to 3% enriched genes. For GO-BPs enrichments, fruit fly, hu-
man and roundworm all perform very similar, achieving between 10.2% and 22.3%
enriched GO-BPs. Finally, GraCoal embeddings achieve the worst performance in
terms of GO-BPs enrichments with fission yeast COEX network, achieving close to
0% enriched GO-BPs across all GraCoals (purple label).

We observe the same pattern for GO-BP enrichment for the budding yeast (i.e.,
all GraSprings outperforming GraCoals), achieving between 41.4% and 45.2% for
GraSpring4 and GraSpring8, respectively, which interestingly, are the best per-
formers in GraCoal embeddings. As for the other COEX networks, we observe that
GraSprings perform second best on fruitfly, followed by roundworm and then hu-
man. Finally, the worst enrichments achieved by GraSpring embeddings correspond
to the fission yeast COEX network, which is consistent with the low performance in
terms of genes enriched.
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Figure 6.3. SAFE GO-BP enrichment analysis comparing graphlet GraSprings
in COEX networks. For the COEX networks of our seven species (legend), we show,
on the y-axis, the percentage of enriched genes (top) and the percentage of enriched
annotations (bottom) for each of the different GraSpring embeddings (x-axis).

Additionally, for each specie, we focus on identifying what characterizes each
particular GraSpring (i.e., ÃG0-ÃG8) from a biological perspective, just as we did
previously for GraCoal embeddings on our COEX molecular networks. In table 6.4
we present the same format as previously presented for the budding yeast COEX
network: we report for the budding yeast, the number of uniquely enriched annota-
tions (column 1), the mean SS for the uniquely enriched annotations (column 2) as
well as the mean SS for the top 10 largest uniquely enriched annotations (column
3) for each GraSpring used in SAFE. Finally, in column 5, we report the names of
the top 10 uniquely enriched annotations and their corresponding size in terms of
enriched neighborhoods (column 4). We find that on average, 29.71 GO-BPs are
uniquely enriched for each particular GraCoal (Table 6.4). Next, we observe that
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every GraSpring uncovers unique GO-BPs, validating the claim that graphlet adja-
cencies capture complementary biological information (Windels et al., 2019). Next,
we validate if the sets of uniquely enriched GO-BPs are biologically relevant (i.e., are
functionally related). The mean semantic similarities for all GraSpring embeddings
used with SAFE on the budding yeast COEX network, ranges from 0.11 (std=0.03)
for GraCoal8 to 0.87 (std=0.05) for GraCoal5, indicating some degree of functional
of functional similarity, with GraCoal5 capturing the most functional relevance be-
tween uniquely enriched GO-BPs. Next, we rank the uniquely enriched annotations
according to their size, defined as the total number of neighborhoods they are en-
riched in, as a measure of how well they are captured by each particular GraSpring.
The average size of the uniquely enriched GO-BPs uncovered by GraSprings in the
budding yeast is 89.71 (std=45.76). For our other COEX molecular networks, we
summarize these statistics in terms of the mean uniquely enriched GO-BPs, mean
size of enriched GO-BPs (i.e., in mean number of neighborhoods they are enriched
in) and mean semantic similarity in Table 6.5.

In general, we observe that GraSpring embeddings uncover complementary infor-
mation in all of our COEX molecular networks except for fission yeast (i.e., uniquely
enriched annotations across all GraCoals, represented by the means in column 2 in
Table 6.3).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 89.0 cellular response to biotic stimulus

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 89.0 response to biotic stimulus

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 89.0 response to cell cycle checkpoint signaling

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 83.0 response to mitotic cell cycle spindle assembly
checkpoint signaling

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 83.0 negative regulation of protein import into nucleus
during spindle assembly checkpoint

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 83.0 response to mitotic cell cycle checkpoint signaling

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 83.0 response to mitotic spindle checkpoint signaling

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 83.0 response to spindle assembly checkpoint signaling

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 77.0 response to spindle checkpoint signaling

ÃG0 19 0.34 (std=0.05) 0.55 (std=0.03) 67.0 response to endogenous stimulus

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 93.0 negative regulation of chromosome organization

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 81.0 transmembrane transport

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 53.0 carbohydrate derivative biosynthetic process

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 41.0 protein folding

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 28.0 amino acid transport

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 21.0 protein mannosylation

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 21.0 mannosylation

ÃG1 8 0.26 (std=0.05) 0.26 (std=0.05) 21.0 protein O-linked mannosylation

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 160.0 protein metabolic process

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 143.0 regulation of exit from mitosis

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 137.0 establishment of cell polarity

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 117.0 regulation of transcription involved in G1/S tran-
sition of mitotic cell cycle

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 111.0 cellular bud site selection

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 107.0 establishment or maintenance of cell polarity

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 95.0 positive regulation of mitotic cell cycle

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 86.0 protein import

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 54.0 carboxylic acid catabolic process

ÃG2 19 0.18 (std=0.04) 0.26 (std=0.05) 54.0 organic acid catabolic process

Table 6.4. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 1.
We report, for the Budding yeast COEX network, the number of uniquely enriched GO-
BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for GraSprings based on all graphlet adjacencies for up to
four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for
the top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 119.0 ribosomal large subunit export from nucleus

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 105.0 replication fork reversal

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 105.0 G-quadruplex DNA unwinding

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 60.0 RNA 3’-end processing

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 55.0 response to cold

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 55.0 cellular response to cold

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 38.0 ketone biosynthetic process

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 38.0 amide transport

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 38.0 quinone biosynthetic process

ÃG3 22 0.23 (std=0.05) 0.25 (std=0.06) 38.0 ubiquinone biosynthetic process

ÃG4 3 0.75 (std=0.00) 0.75 (std=0.00) 20.0 regulation of translation

ÃG4 3 0.75 (std=0.00) 0.75 (std=0.00) 20.0 regulation of cellular amide metabolic process

ÃG4 3 0.75 (std=0.00) 0.75 (std=0.00) 19.0 posttranscriptional regulation of gene expression

ÃG5 5 0.87 (std=0.05) 0.87 (std=0.05) 81.0 cofactor metabolic process

ÃG5 5 0.87 (std=0.05) 0.87 (std=0.05) 49.0 cofactor biosynthetic process

ÃG5 5 0.87 (std=0.05) 0.87 (std=0.05) 44.0 coenzyme metabolic process

ÃG5 5 0.87 (std=0.05) 0.87 (std=0.05) 31.0 regulation of small molecule metabolic process

ÃG5 5 0.87 (std=0.05) 0.87 (std=0.05) 29.0 coenzyme biosynthetic process

Table 6.4. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 2.
We report, for the Budding yeast COEX network, the number of uniquely enriched GO-
BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for GraSprings based on all graphlet adjacencies for up to
four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for
the top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 193.0 tRNA modification

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 183.0 tRNA processing

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 161.0 vesicle-mediated transport

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 143.0 protein-DNA complex disassembly

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 120.0 protein-containing complex localization

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 112.0 nucleosome disassembly

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 110.0 protein-containing complex disassembly

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 93.0 positive regulation of chromatin organization

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 90.0 protein maturation

ÃG6 25 0.15 (std=0.04) 0.24 (std=0.06) 89.0 positive regulation of histone acetylation

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 145.0 monocarboxylic acid metabolic process

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 111.0 chromatin assembly or disassembly

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 99.0 DNA-dependent DNA replication

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 96.0 small-subunit processome assembly

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 80.0 intra-S DNA damage checkpoint

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 78.0 response to organonitrogen compound

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 75.0 response to nitrogen compound

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 71.0 regulation of meiotic cell cycle

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 70.0 attachment of spindle microtubules to kinetochore

ÃG7 33 0.16 (std=0.03) 0.31 (std=0.05) 69.0 mitotic DNA damage checkpoint

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 229.0 generation of precursor metabolites and energy

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 213.0 biosynthetic process

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 133.0 cytoplasmic translation

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 132.0 rRNA transport

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 132.0 rRNA export from nucleus

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 130.0 ncRNA export from nucleus

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 124.0 chromosome organization involved in meiotic cell
cycle

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 124.0 ribosomal small subunit assembly

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 112.0 regulation of cytoskeleton organization

ÃG8 98 0.11 (std=0.03) 0.22 (std=0.04) 108.0 protein localization to chromosome

Table 6.4. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 3.
We report, for the Budding yeast COEX network, the number of uniquely enriched GO-
BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for GraSprings based on all graphlet adjacencies for up to
four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we report the mean SS for
the top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).

Organism Mean unique GO-BPs Mean enriched neighborhoods Mean SS
Budding yeast 29.71 (std=28.00) 89.71 (std=45.76) 0.28 (std=0.23)
Fission yeast 1.10 (std=3.33) 17.10 (std=1.45) 0.38 (std=0.00)
Fruit fly 37.88 (std=19.74) 55.64 (std=37.16) 0.18 (std=0.04)
Human 52.67 (std=32.45) 102.37 (std=48.61) 0.16 (std=0.05)

Roundworm 29.33 (std=12.44) 53.74 (std=35.64) 0.19 (std=0.03)

Table 6.5. Summary statistics of uniquely enriched GO-BPs for GraSpring embeddings
on COEX networks. We report, for the our six COEX networks (column 1), the mean
number of uniquely enriched GO-BPs obtained with each GraSpring embedding (column
2), the mean size of the uniquely enriched GO-BPs in terms of the number of neighbor-
hoods that the annotations are enriched in (column 3) and the mean semantic similarity
(column 4).
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6.3 Results for graphlet Spectral with SAFE

Graphlet Spectrals uncover complementary biological infor-
mation in COEX networks

Similar to applying GraCoal embeddings or GraSpring embeddings to our COEX
networks, applying graphlet Spectral embeddings with SAFE on our COEX net-
works also allow for uncovering complementary biological information. We show,
in Figure 6.4 the percentages of genes enriched (top) and percentages of GO-BPs

enriched (bottom) for all graphlet Spectrals (i.e., ÃG0 to ÃG8) across our six COEX
networks. Our first observation is that the top performing graphlet Spectrals cor-
respond to the same COEX network as with GraSpring embeddings or GraCoal
embeddings (budding yeast). However, not every graphlet Spectral for the bud-
ding yeast outperforms the other graphlet Spectrals for the other species in terms of
genes. For instance, Spectral8 achieves 16.7% for yeast, but is slightly higher for the
fruit fly COEX network (17.4%). Moreover, graphlet Spectrals based on densely con-
nected graphlets such as Spectral2,7,8 perform the worst for budding yeast, achieving
between 16.7% and 25.6%. This is consistent for the other COEX networks. That
is, the worst performing graphlet Spectrals tend to be those based on densely con-
nected graphlets, in particular the two cliques (Spectral2,8). We observe that for
fruit fly, the percentages of genes enriched are the second best, achieving on average
19.8%. Next, human and roundworm are third and fourth best, respectively achiev-
ing percentages of genes enriched that range from 4.9% to 17.8%. Finally, the worst
enrichments achieved by graphlet Spectral embeddings correspond to fission yeast,
which is not surprising, considering this is also the case when we apply GraSpring
embeddings or GraCoal embeddings on this molecular network.

In terms of GO-BPs enriched, we observe similar patterns as with genes enriched.
The best performing graphlet Spectrals correspond to the budding yeast COEX
network, achieving between 20.3% for Spectral8 and 38.5% for Spectral3. Next,
the second best enrichments are achieved for the fruit fly COEX network (between
19.7% and 22.6% for Spectral8 and Spectral0, respectively). Interestingly, the third
and fourth best performing Spectrals, which in terms of genes correspond to human
and roundworm, respectively, correspond to roundworm and human, respectively in
terms of enriched GO-BPs. Finally, the worst performing Spectrals correspond to
fission yeast, achieving close to 0% enriched GO-BPs across all Spectrals, except for
Spectral5 (1.8%).
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Figure 6.4. SAFE GO-BP enrichment analysis comparing graphlet Spectrals
in COEX networks. For the COEX networks of our seven species (legend), we show,
on the y-axis, the percentage of enriched genes (top) and the percentage of enriched
annotations (bottom) for each of the different graphlet Spectral embeddings (x-axis).

Next, for each specie, we focus on identifying what characterizes each particular
graphlet Spectral (i.e., ÃG0-ÃG8) from a biological perspective, just as we did pre-
viously for GraSpring embeddings and GraCoal embeddings on the budding yeast
COEX network. In table 6.6, we report for the budding yeast, the number of
uniquely enriched annotations (column 1), the mean SS for the uniquely enriched
annotations (column 2) as well as the mean SS for the top 10 largest uniquely en-
riched annotations (column 3) for each graphlet Spectral used in SAFE. Finally, in
column 5, we report the names of the top 10 uniquely enriched annotations and
their corresponding size in terms of enriched neighborhoods (column 4). We find
that on average, 29.67 GO-BPs are uniquely enriched for each particular graphlet
Spectral. Next, we observe that every graphlet Spectral uncovers unique biological
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information (i.e., GO-BPs), validating the claim that graphlet adjacencies capture
complementary biological information (Windels et al., 2019). Next, we validate if
the sets of uniquely enriched GO-BPs are biologically relevant (i.e., are functionally
related). The mean semantic similarity for all graphlet Spectral embeddings used
with SAFE on the budding yeast COEX network, ranges from 0.12 (std=0.03) for
GraCoal6 to 0.26 (std=0.05) for GraCoal8. Hence, the uniquely enriched GO-BPs
uncovered by graphlet Spectral embeddings uncover some degree of functional rel-
evance, with GraCoal8 capturing the most. Next, we rank the uniquely enriched
annotations according to their size, defined as the total number of neighborhoods
they are enriched in, as a measure of how well they are captured by each particular
graphlet Spectral. The average size of the uniquely enriched GO-BPs uncovered by
graphlet Spectrals in the budding yeast is 70.49 (std=80.95). For our other COEX
networks, we summarize these statistics in terms of the mean uniquely enriched
GO-BPs when using graphlet Spectrals with SAFE, mean size of enriched GO-BPs
(i.e., in mean number of neighborhoods they are enriched in) and mean semantic
similarity in Table 6.7.

Our first observation is that graphlet Spectral embeddings are unable to uncover
unique GO-BPs for the fission yeast, which is not surprising considering the method
performed the worst on this network and only a couple of graphlet Spectrals achieved
really low percentages of both genes and GO-BPs enriched. Besides fission yeast,
we observe, for our other COEX networks, graphlet Spectral embeddings uncover
some degree of functional relevance across all graphlet Spectrals, as evidenced by
the mean semantic similarities in column 4 of Table 6.7).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 192.0 protein metabolic process

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 124.0 cytoskeleton organization

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 115.0 piecemeal microautophagy of the nucleus

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 85.0 organelle disassembly

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 45.0 negative regulation of protein import into nucleus
during spindle assembly checkpoint

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 45.0 response to mitotic cell cycle checkpoint signaling

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 45.0 response to mitotic spindle checkpoint signaling

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 45.0 response to spindle assembly checkpoint signaling

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 45.0 response to mitotic cell cycle spindle assembly
checkpoint signaling

ÃG0 23 0.21 (std=0.06) 0.31 (std=0.06) 44.0 regulation of exit from mitosis

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 187.0 organonitrogen compound metabolic process

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 70.0 organic acid transport

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 69.0 carboxylic acid transport

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 45.0 meiotic chromosome separation

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 40.0 regulation of meiotic cell cycle

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 38.0 nucleoside phosphate biosynthetic process

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 35.0 purine ribonucleotide metabolic process

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 34.0 ribose phosphate metabolic process

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 33.0 secretion

ÃG1 22 0.18 (std=0.04) 0.24 (std=0.04) 33.0 secretion by cell

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 41.0 RNA modification

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 23.0 negative regulation of cytoskeleton organization

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 22.0 cellular localization

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 21.0 sulfur compound biosynthetic process

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 20.0 sulfur compound transport

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 11.0 regulation of transcription involved in G1/S tran-
sition of mitotic cell cycle

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 11.0 mRNA export from nucleus

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 11.0 mRNA transport

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 10.0 nucleocytoplasmic transport

ÃG2 10 0.25 (std=0.04) 0.25 (std=0.04) 10.0 nuclear transport

Table 6.6. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 1. We report, for the Budding yeast COEX network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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ÃGi
Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 87.0 negative regulation of cellular component organi-
zation

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 82.0 negative regulation of organelle organization

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 61.0 regulation of cellular protein metabolic process

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 60.0 regulation of protein metabolic process

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 52.0 organic acid catabolic process

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 52.0 carboxylic acid catabolic process

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 40.0 lipid modification

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 37.0 mitochondrial RNA metabolic process

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 37.0 tRNA aminoacylation for mitochondrial protein
translation

ÃG3 29 0.20 (std=0.04) 0.24 (std=0.05) 36.0 mitochondrial transport

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 424.0 cellular nitrogen compound metabolic process

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 412.0 macromolecule metabolic process

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 270.0 macromolecule biosynthetic process

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 251.0 ribosomal large subunit assembly

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 245.0 maturation of LSU-rRNA

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 234.0 ribonucleoprotein complex subunit organization

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 233.0 ribonucleoprotein complex assembly

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 233.0 RNA export from nucleus

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 194.0 response to stimulus

ÃG4 43 0.13 (std=0.03) 0.28 (std=0.06) 185.0 nucleobase-containing compound transport

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 50.0 isopentenyl diphosphate metabolic process

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 50.0 farnesyl diphosphate biosynthetic process, meval-
onate pathway

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 50.0 isopentenyl diphosphate biosynthetic process,
mevalonate pathway

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 50.0 isopentenyl diphosphate biosynthetic process

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 50.0 isoprenoid biosynthetic process via mevalonate

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 38.0 membrane lipid biosynthetic process

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 35.0 cellular response to acid chemical

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 35.0 meiotic mismatch repair

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 35.0 mismatch repair

ÃG5 30 0.19 (std=0.05) 0.26 (std=0.04) 34.0 cellular response to oxygen-containing compound

Table 6.6. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 2. We report, for the Budding yeast COEX network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 92.0 inorganic cation import across plasma membrane

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 92.0 inorganic ion import across plasma membrane

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 52.0 protein modification by small protein conjugation
or removal

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 45.0 protein modification by small protein conjugation

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 41.0 protein ubiquitination

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 38.0 amide biosynthetic process

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 36.0 phosphatidylinositol dephosphorylation

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 35.0 phospholipid dephosphorylation

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 35.0 galactose catabolic process via UDP-galactose

ÃG6 53 0.12 (std=0.03) 0.25 (std=0.06) 32.0 nonfunctional rRNA decay

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 54.0 cellular protein modification process

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 54.0 protein modification process

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 50.0 Golgi to plasma membrane transport

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 50.0 vesicle-mediated transport to the plasma mem-
brane

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 48.0 pre-replicative complex assembly involved in cell
cycle DNA replication

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 48.0 pre-replicative complex assembly

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 48.0 pre-replicative complex assembly involved in nu-
clear cell cycle DNA replication

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 47.0 DNA unwinding involved in DNA replication

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 36.0 ion transmembrane transport

ÃG7 47 0.18 (std=0.05) 0.28 (std=0.06) 30.0 regulation of protein complex assembly

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 30.0 polyphosphate metabolic process

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 21.0 regulation of cytoskeleton organization

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 20.0 glycerophospholipid biosynthetic process

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 20.0 glycerolipid biosynthetic process

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 18.0 positive regulation of Arp2/3 complex-mediated
actin nucleation

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 18.0 positive regulation of actin nucleation

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 14.0 sulfate assimilation, phosphoadenylyl sulfate re-
duction by phosphoadenylyl-sulfate reductase
(thioredoxin)

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 14.0 sulfate reduction

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 13.0 positive regulation of protein polymerization

ÃG8 10 0.26 (std=0.05) 0.26 (std=0.05) 12.0 positive regulation of supramolecular fiber organi-
zation

Table 6.6. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 3. We report, for the Budding yeast COEX network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ÃG0 to ÃG8 (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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Organism Mean unique GO-BPs Mean enriched neighborhoods Mean SS
Budding yeast 29.67 (std=14.61) 70.49 (std=80.95) 0.19 (std=0.04)
Fission yeast nan (std=nan) nan (std=nan) nan (std=nan)
Fruit fly 31.89 (std=11.74) 67.97 (std=54.79) 0.17 (std=0.02)
Human 30.35 (std=26.02) 68.28 (std=53.67) 0.21 (std=0.04)

Roundworm 24.18 (std=11.36) 35.00 (std=26.24) 0.21 (std=0.05)

Table 6.7. Summary statistics of uniquely enriched GO-BPs for graphlet Spectral em-
beddings on COEX networks. We report, for the our six COEX networks (column 1), the
mean number of uniquely enriched GO-BPs obtained with each graphlet Spectral embed-
ding (column 2), the mean size of the uniquely enriched GO-BPs in terms of the number
of neighborhoods that the annotations are enriched in (column 3) and the mean semantic
similarity (column 4).
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Chapter 7

Conclusions

In this chapter we summarize the methodological contributions and results pre-
sented in this thesis as well as an overview of the general conclusions. Moreover,
we discuss some future steps to consider for further applications and methodological
improvements of our methods.

7.1 Summary of the Thesis

In Chapter 3 we present new methods to embed molecular interaction networks
based on graphlet topology. First, we generalise the Coalescent embedding algo-
rithm (Muscoloni et al., 2017) based on Laplacian Eigenmaps (Belkin & Niyogi,
2001, 2003) to take as input the graphlet Laplacian matrix of a network (based on
any graphlet with up to 4 nodes) as opposed to the standard Laplacian matrix.
We find that when using input data based on graphlets, the original equation for
computing the radial coordinates of the nodes is not well suited, as it assumes the
node degree distribution to follow a power-law, which is not always the case for
graphlet node degrees, as shown in Figures 3.1 to 3.4. Next, we also generalise
the Spring embedding based on the Fruchterman-Reingold force-directed algorithm
(Fruchterman & Reingold, 1991), i.e., the same algorithm used in the original Spa-
tial Analysis of Functional Enrichment framework (Baryshnikova, 2016). For this,
we modify the input data to be the normalized graphlet adjacency matrix of a net-
work (based on any graphlet with up to 4 nodes), instead of the standard adjacency
matrix. We extend the SAFE framework to include these embedding methods based
on graphlets as optional parameters for the user, as well as the already established
graphlet based Spectral embedding (Windels et al., 2019). In addition, we also
include a new hyperparameter, the neighborhood size, which the user can choose
beforehand. Finally, we perform enrichment experiments to determine the optimal
value of this new hyperparameter (neighborhood size) to allow for a fair comparison
across our graphlet based embedding methods.

In Chapter 4, we use SAFE to apply the graphlet based embedding meth-
ods, which we name GraCoal embedding, GraSpring embedding and graphlet based
Spectral embedding, on the genetic interaction (GI) networks corresponding to var-
ious model organisms. We find that GraCoal embeddings lead to the best enrich-
ment results for our GI networks. A possible explanation for this, is the fact that
GraCoal embedding spreads the nodes better in the embedding space with respect
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to graphlet-based Spring embedding or graphlet-based Spectral embedding, which
leads to well separated functional domains, which we show in Figures 4.2 to 4.4.
We also find that some graphlet topologies lead to better enrichments than others,
and thus we try to explain this by performing experiments to explore the structural
organization of our GI networks. To this end, we perform model fitting experiments
to compare our GI networks to eight model networks commonly used in biology. We
find that the Scale-Free with gene duplication is the best fit for our GI networks,
which could explain why GraCoal embeddings based on triangle topology, such as
GraCoal2 or GraCoal8 tend to outperform the other GraCoals. We validate this by
determining, for each species, a set of paralogous genes and and we find that our GI
networks (except for fruit fly) are characterized by the pressence of these duplicated
genes. Next, we show how these sets of genes are more likely to interact with each
other in the network, share more neighbors than expected by chance (as shown by
the GDV similarities), are closer in the embedding space than expected by chance
and participate in more triangles than expected by chance. Thus, we conclude how
there is a strong topology-function relationship that is captured very well by the
triangle based topology in these GI networks due to the pressence of many paralogs.
Next, we provide biological insights at the annotation level to validate that differ-
ent grahplet topologies capture complementary biological information and that the
information being captured is functionally relevant (as evidenced by the semantic
similarity of the sets of enriched annotations). Finaly, we provide biological insight
at the functional domain level and identify the most characteristic domains for each
graphlet based embedding. We find that unique functional domains corresponding
to the triangle topology (i.e., ÃG2 or ÃG8) tend to be capturing more gene-paralog
relationships in GraCoal embeddings than in GraSpring or graphlet Spectral em-
beddings. We conclude that GraCoal embeddings are the best method overall for
uncovering the functional organization of the cell in GI networks, in particular when
there is gene duplication involved.

In Chapter 5, we present our results when we use SAFE to apply the graphlet
based embeddings on the protein-protein interaction (PPI) networks corresponding
to various model organisms. We find that GraCoal embeddings tend to perform the
best when we evaluate the performance in terms of genes enriched in annotations.
But this is not the case when we evaluate the performance in terms of annotations
enriched, as it varies from species to species. Furthermore, we provide biological
insights at an annotation level to validate if graphlet based embeddings uncover
complementary information in PPI networks. We find this is the case for the three
embedding methods accross all our PPI networks, as shown by the semantic similar-
ites of the enriched annotations. Additionally, we perform model fitting experiment
to compare our PPI networks to eight model networks (same as in chapter 4). How-
ever, none of our PPI networks were well fitted by any of the model networks. We
conclude that either GraCoal or graphlet based Spectral could be best suited for
uncovering biological information from PPI networks using SAFE, as they are the
best and second best in terms of genes enriched.

In Chapter 6, we present our results when we use SAFE to apply the graphlet
based embeddings on the co-expression (COEX) networks corresponding to various
model organisms. In general, the results with these networks are very poor in some
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species for all the three methods. However, we conclude the best embedding method
to be GraSpring, as it achieves the best enrichments overall. Because our COEX
networks correspond to the most dense networks, this could indicate that GraSpring
embeddings are the best suited method for uncovering functional information in
very dense networks. Finally, for fission yeast, the results were the worst, achieving
between 0% and 5% for the most part of genes enriched and annotations enriched.
This can easily be explained by the fact that annotation data for fission yeast is
the worst of all across all species and network types, as shown in Section A.3 in
Appendix A.

7.2 Conclusions

In this section we present the general conclusions of the Thesis.

1. Generalised the Spring embedding to graphlet-based Spring embedding.

2. Generalised the Coalescent embedding to graphlet-based Coalescent embed-
ding.

3. Graphlet degree distributions do not follower a scale-free distribution.

4. Improved the SAFE framework by integrating the newly proposed methods
into the framework.

5. GraCoal embeddings lead to the best enrichments for genetic interaction net-
works at the node level and annotation level.

6. Some graphlet topologies lead to better results than others. For genetic inter-
action, the best topologies are based on triangles when there are paralogous
genes in the network.

7. Strong topology-function relationship between triangle topology and presence
of paralogs in the network.

8. Unique functional domains uncovered by SAFE when using triangle topology
tend to capture more paralogous genes when using GraCoal embedding.

9. Biological information captured by graphlet-based embeddings is functionally
coherent in all network types.

7.3 Future directions

In this section we discuss future work that could be done to further uncover topology-
function relationships in molecular interaction networks.

For our GI networks, we demonstrate how the general structure of these net-
works is best fitted by the SF-GD model, which allow us to uncover the strong
topology-function relationship between triangle topology (Ã2,8 and the presence of
paralogous genes in the network. However, for our PPI and COEX networks none of
the model networks contributed to a better understanding of their global structural
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organization. For this reason, something that remains to be done is the further ex-
ploration of the global structure of our PPI and COEX networks. This will allow for
a better understanding of why one embedding might work better in terms of genes
but not in terms of enriched annotations (i.e., GraCoal embeddings). Moreover, it
may the case that there is no global pattern in PPI or COEX networks (as there is
for GI) and thus, individual exploration of each particular molecular network could
be a better approach.

In terms of applications, our future work will mainly be focused in applying
graphlet based embeddings to tissue specific and disease related molecular interac-
tion networks. For instance, to compare between healthy lung tissue versus cancer
lung tissue we would build the corresponding GI/PPI/COEX networks according to
gene expression profiles of such tissues under both conditions. Our graphlet based
embeddings would be a valuable method for uncovering the functional organization
of such data, which we would expect the data corresponding to cancer to be dis-
rupted in some way. This usually leads to changes in the wiring patterns of the
nodes in the network, which in turn alters the functional organization with respect
to the healthy tissue, which could translate into a poor performance of our methods
in terms of enrichments, or to a completely different organization (i.e., functional
domains that do not make sense and thus are not functionally coherent).

Finally, in terms of methodological improvements there is a lot to be explored.
For instance, all of our experiments were based on the default shortest weighted
path length distance metric for defining the node neighborhoods, which relies exclu-
sively on node connectivity (i.e., along the paths). However, other distance metrics
for defining the node neighborhoods, such as the angular distance or cosine dis-
tance could be better suited for uncovering the functional organization of molecular
networks using the GraCoal embeddings. Moreover, because the radial coordinate
represents the topological importance of a particular node in the network, such as
how well connected the node is (i.e. its degree, or graphlet node degree in the case
of graphlets), other centrality measures not based on degree remain to be explored,
such as betweenness centrality or eigencentrality.
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Appendix A

Appendix

A.1 Data

Omics network data

We create genetic interaction (GI), genetic interaction similarity (GIS) and protein-
protein interaction networks for different model organisms. For creating the GI and
PPI networks, we collect molecular interaction data from the BioGRID database
version 3.5.177 (Oughtred et al., 2019) and filter the data to include only ‘Ge-
netic’ or ‘Physical’ interactions, respectively. Additionally, for the PPI data, we
also filter by the following experimental techniques: ‘Two-hybrid’, ‘Affinity Capture-
Luminescence’, ‘Affinity Capture-MS’, ‘Affinity Capture-RNA’ and ‘Affinity Capture-
Western’.

To create COEX networks, we collect gene co-expression data from COXPRESdb
version 7.3 (Obayashi et al., 2019). For constructing the network, we consider the
most co- expressed genes by keeping the top 1% of all mutual ranks in the data.
This is done by first calculating the Pearson correlation coefficient between gene
expression profiles for all pairs of genes and constructing a Pearson correlation ma-
trix. For each gene, all other genes are ranked according to their correlation values.
Finally, a threshold is applied to the ranks, keeping the top 1% to build the network
with highly reliable edges.

Finally, to create GIS networks, there is only data available for the budding yeast,
which we collect from (Usaj et al., 2017). This dataset contains a matrix with the
Pearson correlation coefficients (PCC) between the genetic interaction profiles of the
genes. With this matrix we construct a network as previously described by Costanzo
et al., (2010, 2016), in which a gene (i.e., node) is linked to another (i.e., connected
by an edge) if the PCC between the corresponding profiles is PCC >= 0.2.

GIS
Nodes Edges Density

Budding yeast 4,626 30,185 0.003

Table A.1. GIS Budding yeast molecular network data statistics. We report the number
of nodes, the number of edges and the density (columns 1-3).
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Gene functional annotation data

Organism Annotations Genes

BP

Budding yeast 4,621 5,105
E. coli 2,773 2,564

Fission yeast 2,624 739
Fruit fly 6,317 5,777
Human 11,368 9,659

House mouse 12,353 9,933
Roundworm 4,210 3,060

CC

Budding yeast 960 4,652
E. coli 221 2,139

Fission yeast 574 767
Fruit fly 911 3,762
Human 1,539 10,648

House mouse 1,223 7,979
Roundworm 565 2,115

MF

Budding yeast 2,143 4,124
E. coli 2,128 2,592

Fission yeast 879 695
Fruit fly 1,872 3,227
Human 3,705 14,270

House mouse 2,782 8,287
Roundworm 1,230 2,045

Table A.2. Functional annotation data statistics. For each of the four different anno-
tation types (row), we report the species (column 1), the total number of annotations
(column 2) and the total number of genes that are annotated (column 3).

Gene functional annotation coverage statistics
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Figure A.1. Gene ontology annotation statistics for GI networks. For our four GI net-
works (and GIS for budding yeast), we report the percentage of nodes that are annotated
by each of the corresponding GO annotation types: GO-BP, GO-CC and GO-MF.
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Figure A.2. Gene ontology annotation statistics for PPI networks. For our seven PPI
networks, we report the percentage of nodes that are annotated by each of the correspond-
ing GO annotation types: GO-BP, GO-CC and GO-MF.
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Figure A.3. Gene ontology annotation statistics for COEX networks. For our five
COEX networks, we report the percentage of nodes that are annotated by each of the
corresponding GO annotation types: GO-BP, GO-CC and GO-MF.

A.2 Enrichment statistics GI networks

In this section, we summarize the results obtained when using SAFE with the dif-
ferent graphlet based embedding algorithms. That is, the percentages of genes that
have at least one annotation enriched in their neighborhood and the percentages of
enriched annotations for all our GI molecular networks across different annotations.
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Gene ontology biological processes

Figure A.4. SAFE GO-BP enrichment analysis for the GI networks, Part 1. On the y-
axis, we show the percentages of genes that have at least one annotation enriched in their
neighborhood (left) and the percentages of enriched annotations (right). On the x-axis,
we show each of the embedding algorithms considered (legend) applied on different types
of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the union
of the enriched genes and enriched annotations across all graphlet adjacencies, i.e., ÃG0

to ÃG8 . The error bars for Spring embedding indicate the standard deviation across ten
runs. From top to bottom: E. coli, Fruit fly, Fission yeast and Budding yeast, respectively.
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Figure A.4. SAFE GO-BP enrichment analysis for the GI networks, Part 2. On the y-
axis, we show the percentages of genes that have at least one annotation enriched in their
neighborhood (left) and the percentages of enriched annotations (right). On the x-axis,
we show each of the embedding algorithms considered (legend) applied on different types
of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the union
of the enriched genes and enriched annotations across all graphlet adjacencies, i.e., ÃG0

to ÃG8 . The error bars for Spring embedding indicate the standard deviation across ten
runs. From top to bottom: E. coli, Fruit fly, Fission yeast and Budding yeast, respectively.

Figure A.5. SAFE GO-BP average enrichment statistics for the GI molecular networks.
Average over all GI networks for the different types of underlying graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . On the y-axis, we show the percentages of genes that have at least one anno-
tation enriched in their neighborhood (left) and the percentages of enriched annotations
(right). On the x-axis, we show each of the embedding algorithms considered (legend)
applied on different types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis,
far right) considers the union of the enriched genes and enriched annotations across all
graphlet adjacencies.
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Figure A.6. SAFE GO-BP enrichment analysis for the Budding yeast GIS network. On
the y-axis, we show the percentages of genes that have at least one annotation enriched
in their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.

Gene ontology cellular components

Figure A.7. SAFE GO-CC enrichment analysis for the GI networks, Part 1. On the
y-axis, we show the percentages of genes that have at least one annotation enriched in their
neighborhood (left) and the percentages of enriched annotations (right). On the x-axis,
we show each of the embedding algorithms considered (legend) applied on different types
of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the union
of the enriched genes and enriched annotations across all graphlet adjacencies, i.e., ÃG0 to
ÃG8 . The error bars for Spring embedding indicate the standard deviation across ten runs.
From top to bottom: Budding yeast, E. coli, Fruit fly and Fission yeast, respectively.
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Figure A.7. SAFE GO-CC enrichment analysis for the GI networks, Part 1. On the
y-axis, we show the percentages of genes that have at least one annotation enriched in their
neighborhood (left) and the percentages of enriched annotations (right). On the x-axis,
we show each of the embedding algorithms considered (legend) applied on different types
of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the union
of the enriched genes and enriched annotations across all graphlet adjacencies, i.e., ÃG0 to
ÃG8 . The error bars for Spring embedding indicate the standard deviation across ten runs.
From top to bottom: Budding yeast, E. coli, Fruit fly and Fission yeast, respectively.

Figure A.8. SAFE GO-CC average enrichment statistics for the GI molecular networks.
Average over all GI networks for the different types of underlying graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . On the y-axis, we show the percentages of genes that have at least one anno-
tation enriched in their neighborhood (left) and the percentages of enriched annotations
(right). On the x-axis, we show each of the embedding algorithms considered (legend)
applied on different types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis,
far right) considers the union of the enriched genes and enriched annotations across all
graphlet adjacencies.
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Figure A.9. SAFE GO-CC enrichment analysis for the Budding yeast GIS network. On
the y-axis, we show the percentages of genes that have at least one annotation enriched
in their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.
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Figure A.10. SAFE GO-CC enrichment analysis for GI networks. For the GI
networks of our four species (x-axis), we show the percentage of enriched genes (y-axis)
and percentage of enriched annotations for each of the embedding algorithms considered
(legend). The error bars in the case of GraSpring embedding indicate the standard devi-
ation across the ten randomised runs.
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Figure A.11. SAFE GO-CC enrichment analysis comparing GraCoals in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (left) and the percentage of enriched annotations (right) for
each of the different GraCoal embeddings (x-axis).
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Figure A.12. SAFE GO-CC enrichment analysis comparing GraSprings in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (left) and the percentage of enriched annotations (right) for
each of the different GraSpring embeddings (x-axis).

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8

Graphlet adjacency

0

20

40

60

80

100

%
 E

nr
ic

he
d 

ge
ne

s

Fruit fly
Budding yeast
E. coli
Fission yeast

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8

Graphlet adjacency

0

20

40

60

80

100

%
 E

nr
ic

he
d 

an
no

ta
tio

ns

Fruit fly
Budding yeast
E. coli
Fission yeast

Figure A.13. SAFE GO-CC enrichment analysis comparing Spectrals in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (left) and the percentage of enriched annotations (right) for
each of the different Spectral embeddings (x-axis).

143



Gene ontology molecular functions

Figure A.14. SAFE GO-MF enrichment analysis for the GI networks. On the y-axis,
we show the percentages of genes that have at least one annotation enriched in their
neighborhood (left) and the percentages of enriched annotations (right). On the x-axis,
we show each of the embedding algorithms considered (legend) applied on different types
of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the union
of the enriched genes and enriched annotations across all graphlet adjacencies, i.e., ÃG0 to
ÃG8 . The error bars for Spring embedding indicate the standard deviation across ten runs.
From top to bottom: Budding yeast, E. coli, Fruit fly and Fission yeast, respectively.
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Figure A.15. SAFE GO-MF average enrichment statistics for the GI molecular networks.
Average over all GI networks for the different types of underlying graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . On the y-axis, we show the percentages of genes that have at least one anno-
tation enriched in their neighborhood (left) and the percentages of enriched annotations
(right). On the x-axis, we show each of the embedding algorithms considered (legend)
applied on different types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis,
far right) considers the union of the enriched genes and enriched annotations across all
graphlet adjacencies.

Figure A.16. SAFE GO-MF enrichment analysis for the Budding yeast GIS network.
On the y-axis, we show the percentages of genes that have at least one annotation enriched
in their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.
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Figure A.17. SAFE GO-MF enrichment analysis for GI networks. For the GI
networks of our four species (x-axis), we show the percentage of enriched genes (y-axis)
and percentage of enriched annotations for each of the embedding algorithms considered
(legend). The error bars in the case of GraSpring embedding indicate the standard devi-
ation across the ten randomised runs.
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Figure A.18. SAFE GO-MF enrichment analysis comparing GraCoals in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (left) and the percentage of enriched annotations (right) for
each of the different GraCoal embeddings (x-axis).
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Figure A.19. SAFE GO-MF enrichment analysis comparing GraSprings in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (left) and the percentage of enriched annotations (right) for
each of the different GraSpring embeddings (x-axis).
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Figure A.20. SAFE GO-MF enrichment analysis comparing Spectrals in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (left) and the percentage of enriched annotations (right) for
each of the different Spectral embeddings (x-axis).
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GO-BPs enrichment summary for GI networks

GraCoals enrichment summary for E. coli

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 142.0 peptide metabolic process

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 121.0 rRNA modification

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 119.0 ribosomal large subunit assembly

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 119.0 pseudouridine synthesis

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 118.0 N-terminal protein amino acid modification

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 115.0 RNA methylation

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 114.0 metabolic process

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 111.0 organic substance metabolic process

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 102.0 tRNA methylation

ÃG0 18 0.21 (std=0.04) 0.27 (std=0.04) 100.0 peptide catabolic process

ÃG1 1 1.00 (std=nan) 1.00 (std=nan) 82.0 intracellular protein transmembrane transport

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 141.0 negative regulation of DNA-templated DNA repli-
cation

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 138.0 negative regulation of DNA replication

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 138.0 negative regulation of DNA metabolic process

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 129.0 cell communication

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 110.0 regulation of DNA replication

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 101.0 response to extracellular stimulus

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 47.0 isopentenyl diphosphate metabolic process

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 47.0 glyceraldehyde-3-phosphate metabolic process

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 47.0 isopentenyl diphosphate biosynthetic process

ÃG2 10 0.32 (std=0.07) 0.32 (std=0.07) 47.0 isopentenyl diphosphate biosynthetic process,
methylerythritol 4-phosphate pathway

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 185.0 DNA topological change

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 102.0 viral process

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 93.0 regulation of DNA recombination

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 93.0 translesion synthesis

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 49.0 division septum assembly

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 49.0 bile acid and bile salt transport

ÃG3 7 0.24 (std=0.01) 0.24 (std=0.01) 32.0 organic anion transport

Table A.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, part 1.
We report, for the E. coli GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 159.0 enterobacterial common antigen biosynthetic pro-
cess

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 159.0 enterobacterial common antigen metabolic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 150.0 glycerophospholipid biosynthetic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 150.0 glycerolipid biosynthetic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 136.0 glucan biosynthetic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 131.0 glycogen biosynthetic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 112.0 glycerolipid metabolic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 112.0 glycerophospholipid metabolic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 103.0 cellular macromolecule catabolic process

ÃG4 19 0.25 (std=0.05) 0.38 (std=0.05) 96.0 lipid modification

ÃG5 2 0.55 (std=0.00) 0.55 (std=0.00) 73.0 tRNA modification

ÃG5 2 0.55 (std=0.00) 0.55 (std=0.00) 31.0 proteolysis involved in cellular protein catabolic
process

ÃG6 1 1.00 (std=nan) 1.00 (std=nan) 25.0 amide biosynthetic process

ÃG7 3 0.64 (std=0.01) 0.64 (std=0.01) 15.0 copper ion transport

ÃG7 3 0.64 (std=0.01) 0.64 (std=0.01) 15.0 copper ion transmembrane transport

ÃG7 3 0.64 (std=0.01) 0.64 (std=0.01) 15.0 copper ion export

ÃG8 6 0.33 (std=0.05) 0.33 (std=0.05) 52.0 dipeptide transport

ÃG8 6 0.33 (std=0.05) 0.33 (std=0.05) 49.0 dipeptide transmembrane transport

ÃG8 6 0.33 (std=0.05) 0.33 (std=0.05) 38.0 organophosphate ester transport

ÃG8 6 0.33 (std=0.05) 0.33 (std=0.05) 37.0 heme transport

ÃG8 6 0.33 (std=0.05) 0.33 (std=0.05) 37.0 aerobic electron transport chain

ÃG8 6 0.33 (std=0.05) 0.33 (std=0.05) 29.0 glycerol-3-phosphate transmembrane transport

Table A.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, part 2.
We report, for the E. coli GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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GraCoals enrichment summary for Fission yeast

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 5 0.45 (std=0.05) 0.45 (std=0.05) 167.0 regulation of biological process

ÃG0 5 0.45 (std=0.05) 0.45 (std=0.05) 167.0 regulation of cell cycle switching, mitotic to mei-
otic cell cycle

ÃG0 5 0.45 (std=0.05) 0.45 (std=0.05) 120.0 negative regulation of conjugation with cellular fu-
sion

ÃG0 5 0.45 (std=0.05) 0.45 (std=0.05) 86.0 regulation of cell cycle G1/S phase transition

ÃG0 5 0.45 (std=0.05) 0.45 (std=0.05) 86.0 regulation of G1/S transition of mitotic cell cycle

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 95.0 regulation of Ras protein signal transduction

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 95.0 regulation of small GTPase mediated signal trans-
duction

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 90.0 regulation of cell wall macromolecule metabolic
process

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 90.0 regulation of polysaccharide biosynthetic process

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 90.0 regulation of glucan biosynthetic process

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 90.0 regulation of polysaccharide metabolic process

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 88.0 regulation of septation initiation signaling

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 87.0 regulation of cell wall (1->3)-beta-D-glucan
biosynthetic process

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 87.0 regulation of (1->3)-beta-D-glucan metabolic pro-
cess

ÃG2 24 0.28 (std=0.04) 0.36 (std=0.05) 87.0 regulation of (1->3)-beta-D-glucan biosynthetic
process

ÃG3 3 0.74 (std=0.05) 0.74 (std=0.05) 91.0 cellular component assembly

ÃG3 3 0.74 (std=0.05) 0.74 (std=0.05) 67.0 protein-DNA complex subunit organization

ÃG3 3 0.74 (std=0.05) 0.74 (std=0.05) 40.0 protein-DNA complex assembly

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 15.0 RNA splicing, via transesterification reactions

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 15.0 RNA splicing

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 15.0 mRNA processing

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 15.0 mRNA cis splicing, via spliceosome

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 15.0 RNA splicing, via transesterification reactions
with bulged adenosine as nucleophile

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 15.0 mRNA splicing, via spliceosome

ÃG4 7 0.61 (std=0.02) 0.61 (std=0.02) 13.0 RNA processing

Table A.4. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 1. We
report, for the Fission yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 237.0 ubiquitin-dependent protein catabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 237.0 modification-dependent protein catabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 236.0 proteolysis involved in cellular protein catabolic
process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 235.0 modification-dependent macromolecule catabolic
process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 227.0 protein metabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 211.0 macromolecule catabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 180.0 regulation of primary metabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 169.0 regulation of macromolecule metabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 162.0 regulation of metabolic process

ÃG5 17 0.31 (std=0.05) 0.36 (std=0.06) 82.0 positive regulation of cellular component organiza-
tion

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 226.0 cell cycle DNA replication maintenance of fidelity

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 226.0 mitotic recombination-dependent replication fork
processing

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 226.0 mitotic DNA replication maintenance of fidelity

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 188.0 regulation of cytokinetic process

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 152.0 UV-damage excision repair

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 152.0 response to radiation

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 152.0 cellular response to light stimulus

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 152.0 cellular response to UV

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 152.0 cellular response to radiation

ÃG6 27 0.20 (std=0.04) 0.36 (std=0.04) 152.0 response to light stimulus

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 133.0 regulation of mitotic cytokinetic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 103.0 cellular glucan metabolic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 103.0 glucan metabolic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 103.0 glucan biosynthetic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 99.0 DNA biosynthetic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 85.0 gene conversion

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 83.0 telomere organization

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 83.0 telomere maintenance

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 77.0 protein localization to cell periphery

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 48.0 nucleotide-excision repair

Table A.4. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 2. We
report, for the Fission yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 90.0 regulation of reproductive process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 79.0 positive regulation of protein catabolic process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 79.0 positive regulation of cellular protein catabolic
process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 79.0 regulation of protein catabolic process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 79.0 regulation of cellular protein catabolic process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 73.0 positive regulation of mitotic cell cycle phase tran-
sition

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 72.0 regulation of proteasomal protein catabolic process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 72.0 regulation of ubiquitin-dependent protein
catabolic process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 72.0 positive regulation of ubiquitin-dependent protein
catabolic process

ÃG8 40 0.20 (std=0.05) 0.43 (std=0.03) 72.0 positive regulation of proteasomal protein
catabolic process

Table A.4. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 3. We
report, for the Fission yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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GraCoals enrichment summary for Fruit fly

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 555.0 cellular component organization

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 554.0 cellular component organization or biogenesis

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 403.0 cell division

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 327.0 regulation of metabolic process

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 303.0 organelle localization

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 276.0 response to radiation

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 247.0 detection of stimulus involved in sensory percep-
tion

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 241.0 adult behavior

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 234.0 regulation of membrane potential

ÃG0 67 0.14 (std=0.02) 0.29 (std=0.03) 222.0 calcium ion transport

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 492.0 response to stimulus

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 347.0 system process

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 341.0 gland development

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 315.0 behavior

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 311.0 animal organ formation

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 311.0 heart formation

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 245.0 wing disc anterior/posterior pattern formation

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 236.0 sensory perception of smell

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 230.0 wing disc development

ÃG1 59 0.14 (std=0.03) 0.27 (std=0.04) 229.0 neuroblast fate determination

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 162.0 morphogenesis of a polarized epithelium

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 140.0 cellular response to stimulus

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 85.0 establishment of proximal/distal cell polarity

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 85.0 imaginal disc-derived wing hair site selection

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 72.0 negative regulation of cellular response to growth
factor stimulus

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 72.0 asymmetric protein localization involved in cell
fate determination

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 60.0 cell-cell junction organization

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 45.0 positive regulation of protein kinase B signaling

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 31.0 cellular homeostasis

ÃG2 10 0.22 (std=0.04) 0.22 (std=0.04) 16.0 piRNA biosynthetic process

Table A.5. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 1. We
report, for the Fruit Fruit fly GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).

153



Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 390.0 regulation of trans-synaptic signaling

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 390.0 modulation of chemical synaptic transmission

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 325.0 macromolecule modification

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 229.0 regulation of actin filament bundle assembly

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 192.0 organic substance metabolic process

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 188.0 gonad development

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 174.0 regulation of circadian sleep/wake cycle, sleep

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 173.0 larval midgut cell programmed cell death

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 173.0 regulation of circadian sleep/wake cycle

ÃG3 40 0.15 (std=0.03) 0.25 (std=0.04) 166.0 synapse assembly

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 363.0 cell fate determination

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 263.0 heart development

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 245.0 pericardial nephrocyte differentiation

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 233.0 response to mechanical stimulus

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 193.0 regulation of multi-organism process

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 188.0 neuronal stem cell population maintenance

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 168.0 defense response

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 168.0 response to biotic stimulus

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 168.0 response to external biotic stimulus

ÃG4 30 0.18 (std=0.05) 0.31 (std=0.03) 164.0 defense response to other organism

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 247.0 cell cycle comprising mitosis without cytokinesis

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 247.0 syncytial blastoderm mitotic cell cycle

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 233.0 mitotic cell cycle, embryonic

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 232.0 anterior/posterior axis specification

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 193.0 regulation of biological quality

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 191.0 DNA conformation change

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 190.0 regulation of mitotic cell cycle phase transition

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 189.0 regulation of cell cycle phase transition

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 177.0 meiotic chromosome segregation

ÃG5 47 0.16 (std=0.04) 0.27 (std=0.06) 167.0 organelle Fission

Table A.5. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 2. We
report, for the Fruit Fruit fly GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 263.0 regulation of chromatin organization

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 247.0 histone modification

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 247.0 covalent chromatin modification

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 208.0 appendage segmentation

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 208.0 imaginal disc-derived leg segmentation

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 195.0 peptidyl-lysine modification

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 162.0 attachment of spindle microtubules to kinetochore

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 152.0 protein metabolic process

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 151.0 embryonic anterior midgut (ectodermal) morpho-
genesis

ÃG6 40 0.15 (std=0.04) 0.26 (std=0.05) 146.0 multi-organism metabolic process

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 223.0 regulation of cell projection organization

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 223.0 regulation of plasma membrane bounded cell pro-
jection organization

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 151.0 cellular component assembly

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 132.0 transport

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 97.0 Rho protein signal transduction

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 92.0 determination of adult lifespan

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 85.0 imaginal disc-derived appendage development

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 79.0 appendage development

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 72.0 positive regulation of transmembrane receptor pro-
tein serine/threonine kinase signaling pathway

ÃG7 15 0.22 (std=0.04) 0.24 (std=0.05) 72.0 negative regulation of cell cycle G1/S phase tran-
sition

ÃG8 5 0.42 (std=0.06) 0.42 (std=0.06) 45.0 regulation of lipid storage

ÃG8 5 0.42 (std=0.06) 0.42 (std=0.06) 36.0 positive regulation of immune system process

ÃG8 5 0.42 (std=0.06) 0.42 (std=0.06) 27.0 regulation of immune response

ÃG8 5 0.42 (std=0.06) 0.42 (std=0.06) 24.0 negative regulation of cell cycle phase transition

ÃG8 5 0.42 (std=0.06) 0.42 (std=0.06) 24.0 negative regulation of mitotic cell cycle phase tran-
sition

Table A.5. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 3. We
report, for the Fruit Fruit fly GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).

155



GraSprings enrichment summary for E. coli

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 88.0 regulation of anatomical structure morphogenesis

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 88.0 regulation of cell morphogenesis

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 88.0 regulation of developmental process

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 81.0 heme transport

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 46.0 regulation of cell shape

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 42.0 macromolecule modification

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 42.0 division septum assembly

ÃG0 8 0.32 (std=0.06) 0.32 (std=0.06) 28.0 tRNA modification

ÃG1 4 0.44 (std=0.04) 0.44 (std=0.04) 44.0 SRP-dependent cotranslational protein targeting
to membrane, translocation

ÃG1 4 0.44 (std=0.04) 0.44 (std=0.04) 44.0 protein insertion into membrane from inner side

ÃG1 4 0.44 (std=0.04) 0.44 (std=0.04) 37.0 protein insertion into membrane

ÃG1 4 0.44 (std=0.04) 0.44 (std=0.04) 10.0 organonitrogen compound biosynthetic process

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 204.0 macromolecule biosynthetic process

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 99.0 DNA-templated DNA replication

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 76.0 organelle organization

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 35.0 response to cold

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 31.0 cellular component disassembly

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 27.0 tRNA 3’-end processing

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 27.0 RNA 3’-end processing

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 27.0 ncRNA 3’-end processing

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 27.0 translational termination

ÃG2 10 0.25 (std=0.06) 0.25 (std=0.06) 16.0 glutamate biosynthetic process

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 146.0 intracellular protein transport

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 146.0 intracellular transport

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 95.0 glycerolipid biosynthetic process

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 95.0 glycerophospholipid biosynthetic process

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 93.0 glycerolipid metabolic process

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 93.0 glycerophospholipid metabolic process

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 64.0 intracellular protein transmembrane transport

ÃG3 8 0.41 (std=0.06) 0.41 (std=0.06) 15.0 cellular component assembly

Table A.6. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part
1. We report, for the E. coli GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG4 6 0.33 (std=0.06) 0.33 (std=0.06) 95.0 response to stress

ÃG4 6 0.33 (std=0.06) 0.33 (std=0.06) 83.0 response to antibiotic

ÃG4 6 0.33 (std=0.06) 0.33 (std=0.06) 75.0 response to ionizing radiation

ÃG4 6 0.33 (std=0.06) 0.33 (std=0.06) 49.0 organic hydroxy compound transport

ÃG4 6 0.33 (std=0.06) 0.33 (std=0.06) 47.0 lipopolysaccharide metabolic process

ÃG4 6 0.33 (std=0.06) 0.33 (std=0.06) 47.0 lipopolysaccharide biosynthetic process

ÃG6 3 0.44 (std=0.01) 0.44 (std=0.01) 123.0 regulation of protein stability

ÃG6 3 0.44 (std=0.01) 0.44 (std=0.01) 74.0 chaperone-mediated protein folding

ÃG6 3 0.44 (std=0.01) 0.44 (std=0.01) 41.0 protein-containing complex assembly

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 123.0 ion transport

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 100.0 bacteriocin transport

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 93.0 cation transport

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 79.0 septum digestion after cytokinesis

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 71.0 monocarboxylic acid metabolic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 58.0 amide biosynthetic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 52.0 isoprenoid biosynthetic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 52.0 isoprenoid metabolic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 49.0 small molecule biosynthetic process

ÃG7 10 0.28 (std=0.05) 0.28 (std=0.05) 41.0 cellular amide metabolic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 125.0 lipooligosaccharide metabolic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 125.0 lipooligosaccharide biosynthetic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 125.0 membrane lipid biosynthetic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 125.0 glycolipid biosynthetic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 125.0 glycolipid metabolic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 125.0 membrane lipid metabolic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 102.0 oligosaccharide metabolic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 64.0 lipid A metabolic process

ÃG8 9 0.54 (std=0.03) 0.54 (std=0.03) 64.0 lipid A biosynthetic process

Table A.6. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part
2. We report, for the E. coli GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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GraSprings enrichment summary for Fission yeast

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 23.0 positive regulation of mitotic cell cycle

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 22.0 positive regulation of mitotic cell cycle phase tran-
sition

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 22.0 positive regulation of cell cycle

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 22.0 positive regulation of cell cycle process

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 21.0 positive regulation of cell cycle phase transition

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 10.0 positive regulation of biological process

ÃG1 7 0.63 (std=0.03) 0.63 (std=0.03) 10.0 positive regulation of cellular process

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 15.0 nucleobase-containing compound biosynthetic pro-
cess

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 14.0 aromatic compound biosynthetic process

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 13.0 heterocycle biosynthetic process

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 13.0 DNA biosynthetic process

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 10.0 cellular nitrogen compound biosynthetic process

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 10.0 organic cyclic compound biosynthetic process

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 10.0 regulation of cytosolic calcium ion concentration

ÃG2 8 0.44 (std=0.05) 0.44 (std=0.05) 10.0 positive regulation of cytosolic calcium ion concen-
tration

ÃG3 6 0.37 (std=0.04) 0.37 (std=0.04) 43.0 chromosome organization

ÃG3 6 0.37 (std=0.04) 0.37 (std=0.04) 36.0 mitotic recombination

ÃG3 6 0.37 (std=0.04) 0.37 (std=0.04) 30.0 gene conversion

ÃG3 6 0.37 (std=0.04) 0.37 (std=0.04) 26.0 cellular developmental process

ÃG3 6 0.37 (std=0.04) 0.37 (std=0.04) 24.0 reciprocal homologous recombination

ÃG3 6 0.37 (std=0.04) 0.37 (std=0.04) 24.0 reciprocal meiotic recombination

Table A.7. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 1.
We report, for the Fission yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 147.0 subtelomeric heterochromatin assembly

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 107.0 negative regulation of macromolecule metabolic
process

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 78.0 regulation of nitrogen compound metabolic pro-
cess

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 72.0 regulation of nucleobase-containing compound
metabolic process

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 68.0 regulation of cellular metabolic process

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 67.0 regulation of primary metabolic process

ÃG6 7 0.48 (std=0.04) 0.48 (std=0.04) 31.0 positive regulation of RNA metabolic process

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 42.0 signal transduction

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 35.0 regulation of DNA recombination

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 30.0 negative regulation of cellular process

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 23.0 cell cycle G1/S phase transition

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 22.0 positive regulation of mitotic cytokinetic process

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 22.0 positive regulation of mitotic division septum as-
sembly

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 21.0 cell cycle phase transition

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 21.0 septation initiation signaling

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 20.0 positive regulation of cytokinesis

ÃG7 24 0.29 (std=0.06) 0.29 (std=0.06) 20.0 G1/S transition of mitotic cell cycle

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 30.0 mitotic cytokinetic process

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 actomyosin structure organization

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 assembly of actomyosin apparatus involved in cy-
tokinesis

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 cortical actin cytoskeleton organization

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 actomyosin contractile ring organization

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 actomyosin contractile ring assembly

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 assembly of actomyosin apparatus involved in mi-
totic cytokinesis

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 24.0 mitotic actomyosin contractile ring assembly

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 23.0 cortical cytoskeleton organization

ÃG8 18 0.29 (std=0.05) 0.41 (std=0.04) 23.0 mitotic actomyosin contractile ring contraction

Table A.7. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 2.
We report, for the Fission yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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GraSprings enrichment summary for Fruit fly

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 299.0 melanin metabolic process

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 285.0 genital disc anterior/posterior pattern formation

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 285.0 genital disc pattern formation

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 277.0 terminal branching, open tracheal system

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 261.0 lymph gland plasmatocyte differentiation

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 261.0 determination of adult lifespan

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 236.0 neurogenesis

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 208.0 positive regulation of histone modification

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 196.0 negative regulation of cellular component organi-
zation

ÃG0 38 0.15 (std=0.04) 0.22 (std=0.04) 189.0 cardioblast differentiation

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 327.0 mitotic cell cycle

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 313.0 photoreceptor cell fate specification

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 294.0 negative regulation of hemocyte differentiation

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 278.0 axis specification

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 275.0 regulation of cell division

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 250.0 regulation of vesicle-mediated transport

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 229.0 regulation of smoothened signaling pathway

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 226.0 positive regulation of canonical Wnt signaling
pathway

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 222.0 organ growth

ÃG1 10 0.23 (std=0.00) 0.23 (std=0.00) 11.0 cellular response to radiation

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 133.0 brain development

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 111.0 olfactory behavior

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 102.0 protein localization

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 97.0 regulation of protein kinase activity

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 96.0 regulation of transferase activity

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 77.0 regulation of chromosome organization

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 67.0 negative regulation of chromatin organization

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 66.0 BMP signaling pathway

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 61.0 nucleosome organization

ÃG2 26 0.20 (std=0.05) 0.22 (std=0.04) 60.0 protein-DNA complex subunit organization

Table A.8. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 1.
We report, for the Fruit fly GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 395.0 positive regulation of organ growth

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 323.0 establishment or maintenance of polarity of larval
imaginal disc epithelium

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 299.0 nephrocyte differentiation

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 299.0 renal filtration cell differentiation

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 294.0 regulation of axon guidance

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 290.0 lymph gland crystal cell differentiation

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 255.0 lymph gland development

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 254.0 delamination

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 252.0 oenocyte differentiation

ÃG3 17 0.20 (std=0.05) 0.23 (std=0.04) 248.0 positive regulation of JNK cascade

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 265.0 cell division

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 259.0 dorsal/ventral axis specification, ovarian follicular
epithelium

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 256.0 sensory organ boundary specification

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 220.0 epithelial cell differentiation

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 219.0 regulation of actin filament bundle assembly

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 189.0 regulation of cellular protein localization

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 186.0 positive regulation of smoothened signaling path-
way

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 185.0 cell-cell adhesion mediated by cadherin

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 158.0 calcium-dependent cell-cell adhesion via plasma
membrane cell adhesion molecules

ÃG4 14 0.20 (std=0.01) 0.23 (std=0.01) 92.0 female germ-line stem cell population maintenance

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 209.0 behavior

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 137.0 cell cycle

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 127.0 regulation of proteolysis involved in cellular pro-
tein catabolic process

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 121.0 regulation of proteasomal ubiquitin-dependent
protein catabolic process

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 121.0 positive regulation of proteasomal ubiquitin-
dependent protein catabolic process

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 117.0 regulation of proteasomal protein catabolic process

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 116.0 positive regulation of proteasomal protein
catabolic process

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 115.0 response to external stimulus

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 114.0 associative learning

ÃG5 34 0.19 (std=0.05) 0.33 (std=0.07) 114.0 cellular component assembly

Table A.8. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 2.
We report, for the Fruit fly GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 277.0 regulation of compound eye retinal cell pro-
grammed cell death

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 277.0 regulation of retinal cell programmed cell death

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 259.0 chaeta development

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 182.0 oocyte axis specification

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 171.0 intrinsic apoptotic signaling pathway in response
to DNA damage by p53 class mediator

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 170.0 equator specification

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 141.0 cellular component maintenance

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 126.0 regulation of embryonic development

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 119.0 carbohydrate metabolic process

ÃG6 18 0.22 (std=0.04) 0.24 (std=0.04) 52.0 RNA interference

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 106.0 determination of digestive tract left/right asym-
metry

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 68.0 actomyosin structure organization

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 37.0 multicellular organism aging

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 33.0 negative regulation of histone methylation

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 24.0 triglyceride homeostasis

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 23.0 larval feeding behavior

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 19.0 non-recombinational repair

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 19.0 double-strand break repair via single-strand an-
nealing

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 18.0 ncRNA metabolic process

ÃG7 16 0.18 (std=0.05) 0.20 (std=0.01) 17.0 regulation of membrane potential

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 63.0 terminal region determination

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 59.0 determination of bilateral symmetry

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 59.0 specification of symmetry

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 43.0 homeostatic process

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 40.0 regulation of TORC2 signaling

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 35.0 germline ring canal formation

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 33.0 glucose homeostasis

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 30.0 negative regulation of cell size

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 27.0 cellular response to organic substance

ÃG8 15 0.21 (std=0.04) 0.25 (std=0.05) 25.0 cellular response to hormone stimulus

Table A.8. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 3.
We report, for the Fruit fly GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Graphlet Spectrals enrichment summary for E. coli

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 221.0 fatty acid elongation

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 204.0 siderophore-dependent iron import into cell

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 148.0 response to endogenous stimulus

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 124.0 protein import

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 121.0 glycerolipid biosynthetic process

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 121.0 glycerophospholipid biosynthetic process

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 100.0 cell septum assembly

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 58.0 SOS response

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 56.0 anaerobic respiration

ÃG0 29 0.21 (std=0.05) 0.21 (std=0.04) 53.0 ribonucleoprotein complex assembly

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 antibiotic biosynthetic process

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 catechol-containing siderophore biosynthetic pro-
cess

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 polyketide biosynthetic process

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 catechol-containing compound biosynthetic pro-
cess

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 lactone biosynthetic process

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 enterobactin biosynthetic process

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 macrolide biosynthetic process

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 164.0 phenol-containing compound biosynthetic process

ÃG1 9 0.37 (std=0.03) 0.37 (std=0.03) 152.0 ferric-enterobactin import into cell

ÃG2 6 0.47 (std=0.05) 0.47 (std=0.05) 160.0 dipeptide transmembrane transport

ÃG2 6 0.47 (std=0.05) 0.47 (std=0.05) 146.0 xenobiotic export

ÃG2 6 0.47 (std=0.05) 0.47 (std=0.05) 146.0 xenobiotic detoxification by transmembrane ex-
port across the plasma membrane

ÃG2 6 0.47 (std=0.05) 0.47 (std=0.05) 141.0 organophosphate ester transport

ÃG2 6 0.47 (std=0.05) 0.47 (std=0.05) 102.0 oligopeptide transmembrane transport

ÃG2 6 0.47 (std=0.05) 0.47 (std=0.05) 89.0 oligopeptide transport

ÃG3 5 0.41 (std=0.05) 0.41 (std=0.05) 265.0 regulation of phosphorylation

ÃG3 5 0.41 (std=0.05) 0.41 (std=0.05) 265.0 regulation of kinase activity

ÃG3 5 0.41 (std=0.05) 0.41 (std=0.05) 185.0 regulation of transferase activity

ÃG3 5 0.41 (std=0.05) 0.41 (std=0.05) 53.0 primary metabolic process

ÃG3 5 0.41 (std=0.05) 0.41 (std=0.05) 33.0 organic substance metabolic process

Table A.9. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 1. We report, for the E. coli GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 1 and 2). In column 3, we report the mean SS for the top ten largest
enriched annotations (column 5), i.e., ranking them in descending order according to the
number of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 199.0 phenylacetate catabolic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 177.0 nucleotide-sugar biosynthetic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 172.0 amide biosynthetic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 172.0 nucleotide-sugar metabolic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 168.0 cellular amide metabolic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 164.0 GDP-mannose biosynthetic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 164.0 GDP-mannose metabolic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 137.0 DNA replication

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 127.0 10-formyltetrahydrofolate metabolic process

ÃG4 17 0.23 (std=0.05) 0.35 (std=0.05) 127.0 10-formyltetrahydrofolate biosynthetic process

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 170.0 cellular copper ion homeostasis

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 148.0 copper ion homeostasis

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 129.0 response to silver ion

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 129.0 detoxification of inorganic compound

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 129.0 detoxification of copper ion

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 28.0 keto-3-deoxy-D-manno-octulosonic acid metabolic
process

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 28.0 keto-3-deoxy-D-manno-octulosonic acid biosyn-
thetic process

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 15.0 small molecule biosynthetic process

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 14.0 isopentenyl diphosphate metabolic process

ÃG6 13 0.26 (std=0.05) 0.26 (std=0.05) 14.0 glyceraldehyde-3-phosphate metabolic process

ÃG8 2 0.67 (std=0.00) 0.67 (std=0.00) 34.0 carbohydrate metabolic process

ÃG8 2 0.67 (std=0.00) 0.67 (std=0.00) 20.0 cellular metabolic process

Table A.9. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 2. We report, for the E. coli GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 1 and 2). In column 3, we report the mean SS for the top ten largest
enriched annotations (column 5), i.e., ranking them in descending order according to the
number of neighborhoods that the annotations are enriched in (column 4).
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Graphlet Spectrals enrichment summary for fission yeast

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 39.0 mitotic spindle pole body localization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 39.0 spindle pole body localization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 39.0 mitotic spindle pole body insertion into the nuclear
envelope

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 39.0 microtubule organizing center localization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 26.0 actin filament-based process

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 25.0 protein-DNA complex subunit organization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 23.0 actin cytoskeleton organization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 22.0 cellular localization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 20.0 cortical actin cytoskeleton organization

ÃG0 19 0.28 (std=0.04) 0.40 (std=0.04) 20.0 nucleosome organization

ÃG1 3 0.61 (std=0.00) 0.61 (std=0.00) 165.0 mitotic cell cycle process

ÃG1 3 0.61 (std=0.00) 0.61 (std=0.00) 54.0 cell cycle DNA replication

ÃG1 3 0.61 (std=0.00) 0.61 (std=0.00) 54.0 nuclear DNA replication

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 23.0 cellular response to DNA damage stimulus

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 22.0 DNA recombination

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 21.0 nucleobase-containing compound metabolic pro-
cess

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 21.0 heterocycle metabolic process

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 21.0 organic cyclic compound metabolic process

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 21.0 cellular aromatic compound metabolic process

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 20.0 cellular nitrogen compound metabolic process

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 19.0 nucleic acid metabolic process

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 18.0 double-strand break repair

ÃG2 10 0.44 (std=0.04) 0.44 (std=0.04) 14.0 macromolecule metabolic process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 207.0 regulation of cell cycle phase transition

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 182.0 negative regulation of mitotic cell cycle

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 48.0 modification-dependent protein catabolic process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 48.0 ubiquitin-dependent protein catabolic process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 46.0 modification-dependent macromolecule catabolic
process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 39.0 proteasomal protein catabolic process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 26.0 macromolecule catabolic process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 26.0 proteolysis

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 24.0 cellular macromolecule catabolic process

ÃG4 11 0.35 (std=0.05) 0.39 (std=0.04) 15.0 organic substance catabolic process

ÃG5 1 1.00 (std=nan) 1.00 (std=nan) 14.0 nucleotide-excision repair

Table A.10. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings.
We report, for the fission yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 1 and 2). In column 3, we report the mean SS for the top ten largest enriched
annotations (column 5), i.e., ranking them in descending order according to the number
of neighborhoods that the annotations are enriched in (column 4).
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Graphlet Spectrals enrichment summary for fruit fly

Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 530.0 cellular process

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 516.0 regulation of RNA biosynthetic process

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 516.0 regulation of nucleic acid-templated transcription

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 516.0 regulation of transcription, DNA-templated

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 448.0 ameboidal-type cell migration

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 418.0 dendrite morphogenesis

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 399.0 cellular component organization

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 397.0 cellular component organization or biogenesis

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 386.0 enzyme linked receptor protein signaling pathway

ÃG0 82 0.14 (std=0.03) 0.30 (std=0.06) 385.0 anatomical structure formation involved in mor-
phogenesis

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 456.0 regulation of response to stimulus

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 406.0 regulation of signaling

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 402.0 regulation of cell communication

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 379.0 asymmetric cell division

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 363.0 regulation of morphogenesis of an epithelium

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 353.0 actin cytoskeleton organization

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 353.0 positive regulation of signaling

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 353.0 positive regulation of cell communication

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 350.0 regulation of actin filament-based process

ÃG1 71 0.15 (std=0.02) 0.32 (std=0.04) 341.0 supramolecular fiber organization

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 133.0 positive regulation of developmental process

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 124.0 negative regulation of cell differentiation

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 112.0 ovarian follicle cell migration

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 107.0 border follicle cell migration

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 94.0 positive regulation of hippo signaling

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 92.0 positive regulation of intracellular signal transduc-
tion

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 85.0 positive regulation of nervous system development

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 52.0 regulation of response to external stimulus

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 26.0 cellular response to DNA damage stimulus

ÃG2 24 0.20 (std=0.05) 0.25 (std=0.05) 20.0 DNA synthesis involved in DNA repair

Table A.11. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 1. We report, for the fruit fly GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 1 and 2). In column 3, we report the mean SS for the top ten largest
enriched annotations (column 5), i.e., ranking them in descending order according to the
number of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 149.0 germ-line stem cell population maintenance

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 138.0 cell cycle checkpoint

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 77.0 positive regulation of filopodium assembly

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 inorganic cation transmembrane transport

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 zinc ion transmembrane transport

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 inorganic cation import across plasma membrane

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 cation transmembrane transport

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 inorganic ion transmembrane transport

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 inorganic ion import across plasma membrane

ÃG3 29 0.21 (std=0.05) 0.41 (std=0.05) 20.0 import across plasma membrane

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 458.0 signal transduction

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 451.0 negative regulation of response to stimulus

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 287.0 regulation of cell death

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 184.0 regulation of phosphorylation

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 183.0 regulation of cell size

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 182.0 regulation of phosphate metabolic process

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 182.0 regulation of phosphorus metabolic process

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 181.0 regulation of protein phosphorylation

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 175.0 regulation of MAPK cascade

ÃG4 63 0.15 (std=0.04) 0.35 (std=0.06) 175.0 regulation of protein modification process

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 35.0 regulation of cytoskeleton organization

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 35.0 regulation of G protein-coupled receptor signaling
pathway

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 33.0 deactivation of rhodopsin mediated signaling

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 33.0 regulation of rhodopsin mediated signaling path-
way

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 32.0 neuron fate determination

Table A.11. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 2. We report, for the fruit fly GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 1 and 2). In column 3, we report the mean SS for the top ten largest
enriched annotations (column 5), i.e., ranking them in descending order according to the
number of neighborhoods that the annotations are enriched in (column 4).
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Total annotations Mean SS Mean SS Top 10 EN Annotation

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 31.0 thermotaxis

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 31.0 photoreceptor cell fate determination

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 28.0 response to other organism

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 27.0 multi-organism process

ÃG5 53 0.15 (std=0.03) 0.28 (std=0.06) 21.0 unidimensional cell growth

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 404.0 transmembrane receptor protein serine/threonine
kinase signaling pathway

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 339.0 regulation of transmembrane receptor protein ser-
ine/threonine kinase signaling pathway

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 337.0 regulation of cellular response to growth factor
stimulus

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 323.0 regulation of BMP signaling pathway

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 277.0 negative regulation of BMP signaling pathway

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 276.0 negative regulation of transmembrane receptor
protein serine/threonine kinase signaling pathway

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 230.0 photoreceptor cell fate specification

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 150.0 cell-cell fusion

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 150.0 syncytium formation by plasma membrane fusion

ÃG6 19 0.21 (std=0.06) 0.33 (std=0.07) 150.0 syncytium formation

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 150.0 positive regulation of response to biotic stimulus

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 138.0 regulation of immune response

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 25.0 wing disc dorsal/ventral pattern formation

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 23.0 synapse organization

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 20.0 negative regulation of macromolecule biosynthetic
process

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 20.0 negative regulation of cellular macromolecule
biosynthetic process

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 19.0 sex determination

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 16.0 cellular nitrogen compound metabolic process

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 16.0 organic cyclic compound metabolic process

ÃG7 18 0.23 (std=0.05) 0.24 (std=0.04) 16.0 heterocycle metabolic process

Table A.11. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 3. We report, for the fruit fly GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 1 and 2). In column 3, we report the mean SS for the top ten largest
enriched annotations (column 5), i.e., ranking them in descending order according to the
number of neighborhoods that the annotations are enriched in (column 4).
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Functional domain summary GI networks

GraCoals functional domain summary for E. coli

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 12 0.21 (std=0.16) 0.20 0.25 protein, transport, establishment, local-
ization, targeting

ÃG0 12 0.21 (std=0.16) 0.22 0.35 process, metabolic, rRNA, tRNA, pseu-
douridine

ÃG0 12 0.21 (std=0.16) 0.24 0.50 localization, membrane, lipoprotein, pro-
tein, cellular

ÃG1 7 0.23 (std=0.17) 0.18 0.30 metabolic, process, processing, tRNA,
rRNA

ÃG1 7 0.23 (std=0.17) 0.07 0.50 process, cell, transport, protein, biosyn-
thetic

ÃG1 7 0.23 (std=0.17) 0.14 0.57 process, localization, metabolic, biosyn-
thetic, cellular

ÃG2 9 0.15 (std=0.13) 0.12 0.10 proteolysis

ÃG2 9 0.15 (std=0.13) 0.12 0.35 process, metabolic, biosynthetic, regula-
tion, isopentenyl

ÃG2 9 0.15 (std=0.13) 0.33 0.69 localization, transport, protein, cellular,
macromolecule

ÃG3 8 0.21 (std=0.17) 0.52 0.39 transport, ion, iron, localization, organic

ÃG3 8 0.21 (std=0.17) 0.00 0.50 process, biosynthetic, cell, macro-
molecule, wall

ÃG3 8 0.21 (std=0.17) 0.17 0.57 process, biosynthetic, localization, regula-
tion, cellular

Table A.12. Summary of most unique functional domains for Gracoal embeddings, part
1. We report, for each GraCoal embedding used with SAFE with the E. coli GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG4 9 0.17 (std=0.09) 0.05 0.42 localization, process, protein, cell, cytoki-
nesis

ÃG4 9 0.17 (std=0.09) 0.14 0.43 process, biosynthetic, metabolic, lipid,
cellular

ÃG4 9 0.17 (std=0.09) 0.17 0.44 localization, protein, membrane, cellular,
within

ÃG5 11 0.22 (std=0.16) 0.17 0.22 ubiquinone, process, biosynthetic,
metabolic

ÃG5 11 0.22 (std=0.16) 0.37 0.40 rRNA, metabolic, process, processing

ÃG5 11 0.22 (std=0.16) 0.51 0.44 iron, ion, transport, cell, import

ÃG6 10 0.21 (std=0.17) 0.14 0.50 process, localization, metabolic, cellular,
lipid

ÃG6 10 0.21 (std=0.17) 0.17 0.67 processing, ncRNA, RNA

ÃG6 10 0.21 (std=0.17) 0.29 0.70 homeostasis, ion, cellular, metal, copper

ÃG7 12 0.19 (std=0.16) 0.00 0.22 ion, copper, transport, detoxification,
homeostasis

ÃG7 12 0.19 (std=0.16) 0.19 0.40 subunit, assembly, rRNA, ribonucleopro-
tein, complex

ÃG7 12 0.19 (std=0.16) 0.16 0.47 processing, macromolecule, methylation,
RNA, modification

ÃG8 6 0.18 (std=0.09) 0.12 0.00 transport, glycerol, 3, phosphate, trans-
membrane

ÃG8 6 0.18 (std=0.09) 0.36 0.48 transport, localization, protein, establish-
ment, transmembrane

ÃG8 6 0.18 (std=0.09) 0.17 0.50 metabolic, process, compound, cellular,
DNA

Table A.12. Summary of most unique functional domains for Gracoal embeddings, part
2. We report, for each GraCoal embedding used with SAFE with the E. coli GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).
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GraCoals functional domain summary for fission yeast

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 2 0.12 (std=0.12) 0.00 0.09 DNA, replication, initiation, cell, cycle

ÃG0 2 0.12 (std=0.12) 0.24 0.27 regulation, cell, cycle, mitotic, negative

ÃG1 3 0.03 (std=0.04) 0.00 0.03 regulation, mitotic, division, septum, as-
sembly

ÃG1 3 0.03 (std=0.04) 0.08 0.07 DNA, repair

ÃG1 3 0.03 (std=0.04) 0.00 0.50 DNA, replication, independent, chro-
matin, assembly

ÃG2 5 0.12 (std=0.10) 0.00 0.18 homeostasis, ion, cellular, calcium, chem-
ical

ÃG2 5 0.12 (std=0.10) 0.06 0.28 heterochromatin, assembly, organization,
constitutive, negative

ÃG2 5 0.12 (std=0.10) 0.21 0.33 regulation, process, positive, biological,
conjugation

ÃG3 2 0.08 (std=0.03) 0.10 0.54 DNA, cell, cycle, process, mitotic

ÃG3 2 0.08 (std=0.03) 0.05 0.56 assembly, heterochromatin, organization,
chromatin, cellular

ÃG4 3 0.04 (std=0.05) 0.00 0.00 splicing, RNA, mRNA, transesterifica-
tion, reactions

ÃG4 3 0.04 (std=0.05) 0.11 0.05 organization, cellular, component, or, bio-
genesis

ÃG4 3 0.04 (std=0.05) 0.00 0.50 DNA, replication, independent, chro-
matin, organization

ÃG5 5 0.13 (std=0.10) 0.27 0.00 regulation, biosynthetic, process, tran-
scription, templated

ÃG5 5 0.13 (std=0.10) 0.23 0.07 regulation, cellular, component, biogene-
sis, positive

ÃG5 5 0.13 (std=0.10) 0.02 0.08 repair, recombination, double, strand,
break

ÃG6 6 0.22 (std=0.19) 0.42 0.00 negative, regulation, response, stimulus,
cell

ÃG6 6 0.22 (std=0.19) 0.07 0.00 transport, anion, transmembrane, ion, or-
ganic

ÃG6 6 0.22 (std=0.19) 0.53 0.15 positive, regulation, cell, cycle, phase

ÃG7 5 0.10 (std=0.10) 0.00 0.18 regulation, cytosolic, calcium, ion, con-
centration

ÃG7 5 0.10 (std=0.10) 0.28 0.33 regulation, process, positive, cell, cycle

ÃG7 5 0.10 (std=0.10) 0.12 0.36 regulation, assembly, process, organiza-
tion, actomyosin

ÃG8 6 0.15 (std=0.06) 0.13 0.00 chromosome, segregation, attachment,
spindle, microtubules

ÃG8 6 0.15 (std=0.06) 0.24 0.03 microtubule, organization, transport,
based, cytoskeleton

ÃG8 6 0.15 (std=0.06) 0.07 0.24 metabolic, process, compound, cellular,
DNA

Table A.13. Summary of most unique functional domains for Gracoal embeddings. We
report, for each GraCoal embedding used with SAFE with the Fission yeast GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).
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GraCoals functional domain summary for fruit fly

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 15 0.06 (std=0.07) 0.22 0.00 response, regulation, cuticle, stress, chitin

ÃG0 15 0.06 (std=0.07) 0.00 0.00 intrinsic, apoptotic, signaling, pathway, in

ÃG0 15 0.06 (std=0.07) 0.00 0.05 dosage, compensation

ÃG1 13 0.06 (std=0.05) 0.00 0.00 mitotic, negative, regulation, spindle,
checkpoint

ÃG1 13 0.06 (std=0.05) 0.11 0.10 regulation, TORC1, signaling

ÃG1 13 0.06 (std=0.05) 0.05 0.15 cell, establishment, polarity, organization,
maintenance

ÃG2 9 0.06 (std=0.04) 0.09 0.16 regulation, signaling, pathway, growth,
neuromuscular

ÃG2 9 0.06 (std=0.04) 0.07 0.18 regulation, cell, establishment, polarity,
organization

ÃG2 9 0.06 (std=0.04) 0.03 0.32 regulation, negative, process, cell,
metabolic

ÃG3 11 0.05 (std=0.03) 0.07 0.02 synaptic, response, external, stimulus, cell

ÃG3 11 0.05 (std=0.03) 0.04 0.16 cell, regulation, signaling, pathway, in

ÃG3 11 0.05 (std=0.03) 0.11 0.20 regulation, process, positive, cell, cellular

ÃG4 10 0.07 (std=0.06) 0.08 0.00 muscle, cell, cellular, homeostasis

ÃG4 10 0.07 (std=0.06) 0.08 0.00 synaptic, signaling, trans, anterograde,
chemical

ÃG4 10 0.07 (std=0.06) 0.00 0.00 olfactory, behavior

ÃG5 9 0.05 (std=0.05) 0.03 0.03 guidance, neuron, projection, axon

ÃG5 9 0.05 (std=0.05) 0.07 0.16 regulation, positive, process, cell, negative

ÃG5 9 0.05 (std=0.05) 0.19 0.21 detection, stimulus, phototransduction,
external, light

ÃG6 11 0.06 (std=0.05) 0.04 0.20 regulation, signaling, insulin, receptor,
pathway

ÃG6 11 0.06 (std=0.05) 0.16 0.22 regulation, cascade, morphogenesis,
stress, cell

ÃG6 11 0.06 (std=0.05) 0.00 0.25 RNA, 3’, end, processing

ÃG7 10 0.07 (std=0.05) 0.14 0.00 cofactor, metabolic, process

ÃG7 10 0.07 (std=0.05) 0.04 0.02 regulation, Notch, signaling, pathway

ÃG7 10 0.07 (std=0.05) 0.09 0.21 regulation, cell, organization, projection,
morphogenesis

ÃG8 4 0.05 (std=0.02) 0.04 0.19 regulation, response, mitochondrion, or-
ganization, cellular

ÃG8 4 0.05 (std=0.02) 0.02 0.22 regulation, process, positive, templated,
transcription

ÃG8 4 0.05 (std=0.02) 0.07 0.32 regulation, cell, morphogenesis, positive,
process

Table A.14. Summary of most unique functional domains for Gracoal embeddings. We
report, for each GraCoal embedding used with SAFE with the Fruit Fruit fly GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).
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GraSprings functional domain summary for E. coli

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 11 0.18 (std=0.11) 0.24 0.00 regulation, cell, morphogenesis, shape,
anatomical

ÃG0 11 0.18 (std=0.11) 0.08 0.30 metabolic, process, glycosaminoglycan,
aminoglycan, peptidoglycan

ÃG0 11 0.18 (std=0.11) 0.29 0.40 transport, protein, localization, peptide,
establishment

ÃG1 8 0.15 (std=0.09) 0.18 0.00 organonitrogen, compound, biosynthetic,
process

ÃG1 8 0.15 (std=0.09) 0.10 0.44 localization, protein, membrane, cellular,
insertion

ÃG1 8 0.15 (std=0.09) 0.24 0.83 processing, rRNA, metabolic, process,
RNA

ÃG2 6 0.16 (std=0.14) 0.00 0.00 glutamate, biosynthetic, process

ÃG2 6 0.16 (std=0.14) 0.19 0.45 processing, RNA, metabolic, process,
tRNA

ÃG2 6 0.16 (std=0.14) 0.00 0.64 process, biosynthetic, cell, wall, macro-
molecule

ÃG3 9 0.12 (std=0.09) 0.00 0.31 process, cytokinesis, cell, cycle, FtsZ

ÃG3 9 0.12 (std=0.09) 0.15 0.40 protein, transport, localization, intracel-
lular, transmembrane

ÃG3 9 0.12 (std=0.09) 0.07 0.40 process, localization, biosynthetic,
metabolic, cellular

ÃG4 8 0.15 (std=0.13) 0.16 0.20 process, biosynthetic, lipopolysaccharide,
metabolic, organic

ÃG4 8 0.15 (std=0.13) 0.09 0.22 process, biosynthetic, metabolic, polysac-
charide, cellular

ÃG4 8 0.15 (std=0.13) 0.46 0.53 homeostasis, ion, transport, cellular,
metal

ÃG5 6 0.13 (std=0.10) 0.14 0.38 process, biosynthetic, metabolic, localiza-
tion, cellular

ÃG5 6 0.13 (std=0.10) 0.04 0.50 response, heat

ÃG5 6 0.13 (std=0.10) 0.13 0.67 metabolic, process, processing, RNA,
ncRNA

ÃG6 5 0.16 (std=0.11) 0.20 0.33 protein, folding, ribonucleoprotein, com-
plex, ’de

ÃG6 5 0.16 (std=0.11) 0.08 0.38 process, biosynthetic, metabolic, acid, cell

ÃG6 5 0.16 (std=0.11) 0.15 0.65 metabolic, process, response, compound,
DNA

ÃG7 7 0.14 (std=0.11) 0.16 0.30 process, biosynthetic, metabolic, localiza-
tion, acid

ÃG7 7 0.14 (std=0.11) 0.12 0.45 process, metabolic, biosynthetic, lipid,
cellular

ÃG7 7 0.14 (std=0.11) 0.00 0.71 process, biosynthetic, cell, macro-
molecule, wall

ÃG8 6 0.18 (std=0.11) 0.25 0.61 process, biosynthetic, metabolic, cellular,
homeostasis

ÃG8 6 0.18 (std=0.11) 0.13 0.75 processing, ncRNA, tRNA, metabolic,
process

ÃG8 6 0.18 (std=0.11) 0.17 0.79 metabolic, process, compound, cellular,
macromolecule

Table A.15. Summary of most unique functional domains for GraSpring embeddings.
We report, for each GraSpring embedding used with SAFE with the E. coli GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).
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GraSprings functional domain summary for fission yeast

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 4 0.12 (std=0.10) 0.00 0.07 DNA, replication, independent, chro-
matin, organization

ÃG0 4 0.12 (std=0.10) 0.22 0.41 cell, cycle, regulation, mitotic, checkpoint

ÃG0 4 0.12 (std=0.10) 0.05 0.67 process, metabolic, DNA, cellular, com-
pound

ÃG1 5 0.20 (std=0.16) 0.48 0.00 positive, regulation, cell, cycle, process

ÃG1 5 0.20 (std=0.16) 0.17 0.33 regulation, gene, expression

ÃG1 5 0.20 (std=0.16) 0.05 0.36 checkpoint, signaling, mitotic, DNA,
metabolic

ÃG2 5 0.06 (std=0.07) 0.00 0.00 regulation, cytosolic, calcium, ion, con-
centration

ÃG2 5 0.06 (std=0.07) 0.02 0.38 DNA, replication, cell, cycle, biosynthetic

ÃG2 5 0.06 (std=0.07) 0.02 0.46 heterochromatin, assembly, pericentric,
organization, chromatin

ÃG3 4 0.11 (std=0.09) 0.03 0.28 process, DNA, metabolic, recombination,
checkpoint

ÃG3 4 0.11 (std=0.09) 0.07 0.29 process, cell, cycle, DNA, replication

ÃG3 4 0.11 (std=0.09) 0.09 0.50 chromatin, regulation, assembly, hete-
rochromatin, organization

ÃG4 3 0.12 (std=0.06) 0.09 0.14 cellular, response, DNA, damage, stimu-
lus

ÃG4 3 0.12 (std=0.06) 0.06 0.32 metabolic, process, compound, cellular,
nitrogen

ÃG4 3 0.12 (std=0.06) 0.20 0.80 regulation, process, biological, metabolic,
gene

ÃG5 5 0.14 (std=0.08) 0.11 0.26 cell, regulation, DNA, cycle, checkpoint

ÃG5 5 0.14 (std=0.08) 0.07 0.29 cell, cycle, process, meiotic, meiosis

ÃG5 5 0.14 (std=0.08) 0.27 0.46 regulation, biosynthetic, process, tran-
scription, RNA

ÃG6 4 0.09 (std=0.10) 0.00 0.38 DNA, replication, initiation, cell, cycle

ÃG6 4 0.09 (std=0.10) 0.04 0.50 DNA, checkpoint, signaling, metabolic,
process

ÃG6 4 0.09 (std=0.10) 0.08 0.59 regulation, heterochromatin, assembly,
process, negative

ÃG7 4 0.12 (std=0.08) 0.12 0.03 regulation, positive, septum, assembly,
mitotic

ÃG7 4 0.12 (std=0.08) 0.13 0.33 DNA, cell, cycle, regulation, mitotic

ÃG7 4 0.12 (std=0.08) 0.00 0.38 heterochromatin, pericentric, assembly,
organization, constitutive

ÃG8 4 0.09 (std=0.09) 0.02 0.03 actomyosin, actin, contractile, ring, orga-
nization

ÃG8 4 0.09 (std=0.09) 0.07 0.59 process, metabolic, DNA, checkpoint, sig-
naling

ÃG8 4 0.09 (std=0.09) 0.03 0.67 heterochromatin, assembly, chromatin,
organization, regulation

Table A.16. Summary of most unique functional domains for GraSpring embeddings. We
report, for each GraSpring embedding used with SAFE with the fission yeast GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).
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GraSprings functional domain summary for fruit fly

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 12 0.06 (std=0.09) 0.00 0.00 copper, ion, homeostasis, transport, cellu-
lar

ÃG0 12 0.06 (std=0.09) 0.06 0.17 positive, regulation, establishment, mor-
phogenesis, axon

ÃG0 12 0.06 (std=0.09) 0.11 0.21 regulation, cell, actin, organization, fila-
ment

ÃG1 6 0.08 (std=0.07) 0.03 0.41 regulation, response, signaling, cellular,
cell

ÃG1 6 0.08 (std=0.07) 0.07 0.67 DNA, meiotic, recombination, repair,
double

ÃG1 6 0.08 (std=0.07) 0.05 0.71 regulation, cell, process, positive, negative

ÃG2 14 0.06 (std=0.06) 0.04 0.00 regulation, signaling, pathway, BMP, neg-
ative

ÃG2 14 0.06 (std=0.06) 0.01 0.11 regulation, cell, negative, growth, positive

ÃG2 14 0.06 (std=0.06) 0.04 0.19 establishment, cell, polarity, hair, regula-
tion

ÃG3 6 0.04 (std=0.03) 0.04 0.38 DNA, karyosome, formation, process, re-
pair

ÃG3 6 0.04 (std=0.03) 0.00 0.47 process, pigment, biosynthetic, metabolic,
ommochrome

ÃG3 6 0.04 (std=0.03) 0.04 0.51 process, cellular, response, cell, catabolic

ÃG4 7 0.07 (std=0.07) 0.08 0.30 regulation, cell, organization, projection,
morphogenesis

ÃG4 7 0.07 (std=0.07) 0.03 0.40 response, cellular, regulation, cell, growth

ÃG4 7 0.07 (std=0.07) 0.00 0.48 process, pigment, biosynthetic, metabolic,
regulation

ÃG5 6 0.05 (std=0.03) 0.07 0.37 regulation, response, cellular, process,
stress

ÃG5 6 0.05 (std=0.03) 0.08 0.38 cell, regulation, organization, establish-
ment, polarity

ÃG5 6 0.05 (std=0.03) 0.00 0.44 mitochondrion, organization, cell, ectopic,
germ

ÃG6 8 0.08 (std=0.10) 0.07 0.21 regulation, organization, cell, actin, main-
tenance

ÃG6 8 0.08 (std=0.10) 0.02 0.36 process, metabolic, response, cellular, cell

ÃG6 8 0.08 (std=0.10) 0.01 0.48 process, RNA, pigment, gene, silencing

ÃG7 11 0.07 (std=0.07) 0.00 0.00 regulation, membrane, potential

ÃG7 11 0.07 (std=0.07) 0.12 0.04 response, oxidative, stress, stimulus

ÃG7 11 0.07 (std=0.07) 0.11 0.38 regulation, organization, cell, actin, fila-
ment

ÃG8 11 0.03 (std=0.04) 0.02 0.02 recognition, axon, guidance, neuron,
choice

ÃG8 11 0.03 (std=0.04) 0.00 0.11 positive, regulation, apoptotic, process,
programmed

ÃG8 11 0.03 (std=0.04) 0.00 0.15 cell, death, maturation, negative, regula-
tion

Table A.17. Summary of most unique functional domains for GraSpring embeddings.
We report, for each GraSpring embedding used with SAFE with the fruit fly GI network,
the number of functional domains (column 1) the mean paralog ratio (column 2) and the
top three most characteristic functional domains (column 5). Lastly, for each functional
domain we report the paralog ratio (column 3) and the maximum Jaccard similarity index
(JI).

174



Graphlet Spectral functional domain summary for E. coli

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 6 0.19 (std=0.09) 0.15 0.00 sulfur, cluster, assembly, iron, metallo

ÃG0 6 0.19 (std=0.09) 0.04 0.05 response, stimulus, cellular, DNA, extra-
cellular

ÃG0 6 0.19 (std=0.09) 0.22 0.28 localization, transport, protein, mem-
brane, oxidation

ÃG1 5 0.20 (std=0.06) 0.18 0.21 process, biosynthetic, phospholipid, lipid,
cellular

ÃG1 5 0.20 (std=0.06) 0.19 0.56 RNA, ncRNA, processing, metabolic, pro-
cess

ÃG1 5 0.20 (std=0.06) 0.32 0.63 process, biosynthetic, transport, home-
ostasis, cellular

ÃG2 6 0.24 (std=0.13) 0.18 0.20 ncRNA, metabolic, process

ÃG2 6 0.24 (std=0.13) 0.39 0.24 homeostasis, ion, cellular, metal, transi-
tion

ÃG2 6 0.24 (std=0.13) 0.45 0.28 transport, export, xenobiotic, acid, oxida-
tion

ÃG3 4 0.22 (std=0.07) 0.18 0.44 localization, cellular, protein, membrane,
macromolecule

ÃG3 4 0.22 (std=0.07) 0.14 0.44 metabolic, process, cellular, macro-
molecule, DNA

ÃG3 4 0.22 (std=0.07) 0.33 0.65 metabolic, process, rRNA, processing,
modification

ÃG4 6 0.17 (std=0.11) 0.21 0.04 transport, cell, response, iron, division

ÃG4 6 0.17 (std=0.11) 0.40 0.26 transport, localization, process, establish-
ment, protein

ÃG4 6 0.17 (std=0.11) 0.08 0.44 membrane, protein, localization, inser-
tion, cellular

ÃG5 5 0.15 (std=0.10) 0.14 0.33 metabolic, process, DNA, cellular, macro-
molecule

ÃG5 5 0.15 (std=0.10) 0.00 0.46 process, biosynthetic, macromolecule,
cell, wall

ÃG5 5 0.15 (std=0.10) 0.29 0.63 process, transport, biosynthetic, cellular,
metabolic

ÃG6 4 0.22 (std=0.05) 0.17 0.38 process, biosynthetic, metabolic, isopen-
tenyl, diphosphate

ÃG6 4 0.22 (std=0.05) 0.23 0.66 process, homeostasis, cellular, biosyn-
thetic, ion

ÃG6 4 0.22 (std=0.05) 0.18 0.71 metabolic, process, cellular, compound,
nucleic

ÃG7 4 0.18 (std=0.03) 0.21 0.50 processing, rRNA, metabolic, process,
tRNA

ÃG7 4 0.18 (std=0.03) 0.18 0.67 metabolic, process, compound, cellular,
heterocycle

ÃG7 4 0.18 (std=0.03) 0.18 0.74 process, biosynthetic, metabolic, cellular,
macromolecule

ÃG8 4 0.16 (std=0.08) 0.28 0.00 cellular, metabolic, process

ÃG8 4 0.16 (std=0.08) 0.17 0.40 ubiquinone, process, biosynthetic,
metabolic

ÃG8 4 0.16 (std=0.08) 0.07 0.46 process, biosynthetic, macromolecule,
metabolic, cell

Table A.18. Summary of most unique functional domains for graphlet Spectral embed-
dings. We report, for each graphlet Spectral embedding used with SAFE with the E. coli
GI network, the number of functional domains (column 1) the mean paralog ratio (col-
umn 2) and the top three most characteristic functional domains (column 5). Lastly, for
each functional domain we report the paralog ratio (column 3) and the maximum Jaccard
similarity index (JI).
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Graphlet Spectral functional domain summary for fission yeast

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 5 0.04 (std=0.03) 0.04 0.00 actin, cytoskeleton, organization, cortical,
filament

ÃG0 5 0.04 (std=0.03) 0.03 0.00 DNA, organization, replication, indepen-
dent, chromatin

ÃG0 5 0.04 (std=0.03) 0.10 0.10 checkpoint, signaling, response, DNA, in-
tegrity

ÃG1 2 0.05 (std=0.05) 0.11 0.19 process, metabolic, DNA, mitotic, cell

ÃG1 2 0.05 (std=0.05) 0.00 0.40 DNA, replication, initiation, cell, cycle

ÃG2 2 0.11 (std=0.04) 0.15 0.17 microtubule, based, process

ÃG2 2 0.11 (std=0.04) 0.07 0.19 metabolic, process, cellular, DNA, com-
pound

ÃG4 3 0.08 (std=0.06) 0.14 0.00 catabolic, process, dependent, protein,
macromolecule

ÃG4 3 0.08 (std=0.06) 0.10 0.40 cell, cycle, DNA, replication, initiation

ÃG4 3 0.08 (std=0.06) 0.00 0.88 splicing, RNA, mRNA, transesterifica-
tion, reactions

ÃG5 2 0.21 (std=0.07) 0.29 0.00 nucleotide, excision, repair

ÃG5 2 0.21 (std=0.07) 0.14 0.12 cell, cycle, process

Table A.19. Summary of most unique functional domains for graphlet Spectral embed-
dings. We report, for each graphlet Spectral embedding used with SAFE with the fission
yeast GI network, the number of functional domains (column 1) the mean paralog ratio
(column 2) and the top three most characteristic functional domains (column 5). Lastly,
for each functional domain we report the paralog ratio (column 3) and the maximum
Jaccard similarity index (JI).
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Graphlet Spectral functional domain summary for fruit fly

Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI Domain description

ÃG0 6 0.03 (std=0.03) 0.00 0.00 positive, regulation, feeding, behavior

ÃG0 6 0.03 (std=0.03) 0.03 0.12 mating, behavior, cell, male, signaling

ÃG0 6 0.03 (std=0.03) 0.03 0.19 response, cellular, cell, stimulus, death

ÃG1 11 0.08 (std=0.07) 0.18 0.00 response, fungus, regulation, Toll, signal-
ing

ÃG1 11 0.08 (std=0.07) 0.19 0.11 detection, stimulus, abiotic, external,
light

ÃG1 11 0.08 (std=0.07) 0.05 0.12 synaptic, signaling, male, behavior, trans

ÃG2 10 0.11 (std=0.09) 0.08 0.00 regulation, response, external, stimulus

ÃG2 10 0.11 (std=0.09) 0.00 0.00 centrosome, cycle

ÃG2 10 0.11 (std=0.09) 0.13 0.15 ion, homeostasis, metal, cellular, transi-
tion

ÃG3 11 0.09 (std=0.10) 0.14 0.00 positive, regulation, filopodium, assembly

ÃG3 11 0.09 (std=0.10) 0.00 0.00 negative, regulation, cascade, stress, acti-
vated

ÃG3 11 0.09 (std=0.10) 0.00 0.00 behavior, rhythmic, circadian, locomotor,
rhythm

ÃG4 9 0.06 (std=0.06) 0.12 0.00 telomere, maintenance, organization

ÃG4 9 0.06 (std=0.06) 0.00 0.00 pole, plasm, mRNA, localization

ÃG4 9 0.06 (std=0.06) 0.03 0.07 negative, defense, response, Gram, bac-
terium

ÃG5 12 0.05 (std=0.03) 0.08 0.00 response, immune, mucosal, osmotic,
stress

ÃG5 12 0.05 (std=0.03) 0.02 0.00 regulation, gene, expression, epigenetic,
dosage

ÃG5 12 0.05 (std=0.03) 0.01 0.00 anterior, posterior, axis, specification,
chromatin

ÃG6 8 0.06 (std=0.06) 0.04 0.00 fusion, syncytium, formation, cell, actin

ÃG6 8 0.06 (std=0.06) 0.18 0.02 cascade, tumor, necrosis, factor, mediated

ÃG6 8 0.06 (std=0.06) 0.12 0.04 morphogenesis, regulation, anatomical,
structure, embryonic

ÃG7 12 0.04 (std=0.03) 0.00 0.00 metabolic, process, catecholamine,
dopamine, ammonium

ÃG7 12 0.04 (std=0.03) 0.00 0.00 sex, determination

ÃG7 12 0.04 (std=0.03) 0.02 0.01 negative, regulation, process, metabolic,
macromolecule

ÃG8 1 0.08 (std=0.00) 0.08 0.14 cell, cycle, process

Table A.20. Summary of most unique functional domains for graphlet Spectral embed-
dings. We report, for each graphlet Spectral embedding used with SAFE with the fruit
fly GI network, the number of functional domains (column 1) the mean paralog ratio (col-
umn 2) and the top three most characteristic functional domains (column 5). Lastly, for
each functional domain we report the paralog ratio (column 3) and the maximum Jaccard
similarity index (JI).

A.3 Enrichment statistics PPI networks

In this section, we summarize the results obtained when using SAFE with the dif-
ferent graphlet based embedding algorithms. That is, the percentages of genes that
have at least one annotation enriched in their neighborhood and the percentages of
enriched annotations for all our PPI molecular networks across different annotations.
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Gene ontology biological processes

Figure A.21. SAFE GO-BP enrichment analysis for the PPI networks, Part 1. On the
y-axis, we show the percentages of genes that have at least one annotation enriched in
their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.
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Figure A.21. SAFE GO-BP enrichment analysis for the PPI networks, Part 2. On the
y-axis, we show the percentages of genes that have at least one annotation enriched in
their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.
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Figure A.22. SAFE GO-BP average enrichment statistics for the PPI molecular net-
works. Average over all PPI networks for the different types of underlying graphlet adja-
cencies, i.e., ÃG0 to ÃG8 . On the y-axis, we show the percentages of genes that have at
least one annotation enriched in their neighborhood (left) and the percentages of enriched
annotations (right). On the x-axis, we show each of the embedding algorithms considered
(legend) applied on different types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-
axis, far right) considers the union of the enriched genes and enriched annotations across
all graphlet adjacencies.
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Figure A.23. SAFE GO-BP enrichment analysis for PPI networks. For the
PPI networks of our seven species (x-axis), we show the percentage of enriched genes
(y-axis) and percentage of enriched annotations for each of the embedding algorithms
considered (legend). The error bars in the case of GraSpring embedding indicate the
standard deviation across the ten randomised runs.
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Gene ontology cellular components

Figure A.24. SAFE GO-CC enrichment analysis for the PPI networks, Part 1. On the
y-axis, we show the percentages of genes that have at least one annotation enriched in their
neighborhood (left) and the percentages of enriched annotations (right). On the x-axis,
we show each of the embedding algorithms considered (legend) applied on different types
of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the union
of the enriched genes and enriched annotations across all graphlet adjacencies, i.e., ÃG0

to ÃG8 . The error bars for Spring embedding indicate the standard deviation across ten
runs. From top to bottom: Budding yeast, E. coli, Fission yeast and Fruit fly, respectively.
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Figure A.24. SAFE GO-CC enrichment analysis for the PPI networks, Part 2. On
the y-axis, we show the percentages of genes that have at least one annotation enriched
in their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs. From top to bottom: human, House mouse and Roundworm,.
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Figure A.25. SAFE GO-CC average enrichment statistics for the PPI molecular net-
works. Average over all PPI networks for the different types of underlying graphlet adja-
cencies, i.e., ÃG0 to ÃG8 . On the y-axis, we show the percentages of genes that have at
least one annotation enriched in their neighborhood (left) and the percentages of enriched
annotations (right). On the x-axis, we show each of the embedding algorithms considered
(legend) applied on different types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-
axis, far right) considers the union of the enriched genes and enriched annotations across
all graphlet adjacencies.
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Figure A.26. SAFE GO-CC enrichment analysis for PPI networks. For the
PPI networks of our seven species (x-axis), we show the percentage of enriched genes
(y-axis) and percentage of enriched annotations for each of the embedding algorithms
considered (legend). The error bars in the case of GraSpring embedding indicate the
standard deviation across the ten randomised runs.
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Figure A.27. SAFE GO-CC enrichment analysis comparing GraCoals in PPI
networks. For the PPI networks of our seven species (legend), we show, on the y-axis,
the percentage of enriched genes (left) and the percentage of enriched annotations (right)
for each of the different GraCoal embeddings (x-axis).
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Figure A.28. SAFE GO-CC enrichment analysis comparing GraSprings in
PPI networks. For the PPI networks of our seven species (legend), we show, on the
y-axis, the percentage of enriched genes (left) and the percentage of enriched annotations
(right) for each of the different GraSpring embeddings (x-axis).
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Figure A.29. SAFE GO-CC enrichment analysis comparing Spectrals in PPI
networks. For the PPI networks of our seven species (legend), we show, on the y-axis,
the percentage of enriched genes (left) and the percentage of enriched annotations (right)
for each of the different Spectral embeddings (x-axis).
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Gene ontology molecular functions

Figure A.30. SAFE GO-MF enrichment analysis for the PPI networks, Part 1. On
the y-axis, we show the percentages of genes that have at least one annotation enriched
in their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.
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Figure A.30. SAFE GO-MF enrichment analysis for the PPI networks, Part 1. On
the y-axis, we show the percentages of genes that have at least one annotation enriched
in their neighborhood (left) and the percentages of enriched annotations (right). On the
x-axis, we show each of the embedding algorithms considered (legend) applied on different
types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-axis, far right) considers the
union of the enriched genes and enriched annotations across all graphlet adjacencies, i.e.,
ÃG0 to ÃG8 . The error bars for Spring embedding indicate the standard deviation across
ten runs.
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Figure A.31. SAFE GO-MF average enrichment statistics for the PPI molecular net-
works. Average over all PPI networks for the different types of underlying graphlet adja-
cencies, i.e., ÃG0 to ÃG8 . On the y-axis, we show the percentages of genes that have at
least one annotation enriched in their neighborhood (left) and the percentages of enriched
annotations (right). On the x-axis, we show each of the embedding algorithms considered
(legend) applied on different types of graphlet adjacencies. Graphlet adjacency ’Union’ (x-
axis, far right) considers the union of the enriched genes and enriched annotations across
all graphlet adjacencies.
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Figure A.32. SAFE GO-MF enrichment analysis for PPI networks. For the
PPI networks of our seven species (x-axis), we show the percentage of enriched genes
(y-axis) and percentage of enriched annotations for each of the embedding algorithms
considered (legend). The error bars in the case of GraSpring embedding indicate the
standard deviation across the ten randomised runs.
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Figure A.33. SAFE GO-MF enrichment analysis comparing GraCoals in PPI
networks. For the PPI networks of our seven species (legend), we show, on the y-axis,
the percentage of enriched genes (left) and the percentage of enriched annotations (right)
for each of the different GraCoal embeddings (x-axis).
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Figure A.34. SAFE GO-MF enrichment analysis comparing GraSprings in
PPI networks. For the PPI networks of our seven species (legend), we show, on the
y-axis, the percentage of enriched genes (left) and the percentage of enriched annotations
(right) for each of the different GraSpring embeddings (x-axis).
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Figure A.35. SAFE GO-MF enrichment analysis comparing Spectrals in PPI
networks. For the PPI networks of our seven species (legend), we show, on the y-axis,
the percentage of enriched genes (left) and the percentage of enriched annotations (right)
for each of the different Spectral embeddings (x-axis).
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A.4 Enrichment statistics COEX networks

In this section, we summarize the enrichment results achieved when using SAFE
with the different graphlet based embedding algorithms on our COEX molecular
networks. That is, the percentages of genes that have at least one annotation en-
riched in their neighborhood and the percentages of enriched annotations for all our
COEX molecular networks across different annotations. We show the summarized
statistics for GO-CC and GO-MF, as for GO-BP we already covered in chapter 6.
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Figure A.36. SAFE GO-CC enrichment analysis for COEX networks. For the
COEX networks of our seven species (x-axis), we show the percentage of enriched genes
(y-axis) and percentage of enriched annotations for each of the embedding algorithms
considered (legend). In the case of GraSpring, we show the average across ten randomised
runs and the standard deviation (error-bars).
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Figure A.37. SAFE GO-CC enrichment analysis comparing GraCoals in
COEX networks. For the COEX networks of our six species (legend), we show, on
the y-axis, the percentage of enriched genes (left) and the percentage of enriched annota-
tions (right) for each of the different GraCoal embeddings (x-axis).
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Figure A.38. SAFE GO-CC enrichment analysis comparing GraSprings in
COEX networks. For the COEX networks of our six species (legend), we show, on the
y-axis, the percentage of enriched genes (left) and the percentage of enriched annotations
(right) for each of the different GraSpring embeddings (x-axis).
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Figure A.39. SAFE GO-CC enrichment analysis comparing Spectrals in
COEX networks. For the COEX networks of our six species (legend), we show, on
the y-axis, the percentage of enriched genes (left) and the percentage of enriched annota-
tions (right) for each of the different graphlet Spectral embeddings (x-axis).
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Figure A.40. SAFE GO-MF enrichment analysis for COEX networks. For the
COEX networks of our seven species (x-axis), we show the percentage of enriched genes
(y-axis) and percentage of enriched annotations for each of the embedding algorithms
considered (legend). The error bars in the case of GraSpring embedding indicate the
standard deviation across the ten randomised runs.
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Figure A.41. SAFE GO-MF enrichment analysis comparing GraCoals in
COEX networks. For the COEX networks of our six species (legend), we show, on
the y-axis, the percentage of enriched genes (left) and the percentage of enriched annota-
tions (right) for each of the different GraCoal embeddings (x-axis).
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Figure A.42. SAFE GO-MF enrichment analysis comparing GraSprings in
COEX networks. For the COEX networks of our six species (legend), we show, on the
y-axis, the percentage of enriched genes (left) and the percentage of enriched annotations
(right) for each of the different GraSpring embeddings (x-axis).
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Figure A.43. SAFE GO-MF enrichment analysis comparing Spectrals in
COEX networks. For the COEX networks of our six species (legend), we show, on
the y-axis, the percentage of enriched genes (left) and the percentage of enriched annota-
tions (right) for each of the different graphlet Spectral embeddings (x-axis).

A.5 Model network fitting

To characterize the structure of the molecular networks, we perform model fitting
experiments to compare our real molecular networks to eight different types of ran-
dom model networks commonly used in biology (see section 2.4 - Model networks).
To do this, for a given real molecular network, we generate 15 random networks for
each network model. We set the number of nodes, edge density, node degree distri-
bution and number of communities (when needed) to match those of the input data
to randomly generate synthetic networks that follow each of the random network
models.

Next, to measure the dissimilarity between two networks (i.e., a real network and
a model network) we first characterize the global wiring patterns of each network
with its Graphlet Correlation Matrix (GCM) (Yaveroğlu et al., 2014), which is an
11 × 11 matrix with the Spearman’s correlations between the eleven non-redundant
graphlet orbit counts over all nodes in the network. As such, orbit counts, i.e., the
numbers of times a node touches each graphlet orbit in a network, generalize the
notion of graphlet degrees (Przulj, 2007). Next, we use the graphlet correlation
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distance-11 (GCD-11) between two networks, which is the Euclidean distance of the
upper triangle values of the corresponding GCMs (Yaveroğlu et al., 2014).

Finally, To measure the fit between a real network (e.g., the Budding yeast GI
network) and a model network (e.g., the GEO model), we first compute the GCD-11
distances between the real network and the 15 generated networks that correspond
to the network model as well as the GCD-11 distances between the 15 generated
networks. We measure the overlap between these two distance distributions (real to
model and model to model) by means of a Wilcoxon-Mann-Whitney U-test (MWU).
We can distinguish the real network form the given model network if the p-value
of our MWU test is less than 5%. In Figures A.44, A.46 and A.47 and Tables
A.21, A.22 and A.23, we present the fit of network models and the corresponding
MWU-test p-values, respectively for the GI, PPI and COEX networks.

None of the real molecular networks were well fitted by the network models,
except for the Scale-free with gene duplication model for some of the GI networks.
Thus, in Figure A.45, we show the GCD-11 distances between the real GI networks
and the 15 randomly generated networks with SFGD properties (blue line) and the
GCD-11 distances between the randomly generated networks (orange line). Except
for the Fruit fly GI network, we observe the blue and orange lines are very close to
each other, almost overlapping.
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Figure A.44. Fit of network models for the GI networks. Each line shows the fitting
of a network model for the different GI networks and the Budding yeast GIS network
(x-axis). The error-bars show the averages and standard deviations of the pairwise GCD-
11 distances (y-axis) between the GI networks and for each network model, 15 randomly
generated networks of the same size as the GI networks.
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Network Model
Organism ER ERDD GEO GEOGD nPSO SF SFGD STICKY
E. coli 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 0.5197422 9.63E-06
Fruit fly 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06

Fission yeast 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 0.0161461 9.63E-06
Budding yeast 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 9.63E-06 0.017908 9.63E-06

Table A.21. Mann-Whitney-U test p-values. For each random model, we perform a
MWU test between two distance distributions to evaluate if there is any statistical dif-
ference: GCD-11 between the real data to model network data and model network data
to model network data. Non significant p-values (>0.01) indicate no statistical difference
between a molecular network and a particular network model, for instance for E. coli for
the SFGD network model.
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Figure A.45. Fit of the SFGD model for the GI networks. The blue line shows the fitting
of the SFGD network model to the real GI networks (x-axis). The blue line and error-bars
represent the averages and standard deviations of the pairwise GCD-11 distances (y-axis)
between the GI networks and 15 randomly generated networks of the same size as the
GI networks with scale-free and gene duplication properties. The orange line and error-
bars in the orange line represent the same statistics, but between the randomly generated
networks.
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Figure A.46. Fit of network models for the PPI networks. Each line shows the fitting
of a network model for the different PPI networks (x-axis). The error-bars show the
averages and standard deviations of the pairwise GCD-11 distances (y-axis) between the
PPI networks and for each network model, 15 randomly generated networks of the same
size as the PP networks.

Network Model
Organism ER ERDD GEO GEOGD nPSO SF SFGD STICKY

Budding yeast 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
E. coli 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
Fruit fly 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07

Fission yeast 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
Human 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07

House mouse 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
Roundworm 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07

Table A.22. Mann-Whitney-U test p-values. For each random model, we perform a
MWU test between two distance distributions to evaluate if there is any statistical differ-
ence: GCD-11 between the real data to model network data and model network data to
model network data. All the PPI molecular networks are statistically different than the
model networks. Note that the p-values presented are the minimum that can be achieved
when comparing two non-overlapping distributions of 15 (data-to-model) and 105 (model-
to-model) GCD-11 values.

195



Figure A.47. Fit of network models for the COEX networks. Each line shows the fitting
of a network model for the different COEX networks (x-axis). The error-bars show the
averages and standard deviations of the pairwise GCD-11 distances (y-axis) between the
COEX networks and for each network model, 15 randomly generated networks of the same
size as the PP networks.

Network Model
Organism ER ERDD GEO GEOGD nPSO SF SFGD STICKY

Budding yeast 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
E. coli 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
Fruit fly 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07

Fission yeast 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07
Human 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07

Roundworm 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07 9.63E-07

Table A.23. Mann-Whitney-U test p-values. For each random model, we perform a
MWU test between two distance distributions to evaluate if there is any statistical differ-
ence: GCD-11 between the real data to model network data and model network data to
model network data. All the PPI molecular networks are statistically different than the
model networks. Note that the p-values presented are the minimum that can be achieved
when comparing two non-overlapping distributions of 15 (data-to-model) and 105 (model-
to-model) GCD-11 values.
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A.6 Gene-paralog statistics for GI networks

Organism Paralogs Total genes Paralog coverage (%)
Budding yeast 1,870 6,000 31.17

E. coli 1,420 4,402 32.26
Fission yeast 798 5,122 15.58

Fruit fly 323 14,000 2.31

Table A.24. Paralog data statistics. For the four GI networks (column 1), we report the
total paralogous genes identified with BLASTp and total number of genes known to date
for each species according to the UniProt database (columns 2 and 3). On column 4, we
report the number of paralogous genes with respect to the total number of genes, in terms
of percentage.
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