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ZX-calculus is a formalism that can be used for quantum circuit compila-
tion and optimization. We developed a Reinforcement Learning approach for
enhanced circuit optimization via the ZX-diagram graph representation of the
quantum circuit. The agent is trained using the well-established Proximal Pol-
icy Optimization (PPO) algorithm, and it uses Conditional Action Trees to
perform Invalid Action Masking to reduce the space of actions available to the
agent and speed up its training. Additionally, we also design and implement
a Genetic Algorithm for the same task. Both the genetic algorithm and the
most widely used ZX-calculus-based library for circuit optimization, the PyZX
library, are used to benchmark our RL approach. We find our RL algorithm to
be competitive against both approaches, but further exploration is required.

Keywords: quantum computing, quantum circuit optimization, machine learning, deep
reinforcement learning, ZX-calculus.
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1 Introduction
Quantum computers have the potential to outperform classical computers and solve various
problems in different research fields more efficiently. In computer science, quantum search
algorithms like Grover’s algorithm can be used to speed up search problems significantly
[Gro96]; in physics, quantum computers can be used as a tool for simulating quantum
systems [BMK10]; and in chemistry, quantum computers are expected to calculate energy
spectra of molecular systems much faster [LWG+10]. Quantum computers operate on
quantum bits or qubits, which are the basic units of quantum information. Unlike classical
bits, which can only be in one of two states (0 or 1), qubits can be in a superposition of both
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states, meaning they can be 0, 1, or anything in between, allowing quantum computers to
explore a larger space of possibilities to solve certain problems [RP11].
There are two main models of quantum computation: analog and digital. In the analog
model, quantum computers use continuous variables and physical systems to encode and
manipulate quantum information. In the digital model, quantum computers use discrete
variables and logical operations to encode and manipulate quantum information. In the
digital model of quantum computation, we encode the problem to solve as a sequence of
quantum gates. Quantum gates are the building blocks of quantum circuits and can be
classified into two types: Clifford gates and non-Clifford gates. Clifford gates are a subset
of quantum gates that preserve the structure of the Pauli group, which is a set of operators
that describe the behaviour of qubits. Non-Clifford gates are any quantum gates that are
not in the Clifford subset. Clifford gates are easier to implement and correct than non-
Clifford gates, but they are not sufficient for universal quantum computation. Therefore,
we need to use both types of gates to achieve the full power of quantum computing [NC10].
Implementing quantum gates is not a trivial task, as quantum systems are very sensitive
to noise and errors and any interaction can lose them lose their coherence, i.e. the ability
to maintain superposition due to interactions with their environment. This phenomenon
is called decoherence, and it limits the time that a quantum system can perform reliable
computations [Zur03]. To overcome the challenge of decoherence, we need to find efficient
ways to optimize our quantum circuits and reduce their circuit depth, i.e. the length or
duration of a quantum circuit. The circuit depth depends on how many layers or steps of
gates we need to apply to our qubits. The longer the circuit depth, the more prone our
circuit is to errors and noise.
Therefore, we want to minimize the circuit depth as much as possible, while preserving
the functionality and correctness of our circuit. This is especially important in the current
era of Noisy Intermediate-Scale Quantum (NISQ) devices [Pre18], where we have access
to quantum computers with chips ranging from fifty to a few hundred qubits, but with
limited coherence time and high error rates.
The motivation of reducing the circuit’s depth has spawned a new field of research called
quantum circuit optimization, which focuses on finding algorithms for reducing the size and
complexity of quantum circuits. Optimizing quantum circuits, in general, is QMA-hard1,
which means that, most likely, there exists no algorithm with polynomial runtime that
returns an optimal solution for arbitrary quantum circuits. We focus on quantum circuit
optimization using the ZX-calculus, a recently developed graphical language designed to
simplify reasoning about quantum systems. We can transform any quantum circuit to
an equivalent representation in ZX-calculus called ZX-diagram and use rules of the ZX-
calculus to simplify the diagram instead of the circuit. Moreover, the ZX-calculus can
be applied to different types of circuits, from NISQ devices to fault-tolerant architectures
[dBH20].

2 Background on ZX-calculus
ZX-calculus is a graphical language first introduced by Bob Coecke and Ross Duncan
in 2008 [CD11] to represent linear maps between qubits. We can use ZX-calculus to
represent any quantum process as a 2-dimensional diagram, where nodes and wires form

1QMA is short for Quantum Merlin Arthur, a complexity class for quantum computers containing all
problems from NP.
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an undirected graph 2. We call this graph representation of the quantum process a ZX-
diagram. The nodes of a ZX-diagram are called spiders, which can either be green (Z
spider) or red (Xspider). We also have two possible types of wires, Simple and Hadamard
wires.3.

2.1 Spiders
The Z spider is usually represented in green and is a tensor constructed with the composi-
tion of the Pauli-Z eigenstates, |0⟩ and |1⟩.

α... ... := |0 · · · 0⟩︸ ︷︷ ︸
m

⟨0 · · · 0|︸ ︷︷ ︸
n

+eiα |1 · · · 1⟩︸ ︷︷ ︸
m

⟨1 · · · 1|︸ ︷︷ ︸
n

, (1)

Where m and n are the inputs/outputs of the spider. The X spider on the other hand is
represented in red and is a composition of the X-Pauli eingenstates |+⟩ and |−⟩.

α... ... := |+ · · · +⟩︸ ︷︷ ︸
m′

⟨+ · · · +|︸ ︷︷ ︸
n′

+eiα |− · · · −⟩︸ ︷︷ ︸
m′

⟨− · · · −|︸ ︷︷ ︸
n′

, (2)

Note that the number of inputs need to be equal to the number of outputs, and α is an
angle between 0 and 2π. Examples of special spiders can be found in Appendix A.1.

2.2 Hadamards
The Hadamard gate is represented as a yellow box or as a blue wire in ZX-diagrams

= = 1√
2

(
1 1
1 −1

)
.

While spiders can have any number of inputs or outputs, Hadamards, as single-qubit
unitary gates, can only have one input and one output. There are two important identities
related to the Hadamard gate in ZX-calculus, which can be found in Appendix A.2.2 and
A.2.3.

2.2.1 Scalars

A spider with zero inputs and outputs represents a scalar, i.e., a single complex number.
Scalars can be moved freely around the ZX-diagram, and they can be combined at any
point with the spiders or other generators. Here we present the set of scalars needed to
represent any complex number (Derivations in Appendix A.3)

α = √
2= 2

= 1√
2

α π = √
2eiαπ = 0

α = 1 + eiα

(3)

2An undirected graph is a mathematical structure that consists of a set of nodes (also called vertices)
and a set of edges (also called links or lines) that connect pairs of nodes. The edges do not have any
direction, meaning that they can be traversed in either way.

3A Hadamard wire is just a simple wire with a Hadamard gate.
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In most papers using ZX-calculus, the non-zero scalar factors are usually dropped, for
the same reason that we usually work with unnormalised quantum states, it is convenient
to simplify calculations. Therefore, two diagrams are considered equal if their associated
matrix is equal up to a global scalar.

2.2.2 CNOT gate

The CNOT gate is represented in ZX-diagrams with a green spider (control) connected
to a red spider (target). As shown in Eq.4, we can express the CNOT gate either with
the green (red) spider acting as input to the red (green) spider. Since both diagrams are
equivalent, it is common to express the CNOT with a transverse wire.

= =

(4)

2.3 Rules
In this section, we will present the set of rewrite rules that allows us to transform a
ZX-diagram into another. The rules are sound, which means that they all preserve the
underlying tensor representation of the diagram, e.g. they have their equivalence in the
Hilbert representation. Before explaining the rules that can be applied to a spider, we will
present a general set of meta-rules regarding ZX-diagrams.

1. Since ZX-diagrams have associated a linear map in a Hilbert space 4, there exist two
possible compositions between any ZX-diagrams D1, D2:

(a) Spatial compositions: Corresponds to the kronecker product of the tensors asso-
ciated to D1, D2 (D1 ⊗ D2). Diagrammatically consists of placing the diagram
D2 to the right of D1.

(b) Sequential composition: Corresponds to the scalar product of the tensors associ-
ated to D1, D2(D1 ◦ D2). Diagrammatically, consists of placing the diagram D1
on top of D2 and connecting the outputs of D1 to the inputs of D2. This com-
position is only feasible if D1 and D2 have the same number of inputs/outputs.

2. Any of the rewrite rules holds for green and red spiders, or for any orientation of the
diagram.

3. Only connectivity matters. We can arbitrarily rearrange the spiders in the plane as
long as the connections between them and with the inputs/outputs are preserved.5

We can also bend as much as we want the wires, for any number of inputs and
outputs.

4. We can obtain the conjugate of a ZX-diagram by negating all the phases of the spiders
that form it. To obtain its transpose, we need to bend the wires to switch inputs for
outputs and vice versa.

4This is the standard interpretation of ZX-diagrams.
5This is because the generators in a ZX-diagram represent quantum operations, which are unitary

transformations that act on quantum states. Unitary transformations are defined purely in terms of their
action on vectors in a Hilbert space and do not depend on any specific representation of the vectors.
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β
... ...

α ......
=... ... ...α+β

(f)

−α=
π

π α ... ...

π(π)

...α =...

(c)

... = ...

(h)
(id)
=

=
(hh)

(b)
=

...α α ...

Figure 1: A summary of the ZX-calculus. Note that ’...’ reads as any integer n ∈ Z. The letters stand
respectively for spider-(f)usion, (h)adamard, (id)entity, (hh)-cancellation, (π)-commute, (c)opy, and
(b)ialgebra. Note that these rules are only correct up to non-zero scalar.

The ZX-calculus is summarized in FIG.1. Detailed information about the rules can be
found in Appendix A.2 and in [CK17, vdW20].

3 ZX-calculus for circuit optimization - state of the art
In recent years, ZX-calculus has been used for a variety of quantum circuit optimization
tasks [KvdW20b, KvdW22, Kru22, SGGGC22]. There are several advantages of using
ZX-diagrams for quantum circuit optimization. ZX-diagrams are not bound to the rigid
structure of quantum circuits, and their transformation rules are applicable regardless of
the dimension of the spider (tensor). Rules like the spider fusion or Hadamard rule are
extremely powerful, as they are applicable to any spider at each step of the simplification
process, and give rise to transformations that can not always be described by single or two-
qubit identities. Moreover, the set of components we need to characterize a ZX-diagram is
very small, only green and red spiders are required (with their corresponding angle). The
basic procedure for ZX-calculus simplification consists of:

1. Transforming the quantum circuit into an equivalent ZX-diagram.

2. Simplifying the ZX-diagram using the ZX-rules

3. Extracting an equivalent quantum circuit from the ZX-diagram

Note that when we talk about ZX-diagrams for circuit optimization, we use the term simpli-
fication instead of optimization. It is an important distinction because the ZX-rules focus
on decreasing the number of spiders and wires, but not necessarily the gates of the under-
lying circuit. Using ZX-calculus for circuit optimization is not a trivial task. The rules
can be applied in any order, and each rule transforms the diagram, generating/eliminating
nodes where other rules could be applied. In some cases, it is even better to not apply any
rule even if we could, as the extracted circuit after step 3 may even have more gates than
initially. There is no general strategy to tell which sequence of rules applications will yield
the maximally optimized underlying circuit. It is also not possible to apply all possible
combinations of rules, since the spider fusion and unfusion of a single spider have already
theoretically infinite possibilities. Therefore, reducing the number of gates of a quantum
circuit with ZX-calculus is an optimization problem with an infinite search space 6 where
in most cases we will not be able to find the optimal solution.

6We will see that the search space becomes large if we restrict the number of rules that can be applied
to a ZX-diagram.
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Not only that, ZX-rules can modify the ZX-diagram in such a way that the underlying
circuit structure is lost. Amongst all the rules that can be applied in a ZX-diagrams, some
transform the diagram into a new diagram where circuit extraction is not possible. In this
work, we will only focus on the rules that preserve the underlying circuit structure. More
information about the circuit procedure can be found in [BMBdF+21].

The most prominent work for quantum circuit optimization using ZX-calculus appeared in
2020 [DKPvdW20] and it is based on a graph theoretic approach to simplify ZX-diagrams.
Moreover, the authors developed PyZX7, an open-source Python library to create, manipu-
late and simplify ZX-diagrams [KvdW20a]. Besides providing a general framework to work
with ZX-diagrams, PyZX has been updated with several other optimization algorithms that
have been proposed recently [SGGGC22, KvdW20b]. It is precisely one of the algorithms
from the PyZX library, full_reduce, is the one that will be used to benchmark our results.
This algorithm is selected as it is the one with the best tradeoff between computational
performance and the quality of the results.

3.1 Graph-based simplifications
Since ZX-rules can be applied in both directions, current approaches use rules that simplify
at least one spider as a way to make sure that the algorithm terminates. The core of most
simplification strategies is formed by two rules from graph theory: local complementation
and pivoting. However, these rules can only be applied when the ZX-diagram is in a certain
state called graph-like. This section presents this new representation of ZX-diagrams, along
with the ZX-calculus version of the rewrite rules and finally the simplification algorithm
from the PyZX library, full_reduce.

3.1.1 Graph-like diagrams

ZX-diagrams are graph-like if they satisfy the following conditions:

1. All spiders are Z-spiders (green)

2. All connections between spiders are Hadamard wires.

3. There are no parallel Hadamard edges or self-loops.

4. Every input and output is connected to at least one spider and every spider is con-
nected to at most one input or output.

Every ZX-diagram can be transformed into an equivalent graph-like form using the ZX-
rules presented in section 2.3 (Proof in Lemma 3.2 of [DKPvdW20]). Consider for example
the following random circuit:

+

+

+

+

+ +

+

+H S

S S

S

S

H

q1

q2

q0

(5)

7https://github.com/Quantomatic/pyzx
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The graph-like equivalent diagram is (intermediate steps in Appendix A.5):

π
2

π
2

π

π
2

(6)

The advantage of graph-like diagrams is that we capture their structure into an open graph.
An open graph is defined by the triple set (G, I, E) where G = (V, E) is an undirected
graph, with V, E the sets of (vertices, edges). (I ⊆ V, E ⊆ V ) are the subsets of (inputs,
outputs). We distinguish between internal vertices {v ∈ V |v /∈ {I ∪ O}} and boundary
vertices {v ∈ V |v ∈ {I ∪ O}}. In the open graph representation of a graph-like diagram,
the vertices are the spiders and the edges between spiders are the Hadamard wires. For
example, the open-graph for Eq.45 is:

∈ O∈ I

∈ I

∈ I

∈ O

∈ O

(7)

With this graph formulation of ZX-diagrams introduced, we are ready to explain the main
rules of graph-theoretic simplification, local complementation and pivoting.

3.1.2 Local complementation

Consider a graph G(V, E), a vertex u ∈ V and N(u) ∈ V the set of neighbours of u. The
graph resulting of applying local complementation of G according to u, written as G ⋆ u, is
the graph G except that the neighbors of u, N(u), must satisfy:

1. If two vertices w, w′ ∈ N(u) are connected by an edge in G, then w and w′ are not
connected by an edge in G ⋆ u.

2. If two vertices w, w′ ∈ N(u) are not connected by an edge in G, then w and w′ are
connected by an edge in G ⋆ u.

Therefore, two neighbours of u are connected in G ⋆ u if and only if they are not connected
in G. Graphically:

a b

c d

=G

a b

c d

=(G ⋆ a)

(8)

3.1.3 Pivoting

Consider the same graph G(V, E) but now with the two vertices u, v ∈ V . The pivoting
rule, denoted by G ∧ uv, is just the application of three local complementation:

G ∧ uv = G ⋆ u ⋆ v ⋆ u. (9)

To calculate the connectivity of the resulting graph, we consider the three following sets:
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1. A = N(u) ∩ N(v), i.e. all the common neighbours of u and v.

2. B = N(u) \ N(v), i.e. all the unique neighbours of u.

3. C = N(v) \ N(u), i.e. all the unique neighbours of v.

In a pivoted graph G ∧ uv, all vertices between these three sets are connected if and only
if they were not connected in G. The other connections remain untouched. Consider for
example the following graph:

u v

a
b

c

d e

=G

u v

a
b

c

d e

G ∧ uv=
(10)

In Eq.10 we have A = {b}, B = {a, d}, C = {c, e}. Therefore, in the pivoted graph all sets
are connected between them except d, e because they were connected in G.

3.1.4 Local complementation and pivoting in ZX-diagrams

If we have a spider (marked with * in Eq.11) with a phase ±π/2 in a graph-like diagram
that is interior, i.e. is connected to other spiders and not connected to inputs/outputs, we
can remove it from the diagram by complementing the neighbourhood of the spider and
updating the phases.

± π
2

α1 αn

...... ... = ...
α1 ∓ π

2

...
αn ∓ π

2

α2

...
αn−1

...
α2 ∓ π

2

...
αn−1 ∓ π

2

...

...

∗

(11)

With this variation of the local complementation rule, we can successfully remove all
interior spiders with phase ±π/2.

There also exists a variation of the pivoting rule that can be applied to a pair of interior
connected spiders with a 0 or π phase in a graph-like diagram. On the right-hand side of
Eq.12, we remove the marked spiders at the cost of performing local complementation on
the subsets explained in 3.1.3.

jπ
α1

=
αn

β1

βn

γ1

γn

kπ

...

...

... αn + kπ

βn + (j + k + 1)π

...

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

......

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...

∗ ∗

(12)

This variation of the pivoting rule allows us to also remove all pair of adjacent inte-
rior spiders with phase 0 or π. Derivation of these rules can be found in Appendix B3
[DKPvdW20].
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3.1.5 Interior Clifford simplification algorithm

Any ZX-diagram can be transformed into the graph-like form. However, if the original
circuit belongs to the Clifford gate subset, we can significantly simplify the diagram using
the variations of the local complementation and pivoting rules explained in Section 3.1.4
[DKPvdW20]. The simplification algorithm looks like the following:

1. Transform the diagram into a graph-like.

2. Apply local complementation to every spider with phase ±π/2 and pivoting on every
pair of spiders of phase 0 or π as long as possible.

3. Repeat step 2 until no further rule can be applied and the algorithm terminates.

This procedure simplifies all interior spiders of phase ±π/2 and pairs of adjacent spiders
of phase 0 or π. Only boundary spiders, i.e. spiders connected to an input or an output,
remain.

3.2 Simplification strategies and limitations of the PyZX Library
The PyZX library contains several simplification strategies for ZX-diagrams. Regardless of
the algorithm, the library always transforms the quantum circuit into its graph-like starting
point before applying a set of rules. In our case, we will benchmark our optimizer with the
most powerful simplification algorithm from the library PyZX, the algorithm full_reduce.
The algorithm full_reduce applies a variation of the algorithm explained in 3.1.5 with
additional rules that allow simplification on boundary spiders. It is important to note
that the full_reduce prioritizes the termination of the algorithm (reducing the number of
spiders as much as possible). To apply the simplification, the full_reduce takes as input
lists of non-interacting vertices for each rule and applies all the rules at once, regardless of
the order. There are two main limitations in this algorithm, the first one is that the order
of application of the rules matters [SGGGC22] and the second is that the non-interacting
vertices reduce the space of solutions [KvdW20a].

3.2.1 The order of application of the rules matter

As mentioned in Section 3, the rules can be applied in any order and each rule modifies the
graph so new rules can be applied. This generates a large space of solutions where some
sequence of actions will lead to a better optimization of the underlying quantum circuit
than other paths. Therefore, to obtain better results than the algorithm full_reduce, we
need to design a strategy that applies the rules with the goal of optimizing the gates of
the underlying quantum circuit. Consider for example the following diagram:
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π π
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(13)

If we extract a circuit from the LHS of the equation, we obtain 21 gates. On the other
hand, the circuit obtained by extracting the RHS of the equation has 35 gates. This can
be understood by carefully inspection of the algorithm responsible for circuit extraction
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[BMBdF+21]. As a general heuristic, applying local complementation and pivoting is only
beneficial, i.e. results in a better simplification if the connectivity of the resulting graph
does not increase above a certain threshold [SGGGC22].

3.2.2 Non-interacting vertices

The algorithm full_reduce takes as input lists of non-interacting vertices for local com-
plementation and pivoting. Consider for example the following graph-like diagram:
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Here we can apply local complementation to the nodes {6,7} and pivoting to the nodes
{(8,9),(8,10),(9,11)} but note that some of these nodes are connected. Take for example
that we apply local complementation to node 6: node 6 will disappear and the connections
and phases of neighbouring nodes will be updated according to Eq.11. Specifically, spider
7 will update its phase to π ((3π/2 −π/2) mod 2π = π), and spider 8 will update its phase
to π/2. Therefore, applying local complementation to spider 6 changes the graph such that
nodes 7 and nodes (8,10) are no longer suitable for local complementation and pivoting,
respectively.
Since the full_reduce takes a list of spider indices and applies all the rules at once, it
needs to select non-interacting nodes because otherwise, it could apply a rule to a node
that has been already modified by another rule. PyZX solves this problem by randomly
selecting one vertex amongst the interacting nodes. In this case, if it selects vertex 6 as
a candidate spider to apply local complementation, it would not select nodes 7, (8,10) as
possible nodes for local complementation or pivoting. Once the full_reduce receives all
the non-interacting nodes, the algorithm applies all the rules until no other rule can be
applied.

4 Our-approach: a Reinforcement Learning algorithm
In the previous section, we identified two limitations from the full_reduce, the best
algorithm from the PyZX library.

1. The algorithm applies all the possible rules in a random order. With this approach,
we have no guarantee that the algorithm will reduce the number of gates, and if it
does, most likely it will not be the optimal solution.

2. The algorithm takes as input lists of non-interacting vertices for each rule. This ap-
proach reduces the solution space by removing possible paths, i.e. feasible sequences
of actions, that the algorithm will never explore.

In [SGGGC22] the authors design an heuristic algorithm to improve on the full_reduce
algorithm. They focus on reducing the number of Hadamard wires as much as possible, even
if that means leaving remaining actions to apply. They follow the Clifford simplification
algorithm from section 3.1.5, but instead of applying local complementation and pivoting
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as much as possible, they use cost functions for local complementation and pivoting 8 to
determine which rules to use. The algorithm stops when any rule has a positive reward,
i.e. all possible rules increase the number of Hadamard wires. They manage to outperform
the full_reduce algorithm, especially for large non-Clifford circuits, at the cost of a high
runtime.

As a starting point, we developed a similar strategy based on a genetic algorithm to
improve the optimization on the full_reduce algorithm. We also managed to outperform
the full_reduce (results in Section 5.2) but also with a high computational cost.
The computational cost of the genetic algorithm and the fact that we need to run it for each
circuit that we want to optimize was a strong enough motivation to develop an approach
based on Reinforcement Learning.

4.1 Introduction to Reinforcement Learning
Reinforcement Learning (RL) [SB18] is a branch of machine learning where an Agent learns
through trial and error how to make optimal decisions in an Environment. Typically, RL
problems are modelled as Markov Decision Processes, which may or may not be stochastic
and for which the agent can receive partial or full information about the state of the
environment. In our case, the Markovian property is clearly ensured, as the goodness of an
action only depends on the current state of the ZX-diagram. Additionally, the environment
is completely deterministic (both the local complementation and pivoting actions have non-
probabilistic outcomes), and so is the information the agent receives from it. Nonetheless,
the complexity of the task lies in the extremely large amount of actions available that the
agent can pick from. There are several examples in the literature of successful application
of RL algorithms to problems with such characteristics, perhaps the most famous one being
Ref.[SHS+17], in which the agent was able to outperform the most advanced algorithms to
date and even discover new optimal strategies from which humankind has learned from.
Regardless of the specific properties of the problem to be solved, any RL algorithm requires
the initial agent to be trained on the problem that it needs to solve. After the training
phase, which may be quite long, the agent can be tested on unseen scenarios as to evaluate
its ability to generalize the learnt strategy to similar problems. An overview of the RL
training loop can be found in FIG.2. In our case, the full RL training process consists of
several episodes, with every episode corresponding to the optimization of a certain quantum
circuit via a ZX-diagram. Each episode is divided into several steps T . At each step, the
agent receives an observation, i.e. information about the state of the environment, st. For
each observation, the agent outputs an action, at, which gives a reward rt, i.e. a measure
of how good the performed action is, and a new observation, st+1.
The ultimate goal of an agent is to learn a policy, i.e. a function that specifies the action
that needs to be applied at every step within an episode. The optimal policy is the one
that maximizes the cumulative reward received during an episode (Eq.15), which is the
sum of partial rewards received after each step.

Rt =
T −1∑
t′=t

γt′−tr′
t. (15)

γ is a discount rate, typically between 0.95 and 0.99. As we will discuss further in the
next sections, during the training phase, the agent needs to balance how much it exploits

8These cost functions measure how many Hadamard wires appear in the diagram after the application
of a rule.
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Figure 2: Reinforcement Learning training loop scheme.

a given policy, i.e., the likelihood of choosing the optimal learnt action until that point,
versus how much it explores untested actions or that give suboptimal partial rewards (that
may lead to a larger cumulative reward overall). We view quantum circuit optimization
as a reinforcement learning problem with the following components: The environment
corresponds to the graph-like representation of the circuit. From it, we extract a modified
adjacency matrix of such graph, which will be fed as observation to the agent. As per
the action space, it is the concatenation of available local complementation and pivoting
actions as well as an additional stopping action that will terminate the episode. Note that
we expect that the agent may eventually need to learn to stop applying such actions if they
are not beneficial due to the process of circuit extraction. Finally, the reward will be some
function that increases as the number of gates to the circuit decreases. Our approach is very
much inspired by the one suggested in [FNML21] with the added benefit that we are using
a much simpler action and observation space thanks to using ZX-calculus. Additionally,
we add a much more sophisticated action-masking procedure, which facilitates and speeds
up the training procedure of the agent. The overview of our implementation can be found
in FIG.3. We next provide a detailed description of all the elements of our RL approach.

4.2 Observation space
It is crucial to provide a complete description of the ZX-diagram, so the agent is able to
make the best decisions. To do this, we codify the graph-like representation in a modified
version of its adjacency matrix. The adjacency matrix, A, is a basic representation of the
graph of shape n × n, where n is the number of nodes of the graph. If two nodes in the
graph {ni, nj} are connected, then Aij = 1, otherwise it is 0 (note that the matrix is
symmetric). For our tests, the adjacency matrix is slightly tuned in the following way:

1. The phase of a node is added in the correspondent cell in the diagonal, i.e. For a
graph of n nodes, each node i has its phase in Aii. If it is an input or an output,
which are phaseless, then Aii = −1. Thus, the possible values of the phases are
phases are [−1, 0, π/2, π, 3π/2] (normalised to [0,1]). Of course, this is only true for
Clifford circuits.

2. The off-diagonal terms are modified to include the type of the wire, if any, connecting
two nodes. Aij is 1 for a Hadamard wire, -1 for a normal wire, and 0 if there is no
connection.

With this codification of the observation, we are able to encode all the information that the
agent needs to know about the ZX-diagram (see FIG.5 for an example of the observation).
Note that, since we are using as an observation of the graph-like representation of the
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Figure 3: Overview. From a random quantum circuit, we build the equivalent graph-like ZX-diagram.
With the codification of the graph-like representation of the circuit (see Section 4.2 for the details), the
agent, realized by a neural network, can choose between several graph transformations (see Section 4.3)
to generate another, logically equivalent ZX-diagram. This process is repeated multiple times. When
the episode is done, we use the method extract_circuit from the PyZX library to obtain a circuit
from the graph-like representation.

circuit, the size of the graph will vary depending on the topology of the initial circuit.
Since the size of the observation must be constant during the training, we determine an
upper bound in the number of nodes required to represent any circuit of a given dimension
(for a circuit with 5 qubits and 25 gates, we arbitrarily choose 40) and pad the adjacency
matrix with zeros until such upper bound is reached. Therefore, the observation for any
circuit of 5x25 will be a 40x40 matrix. We also randomize the indices of the nodes for each
observation to avoid overfitting.
A possible drawback of this approach is that the matrix tends to be very sparse, containing
some irrelevant information, that can make the training difficult (as it adds noise to it).

4.3 Action space
The action space is the set of possible actions that the agent can take in a given environment.
In our case, we define a 3-dimensional multi-discrete action space, i.e. we need 3 elements
to fully characterize an action. The first element represents the action to apply to the
circuit (whether to do nothing, apply local complementation or apply pivoting) and the
second and third elements represent the nodes to which the action is applied:

1. First element of the action space: Between [0,2]. 0 means STOP, i.e. to not apply an
action, 1 means LC, i.e. apply local complementation, and 2 means PIV, i.e. apply
pivoting.

2. Second element of the action space: values can range between [0, N], with N the
number of nodes in the adjacency matrix. It represents the first node to which the
action is applied.
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3. Third element of the action space: values can range between [0, N]. It represents the
second node to which the action is applied.

Even though each action needs to have all three components, some of those turn out to
be uninformative. For example, only one node is needed to characterize the action local
complementation and no nodes are required for the STOP action. To avoid inconsistencies,
we will force the second and third elements of an LC action to be the same and to fix these
same elements to 0 for the stopping action.
Along these lines, the agent can never apply LC or PIV to some of the nodes within the
graph. This is the case for input and output nodes, and their nearest neighbours, for which
it is straightforward to see that they do not fulfil the required conditions detailed in Section
3.1.4. For the circuit of 5 qubits and 25 gates, these unchangeable nodes correspond to 20
out of the 40 total nodes. Therefore, we can truncate the first and second elements of the
action space to have values between [0,19].

The second issue of such action space definition is that the agent can choose to apply
actions to invalid nodes. Consider for example the ZX-diagram in Eq.14. For this diagram,
the only feasible actions are

Actions = {[0, 0, 0], [1, 6, 6], [1, 7, 7], [2, 8, 9], [2, 8, 10], [2, 9, 11]}.

which correspond to combinations of the action space elements that represent the only
possible actions for the ZX-diagram in Eq.14, i.e. local complementation (LC) to node 6
and 7 or pivoting (PIV) to nodes (8,9),(8,10),(9,11) and the stopping action. However, the
available actions that the agent can generate combining the elements of the multi-discrete
action space (A) are [A0,A1,A2] such that

A0 ∈ {0, 1, 2}.

A1 ∈ {0, 1, ..., 19}.

A2 ∈ {0, 1, ..., 19}.

Hence, with this action space configuration, the agent can sample invalid actions such as
{[1,6,7], [1,10,10], [2,8,8]} or even actions that do not represent any identifiable action, like
[1,15,19]. To avoid this, one can choose to penalize unfeasible actions through the reward
function, but it is a much more efficient strategy to only allow the agent to select between
actions that fulfil the constraints of the problem. This process is called invalid action-
masking and its inner workings are described in section 4.3.2. Moreover, we note that our
valid actions have a hierarchical structure, i.e. if the sampled from A0 is 1 (LC), then the
agent should only have as options {6,7} to sample for A1 and {6} or {7} to sample for A2
(depending on the sampled node from A1). Therefore, we need to implement a strategy
that forces the agent to sample between the feasible actions but takes into account the
hierarchical structure of the valid actions. This can be achieved with Conditional Action
Trees [BO21].

4.3.1 Conditional Action Trees

A Conditional Action Trees (CAT) is a data structure that represents the action space of
an agent as a tree of nodes and edges. Within the tree, a node corresponds to an action
and an edge corresponds to a condition or a dependency between actions. The root node
represents a dummy node that is used to add conditions on the first layer of the hierarchical
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Figure 4: Conditional Action tree with the possible actions for the ZX-diagram of Eq.14.

action space (A0), and the leaf nodes represent the final actions (A2 in our case), see FIG.4
for an example of a CAT.
For a given state, we will construct the CAT and use it to guide our agent through the
action selection process via Invalid Action Masking (IAM).

4.3.2 Invalid Action Masking (IAM)

Invalid action masking (IAM) [HO22] is a technique used to prevent agents from sampling
actions that are invalid in a particular state. In Actor-Critic (AC) methods (see Section
4.5), we use a Neural Network (NN) to interpolate the probability to select each action
given an input state, i.e. the policy πθ(a|s). Here θ represents the parameters of the
neural network. During training, the agent learns the optimal policy, i.e., it optimizes the
parameters of the network such that actions that are expected to lead to larger episodic
rewards for a given state are selected with the highest probability. Specifically, the NN
interpolating the policy outputs an unnormalised distribution of action probabilities over
all possible actions in the action space, regardless of whether they are feasible or not. Each
value li assigned to an action i is called a logit. To obtain the policy πθ(a|s), we need to
turn these logits into a probability distribution. This is achieved by applying a softmax
activation function to each set of logits (Eq.16).

π(ai|s) = eli∑N
j elj

. (16)

Note that, for our multi-discrete action space, we will generate 3 sets of logits corresponding
to each component within the multi-discrete space (see FIG.5). Each of these logits needs
to be normalized using a softmax activation separately so that the action probabilities for
each component of the action space add up to one, but we want this normalization to be in
accordance with the conditional action tree of the state. To achieve this, the 3 components
of an action will be sampled iteratively in the following way: First, we will sample from
the probability distribution of the first component and obtain either LC, PIV or STOP as
output. Depending on the obtained value, all logits of the next action component that can
not be selected, as per the restrictions determined by the CAT, will be converted to -∞.
By doing that, once we apply the softmax function to this set of logits, these nodes will
have a probability of 0 to be selected, thus ensuring that all sampled actions are feasible.
As a simple example, if we consider again the CAT in FIG.4, a possible outcome of the
sampling procedure could be the following: We start sampling from the probability distri-
bution of A0. Assuming that LC is the sampled node, the logits {0, 1, ..., 5, 8, ..., 19} of A1
are then masked to a value −∞ such that only {6, 7} can be selected. Finally, if node 6 is
sampled as A1, all logits of A2 will be masked except for logit 6.
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4.4 Reward function
The reward is a measure of how good the action taken by the agent is. Since in our approach
we want to optimize the number of final gates of the circuit, we decided this metric to be
the reward. Before and after applying an action, we use the previously mentioned built-
in method of the PyZX library, extract_circuit, to obtain the number of gates. The
reward is then calculated as the normalised difference between the number of gates before
and after applying the action. The normalization coefficient is chosen to be a constant
value that depends on the circuit dimension (number of qubits and initial gates) such that
all episodic rewards are between -1 and 1, as it leads to more stable training.

4.5 Proximal Policy Optimization (PPO)
Following the approach described in [FNML21] we select the Proximal Policy Optimization
[SWD+17] as the RL algorithm used to train the agent. The PPO belongs to the class of
Actor-Critic (AC2) algorithms, which are characterized by the fact the agent architecture
consists of two separate function interpolators. The first one, called actor, is responsible
for the interpolation of the policy function, which we have thoroughly discussed above.
The second one called critic, is in charge of assessing the expected benefit from the current
policy. In the case of the PPO, this is done through the estimation of the value function
V (s), i.e., the cumulative reward that the agent expects to obtain from state s given its
learnt policy. The actor and the critic work together to improve the agent’s performance
by learning from the rewards and penalties received from the environment. In our work,
we use neural networks to interpolate both functions, and their parameters are optimized
simultaneously using gradient-based optimization techniques, more specifically, the Adam
optimizer.

Another important characteristic of the PPO is that the training is done on-policy, meaning
that any update on the current policy is only dependent on observations, rewards and
actions generated by this same present policy. This differs from off-policy methods that
store experiences generated with previous policies in a memory, for them to be used in
future updates.
It is important to point out that policy-based methods are very sensitive to large policy
updates, which can lead to instability during training or even catastrophic forgetting. To
solve this problem, PPO includes several parameters that can be tuned in order to restrict
policy changes. Examples of such are, maximum gradient norms, and clipping parameters.
The former scales all parameter gradients to a maximum value, and the latter clips the
allowed change of parameters of the network such that the ratio between the new policy
probabilities and the previous ones are within a range [1 − ϵ, 1 + ϵ], hence removing the
incentive from the current policy to go too far from the old one.

4.5.1 Loss function

As mentioned above, during the training of the agent, the parameters (weights and biases)
of both the actor and critic network are updated using gradient-based optimization. In
this section, we present the loss function Eq.(17) used by PPO, from which the gradients
are computed.

L(θ) = LP olicy(θ) + αLV alue(θ) − βLEntropy(θ). (17)
The loss function is composed of three terms:

1. The policy loss, LP olicy(θ), is computed as the product of the ratio of probability
change between policies and the expected return of the actions. With this, the
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Figure 5: Deep Convolutional network architecture of our RL agent. In the observation, each possible
type of node or edge is displayed in a different colour for visualisation purposes.

policy loss decreases if the new policy increases the probability of selecting actions
with higher returns with respect to the previous one, and likewise, it reduces the
probability of selecting non-beneficial actions.

2. The value loss, LV alue(θ), essentially corresponds to the mean-squared error between
the critic network’s prediction and the actual return obtained by the agent. Hence,
it is a measure of how well the critic can estimate the expected return given a state.
This term can be slightly modified to include clipping restrictions if desired, so as to
achieve a more stable training.

3. The entropy loss, LEntropy(θ), is equal to the entropy of the logits of the policy (actor)
function. Note that the entropy has an opposite sign in the loss function, meaning
that the total loss function decreases as the entropy in the logits increases. Although
it seems counterintuitive, this implies that during training, this term directs the agent
towards parameter configurations that increase the uncertainty of the policy.

Exploration and exploitation are two conflicting goals in reinforcement learning. Explo-
ration means trying new actions that may lead to better outcomes in the future, while
exploitation means sticking to the best-known actions that maximize the immediate re-
wards. A good reinforcement learning agent should be able to explore enough to discover
new and better actions, but also exploit enough to avoid wasting time and resources on
tuning the networks to properly interpolate suboptimal actions. For the case of PPO, find-
ing the right balance between both is done through the tuning of the hyperparameters, α
and β, in the loss function. The higher the entropy coefficient, the more the agent will
explore the action space and vice versa.

4.5.2 Agent Architecture

We provide a graphic representation of the agent architecture, both for the actor and critic
networks, in FIG 5. At each step in an episode, the agent receives a complete description
of the state s, i.e. the ZX-diagram in graph-like formalism, through the modified adjacency
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Figure 6: Results of applying the full_reduce algorithm to optimize the gates of 5000 random Clifford
circuits. a) Histogram of 5 qubits and 25 gates random circuits with the corresponding fit. The mean
value and peak of the fitted distribution is 27.8 gates. b.) Histogram of 5 qubits and 100 gates random
circuits with the corresponding fit. The mean value and peak of the fitted distribution is 39.2 gates.

matrix. This observation is then passed through several convolutional layers9. After that,
we flatten the output and convert it into a one-dimensional vector that is then used as
input to two separate Feed Forward Neural Networks: One for the policy, π(a|s), and the
other for the value function. Every action, i.e. graph transformation, is mapped uniquely
into a single policy output neuron.

5 Experiments and results
In this section, we present the most relevant results obtained by the RL approach in contrast
to the full_reduce algorithm. Additionally, we also implement a genetic algorithm to
assess the capabilities and limitations of our approach against an even more sophisticated
alternative.

5.1 Results with the full_reduce algorithm
The full_reduce is particularly well-suited for Clifford circuits [DKPvdW20]. In FIG.6b
we can see that the algorithm full_reduce performs well for large circuits, i.e. for 500
random circuits of 5 qubits and 100 gates, it obtains a mean of 39 final gates.
On the other hand, we find that the algorithm has difficulties in fine-tuning optimizations
(see FIG.6a), i.e. for 500 random circuits of 5 qubits and 25 gates, it obtains a mean of
27.8 final gates (the algorithm even increases slightly the number of final gates).
Even though we would like to test our approach against the most challenging case of 5
qubits and 100 gates, due to a limited amount of computational resources, we will focus
on the use case of Clifford circuits of 5 qubits and 25 gates.

5.2 Genetic algorithm
As a first step, we develop a genetic algorithm in order to check whether the results ob-
tained by full_reduce algorithm are competitive. These type of algorithms have already

9Convolutional Neural Networks (CNN) are especially well suited for capturing spatial correlations
within the input data. Since we codified our observation as a matrix where each cell resembles a pixel in an
image, we expect that CNNs may perform slightly better than feed-forward neural networks.
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(a) Results of the genetics algorithm for Clifford
circuits of 5 qubits and 25 gates.

(b) Results of the genetics algorithm for Clifford
circuits of 5 qubits and 100 gates.

Figure 7: Results. a) Histogram of final gates of the genetic (100 individuals and 50 iterations) algorithm
for random Clifford circuits of 5 qubits and 25 gates. b) Distribution of final gates for the genetic
algorithm: In red, 10 individuals and 10 iterations. In green 100 individuals and 50 iterations. In blue
are the results of the full_reduce.

been explored for similar tasks in conjunction with ZX-Calculus [SGGGC22]. The algo-
rithm details are described in Appendix B. Most likely our design and implementation can
be more carefully refined, but we do not explore it in detail, as it is not the goal of our
project.
Even without this refinement, the results of the Genetic algorithm are significantly better
than the PyZX (see the results in FIG.7), hence proving that the full_reduce algorithm
can be improved even for Clifford circuits.
We tested our algorithm with 100 individuals and 50 iterations of random Clifford circuits
of 5 qubits and 25 gates (see FIG.7a) and obtained a mean value of final gates of 24.77,
whereas the full_reduce algorithm obtained a mean of 27.8 gates. Thus, the genetic
algorithm already surpasses by approximately three gates the full_reduce for the case of
a Clifford circuit of 5 qubits and 25 gates.

An interesting side result from the genetic algorithm applied to Clifford Circuits of 5
qubits and 25 gates is that, in the majority of the cases, the algorithm obtained a better
optimization without performing all the available actions. This behaviour will allow us to
understand whether the RL algorithm is performing correctly.

In FIG.7b we see that for the case of 5 qubits and 100 gates, the distribution of final
gates of the genetic algorithm (100 individuals, 50 iterations, in green), with a mean of
42.25 gates, is slightly more shifted to fewer gates than the gates distribution by the
full_reduce(in blue), with a mean 49.8 gates. Therefore, the genetic also outperforms
the full_reduce for this type of circuit. However, as a drawback, our implemented genetic
algorithm is not scalable and the computational cost for each circuit is significantly higher,
typically a couple of orders of magnitude larger with respect to the full_reduce.

5.3 Reinforcement Learning Algorithm
We believe the aforementioned results clearly motivate the usage of Reinforcement Learn-
ing. This is because even though the training is computationally demanding, once finished,
the agent is able to optimize unseen circuits very rapidly. Here lies the ultimate goal of
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Figure 8: Results of the RL. a) Evolution of the final number of gates during training vs. the full_reduce
from the library PyZX. b.) Evolution of the remaining local complementation and pivoting size during
training.

our approach: training an agent that is nearly as fast as the full_reduce algorithm and
obtains results of similar quality to the Genetic algorithm, for any Clifford circuit of 5
qubits and 25 gates, without individually training the agent for each circuit.

We trained our RL algorithm to optimize the gates of random Clifford circuits of 5 qubits
and 25 gates using the graph representation of ZX-diagrams. In FIG.8a we compare the
performance of our agent with the full_reduce during training. Note that our agent ini-
tially interpolates policies that obtain an average of 31 gates and slowly decreases until
stabilizing around 27.2 gates, already improving the full_reduce, that oscillates around
27.8. This result, although promising, is still far from the one obtained by the genetic
algorithm of 24.77 gates. To understand the reason behind this performance, we refer
to the results shown in FIG.8b. In this figure, we plot the remaining pivoting and local
complementation actions at the end of the episode. A value of 0 implies that the agent
has performed all the actions available. We can clearly see that the agent is not able
to navigate policies for which not all actions are performed. This may indicate that the
STOP action is not explored enough, and thus a better balance between exploration and
exploitation needs to be found. Nonetheless, the agent is able to learn a more "smart"
order of application of actions with respect to the one used by full_reduce.

Reaching the best optimization of the agent is by no means a trivial task. Besides tun-
ing all the hyperparameters, there are infinite CNN structures to test. Finding the best
combination that suits our problem is the real challenge in RL. The presented results are
the best ones obtained amongst all the explored combinations of hyperparameter configu-
rations and agent architectures, that are not discussed for brevity.
A likely reason for which our architecture is not able to improve the results further is due
to the fact that we are using CNN layers. These convolutional layers are very successful in
capturing 2-D or 3-D correlations between data, hence why they were used in the original
paper, which dealt with gate-based circuit optimization. However, that is not the case
with our diagrams, which can be high-dimensional graphs. In this regard, Graph Neural
Networks [WPC+21] may be a much more natural candidate to be used both for the actor
and critic networks. We leave the exploration of this type of architecture as future work.
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6 Conclusions and future work
In this work, we provide an overview of the state-of-the-art quantum circuit optimization
of Clifford circuits using ZX-calculus, with a specific focus on the full_reduce algorithm
from the PyZX library. We discuss the two main limitations of the algorithm and develop
two strategies to try to overcome them, although only one of those is studied in detail.

The first approach combines a genetic algorithm with the graph-formalism of ZX-diagrams.
It accomplishes a 0.8% gate reduction (in mean) for the Clifford circuits of 5 qubits and 25
gates and a 61% gate reduction for the Cliffords circuits of 5 qubits and 100 gates, in both
cases clearly outperforming the full_reduce. Nonetheless, our unrefined implementation
of the genetic algorithm is computationally expensive, requiring 1 minute on average to
optimize circuits of 5 qubits and 25 gates and 20 minutes on average to optimize circuits
of 5 qubits and 100 gates. Since this approach does not allow transferring the knowledge
from past optimizations to new circuits, we are not confident in its scalability.

As a second approach, and the main focus of the project, we develop a RL-based algorithm
using the well-established PPO algorithm to try and find the right balance between the
computational performance of the algorithm and the quality of the obtained optimization.
The RL agent uses Conditional Action Trees and Invalid Action Masking to improve the
speed of training. Both Convolutional and Feed Forward layers are used for the actor and
critic networks used by the agent to act on the environment. We also design a modified ad-
jacency matrix that stores all the relevant information that the agent needs to act, through
either local complementation (LC) or pivoting (PIV) on the environment.

For Clifford circuits of 5 qubits and 25 gates, the agent actually increases the gates by
8.8 %, outperforming the full_reduce algorithm by 2.4% gates reduction, but far from
the results obtained by the genetic approach. By plotting the remaining pivoting and local
complementation actions available at the end of each episode, we see that our agent is
applying all possible actions without ever stopping. We hypothesize that the reason why
the agent is not reaching better optimizations is that the STOP action is not sufficiently
explored, hinting at the need for increasing exploration during training. In regard to the
computational performance of the agent, its training lasts for over 2 days (on a very small
server), whilst each circuit optimization for the genetic algorithm requires a minute on
average. The advantage of the RL approach is that, after training, the agent optimizes
circuits in less than a second. Therefore, the RL approach is preferable for continuous use.
Additionally, and although it is not explored in this project, another potential advantage
of RL approaches is that they may allow the transferring of knowledge acquired during the
training of smaller circuits to bigger ones thus significantly speeding up the training.

Finally, we also argue the fact that convolutional layers are not well-suited to capture cor-
relations for ZX graph-like diagrams, as they are high dimensional graphs. We suggest the
use of Graph Neural Network (GNN) for the actor and critic networks.
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A ZX-calculus
A.1 Special spiders
From the definitions of green and red spiders, we can see that the linear map of Z and X
spiders with only one input and one output corresponds to the well-known Z and X phase
gates,

RZ(α) = α = |0⟩⟨0| + eiα |1⟩⟨1| =
(

1 0
0 eiα

)
. (18)

RX(α) = α = |+⟩⟨+| + eiα |−⟩⟨−| = 1
2

(
1 + eiα 1 − eiα

1 − eiα 1 + eiα

)
. (19)

For α = π we get the the Pauli-Z and Pauli-X gate. When α = 0, we represent the Z and
X spiders as

... ... = |0 · · · 0⟩⟨0 · · · 0| + |1 · · · 1⟩⟨1 · · · 1| .

... ... = |+ · · · +⟩⟨+ · · · +| + |− · · · −⟩⟨− · · · −| .

(20)

Note that, in addition to an empty wire, both the 1-input, 1-output Z spider and the
1-input, 1-output X spider are also the identity.

= = (21)

A.2 ZX-calculus rules
A.2.1 Spider fusion

The most fundamental rule of ZX-calculus is spider fusion. This rule allows us to fuse two
spiders of the same color connected by one or more wires into a single spider. When the
two spiders are connected, their phases are added together and the wires connecting the
spiders disappear. The adding of the two phases basically generalises that two rotations of
the Bloch sphere in the same direction add together, and thus it is assumed to be modulo
2π.

β... ...

α ......

=... ... ...α+β (22)

A.2.2 Identity rules (id, hh)

We obtain the identity from the 1-input, 1-output spider. In the ZX-diagrams, the identity
is represented by an empty piece of wire, and it is used for concatenation between spiders
(id). The second equality is due to the fact that the Hadamard gate is self-inverse, HH = I
and hence two boxes in a row cancel out (hh).

= =
(id) (hh)

(23)
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A.2.3 Hadamard rule (h)

This rule relates to the fact that conjugating the Z gate with two Hadamard gates results
in an X gate: HZH = X. This identity allows us to change the colors of spiders when it
is surrounded by Hadamards. Note that the number of inputs or outputs can also be zero.
Here we present two examples,

=π π , = (24)

This colour-changing identity generalises to the following:

... =
(h)

......α α ... (25)

Where α ∈ R can be any phase. Here we have also assumed that the spider has the same
number of inputs/outputs, otherwise, the identity does not make sense.

A.2.4 The copy rule (c) and π-commutation (π)

The copy and π-commutation (Eq.38) allow us to commute red (green) spiders with phase
(0, π) through an arbitrary phase α green (red) spider.

=
(π)

...

π

...
π

π

π

...

α

...

-απ

π

(26)

=
(c)

...

αaπ

...

aπ

aπ

aπ

(27)

Where a is a boolean variable and it can be a = {0, 1}. It is important to note that the copy
rules only hold when the spider being copied has 0 input and 1 output. Further details on
these rules can be found in Appendix A.4.

A.2.5 The bialgebra and hopf-rule

The other known rules to prove circuit identities are the bialgebra rule (b) and the hopf-rule
(hf ).

(b)
= , =

(hf )
(28)

In Appendix A.2.6 we present an example of the ZX-rules application to prove that three
consecutive CNOT gates make a SWAP gate.

A.2.6 Examples

Using the hopf rule and the bialgebra rule, we can show that three consecutive CNOT gates
make a SWAP gate [vdW20]. We start by rearranging the CNOTs so we can apply the
bialgebra rule:

=
(b)

(29)
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Now we apply the bialgebra rule to the first two CNOTs, and reorder the diagram

= =
(b)

(30)

To finish the proof, we need to show that two CNOTs applied consecutively cancel each
other. To do so, we fuse the spiders, apply the Hopf rule and apply the identity rule to
conclude our proof

= = =

(hf )(f) (id)

=

(f)

(31)

A.3 Scalars in ZX-diagrams
Here we will present the derivations of the non-trivial scalars explained in Section 2.2.1.

α = √
2

(32)

Proof. The result of this ZX-diagram can be calculated explicitly as follows

(⟨+| + eiα ⟨−|) ◦ I ◦ (|0⟩ + |1⟩) = 1√
2

[(⟨0| + ⟨1|) + eiα(⟨0| − ⟨1|)] ◦ (|0⟩ + |1⟩) = 2√
2

=
√

2.

If instead, we have a phase-π Z-spider, we obtain

α π = √
2eiα (33)

Proof. Similarly, the result of this ZX-diagram yields

(⟨+| + eiα ⟨−|) ◦ I ◦ (|0⟩ − |1⟩) = 1√
2

[(⟨0| + ⟨1|) + eiα(⟨0| − ⟨1|)] ◦ (|0⟩ − |1⟩) =

= 2√
2

eiα =
√

2eiα.

Finally, we will see that closed loops in ZX-diagrams are also scalars (Eq.34),

= 1√
2

(34)

Proof. We can also calculate the analytic expression of this last ZX-diagram

[⟨+ + +| + ⟨− − −|] ◦ I ◦ [|000⟩ + |111⟩] =

= [⟨+ + +|000⟩ + ⟨+ + +|111⟩ + ⟨− − −|000⟩ + ⟨− − −|111⟩] = 2
2
√

2
= 1√

2
.

Where we have used that

|± ± ±⟩ = 1
2
√

2

|000⟩ ± |111⟩ + eiα
∑

|x⟩≠|000⟩,|111⟩
|x⟩

 .

And eiα is just a phase factor.
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Since we can represent any complex number as a multiplication of 1√
2 ,

√
2eiα and 1 + eiα10,

these three ZX-diagrams form a complete basis.

A.4 The copy rule and π-commutation
The copy rule arises from the interaction of the Pauli Z and X gates and their respective
eigenbasis with spiders. Let’s consider an X gate and a single input, no phase, and an
arbitrary number of outputs Z-spider. If we apply the X gate to the input of the Z-spider,
we have

|0 · · · 0⟩⟨0| X + |1 · · · 1⟩⟨1| X = |0 · · · 0⟩⟨1| + |1 · · · 1⟩⟨0| .

Hence, we see that the X gate changes |0⟩ and |1⟩. This last expression is equivalent to
the same Z-spider we considered before, with X gates applied to each of the outputs

|0 · · · 0⟩⟨1| + |1 · · · 1⟩⟨0| = (X ⊗ · · · ⊗ X) |1 · · · 1⟩⟨1| + (X ⊗ · · · ⊗ X) |0 · · · 0⟩⟨0| .

In terms of diagrams, the π-copy rule is:

=

...

π

...

π

π

π

(35)

From this diagram, we can also see that the π-copy rule holds for any number of inputs
and outputs. If instead, we have a non-zero phase Z-spider, we need to apply the spider
fusion rule to unfuse them before copying

=

...

απ

...

π

α

=
...

π
α π

π

π

(22) (35)
(36)

We can further simplify this last expression by applying the X gate to the non-zero phase
1-input Z-spider, |0⟩ + eiα |1⟩.

X(|0⟩ + eiα |1⟩) = X |0⟩ + eiαX |1⟩ = |1⟩ + eiα |0⟩ = eiα(|0⟩ + e−iα |1⟩).

In terms of diagrams, this equality is (up to a global phase):

=α π −α (37)

Hence, the most generic case for the copy rule is (which also holds for inversed colours)

=
(π)

...

π

...

π

π

π

...

α

...

-απ

π

(38)

If we now consider trying to copy the eigenstates of the Z gate through a 1-input, m-outputs,
nonzero phase Z-spider, we find that

=

...

α

...

, =

...

απ

...

π

π

π

(39)

10Let z be a complex number with |z| < 2. We can choose α such that |z| = |1 + eiα|. Also, for some β
we also have that z

1+eiα = eiβ . Thus, z = (1 + eiα)eiβ = 1√
2 (1 + eiα)

√
2eiβ . For complex numbers with

|z| > 2, we can just first rescale it by multiplying by 1/
√

2.
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Proof.
(
√

2 ⟨0|)(|0⟩⟨0...0| + eiα |1⟩⟨1...1|) ∝ ⟨0...0| = ⟨0| ⊗ ... ⊗ ⟨0|︸ ︷︷ ︸
m

.

(
√

2 ⟨1|)(|0⟩⟨0...0| + eiα |1⟩⟨1...1|) ∝ ⟨1...1| = ⟨1| ⊗ ... ⊗ ⟨1|︸ ︷︷ ︸
m

.

These rules are denominated as the state-copy rules and can be unified using a boolean
variable a that takes values a = {0, 1}. It is important to note that the state-copy rules
only hold when the spider being copied has phase 0 or π.

=
(c)

...

αaπ

...

aπ

aπ

aπ

(40)

As usual, these rules hold with colours flipped and regardless of the orientation of the wires,
as we can always use caps and cups to deform our diagram to our will.

A.5 Graph-like example
Consider the following random circuit:

+

+

+

+

+ +

+

+H S

S S

S

S

H

q1

q2

q0

(41)

Which corresponds to the following ZX-diagram:

π
2

π
2

π
2

π
2

π
2 (42)

First, we turn all the spiders into green spiders using the Hadamard rule (h)

π
2

π
2

π
2

π
2

π
2

(43)

Now we use the identity rule (hh) to remove two Hadamards in a row and use the blue
wire representation for the wires with Hadamards.

π
2

π
2

π
2

π
2

π
2

(44)
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PIV(3,4) LC(15) PIV(7,8)LC(1)

LC(12) LC(15)PIV(3,4)

LC(12)

PIV(7,8)

 Individual 1

 Individual N 

.

.

.
Population

Figure 9: Scheme of the genetic algorithm. The individuals are sequences of genes, where each gene is
a possible action.

We obtain a maximally fused graph using spider fusion (f) (note that all edges between
spiders ara Hadamard wires)

π
2

π
2

π

π
2

(45)

In this case, we do not have any loops or parallel Hadamard wires so we are done (we can
always remove them using the rules explained in Lemma 3.2 of [DKPvdW20].

B Genetic algoritm
A genetic algorithm is a biologically-inspired algorithm that works by creating a population
of possible solutions, called individuals, and evaluating how good they are at solving the
problem, using a fitness function. The fitness function is a way of measuring how close an
individual is to the optimal solution.
The genetic algorithm then selects some of the best individuals to create new individuals,
called offspring, by combining parts of their solutions, called genes. This process is called
crossover. The genetic algorithm also introduces some random changes to some of the
individuals, called mutations. This process helps to explore new solutions and avoid getting
stuck at a local minimum. The algorithm repeats this process of evaluation, selection,
crossover, and mutation until it finds a good enough solution, or reaches a maximum
number of iterations.
As mentioned, the individuals are chains of genes. In our case, each gene can be type
pivoting (to nodes Ni, Nj) or local complementation (to node Ni). See FIG.9.

B.1 Mutation and offspring rules
The first-generation individual evolves through mutation and offspring rules. In our case,
we have defined the following rules, see FIG.10:

1. Cut: The individual from generation i + 1 is generated by cutting a random number
of genes from the individual from generation i.

2. Enlargement: The inverse action of Cut. The individual from generation i + 1 is
generated by adding a random number of genes from the individual from generation
i. We always make sure that the added genes are in fact feasible actions for our
individual.

3. Mutation: The last individual’s gene changes for another possible gene.
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PIV(3,4) LC(15) PIV(7,8)LC(1) LC(12) CUT : PIV(3,4) LC(15)LC(1)

PIV(3,4) PIV(7,8)LC(1) LC(12) ENLARGEMENT : PIV(3,4) LC(15)LC(1)

PIV(3,4) LC(15) PIV(7,8)LC(1) LC(12) MUTATION : PIV(3,4) LC(15) PIV(7,8)LC(1) PIV(9,10)

Figure 10: Mutation and offspring rules of our genetic algorithm.

B.2 Fitness function
The fitness function allows us to compare between individuals and keep the best one. For
our problem, we defined the fitness function to be the difference between the initial and
final number of gates. With this fitness function, we will be able to isolate the individuals
whose combination of genes reaches the highest reduction of gates.
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