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1 Introduction
Quantum neural networks are a cutting-edge field gaining more and more relevance due
to its unstoppable recent progress and inspiring applications in different real-life areas
[Flö23], [JC19]. This area keeps growing day by day with new interested members giving
new approaches because it blends up two of the most groundbreaking realms of this century,
artificial intelligence and quantum mechanics with respect to which many other fields arise
like quantum computation or quantum machine learning.

2 Motivation
The high-performance computing capacity of quantum mechanics is a theoretical milestone.
Hence, the principal motivation of this project is to tackle one of the most calculation-
demanding processes in artificial intelligence: artificial neural networks training.

Another inspiration is to model a physically-realizable quantum neural network struc-
ture and procedure in a continuous-variable system as is quantum optics [SvdMA+21]
aiming to speed up the learning process using an optical quantum computer and increase
the accuracy of the QNN trained model.

Furthermore, this promising area as continuous variables on QNN open many doors to
inventive paradigms of learning and new perspectives addressing practical tasks challenges.

3 Objective
The main goal of this project is to investigate and implement an innovative technique for
classical simulation of continuous variables Quantum Neural Networks based on the system
variables’ covariances for their Gaussian states and . This involves the development of a
classical program that mimics the physical functionality of a CV QNN and optimizes its
free parameters by simulating a certain quantum system, the transformations modifying
its state and the measurements over the system.

Through the simulation of the proposed model, the point is to experiment with the QNN
learning capacity and research about the different parameters and components behavior,
in terms of training and prediction performance.

Moreover, this method is hardware-inspired aiming to execute the QNN on continu-
ous quantum systems like optical quantum computers where the components used in the
simulation are easily translated and reproduced with real devices.

4 Foundations
The next two sections gather the basic notions for a complete understanding on the thesis
topic "Continuous variables in quantum neural networks". The discussed fundamental
concepts are the following: the structure, learning and prediction mechanisms of artificial
neural networks, an introduction to quantum continuous variables, two crucial basis for the
treatment of quantum continuous variables, Gaussianity and non-Gaussianity in quantum
states, some mathematical classical groups and the statistical moments of quantum states.
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5 Artificial Neural Networks
Nowadays, there are multiple approaches in the field of artificial intelligence and one of
the most powerful is the artificial neural network used in machine learning aiming to
computationally simulate a neural network able to acquire knowledge and make predictions.

Generally, there exist three main categories of machine learning [Meh21]. First is un-
supervised learning, where artificial intelligence learns patterns without requiring feedback
on question outcomes. Second is supervised learning, which builds knowledge and gen-
eralizes based on data sets that record results under specific conditions. Lastly, there is
reinforcement learning, which generates knowledge by observing the environment or situ-
ation of a problem. It takes actions that modify its state and assesses whether the new
state brings it closer to the desired solution, thereby assigning a rating to each action in
each environment state.

Artificial neural networks are made of artificial neurons that are interconnected through
edges or dendrites. The neurons are typically clustered in layers where the input data of
one layer is the output of the previous one. In each neuron, some kind of parameterized
function is applied to the input data to produce an output that flows towards the neural
network in order to produce a prediction. When there are more than one layer in a neural
network, i.e. a neural network with at least one hidden layer of neurons, the artificial
neural network are said to represent deep learning.

For the purpose of the project, the main feature to keep in mind is the mathematical
transformation that actually happens when giving an input to a single-layer artificial neural
network, expressed by

f(x⃗) = Φ(Wx⃗ + b⃗), (1)

where f(x⃗) would represent the output of the neural network, W is the weight matrix that
transforms the input vector x⃗ in a linear way, b⃗ is the real vector of the bias and Φ is a
non-linear activation function allowing to learn non-linearities of the target function.

Having said that, the purpose of an artificial neural network is to tune the parameters
of the weight matrix W and b⃗ components in order to approximate its output f(x) to a
given target function represented.

The project is centered in quantum neural networks with continuous variables, whose
mechanisms are based on those of classical neural networks. Therefore, the study of clas-
sical neural network features is the key to properly replicate this artificial learning model
taking advantage of quantum mechanics [HSM+22].

6 Quantum continuous variables
The degrees of freedom of a physical system can be continuous or discrete. While discrete
variables are those referred to physical quantities whose possible values are restricted by
a numerable set of fixed quantities, i.e. the set is finite or countably infinite, continuous
variables can take any possible value existing in a continuous range.

In quantum mechanics, all observable physical quantities are mapped to an operator
and one can find both types: discrete, like the spin of a particle that can take a finite
number of classical values, and continuous, like the position or momentum of a particle
that can take any possible classical value in a continuous range of real numbers.
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6.1 Canonical operators
In the CV formalism, information is encoded in the quadratures, denoted as x̂ and p̂,
which are referred to as position and momentum in relation to the harmonic oscillator
terminology. Throughout the thesis, the focus is centered into these operators which are
a pair of canonical operators and they exhibit some properties [Ser17] like the canonical
commutation relation (CCR)

[x̂, p̂] = iℏ, (2)
where i is the complex unit and ℏ is the reduced Planck constant or the quantum elementary
action, often taken as 1.Specifically, when treating with more than one canonical degree
of freedom or mode, this is, more than one particle in the considered system, the CCR is
generalized as

[x̂j , p̂k] = iℏδj,k, (3)
where j and k point out the mode or degree of freedom each operator refers to, which
means that position and momentum operators commute whenever they act over a different
mode due to the delta function δj,k.

To simplify the joint representation of N modes with their canonical operators, the
so-called xxpp representation is adopted, which orders all modes’ position operators at
first place followed by their respective momentum operators. Then, the vector ŝ related to
this representation is defined as

ŝ = (x̂1, x̂2, ..., x̂N , p̂1, p̂2, ..., p̂N )T (4)

Now, recasting the canonical commutation relation to the N-mode vector ŝ, the gener-
alized CCR has the form

[̂s, ŝT ] = iJ with J =
(

0N 1N

−1N 0N

)
(5)

where the commutator row-column products shall be performed as outer products and the
matrix J is the real canonical anti-symmetric form, also called the symplectic form of N
modes with xxpp order.

6.2 Fock basis
In second quantization, the Fock basis is used to describe a quantum many-body system
with an unknown number of particles. The canonical operators of one single mode have
their equivalence in the Fock space with the form of bosonic creation and annihilation
operators like

â = x̂ + ip̂, â† = x̂− ip̂, (6)
also called ladder operators or, when it comes to photons, photon addition and subtraction
operators.

As a consequence, the unitary transformation related to the change from canonical to
ladder operators for an N-mode quantum system is given by

Ū = 1√
2

(
1N i1N

1N −i1N

)
. (7)

Therefore, the previously defined vector of canonical operators ŝ can also describe the
modes in terms of creation and annihilation operators using the Eq. (7) unitary matrix
resulting into a new vector of N modes in Fock basis

b̂ = (â1, â2, ..., âN , â†
1, â†

2, ..., â†
N )T . (8)
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Likewise, the canonical commutation relation from Eq. (5) turns into

[b̂, b̂†] = [Ū ŝ, ŝT Ū †] = Ū [̂s, ŝT ]Ū † = iŪJŪ † =
(
1N 0N

0N −1N

)
(9)

in Fock space picture using Ū as well which, in turn, comes from the commutation relation
of both ladder operators

[âj , â†
k] = −[â†

j , âk] = δj,k. (10)

6.3 Symplectic, orthogonal and unitary groups
For the sake of further understanding, three types of algebraic groups that play an im-
portant role in the thesis need are introduced here and whose derivations are shown in
Appendix A [Ser17].

The unitary group U(N) is the group of N ×N unitary matrices such that

UU † = 1N , ∀U ∈ U(N). (11)

The orthogonal group O(N) is the group of N ×N orthogonal matrices satisfying

OOT = OT O = 1, ∀O ∈ O(N). (12)

The real symplectic group Sp(2N,R) is the group of 2N × 2N real symplectic matrices
that preserve the real symplectic form J as

SJST = ST JS = J with J =
(

0N 1N

−1N 0N

)
, S ∈ Sp(2N,R). (13)

Following the Appendix A deductions, the intersection of both symplectic and orthog-
onal groups denoted by K(N) = Sp(2N,R) ∩O(2N), so a given matrix Q ∈ K(N) fulfills

Q =
(

X Y
−Y X

)
with

{
XY T − Y XT = 0N

XXT + Y Y T = 1N

. (14)

This drives to an isomorphism between K(N) and U(N), thus allowing the representa-
tion of Q as a unitary matrix UQ by applying (7) like

ŪQŪ † =
(

X − iY 0N

0N X + iY

)
=
(

U∗
Q 0N

0N UQ

)
. (15)

The relation of both representations through the matrix Ū provide the tools to build a
symplectic and orthogonal matrix Q ∈ K(N) in a simple way out of a unitary one.

6.4 Gaussian quantum states
According to [WPGP+12], Gaussian states are referred to continuous-variable systems
whose states can be represented via Gaussian probability distributions in the phase space
of their quadrature, also called normal distributions. Thereby, as stated in [Ser17], a
Gaussian quantum state is only possible in those quantum systems whose dynamics are
governed by a Hamiltonian at most quadratic in the quadratures.

In general, a quantum system characterized by a more-than-quadratic Hamiltonian
carries the system to evolve into a non-Gaussian state which, in general, is not easy to
simulate classically while Gaussian states are always efficiently simulable [BSBN02].
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The set of Gaussian quantum states are composed by all the thermal and ground states
of second-order Hamiltonians with a positive definite matrix H > 0 modelling the dynamics
of a system and whose expectation value is the energy [Ser17].

Any Gaussian quantum state of N modes can be described by

ρG = e−βĤ

Tr[e−βĤ ]
with β ∈ R+, (16)

where β is the inverse temperature of the Boltzmann constant and Ĥ is the most general
second-order Hamiltonian with the form

Ĥ = 1
2 ŝT H ŝ + ŝT ŝ with

{
ŝ = (x̂1, ..., x̂N , p̂1, ..., p̂N )T

H ∈> 0
. (17)

The Gaussian quantum state in (16) represents a mixed state for β finite. The equation
would represent a pure state when taking β →∞ [Ser17].

Once the set of N-mode Gaussian quantum states is defined in terms of Hamiltonian
matrix H and their corresponding vector ŝ containing the canonical operators x̂ and p̂ for
each mode, the symplectic diagonalization of the Hamiltonian matrix

SHHST
H = D with

{
SH = eJH ∈ Sp(2N,R)
D = diag(d1, ..., dN , d1, ...dN ), dj ∈ R+ ∀j

(18)

can be performed.
This method allows the normal mode decomposition of H that yields a symplectic

transformation SH defined as

H = S−1
H D(ST

H)−1 = ST
HDSH (19)

H = ST
H

 N⊕
j=1

ωj

⊕
 N⊕

j=1
ωj

SH = ST
H

 2⊕
l=1

 N⊕
j=1

ωj

SH with j ≡ mode (20)

and the symplectic eigenvalues ωj of H which are equivalent to the frequencies of the
quantum state normal modes.

Additionally, by the fact that position and momentum of each mode are related, the
symplectic eigenvalues are degenerated in pairs, one degenerated pair per mode, as Eq.
(20) dictates.

Therefore, plugging the new expression of the Hamiltonian matrix (20) into the first
term of the Hamiltonian (17) and using the action by congruence of the quadratic Hamil-
tonian on canonical operators inside r̂ defined as

SH r̂ = ŜH r̂Ŝ†
H where

{
SH = eJH ∈ Sp(2N,R)
ŜH = ei 1

2 r̂T Hr̂,
(21)

the canonical operators of each mode can be joined with its frequency ωj and simplified
like

r̂T Hr̂ = r̂T ST
H

 2⊕
l=1

 N⊕
j=1

ωj

SH r̂ = ŜH

 N∑
j=1

ωj(x̂2
j + p̂2

j )

 Ŝ†
H . (22)

By expression (22), it turns out that every second-order Hamiltonian with no displace-
ment and H > 0 is equivalent to the Hamiltonian of N free and non-interacting harmonic
oscillators.
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6.5 Statistical moments of Gaussian states. The covariance matrix
Quantum states can be fully described by their of statistical moments. In the case of
Gaussian quantum states, the first two statistical moments are enough to completely define
the spectrum of any Gaussian state [Ser17].

The covariance matrix σ is reachable in reality through the second statistical moments
of the canonical operators’ [Ser17]. Formally, they are defined as

s̄ = Tr[ρGŝ] and σ = Tr[ρG{(̂s− s̄), (̂s− s̄)T }], where {â, âT } = ââT + (ââT )T . (23)

For simplicity concerns, the main object used to describe and treat with a Gaussian
state throughout the thesis is the covariance matrix σ of the state representing its second
statistical moments. Thus, the mean values or first moments vector of the Gaussian state
is always be neglected in this project.

The spectrum of a Gaussian state is determined by its covariance matrix σ which is
composed by a symplectic transformation S and symplectic eigenvalues νj of the state that
diagonalizes the system’s Hamiltonian, as seen in Eq. (20). The expression

σ = S

 2⊕
l=1

 N⊕
j=1

νj

ST , where

νj = 1+e−βωj

1−e−βωj
≥ 1, eigenvalues of iJσ

S ∈ Sp(2N,R)
(24)

shows the general form of the covariance matrix σ for any Gaussian state and, provided
its form, it is always real and symmetric.

To conclude this section, the purity µ of a quantum state ρ is commonly defined as
the trace of its squared density operator which measures the level of mixture of the state.
When it comes to a Gaussian quantum state ρG, its purity can be defined in terms of its
covariance matrix σ whose expression is simplified by [Ser17] as

µ(ρG) = Tr[ρ2
G] = 1√

Det(σ)
. (25)

Due to the definition and properties of the covariance matrix σ of a Gaussian state ρG,
there are multiple metrics for the purity measurement of the state [Ser17], all collected in

ρG is pure ⇐⇒



• µ(ρG) = 1
• Det(σ) = 1
• All σ symplectic eigenvalues (iJσ) = 1
• σ = SST ∀S ∈ Sp(2N,R)
• − JSJS = 1

, (26)

where all metrics from can be derived from one another, i.e. they are equivalent between
them. If only one of the conditions is fulfilled, the rest are automatically true as well.

6.6 The uncertainty principle
Although a Gaussian quantum state is represented by its covariance matrix which has to
be real and symmetric, not all matrices fulfilling these conditions are related to a possible
quantum state. As the canonical operators x̂ and p̂ do not commute, i.e. [x̂, p̂] ̸= 0, there
are some constraints over the covariance of said operators that are the outcome of the
Heisenberg uncertainty principle formulated as

σxσp ≥
ℏ
2 . (27)
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From [Ser17] derivations, the uncertainty principle can be expressed in terms of the
covariance matrix and the canonical commutation relation as

Tr[ρ(r̂ − r̄)(r̂ − r̄)T ] = 1
2Tr

[
ρ{(r̂ − r̄), (r̂ − r̄)T }+ [r̂, r̂T ]

]
= σ + iJ, (28)

where an inequality can be induced by the positiveness of the final state’s trace reaching
the so-called Robertson-Schrödinger uncertainty relation [Ser17] described as

σ + iJ ≥ 0, (29)
from which it is inferred that σ > 0.

In conclusion, σ is the covariance matrix of a valid quantum state if and only if all
eigenvalues of σ + iJ are positive. In addition, pure Gaussian states always minimize the
uncertainty principle.

6.7 Gaussian operators
A Gaussian operator is a transformation that maps a Gaussian state to another Gaussian
state, which means that Gaussian operators preserve the Gaussianity of the quantum state
when acting upon it [Ser17].

In general, there are plenty of these Gaussian operators but for this project the most
important ones are the squeezing operator and the symplectic-orthogonal operators, which
altogether form a symplectic operator, by the fact that all pure Gaussian operations can
be decomposed in the product of these two operations.

These operators can be applied in a specific way to any Gaussian state represented by
its density matrix ρG. However, as ρG is characterized by its covariance matrix σ, the
focus is set on how these Gaussian operators change the variances of the state quadratures
when they act over it.

The displacement operator is a linear displacement of the Gaussian quantum state ρG

but its covariance matrix remains unchanged, this is

Dr : σ → σ, (30)
then it is completely neglected in the project.

Besides that, as seen in (21), the unitary action of a Gaussian quadratic operator
Ŝ related to the symplectic transformation S causes a transformation of the state ρG

equivalent to ŜρGŜ† which maps, in turn, the covariance matrix of ρG the same way as
seen in (24) [Ser17], what can be expressed as

S : σ → SσST , where S = eJH . (31)
Last but not least, the squeezing operator act on quantum state quadratures reducing

the variance of one while increasing the variance of the other. It is represented by a diagonal
matrix Z and acts over σ in the same way as Eq. (31):

Z : σ → ZσZT , where Z = diag(z1, ..., zN , z−1
1 , ..., z−1

N ). (32)
It is worth mentioning that any symplectic matrix S can be decomposed as

S = Q2ZQ1, where

{
Q1, Q2 ∈ Sp(2N,R) ∩O(2N)
Z = diag(z1, ..., zN , z−1

1 , ..., z−1
N )

(33)

what’s named after the Bloch-Messiah or Euler decomposition [Ser17], or, the other way
around, any symplectic matrix S can be constructed with two symplectic-orthogonal ma-
trices and one diagonal matrix related to the squeezing operator.

This is important for the QNN construction because any passive-optics operator is
represented by a symplectic-orthogonal matrix Q ∈ Sp(2N,R) ∩O(2N).
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6.8 Non-Gaussianity
As aforementioned, a Gaussian quantum state is fully represented by its first and second
statistical moments, i.e. its mean vector and covariance matrix. When a quantum state is
non-Gaussian it requires more statistical moments in order to completely characterize the
quantum state.

Non-Gaussian operators introduce non-linearity when applied to Gaussian quantum
states which is an indispensable piece to implement non-linear transformations on artificial
neural networks such as activation functions and feature extraction [KBA+19].

Moreover, [WST+23] shows that non-Gaussianity is a necessary element to gain quan-
tum computational advantage against classical algorithms and simulations.

The simplest non-Gaussian operators and readily available in many well-equipped pho-
tonics labs are the photon addition or subtraction operators. They are the main non-
Gaussian operators used in this project but, in addition, the Kerr operator K̂(κ) = eiκn̂2 ,
where n̂ is the number operator, and the cubic phase operator V̂ (γ) = eiγx̂3/3, where x̂ is
the position operator, are other valid non-linear operators [KBA+19].

A crucial aspect is that, unlike the Kerr and cubic phase operators, ladder operators are
not unitary so, when they act over a quantum state, the resulting state must be normalized.

6.9 Gaussian measurements
An essential requirement for a neural network is to introduce non-linear transformations
as a way to learn non-linear relationships between the input variables and the outputs.
What’s more, the Universal Approximation theorem holds that an artificial neural network
with one hidden layer and a non-linear activation function can approximate any continuous
function with an arbitrary accuracy depending on the number of neurons in the hidden
layer [PSCLGFL20].

As previously stated, the ladder operators are the main non-linear transformations em-
ployed for this quantum neural network model. This would imply in some cases to consider
more than the first and second statistical moments to work out the non-Gaussianity of the
state and it would still not be classically simulable. However, there are direct relations
between the action of creation and annihilation operators over a Gaussian state ρG and its
covariance matrix σ [? ].

In order to obtain the expectation value of a Gaussian quantum state of N modes after
a non-Gaussian operator like âj or â†

j , where j stands for the mode the operators acts
on, the covariance matrix σ representing the Gaussian quantum state ρG may be used
according to [? ]. There, it is shown how the expectation value of the energy is obtained
through σ when ladder operators are applied by congruence over any ρG.

Each expectation value of a pair of ladder operators acting on a specific mode of ρG

has its correspondence with one of the four identities in

I1 = Tr[âj âkρG] = 1
4[σj,k − σN+j,N+k + i(σj,N+k + σN+j,k)], (34)

I2 = Tr[â†
j âkρG] = 1

4[σj,k + σN+j,N+k + i(σj,N+k + σN+j,k)]− 2δj,k, (35)

I3 = Tr[âj â†
kρG] = I2 + δj,kTr[ρG], (36)

I4 = Tr[â†
j â†

kρG] = 1
4[σj,k − σN+j,N+k − i(σj,N+k + σN+j,k)], (37)

where σj,k is the covariance matrix element of row j and column k and δj,k is the Kronecker
delta function which is always zero except for j = k.
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Moreover, if there are multiple ladder operators transforming a Gaussian state ρG, the
final expectation value can also be calculated by computing all possible perfect matchings
P of the operators inside the trace representing the expectation value [? ], which is given
by the formulas

Tr[â†
SN

...â†
S1

â†
CM

...â†
C1

âC1 ...âCM
âS1 ...âSN

ρG] = 1
K

∑
P

∏
{p1,p2}∈P

Tr[â#
p1 â#

p2ρG], (38)

K = Tr[â†
SN

...â†
S1

âS1 ...âSN
ρG], (39)

where K is the normalization factor after the photon subtractions âSi , âCi correspond to
the observable quantity whose expectation value is to be found, and â#

j means that the
operator of mode j may be whether a creation or annihilation operator.

It is crucial to mention that there are no real difference between â#
Ci

and â#
Si

. It is only
a way to distinguish the operators that create or annihilate photons and the operators
related to the observable.

Note that the number of total ladder operators must be even to be able to use the
expression.

Regarding the complexity, defining the Eq. (38) with a total of n ladder operators, the
number of different perfect matchings is (n− 1)!!, which translates into (n− 1)!! different
trace expressions and makes it a hard task for classical computation.

In terms of simulation of the quantum state evolution for the neural network training
using the covariance matrix of a Gaussian state, the measurements can be performed
by homodyne or heterodyne detection which are Gaussian measurements based on the
observation of quadrature operators or ladder operators that agree with the expectation
values expressions obtained through the covariance matrix.

From the structure of Eq. (38), one feasible observable could be the number operator
N̂ , defined as

N̂i = â†
Ci

âCi , i ∈ {1, ..., N}, (40)

which counts the number of photons of a certain mode.

7 Quantum Neural Network with Quantum Optics
As mentioned at the beginning of the project, the purpose is to develop a method such
that, for a given objective function f(x⃗) of M inputs x⃗ = (x1, ..., xM ), the neural network
is capable of approximating f(x) as for any input like

f̃(x⃗) = Φ(Wx⃗ + b⃗), (41)

where W is the weights matrix that linearly transforms the input vector x⃗, b⃗ is a real
vector related to the bias and Φ is a non-linear activation function allowing the learning
of non-linear patterns.

The approach used in [KBA+19] is based on a general quantum neural network in a
continuous variable framework like quantum optics, the data is encoded in |xi⟩, correspond-
ing to the real part of the electromagnetic complex field of the photon i, and processed
with a sequence of l layers. Each layer Ll has an independent composition of operators

Ll := Φ̂(l) ◦ D̂(l) ◦ Û2
(l) ◦ Ŝ(l) ◦ Û1

(l)
, (42)

where Û1, Û2 are passive optics operators acting on all modes of the system, Ŝ is a joint
squeezing operator with one squeezing factor for each mode, D̂ is also a joint displacement
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with one displacement parameter per mode and Φ̂ is a non-Gaussian transformation. The
direct mapping between these components and Eq. (41) are

W = Û2ŜÛ1, b⃗ = D̂ and Φ = Φ̂. (43)

However, the innovative QNN simulation approach of this project focuses on the covari-
ance matrix of the quantum state as the unique entity of information representation, which
means that the information has to be encoded in the variances of the particles positions
instead of positions themselves as in [KBA+19]. Therefore, the layer components from (42)
need to be adjusted for the covariance matrix to represent the information. Furthermore,
this implementation goes beyond [KBA+19] because it employs a hardware inspired ansatz
for the QNN and the non-Gaussian operations used are actually available with current tech-
nology. In the experiment carried out in [SvdMA+21] the architecture would be the same
as the one described here.

Up to now, all required components to build the proposed QNN mechanism in a
continuous-variable system were outlined throughout the previous sections. Next, in this
section, the components, parameters, data preparation, architecture for data processing
and output obtaining of covariance-based QNN method are thoroughly described for clas-
sical simulation and optical quantum computers implementation.

7.1 Components
Bringing up the studied foundations of earlier sections in order to adapt the components
of (42) to the presented QNN approach, the elements of the suggested neural network
mimicking the artificial neural network composition are listed in the following table.

NN COMPONENT QNN COMPONENT QNN OBJECT

Encoding structure Quadratures covariance matrix σ

Inputs and neurons Number of modes N

Weight matrix Symplectic matrix S = Q2ZQ1

Non-linear function Photon creation/annihilation Φ̂ = â#

Layers Previous components stack L
Outputs Homodyne measurement

∏
â#â#

Table 1: Quantum optics components relative to artificial neural networks components

As seen in Eq. (30), the displacement transformation does not affect the covariance
matrix of the quantum state, therefore all kinds of displacements are entirely neglected for
this QNN methodology.

Given that the number of modes N plays both number of inputs and number of neurons
roles, one remark that must be underlined is the fact that N shall be at least as many
as the number of inputs of the QNN so the encoding structure σ has sufficient degrees of
freedom for all inputs to be considered in the learning and predicting phases.

Nonetheless, the number of modes N can exceed the number of inputs as a way to
implement more neurons in the layers where the extra modes are not encoding any input
but remain encoded by default, which translates into a squeezing factor of 1 for said extra
modes. So, in order to decrease the number of neurons for each layer, the spare modes can
simply be traced out or measured [KBA+19].
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7.2 Data preparation
As just stated, the data encoding element for this QNN model is the covariance matrix
of the quadratures of each mode, meaning the quadratures variances store the informa-
tion, specifically, only positions variances because position and momentum variances are
inversely related which would result into less degrees of freedom if encoding in both of
them.

This forces the input data encoding to be carried out by some operator that modifies
the variances of each mode independently, what is achieved through the squeezing operator.
Consequently, the input data encoding take place on the squeezing factor ri of each mode’s
position.

At the beginning stage, the initial Gaussian state represented by its covariance matrix
is initialized with squeezing operators to encode the input data for the QNN. Due to some
limitations described in [PSCLGFL20], the adopted encoding strategy is the one suggested
there: data re-uploading.

The data re-uploading technique consists of encoding multiple times the data along the
neural network with the objective of allowing complex patterns learning. The main goal
with this technique is to induce non-linearity needed to apply the universal approximation
theorem [PSCLGFL20].

As each layer Ll has an independent squeezing operator per mode, the data re-uploading
at each layer is feasible and easily achievable in this QNN model.

7.3 Parameters
The parameters to be optimized may be kind of flexible. In the implemented QNN model,
the ones chosen to be tuned are the squeezing factors from Z of the first layer only be-
cause of the data re-uploading strategy and the passive optics parameters corresponding
to the symplectic-orthogonal matrices Q1, Q2. This results into N parameters for the first
squeezing operator and N2 free parameters for each passive optics operator Q1, Q2. If the
number of layers is l, this sums up to l(2N2) + N tunable parameters.

The squeezing operator is a diagonal matrix with the squeezing values for the position
variances and the inverse of these values for the momentum variances.

The passive optics operator Qj is a 2N × 2N symplectic-orthogonal matrix whose
construction is based on Eq. (15), which uses a unitary matrix U obtained by

U = eiH with H ∈ RN ×RN . (44)

Nevertheless, the non-linear activation function Φ̂ could be also added to the optimiza-
tion parameters in terms of the number of photon addition/subtraction operators applied
at each layer. Likewise, the observable yielding the QNN outputs could be another tunable
object.

It is worth noting that, in general, the ladder operators may be restricted to act over
one mode only because swapping two modes is a Gaussian operator [CFGM21] which is
going to be optimized. Thereby, the application of the non-Gaussian operators is usually
seen just on the first mode throughout the project and the optimization would eventually
reach to mode swapping if needed.

7.4 Architecture
Since the data structure used for information encoding and processing is the covariance ma-
trix σ of the quantum system, the action of each operator from Ll on σ shall be consistently
translated using the relations from Table 1.
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It’s worth highlighting that all operators from (42) are Gaussian except for the non-
linear transformation Φ̂ whose effect, performed in quantum optics via photon creation and
annihilation operators (â and â†), cannot be entirely described by the covariance matrix
of the quantum state but requires more statistical moments.

To avoid the computation of additional statistical moments of the state and just stick
to the covariance matrix evolution, Eq. (38) is employed in order to calculate the expecta-
tion value of some quadratic ladder observable after the action of any number of photon
subtractions or additions over the Gaussian quantum state.

Therefore, by virtue of simplicity, it is convenient to split the Gaussian and the non-
Gaussian parts which is even required for a later stage.

S(l) = Q
(l)
2 Z(l)Q

(l)
1

Φ̂(l) = â#
j

(45)

Hence, the action of the Gaussian part of the layer would modify the covariance matrix
σ of the quantum state as

Ĝ : σ → Q2ZQ1σQT
1 ZQT

2 (46)

and, finally, the non-Gaussian transformation Φ̂ effect over this Gaussian quantum state is
obtained together with some Fock space quadratic observable by defining its corresponding
expectation value expression form analogous to template Eq. (38).

Summing up, if the chosen non-Gaussian operator is a photon creation on mode 1 and
the initial quantum state ρG0 is a Gaussian state of N modes |G0⟩ ⟨G0|⊗N , which in this
QNN model is a squeezed Gaussian state related to the initial input encoding, the quantum
state evolution after the complete layer would be characterized by

â†
1Ĝ ρG0 Ĝ†â1. (47)

Clearly, this method is only valid when the QNN is composed just by one single layer,
i.e. a quantum perceptron, due to the lack of expressiveness of the covariance matrix after
the non-Gaussian transformation of the first layer. So, it would be impossible to track the
evolution of multiple layers as

â†
1Ĝ(l)â†

1Ĝ(l−1)...â†
1Ĝ(1) |G0⟩ ⟨G0|⊗N Ĝ†(1)â1...Ĝ†(l−1)â1Ĝ†(l)â1 (48)

solely taking into account the covariance matrix of the quantum state.

Figure 1: Multi-layer Quantum Neural Network circuit of Eq. (48).

To be able to implement a multi-layer quantum neural network, as the one shown in
Figure 1, with the proposed method using the expression of Eq. (38), it is essential to have
all non-Gaussian transformations at the latest stage and all Gaussianity at the beginning.
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Fortunately, this can be fixed by looking at how the action of a Gaussian unitary
operator Ĝ influences the ladder operator. This way, the commutation between a Gaussian
operator and the photon addition or subtraction non-Gaussian operators can be performed.

Recalling from Gaussian operators section, the unitary action of a Gaussian operator
Ĝ over a Gaussian quantum state ρG modifies its covariance matrix through its symplectic
representation S as Eq. (31).

Similarly, the unitary application of a Gaussian operator Ĝ over the photon addition
operator in mode k is achieved with its symplectic matrix representation S of Ĝ [CFGM21],
[WPGP+12] like

Ĝâ†
kĜ† =

N∑
j=1

sk,j â†
j + sk,N+j âj , (49)

where sj,k represent the element from row j and column k of the symplectic matrix S.
Working out Eq. (49) to drag the non-Gaussianity to the left side gives as result

Ĝâ†
k =

 N∑
j=1

sk,j â†
j + sk,N+j âj

 Ĝ = SkĜ (50)

where Sk is a superposition of photon addition and subtraction operators for each mode
j ∈ 1, ..., N with coefficients sj,k ∈ R corresponding to elements in the symplectic matrix
of Ĝ.

Now, plugging Eq. (50) into Eq. (48) multiple times starting from the edges of the
expression gives

â†
1S

(l)... S(2)Ĝ(l)... Ĝ(1) |G0⟩ ⟨G0|⊗N Ĝ†(1)... Ĝ†(l)S†(2)... S†(l)â1. (51)

Figure 2: Non-Gaussianity swapped multi-layer Quantum Neural Network circuit of Eq. (51).

Note that the symplectic coefficients of ladder operators superposition S(k) are directly
related to the Gaussian unitary Ĝ(k) configuration. In spite of that, all Gaussian operators
can be gathered into a single one Ĝ by two facts: 1) the product of Gaussian transforma-
tions is also a Gaussian transformation and 2) the first Gaussian operator Ĝ(1) is of free
choice because it does not need to be permuted with any non-Gaussian operator.

As Gaussian operators are to be optimized during the quantum neural network training
process, Ĝ(1) would have an independent shape and it would completely transform all other
Ĝ(k) decoupling all of them from their symplectic representation needed for S(k).

At last, the desired general form for an l-layer quantum neural network is achieved and
it looks like

â†
1S

(l)... S(1)Ĝ |G0⟩ ⟨G0|⊗N Ĝ†S†(1)... S†(l)â1. (52)
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7.5 Output measurement
After the Gaussian operator Ĝ is applied to the initial Gaussian state |G0⟩ ⟨G0|⊗N at Eq.
(52) giving a new Gaussian state ρG, the application of the non-Gaussian part together
with the desired observable to be measured would result into an expression arranged as Eq.
(38).

Therefore, this expression’s expectation value representing the QNN output is obtained
by performing all perfect matchings of the ladder operators in the expression, up to a
normalization constant given by (39).

Thanks to the linearity of the trace, the summation of the different terms in the non-
Gaussian ladder operator superposition can be split into the sum of traces of each of these
terms.

In practice, the outcomes of the QNN with quantum optics are obtained under homo-
dyne or heterodyne measurement of the final non-Gaussian quantum state. The form of
the homodyne or heterodyne detection depends on the observable to be measured. This
way, the expectation value of the observable can be statistically obtained by repeating the
detection process.

7.6 Training and evaluation
Once defined all hyperparameters and the topology of the quantum neural network based on
the objective function or the chosen dataset, the optimization algorithm has to be selected
along with the loss function that is going to be minimized for the dataset evaluation and
the QNN training stage can start.

Typically, the loss function is the mean squared error defined as

MSE (f̃(x⃗)) = 1
M

M∑
j=1

(f(x⃗j)− f̃(x⃗j))2, (53)

where f(x⃗) is the desired output value for inputs in x⃗, f̃(x⃗) is the predicted value of the
neural network and M is the number of samples of one dataset batch.

First, all l(2N2) + N parameters to be tuned are initialized to a random value and all
possible perfect matchings of the expectation value expression are calculated for both the
observable and the non-Gaussianity normalization factor.

Then, the inputs and outputs of the dataset are loaded and normalized. Although it is
optional, the dataset may also be split into minibatches for the training.

After that, the parameter optimization starts and repeats the Algorithm 1 calculating
the loss function value of Eq. (53) and using the optimization method to update the
parameters.

When the optimization has converged, meaning that the difference between consecutive
loss function values is lower than a certain threshold defined in the optimizer, the training
comes to an end.

Finally, the optimal parameters, i.e. the ones that minimizes the loss function, are
retrieved and stand for the trained parameters of the neural network.

For evaluation, the optimal parameters obtained after training the QNN are used to
build the passive optics and squeezing operators in order to reproduce the trained QNN
and start making predictions by inserting inputs and measuring at the end of the quantum
circuit. This is also reflected in Algorithm 1 but using the optimized parameters instead
of random values.
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7.7 Two-layer QNN example
As an illustration example, let’s define a quantum neural network of 2 inputs, 2 outputs
and 2 layers. This implies the constraint of N ≥ 2 but, for simplicity, let’s consider only
2 neurons per layer, so N = 2. On the other hand, the non-Gaussian part consists of one
photon addition on first mode for each layer.

Then, considering that the initial Gaussian quantum state |G0⟩ ⟨G0|⊗2 is a 2-mode
squeezed vacuum state with position squeezing factors equal to the inputs’ values, the
standard expression for the quantum system would be

â†
1Ĝ(2)â†

1Ĝ(1) |G0⟩ ⟨G0|⊗2 Ĝ†(1)â1Ĝ†(2)â1, (54)

which, after applying the commutation relation, turns into

â†
1S

(1)Ĝ |G0⟩ ⟨G0|⊗2 Ĝ†S†(1)â1. (55)

Now, establishing the evolution in terms of the covariance matrix of the system, the
vacuum state covariance matrix σv is described by the identity 2N × 2N = 4 × 4 where
the initial squeezing operator related to the input encoding acts like

σ0 = ZINσvZIN. (56)

Next, recalling from Eq. (46) that the Gaussian operator Ĝ acts over the covariances with
its symplectic representation S = Q2ZQ1 applied by congruence, the covariance matrix
σG of the final Gaussian state ρG ends up as

σG = Q2ZQ1 σ0 QT
1 ZQT

2 = Q2ZQ1ZIN σv ZINQT
1 ZQT

2 . (57)

Since all Gaussianity has been computed, the only step left is the non-Gaussianity
and the measurement whose procedures are performed in a single shot when it comes to
classical simulation.

On the one hand, the non-linear transformation is carried out by one photon addition
operator on the first mode together with a superposition of all ladder operators of all
modes whose coefficients come from the symplectic matrix representing Ĝ(1) as seen in Eq.
(50). They act by congruence over ρG resulting into the non-Gaussian state ρNG with the
appearance

ρNG = â†
1S

(1) ρG S†(1)â1, (58)

which expanded has the form

ρNG = â†
1

(
s

(1)
1,1â†

1 + s
(1)
1,2â†

2 + s
(1)
1,3â1 + s

(1)
1,4â2

)
ρG

(
s

(1)
1,1â1 + s

(1)
1,2â2 + s

(1)
1,3â†

1 + s
(1)
1,4â†

2

)
â1.

(59)
On the other hand, let’s say that the observable to be measured at each mode is the

number operator N̂j = â†
j âj where j stands for the measured mode. The normalized

expectation values would be

⟨ρNG|N̂j |ρNG⟩ =
Tr
[
N̂jρNG

]
K

=
Tr
[
a†

j âjρNG

]
K

, (60)

where the normalization factor K is equal to

K = Tr
[
â†

1

(
s

(1)
1,1â†

1 + s
(1)
1,2â†

2 + s
(1)
1,3â1 + s

(1)
1,4â2

)
ρG

(
s

(1)
1,1â1 + s

(1)
1,2â2 + s

(1)
1,3â†

1 + s
(1)
1,4â†

2

)
â1
]

.

(61)
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By plugging Eq. (59) into (60), the outcomes when measuring the two modes observ-
ables look like

⟨N̂j⟩ =
Tr
[
N̂j â†

1

(
s

(1)
1,1â†

1 + s
(1)
1,2â†

2 + s
(1)
1,3â1 + s

(1)
1,4â2

)
ρG

(
s

(1)
1,1â1 + s

(1)
1,2â2 + s

(1)
1,3â†

1 + s
(1)
1,4â†

2

)
â1
]

Tr
[
â†

1

(
s

(1)
1,1â†

1 + s
(1)
1,2â†

2 + s
(1)
1,3â1 + s

(1)
1,4â2

)
ρG

(
s

(1)
1,1â1 + s

(1)
1,2â2 + s

(1)
1,3â†

1 + s
(1)
1,4â†

2

)
â1
] .

(62)
Finally, expanding the terms and using the trace cyclic and linear properties, the expression
(62) ends up as

⟨N̂j⟩ = 1
K

(
s

(1)2
1,1 Tr

[
N̂j â†

1â†
1ρGâ1â1

]
+ s

(1)
1,1s

(1)
1,2 Tr

[
N̂j â†

1â†
1ρGâ2â1

]
+ ...

)
=

1
K

(
s

(1)2
1,1 Tr

[
â1â1N̂j â†

1â†
1ρG

]
+ s

(1)
1,1s

(1)
1,2 Tr

[
â2â1N̂j â†

1â†
1ρG

]
+ ...

)
=

1
K

(
s

(1)2
1,1 Tr

[
â1â1â†

j âj â†
1â†

1ρG

]
+ s

(1)
1,1s

(1)
1,2 Tr

[
â2â1â†

j âj â†
1â†

1ρG

]
+ ...

)
,

(63)

where the form of Eq. (38) becomes visible.
The last stage left for the calculation of the two QNN outputs ⟨N̂1⟩ and ⟨N̂2⟩ would

be to compute all the perfect matchings for each term in Eq. (63) as well as for the
normalization factor K using the right-hand-side formula from Eq. (38).

One significant remark is that the total number of terms in the expectation value
expression scales in function of the number of modes N and the number of layers l like

(2N)2(l−1), (64)

hence, for this case with 2 modes and 2 layers, the total number of terms sums up to 16.
This leads to the truth that any physical observable represented by ladder operators

would be classically simulable with the presented method if it were not for the classical
intractability of the double factorial together with the scaling factors of the number of
modes N and layers l.

8 Results
First, the general resources used for the simulations are

• L-BFGS-B optimization algorithm from SciPy Python library

• MSE loss function from Eq. (53)

• Observable N̂1 = â†
1â1.

The obtained results were made by using continuous monotonic-increasing polynomial
functions as target functions, hence, implying only one input and one output of the QNNs.

To create the datasets for the polynomial functions, normalized random inputs between
a range were created to represent the features of the problem along with their respective
normalized function evaluations constituting the expected output of the QNN.

The results are composed by: 1) multiple modes and layers 2) the loss function values
obtained throughout each iteration of the training phase of the QNN simulation for each
mode and layers and 3) the evaluation of the testing set generated by randomly sampling
the continuous functions and subsequently sorted by virtue of predictions visualization.

The first result comes from a cubic polynomial target function:
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Figure 3: QNN training of target function f(x) = 0.7x3 + 1.7x2 + 2.4x + 5 for different modes and
layers where the testing set is evaluated in the first and third row, with horizontal axis representing the
evaluation sample, and the loss convergence of the training is shown in the second and fourth row, with
horizontal axis representing the iteration of the optimization.

To increase the complexity, the following result is from a 5th-grade polynomial function:

Figure 4: QNN training of target function f(x) = 0.2x5 + 1.3x4 + 0.7x3 + 1.7x2 + 2.4x + 5 for different
modes and layers where the testing set is evaluated in the first row, with horizontal axis representing
the evaluation sample, and the logarithmic loss convergence of the training in the second row, with
horizontal axis representing the iteration of the optimization.

On the other hand, another outstanding result is the Gaussian quantum perceptron
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where only the Gaussian operator is considered without any non-Gaussianity.
It turns out that, given an initial Gaussian state, there exists a symplectic transfor-

mation that is capable of transforming the initial Gaussian state into any other Gaussian
state. Then, after the QNN optimizes the Gaussian transformation represented by the
symplectic matrix, the preparation of any Gaussian state is achieved.

9 Conclusions
From the results it is deduced that the simulated quantum neural network is perfectly
designed to be able to learn, at least, any degree polynomial function with a very small
error whenever it has more than one layer. With a single layer, the QNN is not able to
learn and generalize the target function.

Also, appears like two layers are enough to learn any-degree polynomial function and
that a third layer does not offer any improvement in the loss function. However, there is an
improvement in the loss function convergence value when increasing the number of modes
until having 5 modes.

Moreover, the QNN is capable of generalizing the objective function with a reduced
number of samples, as demonstrated by the testing set results.

Given the double factorial complexity of Eq. (38) and the number of terms hugely
scaling with the number of modes and layers as Eq. (64) holds, shows that non-Gaussianity
is classically an intractable task.

Despite of that, the complex computational part would ideally be executed on a real
quantum hardware device avoiding both the matrix exponentiations and the expectation
value expression calculations.

Regarding the data re-uploading encoding strategy, the obtained results may have
improved the learning in contrast with just a single input encoding, but more tasks and
tests would be needed in order to affirm its real effectiveness.

10 Further work
10.1 Real tasks
The proposed QNN was classically trained and tested for supervised learning with polyno-
mial functions of different degrees, by generating random datasets of the target functions.

One interesting application would be to train the QNN with a real task in order to
test its effectiveness and study how the model could be improved. For this, different real
datasets could be investigated and used to test the QNN.

10.2 Physical realization
When it comes to do the physical implementation of the optical quantum neural network,
all operators used in the simulation, found in Table 1, have their physical correspondence
in terms of phase shifters, beam splitters, squeezers, photon addition or subtractions and
homodyne and heterodyne detectors.

Then, in order to physically implement the proposed QNN, the only thing to do is
replace the classical computation of the operators by its corresponding quantum optics
components that were just mentioned.

A future task would be the implementation of the QNN in a real optical quantum
computer which would require a software and hardware infrastructures that are able to
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translate the shape of the operators obtained in the classical optimization process into the
different physical components such as interferometers, squeezers, polarizers, etc.

10.3 Classical optimization improvement
As aforementioned, the number of perfect matchings scales with the double factorial of the
number of ladder operators forming the observable expectation value and normalization
factor expressions. In addition, the operation of matrix exponentiation is a heavy task
repeated twice per layer of the QNN when building the unitary matrix which, in turn,
increases the matrix dimension with the number of modes. As this process is repeated
many times in the QNN training stage, the simulation slows down considerably/notably
as the number of modes and/or layers of the QNN increase.

Some future challenge to tackle could be to reduce the number of operations with some
strategy, to avoid matrix exponentiation or to execute the simulation in a high-performance
environments like distributed systems or supercomputers in order to speed up the training
process.

10.4 Quantum natural gradient descent
With the goal of designing a QNN where all the process is carried out with quantum
mechanics, one has to get rid of the classical part which is the optimization of the training.

The point would be to develop a natural quantum gradient descent aiming to replace
classical optimization algorithms by a quantum optimizer and its feasibility relies on the
similarity between the Stochastic Gradient Descent formula,

θj = θj − α
∂

∂θj
J(θ⃗), (65)

where each θj ∈ θ⃗ is one parameter to be tuned and J(θ⃗) is the loss function to be
minimized, and the definition of momentum operator

p̂Ψ = −iℏ
∂

∂x
Ψ (66)

where x stands for the the position.
Some articles like [SIKC20] and [Yam19] already study and implement different tech-

niques for quantum natural gradient descent.
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A Symplectic-orthogonal and unitary isomorphism
First, let’s start with the unitary group denoted by U(N) which is the group of N × N
unitary matrices. Among other properties, any unitary matrix obeys

UU † = 1N , ∀U ∈ U(N). (67)

If the unitary matrix is represented instead as the sum of its real and imaginary parts
U = X + iY with X, Y ∈ RN×N , the aforementioned expression (67) turns into the
following one

UU † = (X + iY )(XT − iY T ) = (XXT + Y Y T )− i(XY T − Y XT ) = 1N , (68)

where the employed fact is that the Hermitian transpose of a real matrix is the same as its
transpose.

Next, the orthogonal group represented by O(N) is the group of N × N orthogonal
matrices fulfilling the property

OOT = OT O = 1, ∀O ∈ O(N) (69)

for any orthogonal matrix O.
Finally, the real symplectic group symbolized with Sp(2N,R) is the group of 2N × 2N

real symplectic matrices. A real symplectic matrix S is a real matrix that preserves the
real anti-symmetric symplectic form J like

SJST = ST JS = J with J =
(

0N 1N

−1N 0N

)
. (70)

As Appendix B from [Ser17] shows, any symplectic matrix S can be written as a matrix
exponential of the form S = eJHt where J is the symplectic form, H is a real and symmetric
matrix and t is a real parameter.

Now, Imposing together the conditions of the symplectic group Sp(2N,R) and the or-
thogonal group O(2N), both for matrices 2N×2N , gives the orthogonal compact subgroup
which is represented as K(N) = Sp(2N,R) ∩O(2N) [Ser17].

To do this, let’s write a general 2N × 2N matrix Q divided in blocks of four N × N
matrices with the form

Q =
(

X Y
W Z

)
(71)

and let’s apply the symplectic and orthogonal conditions to Q.
On the one hand, enforcing the condition of the symplectic form preservation to Q seen

in Eq. (70) results into the following restrictions

QJQT = J ⇐⇒
(

XY T − Y XT XZT − Y W T

WY T − ZXT WZT − ZW T

)
=
(

0N 1N

−1N 0N

)
, (72)

QT JQ = J ⇐⇒
(

XT W −W T X XT Z −W T Y
Y T W − ZT X Y T Z − ZT Y

)
=
(

0N 1N

−1N 0N

)
(73)

On the other hand, when imposing the orthogonality condition (69) to Q, the derived
constraints turn to be

QT Q = 12N ⇐⇒
(

XT X + W T W XT Y + W T Z
Y T X + ZT W Y T Y + ZT Z

)
=
(
1N 0N

0N 1N

)
, (74)

23



QQT = 12N ⇐⇒
(

XXT + Y Y T XW T + Y ZT

WXT + ZY T WW T + ZZT

)
=
(
1N 0N

0N 1N

)
. (75)

Putting all these constraints together in order to make Q ∈ K(N) = Sp(2N,R)∩O(2N),
i.e. Q to be symplectic and orthogonal, it is known that X = Z and W = −Y and the
most generic form of Q become

Q =
(

X Y
−Y X

)
with

{
XY T − Y XT = 0N

XXT + Y Y T = 1N

. (76)

In the end, recalling the unitary expression in terms of its real and imaginary parts
derived in (68), one may notice that it matches exactly with the conditions from (76). This
important equivalence affirms an isomorphism between K(N) and U(N), thus allowing the
representation of Q as a unitary matrix UQ by applying (7) like

ŪQŪ † =
(

X − iY 0N

0N X + iY

)
=
(

U∗
Q 0N

0N UQ

)
. (77)

B QNN algorithm
The initialization block is only executed once for all iterations, i.e. N and the final expres-
sion of the target expectation value are fixed values for one given a QNN.

Algorithm 1 One iteration of QNN
init:

N ← Num inputs
ExpValExpression ← 38 Form-like expression

ZIN =
(⊕N

j=1 xj

)
⊕
(⊕N

j=1 x−1
j

)
σ ← ZIN1ZIN
Q1 ← RandomPassiveOptics(N)
Q2 ← RandomPassiveOptics(N)
Z ← Random (N)
σ ← Q2ZQ1σQT

1 ZQT
2

for i in layer [2:N] do
Q1 ← RandomPassiveOptics(N)
Q2 ← RandomPassiveOptics(N)
Z ← ZIN
Si ← Q2ZQ1

ExpVal← 0
for (i in All perfect matchings of ExpValExpression) do

ExpVal + = Si ∗ i as held in Eq. (50)
procedure RandomPassiveOptics(N)

M ← Random (N ×N)
H ←M + MT

U ← eiH

Q← Ū †
(

U∗ 0N

0N U

)
Ū

return Q
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