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Most descriptions of open quantum system dynamics assume a product
initial state between the system and its environment, as the presence of corre-
lations causes both practical and conceptual difficulties in characterizing the
evolution of the open system. In this thesis we study initially correlated states
by employing an operational approach to open quantum dynamics, which re-
solves these problems by mapping initial preparations to future states. We
apply this framework to study the dynamics of systems initially in global ther-
mal equilibrium and we distinguish between classical and quantum correlations
as classified by the notion of quantum discord. Regarding the former, we solve
for the exact dynamics of the spin-boson pure dephasing model and study the
effect that initial correlations have on the geometry of the decoherence in the
Bloch-sphere, while also presenting an analytical treatment of a general class
of pure dephasing models. We then move into the quantum domain and derive
a family of weak-coupling master equations using second-order perturbation
theory in the system-environment coupling. The obtained equation contains a
non-negligible inhomogeneous correction term to the conventional Born-Markov
master equation and is a general theoretical tool that can be applied to many
physical models in the weak-coupling regime.
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1 Introduction
Understanding the behavior and predicting the dynamics of quantum systems interacting
with their environment is critical to the development of many emerging technologies such as
quantum metrology [DRC17] and quantum computing [NC01], as in practice no physical
system is perfectly isolated from its surroundings. Aiming to predict and control the
evolution of open systems calls for methods to effectively describe the evolution of the
relevant part only [BP07], since the degrees of freedom composing the environment are
typically inaccessible to the experimenter. From a more theoretical point of view, the
field of open quantum systems plays an important role in characterizing thermodynamic
and stochastic processes in the quantum domain [Str22, MM21], as well as in improving
our understanding of the measurement process and the quantum-to-classical transition
[Zur91, Zur03, Sch07].

One fundamental assumption that is present in most treatments of the dynamics of
open quantum systems is that of an initially uncorrelated state between system and envi-
ronment [BP07, Sch07]. While justified when the interaction begins at a fixed point in time,
it is in many situations an unreasonable assumption to make [MSSvL08, DRPP97, MR11].
Accounting for the presence of initial correlations such as quantum entanglement in the
global state not only leads to more involved calculations, but more significantly poses con-
ceptual difficulties regarding our ability to characterize the reduced dynamics through well
defined mathematical objects. In many cases the dynamical maps describing the evolution
of an open system under such circumstances have been found to violate complete positivity
[SB01, JSS04], yielding thus quantum states that lack a clear physical interpretation. A
fundamental result by Pechukas argued that to account for initial correlations we must ei-
ther give up linearity or complete positivity [Pec94]. This sparked a long and controversial
debate in the field, with many arguing for not-completely positive dynamics and others
claiming that dynamical maps under initial correlations are not well defined [Ali95, Pec95].
In more recent years however there has been an increased interest on the topic and a
few frameworks to treat this issues have been proposed [Mod12, PSHW19, TSMV21]. In
this thesis we will focus on the operational approach to quantum dynamics, introduced
by K.Modi in [Mod12], that circumvents the aforementioned problems and results in com-
pletely positive dynamics. This is achieved by changing the domain of the map from the
set of initial reduced states to the set of possible preparations that can be performed on
the system. This framework is applied to study correlations in the global thermal state of
the system-bath composite.

This work is organized as follows. In Section 2 we start by briefly introducing the for-
malism of open quantum systems along with its fundamental mathematical tools, followed
by a discussion of the problem of initial correlations and its operational resolution via the
formalism of causal breaks. Next, classically correlated initial states are explored in Section
3 in the context of pure dephasing models, with a focus on the geometric aspects of the
decoherence process in the presence of correlations. In Section 4 we derive a family of
perturbative master equations that account for both quantum and classical correlations in
the initial state, which is the main result of this thesis. Finally, Section 5 summarizes the
results of the previous chapters, while also discussing future outlooks for the project. Sup-
plementary material is included in the Appendix and is referenced at appropriate points
throughout the text.
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2 Preliminaries
2.1 Open quantum systems
The field of open quantum systems deals with characterizing the dynamics of a physical
system S in the presence of a large environment or bath B, which is assumed to be out
of the experimenters control and whose influence is affecting the evolution of the open
system non-trivially. It is precisely the presence of an environment that gives rise to the
classical world that we experience, where quantum phenomena are strongly suppressed
due to effects such as decoherence and dissipation [Sch07]. Decoherence here is referring to
the environmentally induced loss of the distinctive quantum features of a physical system,
such as superposition and entanglement, while dissipation is the phenomenon of irreversible
loss of energy towards the environment. To model this situation we consider a quantum
system composed of two subsystemsH = HS⊗HB, whereHS andHB stand for the Hilbert
spaces of the system and environment respectively. The total S-B evolution is governed
by a Hamiltonian of the form

H = HS ⊗ 1B + 1S ⊗HB + VSB, (1)

where HS and HB are the local Hamiltonians and VSB the interaction between the two
subsystems. The combined system can always be assumed to be closed, and therefore its
dynamics are governed by the Liouville–von Neumann equation, ∂tϱSB(t) = −i[H, ϱSB(t)],
where we have assumed units with ℏ = 1. The reduced state of each subsystem is obtained
by tracing out the complementary degrees of freedom, i.e. ϱS = TrB(ϱSB) and ϱB =
TrS(ϱSB) for system and bath respectively. The evolution of any closed system is unitary
and given by

ϱSB(t) = U(t)ϱSB(0)U †(t), (2)

where U(t) = e−iHt is the unitary evolution operator. Unitary evolution is time-local, as
the future evolution of the system only depends on the current state of the system. The
same cannot be said for the reduced system dynamics, whose behavior is often times a lot
more intricate and requires different mathematical tools.

Dynamical maps and master equations
As already discussed, the main focus in the field of open quantum systems is to determine
the evolution of the system S, while assuming no control over the environment. In math-
ematical terms, the task at hand is to determine the dynamical map E : B(HS) → B(HS)
that governs the evolution of ϱS , i.e. ϱS(t) = E [ϱS(0)]. Here B(HS) denotes the space of
bounded operators on HS . The reduced state of the open system can be obtained from
eq. (2) by tracing out the environment and reads ϱS(t) = TrB

(
U(t)ϱSB(0)U †(t)

)
. If the

system at time t = 0 is decorrelated from the environment, i.e. ϱSB(0) = ϱS(0) ⊗ ϱB(0),
then the dynamical map E is well defined and reads

E [•] = TrB
(
U(t) • ϱB(0)U †(t)

)
. (3)

Note that the dynamical map only depends on the global unitary evolution and the state of
the environment and not on the state it acts upon. As we shall discuss in more detail later,
this procedure is no longer applicable for initially correlated states, i.e. when ϱSB(0) ̸=
ϱS(0)⊗ ϱB(0).

The dynamical map as introduced in this section is an exact description of the reduced
state dynamics, however it is often impossible to determine in practice. This is largely due
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to the lack of control over the environmental degrees of freedom. An alternative (but equiv-
alent) approach, which proves to be especially useful when dealing with approximations,
is that of the quantum master equation. The most general form of the master equation is

∂tϱS(t) = −i[H, ϱS(t)] +
∫ t

0
dt′K(t, t′)[ϱS(t′)], (4)

where the first term accounts for the unitary part of the evolution and K(t, t′) is the memory
kernel [RH12]. The memory kernel accounts for the fact that the environment in general
keeps track of the previous interactions with the system. If the contribution of the memory
kernel can be argued to be negligible, then future states only depend on the current state
of the system and not on an integral over the history of past states {ϱS(t′)}tt′=0, i.e. they
are local in time. Such master equations are often being referred to as Markovian, however
there is a lot of debate regarding the definition of Markovianity in the quantum domain and
whether a master equation, which only describes two-time correlations, can even be called
Markovian or not1. We refrain therefore from using this terminology and refer the reader
to [Str22, MM21] for a detailed analysis on the topic. Master equations are widely used
in various field of physics, such as quantum optics, condensed matter physics, quantum
thermodynamics and many more [BP07, Sch07, Str22, GAFCT10].

Before proceeding to introduce the main topic of this thesis, let us stress that any
dynamical map or master equation describing the dynamics of an open system should
yield valid quantum states, i.e. they must be trace preserving and guarantee the positivity
of ϱS(t) for all times, a property known as complete positivity. In this context, a quantum
map ΦS ∈ B(B(HS)) is said to be completely positive (CP) if

ΦS ⊗ IAϱSA ≥ 0, for all ϱSA ≥ 0 (5)

Here IA denotes the identity in B(B(HA)), where HA is an arbitrary ancillary Hilbert
space. Finally, we note that the map E defined in eq. (3) is CP, as a concatenation of CP
maps (unitaries and partial trace are both CP).

2.2 The problem of initial correlations
Let us now consider a correlated initial state, which can always be decomposed as ϱSB(0) =
ϱS(0) ⊗ ϱB(0) + χAB(0), where χAB accounts for the correlations and is not a quantum
state. Following the same line of thought as in the previous chapter, its evolution can be
written as

ϱS(t) = Ẽ [ϱS(0)] = E [ϱS(0)] + JχAB , (6)

where JχAB = TrB
(
U(t)χABU †(t)

)
and E is defined in (3). Clearly the map Ẽ may no

longer be independent of the reduced state of the system. Thus, it does not constitute a map
from initial to future states. Furthermore, despite E being CP, the same is not guaranteed
for JχAB , leading thus to a potentially not-completely positive (NCP) dynamical map Ẽ .
This is because for ϱS(0) and ϱB(0) to be positive, not any χAB is allowed, restricting
thus the domain of the map. A final caveat with this approach is the operational meaning
of the map Ẽ . In an experimental scenario where one wants to determine Ẽ via process
tomography [MS10] by letting it act upon a complete set of basis elements of B(HS), the
correlation term χAB would have to be fixed for each input. Given however our lack of

1Markovianity as defined in probability theory refers to multitime processes and not just two-point
correlations.
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control over the environment, there is no operational mechanism to fix these system-bath
correlations.

In general, defining a dynamical map Ẽ : B(HS) → B(HS) is not meaningful for
entangled initial states. This can be seen by considering a pair of global initial states
ϱ1
SB(0) ̸= ϱ2

SB(0) such that ϱ1
S(0) = ϱ2

S(0) and ϱ1
B(0) = ϱ2

B(0). Their respective reduced
states evolve under ϱS(t) = TrB

(
USB(t)ϱSB(0)U †(t)

)
and clearly satisfy ϱ1

S(t) ̸= ϱ2
S(t).

This would mean that Ẽ has two distinct outputs for the exact same input, making it thus
an ill-defined map. Figure 1 depicts the problem of initial correlations schematically.

Overall, we have established that the approach employed to describe the dynamics of
initially uncorrelated states is not applicable anymore, as it raises significant questions
regarding the positivity of the open system dynamics and the meaning of dynamical maps
in this context. In the following chapter we present an operational framework, originally
introduced by K.Modi in [Mod12], that resolves these issues by paying proper attention
to the effect that preparations have on the system dynamics in the presence of system-
environment correlations [Mod11]. An extensive review of operational quantum dynamics
and its mathematical tools can be found in [MPM17].

Figure 1: The problem with initial correlations: (a) A dynamical map for the open system is well defined
for initially uncorrelated states. (b) In the presence of initial entanglement a dynamical map is ill defined

2.3 Operational solution to the initial correlation problem
Let us consider a preparation P ∈ B(B(HS)) acting on the open system such that the
global state afterwards is disentangled, i.e. ϱSB(0+) = PϱSB(0) = ϱS(0+)⊗ ϱB(0+). Note
here that P is a superoperator mapping operators onto operators. Throughout this thesis
we denote superoperators by calligraphic capital letters to distinguish them from ’regular’
operators that map vectors onto vectors2. A naive approach would be to claim that the
system-bath composite can always be initialized in such a product state, whose dynamics
are then governed by the dynamical map EP [•] = TrB

(
U(t) • ϱPB(0+)U †(t)

)
. The issue

here is that the state ϱPB(0+) depends on the applied preparation and each of the infinite
preparations that can be applied on S could lead to a different dynamical map. This
approach hints at the solution, by realizing that a preparation applied on the open system
has a clear operational meaning, as it is entirely on the control of the experimenter. This
motivates the idea of changing the domain of the map from the space of initial states to
the space of preparations acting on them. We consider therefore a map of the form

M : B(B(HS))→ B(HS),
ϱS(t) =M[P]ϱSB(0). (7)

2From a mathematical perspective this distinction is not necessary, it helps however in keeping track of
the spaces that different objects act upon.
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To account for the infinity of possible preparations P that can be performed on a quantum
system, a basis spanning the entire space of operations is required. A natural choice here
is a basis consisting of decorrelating elements, i.e. preparations whose output is a product
state.

Causal breaks

At this point it is convenient to introduce the concept of causal breaks, which will form
the aforementioned basis of B(B(HS)). A causal break Cab is an intervention in which the
state of the system is measured with an informationally complete set of projectors {Πb}3
and then prepared in a new state τa that is independent of the measurement result and
of the previous state of the system. This ensures the absence of correlations between the
current state the system and its environment, as well as with its previous states. Their
effect on a state is given by

CabϱSB = τa ⊗ TrS(ΠbϱSB) ≡ τa ⊗ ηb, (8)

where ηb is the conditional state of the environment. Note that the states ηb are not
normalized and their trace is the outcome probability of the associated measurement Πb.
Formally, a causal break is a quantum instrument and for τa = |ψa⟩⟨ψa| and Πb = |ψb⟩⟨ψb|
is defined as

Cab[•] = |ψa⟩⟨ψb| • |ψb⟩⟨ψa| . (9)

If both {τa} and {Πb} form a basis of B(HS), then so does their cross-combination on the
space of quantum instruments, B(B(HS)). Any preparation (and any map in general) can
then be linearly expanded as

P =
∑
ab

γabCab, γab ∈ C. (10)

Additionally, if P is hermiticity preserving, then it is straightforward to verify that the
coefficients γab must be are real, while trace preservation implies

∑
ab γab = 1. Note finally

that causal breaks are superoperators, and as such can be represented in various ways. An
example of such a representation that can be used to determine the coefficients γab for a
given P is given in the Appendix A. A more thorough analysis on causal breaks and their
role in characterizing quantum stochastic process is given in [PRRF+18, Str22].

Mapping initial preparations to final states

With the introduction of the causal break we can now resolve the initial correlation problem
by defining the superchannel orM-map

M[•] = TrB
(
U(t)(• ⊗ IB)ϱSB(0)U †(t)

)
, (11)

which maps initial preparations P to future system states

ϱS(t) =M[P]ϱSB(0). (12)

The M-map is operationally well-defined, as it captures all the inaccessible parameters
of the system, while its input is entirely in the control of the experimenter. It has been
shown in [Mod12] to be both linear and completely positive, circumventing thus Pechukas

3By informationally complete is meant that {Πb} is a basis of B(HS).
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argument for dropping one of the two. Note here that if P is trace preserving, then so is
M.

Expressing now the preparation in the basis of causal breaks, the problem reduces
to solving for the open dynamics of an initially uncorrelated system-bath composite for
the d4 different initial states ϱabSB(0+) = τa(0) ⊗ ηb(0), where a, b ∈ {0, 1, ..., d2}. The
respective solutions τab(t) = M(Cab)τa(0) can then be determined via a dynamical map,
an appropriate master equation or any other suitable theoretical or numerical method
[Sch14, Ing02, CC14]. The solution for the correlated initial state is then simply given by
the linear combination

ϱS(t) =
∑
ab

γabτab(t). (13)

This reduction of the problem into a set of problems involving factorisable initial states
allows for the extension of existing theoretical and numerical methods into the regime of
arbitrary initial correlations. A schematic representation of this approach is given in Fig.
2.

Figure 2: Schematic representation of the operational solution to the problem. (a) A causal break
initializes the system in a product state, whose dynamics can be determined via existing methods. (b)
Any preparation can be expressed as a linear combination of causal breaks and therefore be mapped via
M onto future states of the system.

In the following section we will apply this formalism to study the effect that classically
correlated initial states have on the open system dynamics and how it compares to the case
of an initial product state. Throughout this work we utilize quantum discord to distinguish
between classical and quantum correlations, an information measure introduced by Ollivier
and Zurek in 2001 [OZ01]. Briefly speaking, quantum discord accounts for the fact the
even separable states can contain non-classical correlations. This is a consequence of the
disruptive nature of measurements in quantum mechanics, which means that even non-
entangled bipartite quantum states can contain information that is not accessible via local
measurements only. In that sense, zero-discord states are said to be classically correlated.
A more detailed discussion on quantum discord can be found in the Appendix B. In Section
4 theM-map formalism will be applied for deriving a set of master equations that account
for any type of correlations in the initial state, quantum or classical. Throughout this
thesis we focus on the global thermal or Gibbs state

ϱSB(0) = e−βH/Z, (14)

where Z = Tr(e−βH) is the partition function of the full system and β = 1/T is the inverse
temperature in units where kB = 1. The thermal state is stationary and is the state that
maximizes the von-Neumann entropy S(ϱ) = −Tr(ϱ ln ϱ) for a fixed energy E = Tr(Hϱ).
A derivation of its form given in eq.(14) can be found in [Jay57].
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3 Classically correlated initial states: Pure dephasing models
3.1 General dephasing models
In this section we study the reduced dynamics for the general class of pure dephasing models
under the assumption of a correlated initial state. Dephasing models satisfy the condition
[HS ⊗1B, VSB] = 0 and are therefore characterized by the fact that the energy of the open
system is a constant of motion. The effect of the environment in the reduced dynamics is
thus purely decoherent, with no energy dissipation taking place, as the populations remain
thus constant throughout the evolution of the open system. The Hamiltonian describing
this class of models is given by

H = HS ⊗ 1B + 1S ⊗
∑
k

Hk + S ⊗
∑
k

Bk, (15)

for all HS , S such that [HS , S] = 0. Here Hk stand for the Hamiltonian of the k-th bath
mode, which are assumed to be non-interacting. In this work we will focus in the initial
correlations contained in the global thermal state (14). One characteristic feature of this
class of models is that their thermal state only contains classical correlations between the
system and the environment. A proof of this statement can be found in the Appendix
C. Moreover, application of a causal break on that stationary state will result in a non-
equilibrium state with non-trivial dynamics, which we aim to characterize and compare
with the case of an initially uncorrelated state.

The pure dephasing Hamiltonian can be rewritten in the following block-diagonal form

H =
∑
m

ωm |m⟩⟨m| ⊗
(

1B +HB + sm
∑
k

Bk

)
≡
∑
m

|m⟩⟨m| ⊗Hm
B . (16)

This simple structure of the Hamiltonian allows for some analytical progress regarding the
evolution of the reduced state, without further assumptions on the form of the interaction.
However, before introducing these more general results, let us first analyze the dynamics
of the exactly solvable spin-boson pure dephasing model.

3.2 Spin-boson pure dephasing model
This model describes the interaction between a two-level system and a bath consisting of
harmonic oscillators. The total Hamiltonian4 reads

H = HS +HB + VSB = ω0
2 σz +

∑
k

ωkb
†
kbk + σz ⊗

∑
k

(gkb†k + g∗kbk), (17)

where ω0 is the energy gap between the two energy levels of the system, ωk the frequency
of the k-th bath mode and b†k, bk are the bosonic creation and annihilation operators re-
spectively. Pure dephasing model are widely used to study noise in many physical systems,
such as quantum computers [PSE96, RQJ02] and impurities in crystals [Ski88].

Assuming a product initial state ϱ̄SB(0) = τ ⊗ ϱthB , where ϱthB = e−βHB/ZB is the local
thermal state of the bath, the evolution of the open system is given by

⟨i| τ |i⟩ (t) = ⟨i| τ |i⟩ (0), i = {0, 1} (18)
⟨i| τ |j⟩ (t) = e−Γ(t) ⟨i| τ |j⟩ (0), i ̸= j, (19)

4We suppress from now on tensor products with the identity for clarity of notation.
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where ruc(t) = e−Γ(t) is the uncorrelated decoherence factor and

Γ(t) = 8
∑
k

|gk|2

ω2
k

sin2(ωkt/2) coth(βωk/2) (20)

the decoherence rate. As expected, we observe stationary populations and exponentially
decaying coherences. This factor can be split up in two terms,

Γ(t) = Γvac(t) + Γtherm(t), (21)

in order to distinguish between decoherence caused by thermal excitations in the bath and
by vacuum fluctuations. A detailed analysis on this topic can be found in [Sch07].

Let us now focus on the correlated, global thermal state ϱSB(0) = e−βH/Z instead and
introduce a causal break Cab, such that the state of the combined system is given by

ϱabSB(0+) =
∑
ab

γabCabϱSB(0) ≡ τa ⊗ ηb, (22)

where

ηb = TrS (ΠbϱSB(0)) = 1
ZSB

⟨ψb| e−βH |ψb⟩ . (23)

is the conditional state of the bath after the causal break and Πb = |ψb⟩⟨ψb|. The block-
diagonal form (16) can be utilized to diagonalize the Hamiltonian and determine ηb, which
characterizes the exact dynamics induced on the system by Cab5. Clearly the populations
will still be stationary, as this is a consequence of [HS , VSB] = 0 and does not depend on
the initial state. After several algebraic manipulations and a change of variables to identify
the effective bath Hamiltonians

Hm
B ≡ H±B = ±ω0

2 +
∑
k

ωkb
†
kbk ±

1
2
∑
k

(gkb†k + g∗kbk) (24)

in the decomposition (16) as a pair shifted harmonic oscillators, the coherences ⟨i| τab |j⟩ (t) =
Tr
(
|j⟩⟨i| ϱabSB(t)

)
are found to be

⟨i| τab |j⟩ (t) = (cos θ(t) + iKb sin θ(t)) e−Γ(t) ⟨i| τa |j⟩ (0). (25)

Above we have introduced the time-dependent correlation phase

θ(t) =
∑
k

|gk|2

ω2
k

sin(ωkt) (26)

and the asymmetry factor

Kb = f0e
−βω0/2 − f1e

βω0/2

f0e−βω0/2 + f1eβω0/2 , (27)

where fm = ⟨m|Πb |j⟩⟨i|Πb |m⟩ , m = 0, 1. We should note here that |Kb| ≤ 1 for all
causal breaks, indicating that the absolute value of the coherence in the open system can
not surpass at any time the respective value of the uncorrelated case. This is due to the
classical nature of the initial correlations, as the presence of entanglement in the initial
state can lead to information backflow and generally more complex behavior [SBPV10].

5Note that the global state prior to the causal break satisfies [ϱSB(0), H] = 0 and is a steady state of
the model.
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Additionally, the effect of each causal break on the decoherence rate is only present in
the asymmetry factor Kb and not in the time-dependent correlation phase, leading thus to
a straightforward generalization for the case of a general preparation P =

∑
ab γabCab. The

evolution of the coherences in that case reads

ϱijS (t) =
∑
ab

γabr
b
c(t) ⟨i| τa |j⟩ (0), (28)

where we have defined the correlated decoherence factor,

rbc(t) = (cos θ(t) + iKb sin θ(t)) e−Γ(t). (29)

It can be seen that more complex preparations can alter the plane and the amplitude of
the oscillations in the decoherence factor, but not its frequency, which is determined from
the mode-dependent coupling strength gk and the the respective frequencies ωk. Following
a similar approach as in eq. (21), an additional term can be introduced to account for the
impact of the initial correlations on the decoherence rate for various forms of the system-
bath coupling [MMR12]. Instead, we will focus on the observed effect of the asymmetric
decay of the Bloch-vector, which to our knowledge has not been explored previously. This
effect be seen directly in eq. (25) in the presence of an imaginary part in the decoherence
factor and is the focus of the following section.

3.3 Geometry of decoherence in the spin-boson pure dephasing model
To gain a more clear physical understanding of this effect, let us express the density matrix
as τab(t) = (1 + f(t) · σ)/2, where f(t) = (fx(t), fy(t), fz(t)) is the Bloch vector and
σ = (σx, σy, σz)T is the vector of Pauli matrices. It is straightforward to compute the
expressions for the components of the Bloch-vector as a function of time, which are given
by

fx(t) = 2 cos θ(t) ⟨0| τab |1⟩ (0) (30)
fy(t) = −2Kb sin θ(t) ⟨0| τab |1⟩ (0) (31)
fz(t) = 2 ⟨0| τab |0⟩ (0)− 1. (32)

Let us now consider a preparation consisting of a single causal break of the form

P̃ϱSB(0) = τ ⊗ TrS(τϱSB(0)), (33)

where the system is projected onto τ = |ψ⟩⟨ψ|, followed by a preparation of the same
state. It is the simple structure of the generalization (29) that justifies our decision to
focus on that simple case moving forward. The evolution of the Bloch vector components
for both product and correlated initial states shows a major difference in the geometry
of the decay of the Bloch-vector. While for the uncorrelated case it always decays along
its projection to the z-axis following a straight line, in the presence of correlations it
experiences an ’oscillations’6 along the plane x-y plane, before reaching the same steady
state. This demonstrates that the initial correlations lead to an asymmetric decay of the
Bloch vector, with coherences emerging in directions that were not present in the initial
state. An example for two different coupling strengths (α = {1, 6}) is shown in Fig. 3(a),
while Fig. 3(b) shows the effect that initial correlations have in the the decoherence factor.

6They are not oscillations in the strict sense, as Kb ̸= 1 in general.
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Figure 3: (a) Geometry of decoherence in the Bloch-sphere for (1) initial product state (red-squares),
(2) correlated initial state, α = 1 (blue-circles), (3) correlated initial state, α = 6 (green-rhombus)
(b) Decoherence factor for product (dashed lines) and correlated (solid lines) initial states.
Plot parameters: τ = |+⟩⟨+| , ω0 = 2 · 10−2κ, β = 50/κ, J0 = 13, tc = β/8πκ.

Note here that for all plots we have assumed a continuous spectrum for the environ-
ment, allowing us to perform the transformation

∑
k|gk|2 −→

∫∞
0 dωJ(ω), where we have

introduced the spectral density

J(ω) =
∑
k

|gk|2δ(ω − ωk). (34)

The spectral density is a positive function defined for ω > 0 that completely characterizes
the coupling between a system and its environment and satisfies J(ω)→ 0 for ω → 0 and
ω →∞. For all results in this section we have assumed a spectral density that of the form
J(ω) = 8J0ωe

−ω/κ, where J0 is a dimensionless constant. This spectral density is ohmic
for small ω, i.e. J(ω) ∝ ω and has a smooth cutoff, quantified by the parameter κ.

Before proceeding with generalizing and interpreting this phenomenon, let us stress
here that this asymmetric decay is not noticeable if the applied preparation satisfies
[PϱSB(0), H] = 0, as in that case the the decay of the Bloch vector will follow a lin-
ear trajectory towards the steady state without exhibiting any assymetries. Finally, if the
applied measurement results in Kb = 1, then the correction to the decoherence factor due
to the initial correlations would correspond to a full rotation, i.e. eiθ(t). This could have
potentially led to a misinterpretation of this phenomenon as being part of the systems
unitary dynamics, leading to wrong estimations of the frequency ω0 of the qubit. A very
brief qualitative analysis of this idea in the context of Ramsey interferometry [Ram50] is
included in the Appendix D. In the following we analyze this phenomenon for the general
class of dephasing models, while also providing a physical intuition on its origin.

3.4 Geometry of decoherence in general dephasing models
In this chapter we extend our analysis on the geometric aspects of decoherence onto the
broader category of dephasing models characterized by the Hamiltonian (15). To do so,
we once again consider a preparation consisting of a single causal break as in (33). The
global state is then given by ϱSB(0+) = τ(0)⊗ η(0), where

η(0) = 1
Z

∑
m

|⟨ψ|m⟩|2e−βHm
B = 1

Z

∑
m

|⟨ψ|m⟩|2e−βωme−β(Hk+smBk) (35)
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is the conditional state of the bath. The matrix elements of the reduced system evolve
then according to

ϱijS (t) = ⟨i|τ |j⟩ (0) 1
Z

∑
m

|⟨ψ|m⟩|2e−βωm
∏
k

TrB
(
Ũie
−β(Hk+smBk)Ũ †j

)
, (36)

where Ũi = T← exp
[
− isi

∫ t
0 dt

′B(t′)
]

and si are the eigenvalues of the system operator S.

A step-by-step derivation of this exact result is included in the Appendix E. Overall, we
observe a similar but more complicated structure in comparison to the spin-boson model,
which is a special case of the general model (15). In the following we analyze the origins
of the asymmetric decay of the Bloch vector by highlighting the differences between the
initial bath states η(0) and ϱthB .

Interpretation

It is precisely the partition of the conditional bath-state (35) into a mixture of thermal
states, each with an effective Hamiltonian Hm

B , that causes the asymmetry observed in the
decay of the coherences. Furthermore, the choice of projection Π = |ψ⟩⟨ψ| determines the
contribution that each of the effective thermal states e−β(Hm

B )/Z has in the total mixture.
The spacing between the energy levels of the open system determines the constant energy
shift between each state in the partition of conditional bath states, while the eigenvalues
sm of the system operator S in the common basis between S and HS determine the energy
spacing between the modes in each effective Hamiltonian. In the case of the spin-boson
pure dephasing model studied previously, the former contributions are encoded solely in
the stationary K-factor, while the latter are encoded in the time-dependent phase θ(t),
having a more significant impact in the evolution of the coherences. As an analogy, the
observed asymmetry in the decay of the Bloch-factor can be thought of as a consequence
of the system interacting probabilistically with multiple distinct baths, each one ’pulling’
the Bloch-vector towards a different direction. This concept is illustrated schematically in
Figure 4 for the case of the spin-boson model.

Figure 4: Schematic representation of the process leading to the observed geometry of decoherence in
the Bloch-sphere for (a) product initial state: the qubit is interacting with a single bath (b) Correlated
initial state, the qubit is interacting with a statistical mixture of two energy-shifted baths generated
by different effective Hamiltonians Hm

B , resulting thus in different energy spacing ∆E for each of the
respective spectra.
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4 A family of weak-coupling master equations for initial correlations
In this section we treat a fully general Hamiltonian describing a system S weakly coupled
to its environment B and analyze the reduced system dynamics by deriving a second-
order master equation that accounts for possible initial correlations (quantum or classical)
between system and environment. More specifically, in order to properly account for initial
correlations we are deriving a family of master equations {ME}ab, one for each causal break
Cab in the set that spans the space of possible preparations in S. One master equation is
derived for each decorrelated state ϱabSB(0+) = CabϱabSB(0) = τa(0)⊗ηb(0). We show that this
family of master equations contains an inhomogeneous term that depends on the initial
state of the system. For a given preparation P =

∑
ab γabCab, the state of the system at

time t is then given by
ϱS(t) =

∑
ab

γabτab(t), (37)

where τab(t) is the solution of the corresponding equation {ME}ab. For the sake of clarity
we will first consider a single master equation and switch to the causal break formulation
of the problem once the structure of the master equation has become clear.

4.1 Setting up the problem
Starting with a general Hamiltonian H = HS + HB + λVSB, where λ accounts for the
strength of the interaction, we move into the interaction picture with respect to H0 = HS+
HB, thus writing ϱ̃SB(t) = ei(HS+HB)tϱSBe

−i(HS+HB)t. The combined system-environment
evolution is then given by ∂tϱ̃SB(t) = −iλ[ṼSB(t), ϱ̃SB(t)]. After integrating both sides,
iteratively inserting the result back to the equation for the combined state evolution and
tracing out the environmental degrees of freedom we obtain

∂tϱ̃S(t) = −iλTrB
(
[ṼSB(t), ϱSB(0)]

)
− λ2TrB

([
ṼSB(t),

∫ t

0
dt′[ṼSB(t′), ϱ̃SB(t′)]

])
, (38)

an integrodifferential equation for the reduced state ϱ̃S which is still formally exact. This
implies that knowledge of the whole history of states {ϱS(t′)}tt′=0 is required for the equation
to be solved, making it thus a time non-local differential equation. This is practically
impossible and indicates that approximations have to be made to proceed further with
the task of characterizing the reduced dynamics. Additionally, the evolution of the system
depends on the state of the environment at those times too, something incompatible with
the spirit of open quantum systems, where one assumes no access the environment.

The standard procedure at this point is to assume no initial correlations, i.e. ϱSB(0) =
ϱS(0) ⊗ ϱB(0), with the bath being in thermal equilibrium, and invoke the Born, first
and second Markov approximations, as well as the secular approximation to arrive at a
time-local, first-order differential equation for ϱS [KCK08]. Instead, we will assume global
thermal equilibrium, i.e.

ϱSB(0) = ϱthSB = e−β(H0+λVSB)/ZSB, (39)

where ZSB = Tr
(
e−β(H0+λVSB)

)
is the partition function of the combined system, and

perform second-order perturbation theory in the coupling strength λ to investigate the
effect of the initial correlations in the structure of the weak coupling master equation. In
general the state (39) is not of product form in the presence of system-bath interaction. The
type of the interaction determines whether the correlations contained in it are of classical
or quantum nature. Along the way we will not perform the second Markov and secular
approximations, for reasons that will be clarified at appropriate points in the derivation.
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First order-correction to the global Gibbs state
Let us begin with the first order approximation of the global Gibbs state, by making use
of the identity7

etX = etY +
∫ t

0
dt′e(t−t′)Y (X − Y )et′X . (40)

Substituting now X = −H0 − λVSB, Y = −H0 and t = β and then utilizing the exact
same identity again for the factor et′X results in

e−βH = e−βH0 − λ
∫ β

0
dβ′e−(β−β′)H0VSBe

−β′H0 +O(λ2). (41)

We expand the global Gibbs state in a Taylor series up to first order in the coupling-
strength, i.e.

ϱSB(0) = ϱthS ⊗ ϱthB + λϱcorr +O(λ2), (42)

since a first order approximation in the initial state leads to second order terms in the
master equation (38). Here ϱthS = e−βHS/ZS and ϱthB = e−βHB/ZB are the local equilibrium
states. For the first order correction we obtain

ϱcorr = − 1
Z0

∫ β

0
dβ′e−(β−β′)H0VSBe

−β′H0 +
Tr
(∫ β

0 dβ
′e−(β−β′)H0VSBe

−β′H0
)

Z2
0

e−βH0 (43)

where Z0 = Tr
(
e−βH0

)
is the partition function of the unperturbed Hamiltonian. Note

that when derivating with respect to λ to determine ϱcorr one needs to account for the
fact that both e−βH and ZSB depend on the coupling strength. Moreover any terms
proportional to λ in the derivative have been neglected, as they would be absorbed in
O(λ2) in the Taylor expansion (42).

4.2 Causal-break formulation of the master equation
At this point we shift our focus to the family of decorrelated initial states ϱabSB(0+),
parametrized by the action of the causal breaks Cab on the initial state (42). They are
given by

ϱabSB(0+) = τa(0)⊗
(
TrS(ΠbϱS(0))ϱthB + λTrS (Πbϱcorr)

)
+O(λ2)

= τa(0)⊗ (pbϱB(0) + λχb(0)) +O(λ2) (44)

where we have defined
pb = TrS(Πbϱ

th
S ) (45)

and
χb(0) = TrS (Πbϱcorr) . (46)

Inserting these states in the exact master equation (38) yields

∂tτ̃ab(t) = −iλpbTrB
(
[ṼSB(t), τa(0)⊗ ϱthB ]

)
− iλ2TrB

(
[ṼSB(t), τa(0)⊗ χb(0)]

)
− λ2TrB

([
ṼSB(t),

∫ t

0
dt′[ṼSB(t′), ϱ̃abSB(t′)]

])
+O(λ3), (47)

7This expression can be proven by simply multiplying with e−tY form the left and then differentiating
with respect to time.
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where the first two terms depend on the global initial state and the third is the canonical
term governing the reduced state dynamics for product initial states. After certain approx-
imations the third term is also known as the dissipator, as it is in most cases the dominant
term accounting for the effect of the environment on the system dynamics. From now on
we omit the O(λ3) term and any expression for a master equation should be understood
to be approximate and to pertain to the weak-coupling regime.

Analysis of the first order term and redefining the Hamiltonian
Let us now address the first order term and whether it can be set to zero or not, as is
the case for the standard master equation, where initial correlations are neglected [BP07].
Starting our considerations from the Schrödinger picture, we express the interaction in the
decomposition VSB =

∑
k Ak ⊗Bk and compute

TrB[VSB, τa(0)⊗ ϱthB ] =
∑
k

[Ak, τa(0)]TrB(BkϱthB ). (48)

One can always redefine the system and interaction terms in the Hamiltonian, such that∑
k ⟨Bk⟩ ≡

∑
k TrB(BkϱthB ) vanishes, by simply choosing TS =

∑
k ⟨Bk⟩Ak and setting

V ′SB = VSB − TS ⊗ 1B and H ′S = HS + TS ⊗ 1B, (49)

where TS represents a constant energy shift in the system Hamiltonian. This transforma-
tion leaves the total Hamiltonian unchanged, while at the same time guaranteeing

TrB
(
V ′SBτa(0)⊗ ϱthB

)
=
∑
k

Akτa(0)TrB
(
Bkϱ

th
B − ⟨Bk⟩

)
(50)

=
∑
k

Akτa(0)TrB (⟨Bk⟩ − ⟨Bk⟩) = 0. (51)

We conclude therefore that the first order term in the master equation (47) can always
be set to be zero, irrespective of the initially prepared state τa(0), simplifying thus the
calculations significantly. Remains now to show that this procedure can be carried over in
the interaction picture as well. We check therefore whether

TrB
(
ṼSB(t)ϱthB

)
=
∑
k

TrB
(
(Bk − ⟨Bk⟩)e−iHBtϱthB e

iHBt
)

= 0, (52)

which is only satisfied if
[ϱthB , HB] = 0. (53)

In our case ϱthB = e−βHB/ZB and the condition (53) is clearly satisfied, meaning that the
first-order term in (47) can be safely neglected. We can also conclude that this is the case
for the whole family of master equations {ME}ab, as the shift operator TS that makes the
term vanish is independent of a and b.

It is important to stress however that this result is directly related to our assumption
of an initial global thermal state and cannot be generalized to arbitrary initial correlations.
Had the zero-order term in the expansion of ϱSB(0) not been proportional to ϱthB , then the
corresponding term in the master equation would have to be taken into account normally.
In the following chapter we investigate whether the same procedure can be applied for the
term involving χb(0) as well.
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4.3 Inhomogeneous correction term due to initial correlations
We begin by writing the correlation term (43) in the more convenient form

ϱcorr = −ϱIC + Tr(ϱIC)
Z2

0
e−βHS ⊗ e−βHB , (54)

where we have introduced

ϱIC = 1
Z0

∫ β

0
dβ′e−(β−β′)H0VSBe

−β′H0 . (55)

The conditional state of the bath can then be written as

χB(0) = −TrS(ΠbϱIC) + pb
Tr(ϱIC)
ZS

ϱthB . (56)

From this we see that the second term is proportional to ϱthB and thus will not contribute
to the dynamics, as the corresponding term in the master equation can be set to zero by
the exact same shift operator TS discussed previously, enabling us to define

χ′b(0) = TrS(ΠbϱIC). (57)
The only contribution remaining is therefore due to the term proportional to TrS(ΠbϱIC)
and is of the form iλ2/Z0

[
ṼSB(t), τa(0)⊗ χ′B(0)

]
. For this term to be safely neglected for

any reduced system state, one would need to redefine things such that∑
k,l

TrB
(
Bke

−(β−β′)H0Ble
−β′HB

)
= 0 (58)

and additionally verify that this translates into the interaction picture as well, guaranteeing
that condition (58) is satisfied for all times. For this to hold in the interaction picture, the
correction term must commute with the bath Hamiltonian, as was shown in the previous
paragraph (see equations (52)-(53)). Here however we have[

HB,

∫ β

0
dβ′e−(β−β′)H0VSBe

−β′H0
]

=
∫ β

0
dβ′e−(β−β′)H0 [HB, VSB]e−β′H0 ̸= 0, (59)

since in general the interaction does not commute with the bath Hamiltonian. This indi-
cates that this term cannot be eliminated from the master equation, as there is no unique
way of redefining the system and interaction Hamiltonians that make it vanish for all times.
Overall the master equation at this point reads

∂tτ̃ab(t) = iλ2TrB
(
[ṼSB(t), τa(0)⊗ χ′b(0)]

)
− λ2TrB

([
ṼSB(t),

∫ t

0
dt′[ṼSB(t′), ϱ̃abSB(t′)]

])
,

(60)
where χ′b(0) contains all the information pertaining to the effect that initial correlations
have on the dynamics of the system. We conclude therefore that allowing for correlations in
the initial density matrix modifies the master equation by contributing an inhomogeneous
term.

Remark

An interesting effect that can be seen in the structure of eq. (60) is that even if the first
order correction on the global Gibbs state for the reduced system density matrix vanishes,
i.e. TrB(ϱcorr) = 0 ⇒ χ′b(0) = 0 (as is the case for many models, the spin-boson model
amongst them [GRT00]), this does not imply that initial correlations do not affect the
dynamics of the open system. This is because the commutator and the partial trace
operations do not commute. In other words χ′b(0) = 0 does not imply TrB(

[
ṼSB(t), τa(0)⊗

χ′b(0)
]
) = 0, indicating that initial correlations cannot be neglected.

18



Born-Markov approximations
So far we have managed to get some insights on the effect of the initial correlations in the
structure of the master equation, however we still have to deal with the issue of the time
non-local nature of the equation, as well as with its dependence on the global state ϱ̃SB(t).
The treatment of these issues is standard textbook material in the field of open quantum
systems [BP07, RH12] and for weak coupling master equations they are typically resolved
by first invoking the Born approximation and then the first Markov approximation. In
short, the Born approximation assumes the bath to be in thermal equilibrium throughout
the systems evolution, imposing thus

ϱ̃abSB(t) ≈ pbτab(t)⊗ ϱthB +O(λ), (61)

where any corrections due to O(λ) can be neglected in the weak-coupling regime, as they
would contribute third-order terms in the master equation. Meanwhile, the Markov approx-
imation assumes a memoryless environment and performs the change of variables t−t′ → t′

to replace the retarded time density matrix τ̃ab(t′) in the integral with the current den-
sity matrix τ̃ab(t), yielding thus a time-local equation. A more detailed discussion on the
physical intuition behind these approximations, along with some mathematical insights, is
given in the Appendix F.

At this point we opted to not perform the second Markov approximation, which replaces∫ t
0 dt

′ with
∫∞

0 dt′ and leads to a time-independent dissipator D̃ at the cost of lower accuracy
for very short times. The reason is that we aim to study the effect of the initial correlations
on the system dynamics, whose effect is expected to be stronger at transient times and to
decrease as the correlations due to the system-bath interaction build up over time. This
of course will lead to a time-dependent dissipator D̃t.

Moreover, we also choose to not invoke the secular approximation. The secular approx-
imation involves averaging over the fast-oscillating terms in the equation, and formally is
very similar to the rotating-wave approximation typically performed in deriving Hamilto-
nians in the field of quantum optics, such as the Jaynes-Cummings one [JC63]. The main
reason for performing the secular approximation is to bring the master equation in Lindblad
form [RH12], which guarantees the positivity of the density matrix at future times (the
converse is not true however, a master equation that is not of Lindblad form does not nec-
essarily have negative solutions). It has been observed however that for short time scales
the master equation obtained via the secular approximation is not justified, sometimes
failing completely to capture the system dynamics in the weak coupling regime [SSSE18].
Furthermore, it has been demonstrated that the loss positivity does not manifest in the
validity regime of the equation and it has been argued that it should even be embraced as
a witness for the breakdown of the weak-coupling assumption [HS20].

4.4 Final form of the modified master equation
The master equation after the aforementioned approximations reads

∂tτ̃ab(t) = −λ2pbD̃t[τ̃ab(t)] + iλ2Φ̃t[τa(0)], (62)

where8

D̃t[•] =
∑
k,l

∫ t

0
dτ
[
Ckl(τ)

(
Ãk(t)Ãl(t− τ) • −Ãl(t− τ) • Ãk(t)

)
+ h.c.

]
, (63)

8The abbreviation h.c. here stands for the hermitian conjugate.
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is the time-dependent dissipator,

Ckl(t, τ) =
〈
B̃k(t− τ)Bl

〉
ϱth

B
= Ckl(t− τ) (64)

are the so-called bath correlation functions and

Φ̃b,t[•] =
∑
k

⟨B̃k(t)⟩χ′
b
(0)
[
Ak(t), •

]
(65)

is the correction term accounting for the initial correlations in the global Gibbs state. It
is straightforward to check that operator Φ̃t preserves the trace and the hermiticity of the
reduced density matrix ϱ̃S . This modified master equation is an inhomogeneous, first order
differential equation whose formal solution reads

τ̃ab(t) = G(t, 0)τα(0) +
∫ t

0
dsG(t, s)Φ̃b,s[τα(0)], (66)

where
G(t, s) = T← exp

(
pb

∫ t

s
dt′D̃t′

)
(67)

is the solution to the homogeneous equation ∂tτ̃ab(t) = pbD̃t
[
τab(t)

]
.

Analysis of the initial correlation term
In this section we evaluate the initial correction term (65) in the master equation explicitly.
We begin with

⟨B̃k(t)⟩χ′
b
(0) = 1

Z0

∑
l

∫ β

0
dβ′TrS

(
Πbe

−(β−β′)HSAle
−β′HS

)
TrB

(
B̃k(t)e−(β−β′)HBBle

−β′HB

)
.

(68)

We insert now the identity 1X = e−(β−β′)HXe(β−β′)HX , X = S,B after Sl and before B̃k(t)
respectively to simplify the expression. After some algebra and by utilizing the cyclicity of
the trace, as well as that Z0 = ZSZB , the correction term can be expressed in the more
compact form

Φ̃b,t[τa(0)] = i
∑
k,l

∫ β

0
dβ′ ⟨ΠbÃl(−i(β − β′))⟩ϱth

S
⟨B̃k(t− i(β − β′)Bl)⟩ϱth

B
[Ãk(t), τa(0)],

(69)

where the interaction picture operators are now evaluated for complex times. The second
expectation value can be recognized as the bath correlation functions evaluated at complex
times, i.e. Ckl(t− i(β− β′)). This is an interesting result, as it shows that the whole effect
of the bath is still contained at the same two-time correlation functions as in the case of
an initial product state. Functions evaluated at complex times are known in quantum field
theory and statistical mechanics as Wick-rotated functions [Wic54]. This is an indication
of how one could go about interpreting this result, it is however beyond the scope of this
thesis. The correction term can now be written as

Φ̃b,t[τa(0)] =
∑
k,l

∫ β

0
dβ′ ⟨ΠbÃl(−i(β − β′))⟩ϱth

S
Ckl(t− i(β − β′))[Ãk(t), τa(0)]. (70)
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We introduce now the time- and temperature-dependent initial correlation function

Hb,k(t, β) =
∑
l

∫ β

0
dβ′ ⟨ΠbÃl(−i(β − β′))⟩ϱth

S
Ckl(t− i(β − β′)) (71)

and write
Φ̃b,t[τa(0)] =

∑
k

Hb,k(t, β)[Ãk(t), τa(0)]. (72)

Schödinger Picture
All of the results so far are given in the interaction picture with respect toH0. We transform
now back to the Schrödinger picture and write

∂tτab(t) = −i[HS , τab(t)] + e−iHSt∂tτ̃ab(t)eiHSt. (73)

After some straightforward algebra, the Schrödinger picture master equation reads

∂tτab(t) = −i[HS , τab(t)]− pbλ2Dt[τab(t)] + iλ2Φb,t[τ̃a(0;−t)], (74)

where

Dt[τab(t)] =
∑
k,l

∫ t

0
dt′
(
Ckl(t′)[Ak, Al(−t′)τab(t)] + Clk(−t′)[τab(t)Al(−t′), Ak]

)
(75)

and
Φb,t[τ̃a(0;−t)] =

∑
k,l

Hb,k(t, β)[Ak, τ̃a(0;−t)]. (76)

The negative time argument in τ̃a(0;−t) = e−iHStτa(0)eiHSt comes from the transformation
back to the Schrödinger picture. This suggests that the influence of the initial correlations
on the future state of the system can be related to how the prepared state τa(0) would have
evolved backwards in time, had the system been isolated. For a more intuitive expression
we define now the operators

Ek(t) =
∫ t

0
dt′
∑
l

Ckl(t′)Al(−t′), (77)

Fk(t) =
∫ t

0
dτ
∑
l

Clk(−t′)Al(−t′) (78)

and write finally

∂tτab(t) =− i[HS , τab(t)]− pbλ2∑
k

([Ak, Ek(t)τab(t)] + [τab(t)Fk(t), Ak])

+ iλ2∑
k

Hb,k(t, β)[Ak, τ̃a(0;−t)]. (79)

This concludes the derivation of the family of master equations {ME}ab, which consists
of d4 decoupled, inhomogeneous differential equations. As expected they are non-local in
time, since they contain a dependence on the initial state, a consequence of the correlated
initial state. Importantly, we have shown that the whole effect of the bath is still encoded
in the two-time bath correlation functions, except now evaluated at complex times. Let
us emphasize once again that this master equations {ME}ab are not in Lindblad form yet
and thus do not guarantee the positivity of ϱS(t). What is guaranteed however is that any
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observed negativities are only caused by the breakdown of the weak-coupling assumption
and not by the presence of entanglement in the initial state. Overall, the developed for-
malism constitutes a general theoretical tool can be applied to study the effect of initial
correlations in the evolution and the thermodynamics of an open system for a variety of
physical models, as long as the weak-coupling approximation is satisfied. Appendix G
includes analytical expressions of the modified master equation and its characteristic func-
tions for the paradigmatic dissipative spin-boson model [LCD+87], while also outlining how
the derived formalism can be benchmarked in that case.

5 Conclusions and outlook
In this thesis we analyzed the dynamics of open quantum systems in the presence of
correlations in the global initial state by employing an operational approach to the problem
and paying attention to the effect that local initial preparations can have on the evolution
of the open system. We focused specifically on the correlations contained in the global
thermal state of the system-bath composite, as it constitutes a natural assumption for the
initial state of a system at rest.

The influence of classical correlations in the initial state has been explored by solving
for the exact dynamics of the spin-boson pure dephasing model. The study reveals an
impact on the geometry of decoherence in the Bloch sphere, which showcases an oscillating
behavior that differs significantly from the uncorrelated case, with coherences emerging in
multiple directions of the sphere as the system approaches its steady state. This analysis
was also extended to the more general class of dephasing models.

Next, a family of weak-coupling master equations to treat initial correlations in the
global thermal state of a fully general Hamiltonian was derived. The master equation
applies to both classical and quantum correlations and contains an inhomogeneous correc-
tion term compared to the Born-Markov master equation that is derived for product initial
states. The resulting master equation is non-local in time, as it contains a dependence on
the initial state of the system. Moreover it has been demonstrated that the effect of the
initial correlations on the bath is completely captured by the Wick-rotated ?? bath cor-
relation functions. The developed formalism constitutes a general and practical tool that
can be implemented to study the effect of initial entanglement on the dynamics of many
relevant models.

Finally, there are several future directions for this project. Regarding the phenomenon
of asymmetric decoherence of the Bloch-vector for dephasing models, it can be investigated
in the context of Ramsey experiments, as the neglection of initial correlations could have
potentially affected the frequency estimation of qubits in several experiments. A short
description of this idea is included in the Appendix D. The most promising path this
project can take however is the application of the derived master equation formalism for
appropriate models, such as the dissipative spin-boson model, in order quantify the effect
of initial correlations on the system dynamics, while also analyzing the different effect
that quantum and classical correlations can cause. The results would indicate whether
the assumption of an initial product state, which to this day underlies most theoretical
descriptions of open systems, is justified for said models or not. Additionally, the formalism
can also be applied to study the thermodynamics of initially correlated open systems and
understand whether any negativities in the entropy production rate of the system constitute
a quantum effect or not [SE19]. From a more theoretical point of view, it would also be of
interest to interpret the complex time argument in the bath correlation functions appearing
in the master equation.
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Appendix

A Representation of superoperators
Superoperators admit many representations and is the theoriticians choice which one to
employ, depending on her/his purpose. Here we present a convenient way for representing
any superoperator A that is especially useful for numerical applications. An example of
such a use is to determine the unique set of coefficients γab, such that A =

∑
ab γabCab,

where A is any quantum operation. This enables us to The idea is to represent A as a
d2 × d2 matrix Â, by first vectorizing the density matrix as a vector of d2 length, i.e.

ϱ =
∑
kl

ϱkl |k⟩⟨l| ←→ |ϱ⟩⟩ =
∑
kl

ϱkl|kl⟩⟩. (80)

Using the fact that the action of any superoperator on an operator can always be decom-
posed as Aϱ =

∑
kXkϱYk for some {Xk}, {Yk}, the matrix representation of A is then

given by
Â =

∑
k

Xk ⊗ Y T
k . (81)

We express now the action of a causal break on a quantum state in the aforementioned
decomposition,

Cabϱ = |ψa⟩⟨ψa|Tr{|ψb⟩⟨ψb| ϱ}
= |ψa⟩⟨ψa| ⟨ψb| ϱ |ψb⟩
= (|ψa⟩ ⟨ψb|)ϱ(|ψb⟩ ⟨ψa|),

and identify X = |ψa⟩ ⟨ψb| and Y = |ψb⟩ ⟨ψa|. A single term was needed for the decompo-
sition (??) in this case. The corresponding matrix representation Ĉab is then given by

Ĉab = |ψα⟩ ⟨ψβ| ⊗ (|ψα⟩ ⟨ψβ|)∗. (82)

Any map A can now be linearly expanded in the basis formed by the causal breaks (82),
i.e.

A =
∑
ab

γab |ψa⟩ ⟨ψb| ⊗ (|ψa⟩ ⟨ψb|)∗, γab ∈ C, (83)

which is a set of d4 linear equations that uniquely determine the coefficients γab.

B Classical and quantum correlations: Quantum Discord
Quantum systems can be correlated in more ways than we are used to in the classical
world. The most famous example amongst them is quantum entanglement and, at a first
glance, one may be tempted to draw the line between quantum and classical correlations
at the border between separable and entangled states. However, the disruptive nature of
measurements in the quantum domain indicates that even separable states can contain cor-
relations that are not classical in nature. Quantum discord is an information measure that
accounts for this fact by quantifying the amount of information in a bipartite system that
is not retrievable by local measurements only. It is defined as the difference between the
mutual information I(A : B) = S(A) + S(B)− S(AB), which accounts for all correlations
present in a state ϱAB, and the quantity

J(B|Ea) = S(B)− S(B|{Ea}), (84)
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where {Ea} is a POVM acting on A with outcome probabilities pa = Tr(Ea ⊗ 1BϱAB),
and S(X) = −

∑
X ϱX log ϱX is the von Neumann entropy of the state. In the classical

world, where measurements are not basis-dependent and do not disturb the state system,
this quantity is equal to the mutual information I(A : B), i.e.

Jcl = S(B)− S(B|A) = S(B)−
∑
a

paS(B|a), (85)

where S(B|a) = −
∑
b pb|a log pb|a.

In the quantum realm however the choice of measurement {Ea} = {M †aMa} affects the
quantum state non-trivially, making thus the quantity J measurement dependent. To lift
this dependence one can maximize over all possible POVM’s and define

J(B|A) = max
{Ea}

J(B|{Ea}). (86)

The information measure J(B|A) quantifies therefore the amount of classical correlations
between A and B and is interpreted as the amount of information one can gain about
subsystem B by only performing local measurement on subsystem A. Note that in general
J(B|A) ̸= J(A|B). The quantum discord of ϱAB is then defined as the the difference
between total and classical correlations, i.e.

D(B|A) = I(A : B)− J(B|A). (87)

The discord D(B|A) is non-negative and vanishes if and only if ϱAB is a classical-quantum
state, i.e.

D(B|A) = 0 ⇐⇒ ϱAB =
∑
a

paΠa ⊗ ϱB|a, (88)

where {Πa} is a set of rank-one projectors satisfying ΠiΠj = δijΠj and
∑
a Πa = 1. States

of this form are oftened referred to as classical or zero-discord states. Overall, quantum
discord accounts for all non-classical correlations and only corresponds to entanglement for
pure states. In other words discord can be non-zero also for separable, but non-product,
mixed states.

Some interesting facts

• Nullity condition: D(B|A) = 0 =⇒ [ϱA ⊗ 1B, ϱAB] = 0.

• Local operations can generate quantum correlations: The classicality of a state is
preserved if and only if the channel C preserves vanishing commutators, i.e. iff[

C(ϱ), C(τ)
]

= 0 ∀ [ϱ, τ ] = 0. (89)

• Negative entropy production rate and non-classical correlations: If the time-derivative
of the entropy of the reduced state at time t is non-zero, then the correlations between
system and environment at that time are quantum in nature. This is satisfied if and
only if the nullity condition from above is satisfied. This emphasizes that the quantum
correlations play an important role for decoherence, as their presence is a necessary
condition for it to occur. Moreover it has been proven that∣∣∣∣∣ ddtS(ϱS)

∣∣∣∣∣ ≤ ||Hint|| ||[(log ϱS ⊗ 1B), ϱSB]||1, (90)
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showing that the correlations impose bounds on the entropy production rate of the
system. This property can be used study the different thermodynamic properties of
initial states with quantum vs. classical correlations.

• Trace-distance quantum-correlations witness: Assuming the system is subjected to a
measurement in its own basis, i.e. ϱS −→

∑
s ΠsϱSΠs, it has been shown that the

discord is zero if and only if the state is invariant under that measurement, i.e.

D(B|S) = 0 ⇐⇒ ϱSB =
∑
s

Πs ⊗ 1BϱSBΠs ⊗ 1B. (91)

If one compares the state prepared by {Πs} with a freely evolved state (no mea-
surement) and observes differences, it can be concluded that the initial system-
environment correlations are quantum. For the case of dephasing models this would
correspond to a measurement in the z-basis, which would not induce dynamics on
the Gibbs state of the whole system.

A thorough analysis on the classical or quantum nature of correlations can be found in
[MBC+12].

C Correlations in the thermal state of pure-dephasing models
One important characteristic of these models is that their global thermal state only contains
classicall correlations between the system and its environment. More specifically, the global
Gibbs state of a general dephasing is of the form

ϱSB(0) = 1
ZSB

e−βH = 1
ZSB

∑
m

|m⟩⟨m| ⊗ e−βHm
B (92)

=
∑
m

Zm
ZSB

|m⟩⟨m| ⊗ 1
Zm

e−βH
m
B =

∑
m

pmΠm ⊗ ϱB,m, (93)

where we have defined Zm = Tr(e−βHm
B ), pm = Zm

ZSB
and ϱB,m = 1

Zm
e−βH

m
B . This state is

classical-quantum in the sense of (88). We can conclude therefore that the global gibbs
states of all pure dephasing models satisfy

DPS(B|S) = 0. (94)

We can also verify the aforementioned nullity condition,

[ϱS ⊗ 1B, ϱSB] =
[∑
m

pm |m⟩⟨m| ⊗ 1B,
∑
m

pm |m⟩⟨m| ⊗ ϱB,m
]

(95)

=
∑
m

p2
m |m⟩⟨m| ⊗ ϱB.m −

∑
m

p2
m |m⟩⟨m| ⊗ ϱB.m = 0. (96)

Furthermore, it is straightforward to check whether a causal break constitutes a classicality
preserving channel, i.e. if

[C(ϱ), C(ξ)] = 0 ∀[ϱ, ξ] = 0. (97)
Starting with the left-hand side

[C(ϱ), C(τ)] =
[
τα ⊗ TrA(Πβ ⊗ 1Bϱ), τα ⊗ TrA(Πβ ⊗ 1Bξ)

]
= τα

∑
m,n

⟨m|Πβ |m⟩ ⟨n|Πβ |n⟩ [ϱB,m, ξB,m].

Taking into account that [ϱ, ξ] = 0 =⇒ [ϱB,m, ξB,m] = 0. We conclude therefore that causal
breaks preserve the classicality of a state as defined in (88). This is not surprising given
the decorrelating of the causal break.
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D Initial correlations in Ramsey experiments
As is the case in most theoretical treatments, initial correlations are often being disregarded
in experimental studies too. Based on the previous analysis of the geometry of decoherence
in a two-level system, we briefly discuss here how this effect may have been misinterpreted
as some short of a "Lamb-shift", i.e. an additional term in the system Hamiltonian. Natu-
rally, this would contribute to the overall error of the estimated parameters. Let us consider
the situation where the system is modelled to be closed, evolving thus under a Hamiltonian
H0 = ω0σz/2. Under this assumption of unitary dynamics, any oscillations detected in
the system are associated to the eigenfrequency ω0. However, We have demonstrated that
the presence of correlations induces some oscillations on the system, which if the system is
assumed to be isolated can be misaccounted when determining ω0. To illustrate this, let
us rewrite eq. (29) as

rc(t) =
(
1−Kb cos θ(t) +Kbe

iθ(t)
)
e−Γ(t). (98)

The correlation phase θ(t) and the associated asymmetry factor Kb would then find their
way into the closed description of the qubit dynamics in the form of a Hamiltonian

H ′ ≈
(
ω0
2 −Kb

dθ

dt

)
σz. (99)

We focus now on the case of Ramsey interferometry, a method that is commonly utilized
to determine the frequency ω0 of a two-level system and is often the first part of many
experiments involving qubits. The method utilizes an electromagnetic field oscillating at
frequency ω that couples externally to the two-level system. The frequency ω0 is determined
by monitoring transition probability

P (∆) = cos2
(∆T

2

)
, (100)

where ∆ = ω − ω0 is the detuning between the field and the system and T the time of
interaction. The probability P (∆) is maximized for ∆ = 0, i.e. ω0 = ω(P (∆) = max). For
H ′ however the eigenfrequency should rather be computed by

ω0 = 2Kb
dθ

dt
+ ω(P (∆) = max). (101)

To summarize, this analysis demonstrates how measuring the frequency of a qubit via the
Ramsey method by disregarding the open nature of its dynamics can cause an error that
is due to the initial correlations between the qubit and its environment. Let us mention
that this analysis has not been extended further and therefore the order of magnitude of
this effect remains unknown.

E Exact evolution of general dephasing models
The Hamiltonian (15) in the interaction picture is given by H(t) = S ⊗B(t), where

B(t) =
∑
k

eiHktBke
−iHkt, (102)

and the corresponding time evolution operator reads

USB(t) = T← exp
(
−i
∫ t

0
dt′S ⊗B(t′)

)
, (103)
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where T← is the chronological time-ordering operator. The Taylor expansion of (103) yields

USB(t) =
∑
n

1
n!S

n ⊗ B̃n(t), (104)

where B̃n(t) ≡ T←
(
−i
∫ t

0 dt
′B(t′)

)n
. The global state after a preparation consisting of a

single causal break is performed on the system is ϱSB(0+) = τ ⊗ η(0), where

η(0) = TrS (Πψ ⊗ 1BϱSB(0)) , (105)

is the conditional state of the bath after the causal break and Π = |ψ⟩⟨ψ|. After some
algebra the density matrix of the subsystem S at time t is found to be

ϱS(t) =
∑
n,k

1
n!k!S

nτSk ⊗ TrB
(
B̃n(t)ηbB̃†k(t)

)
, (106)

where the adjoint operator of B̃n is anti-chronologically ordered, i.e.

B̃†n(t) = T→
(
i

∫ t

0
dt′B(t′)

)n
. (107)

The elements of the density matrix of the system S are given by ϱijS (t) = TrS (|j⟩⟨i| ϱS(t)),
which after expanding the system operator in its eigenbasis, S =

∑
i sa |a⟩⟨a|, gives the

evolution

ϱijS (t) =
∑
n,k

1
n!k!

∑
a,b

TrS
(
|j⟩⟨i| snaskb |a⟩ ⟨a|τ |b⟩ ⟨b|

)
TrB

(
B̃n(t)η(0)B̃†k(t)

)
=
∑
n,k

1
n!k!

∑
a,b

snas
k
b ⟨a|τ |b⟩ δiaδjbTrB

(
B̃n(t)η(0)B̃†k(t)

)
=
∑
n,k

1
n!k!σ

n
i σ

k
j ⟨i|τ |j⟩TrB

(
B̃n(t)η(0)B̃†k(t)

)

= ⟨i|τ |j⟩TrB

(∑
n

1
n!s

n
i B̃n(t)η(0)

∑
k

1
k!σ

k
j B̃
†
k

)
. (108)

(109)

The expression inside the trace can be simplified further by

∑
n

1
n!s

n
i

(
T←

(
−i
∫ t

0
dt′B(t′)

))
= T←

(∑
n

1
n!s

n
i

(
−i
∫ t

0
dt′B(t′)

))
(110)

due to the operator S being stationary in the interaction picture. Finally this can be
compressed in a form containing exponential operators,

ϱijS (t) = ⟨i|τ |j⟩ (0)TrB
(
T← exp

[
− isi

∫ t

0
dt′B(t′)

]
η(0)T→ exp

[
isj

∫ t

0
dt′B(t′)

])
, (111)

and the full density matrix is given by ϱS(t) =
∑
i,j ϱ

ij
S (t) |i⟩⟨j|. By the cyclicity of the

partial trace and due to Ũi = Ũj for i = j, it is straightforward to verify that the populations
remain constant. For the global Gibbs state ϱSB(0) = e−βH/Z, the conditional bath state
can be written as

η(0) =
∑
m

|⟨ψ|m⟩|2e−βHm
B . (112)
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Defining now the evolution operator

Ũi = T← exp
[
− isi

∫ t

0
dt′B(t′)

]
, (113)

we obtain the compact expression

ϱijS (t) = ⟨i|τ |j⟩ (0)
∑
m

|⟨ψ|m⟩|2TrB
(
Ũie
−βHm

B Ũ †j

)
, (114)

which can be further simplified to

ϱijS (t) = ⟨i|τ |j⟩ (0) 1
Z

∑
m

|⟨ψ|m⟩|2e−βωm
∏
k

TrB
(
Ũie
−β(Hk+smBk)Ũ †j

)
. (115)

F Born and Markov approximations
In this chapter we discuss the physical intuition behind the approximations that have been
performed to arrive at the master equation given in eq. (62).

Born approximation

First, let us discuss the so-called Born approximation. This approximation states that for
weak system-bath interactions the combined state can be approximated by a product state,
up to first order, i.e.

ϱ̃abSB(t) ≈ pbτab(t)⊗ ϱB(t) +O(λ). (116)

Accounting for higher order terms in this expansion would only contribute third order terms
in the master equation. Furthermore we assume that ϱB(t) ≈ ϱB(0) = ϱthB , motivated by
[ϱthB , HB] = 0. It’s important to stress this approximation is not physical, but helps in
the derivation of the "correct" master equation. This can be seen from the fact that
there is no way that the combined system can be in a product state in the presence of an
interaction. A more rigorous derivation of the master equation that involves the Nakajima-
Zwanzig projection operator techniques [Nak58, Zwa60] and circumvents this unphysical
assumption can be found in [RH12]. This yields

∂tτ̃ab(t) = iλ2TrB
([
ṼSB(t), τa(0)⊗ χ′b(0)

])
(117)

− pbλ2
∫ t

0
dt′TrB

([
ṼSB(t), [ṼSB(t′), τ̃ab(t′)⊗ ϱthB ]

])
. (118)

Substituting ṼSB(t) =
∑
k Ãk(t)⊗ B̃k(t), the second term reads

∑
k,l

∫ t

0
dτTrB

([
Ãk(t)⊗ B̃k(t),

[
Ãl(t′)⊗ B̃l(t′), τ̃ab(t′)⊗ ϱthB

]])
(119)

(120)

We can define now the bath correlation functions

Ckl(t, t′) = TrB
(
B̃k(t)B̃l(t′)ϱthB

)
≡
〈
B̃k(t)B̃l(t′)

〉
ϱth

B
. (121)

Due to the stationarity of ϱthB this can also be written in the form

Ckl(t, t′) =
〈
B̃k(t− t′)Bl

〉
ϱB

= Ckl(t− t′) (122)
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by simply substituting t → t − t′. This shows that the environment correlation functions
only depend on the time difference t− τ instead of the absolute time t. The second term
is then

∑
k,l

∫ t

0
dt′
[
Ckl(t− t′)

(
Ãk(t)Ãl(t′)τ̃ab(t′)− Ãl(t′)τ̃ab(t′)Ãk(t)

)

+Clk(t′ − t)
(
τ̃ab(t′)Ãl(t′)Ãk(t)− Ãk(t)τ̃ab(t′)Ãl(t′)

)]
. (123)

Markov approximation

At this point we perform the so-called Markov approximation, by assuming a "memoryless"
environment, meaning that any self-orrelations induced on the bath B due to the interac-
tion with the system S decay at a timescale t′corr ≪ t′S , where t′S is a timescale during
which the state of the system τ̃ab(t) (in the interaction picture) has changed significantly.
By memoryless is meant that the environment is modelled as not keeping track of previ-
ous interactions with the system, as they decay very fast in comparison with the involved
physical time-scales, so that each "step" of the evolution is effectively independent of the
previous ones. This is were the name Markovian comes from, a concept originally intro-
duced in classical probability theory to model stochastic processes whose future state only
depends on the current state of the system. In more mathematical terms this means that
the bath self-correlation functions are sharply peaked around t− t′ = 0. This enables us to
exchange the retarder reduced density matrix τ̃ab(t′) in the integral for the current density
matrix, τ̃ab(t), making thus this term time-local. This is justified because of the assump-
tion that the reduced density matrix of the system does not change significantly during
the time-scale t′corr, during which the correlation functions Ckl vanish. After substituting
t− t′ → t′ the term is in the form∫ t

0
dt′
∑
k,l

[
Ckl(t′)

(
Ãk(t)Ãl(t− t′)τ̃ab(t)− Ãl(t− t′)τ̃ab(t)Ãk(t)

)

+Clk(−t′)
(
τ̃ab(t)Ãl(t− t′)Ãk(t)− Ãk(t)τ̃ab(t)Ãl(t− t′)

)]
. (124)

G Master equations for the dissipative spin-boson model
In this section we apply the developed formalism for the paradigmatic spin-boson model,
described by the Hamiltonian

H = ω0
2 σz −

∆
2 σx +

∑
k

ωkb
†
kbk + 1

2σz
∑
k

(gkb†k + g∗kbk), (125)

where ∆ is a parameter known as the asymmetry energy. This model, also known as the
Caldeira-Legett model, is amongst the most studied models in the field of open systems
and was first introduced in [LCD+87] It describes the interaction of a two-level system (or
qubit) with a bath of harmonic oscillators (or bosonic field modes) and plays an important
role in the study of decoherence, macroscopic quantum coherence and in the physical
implementation of quantum information processing [Sch07].

Besides the many applications of the spin-boson model across various fields of physics,
there are several reasons for choosing this specific model for our analysis, the most impor-
tant one being the presence of non-classical correlations in the global Gibbs state of this
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model. Additioanlly, setting the asymmetry energy to zero, i.e. ∆ = 0, reduces this model
to the already discussed pure-dephasing spin-boson model, providing a straightforward
way to benchmark our formalism. We should note here that since the global Gibbs state is
stationary under the Hamiltonian (125), the choice of P = IS should show (approximately,
since the master equation (79) is not exact) no dynamics, providing thus an additional test
for the validity of our formalism.

In order to solve the required master equations numerically, we first need to characterize
the coupling between the system and the environment. This is typically done in terms of
the spectral density J(ω). To introduce this function properly, let us evaluate the bath
correlation function9, which was computed to be

C(t) =
∑
k

|gk|2 (coth (βωk/2) cos(ωkt)− i sin(ωkt)) (126)

and once again assume a continuous spectrum for the environment, performing thus the
transformation

∑
k|gk|2 −→

∫∞
0 dωJ(ω). The bath correlation function can then be ex-

pressed as
C(t) = ν(t)− iκ(t), (127)

where ν(t) and κ(t) are known as the noise and dissipation kernels respectively.
All the remaining terms in the master equation can be expressed in terms of the spectral

density as well. For the initial correlation function we obtain

Hk,b(t, β) =
∫ ∞

0
dωJ(ω)

∫ β

0
dβ′ ⟨Πbσ̃z(−i(β − β′))⟩ϱth

S

×
[

coth(βω/2) cos(ωt− i(β − β′))− i sin(ωt− i(β − β′))
]
,

=
∫ β

0
dβ′ ⟨Πbσ̃z(−i(β − β′))⟩ϱth

S
{ν(t− i(β − β′))− iκ(t− i(β − β′))}. (128)

where σ̃z(t) = σz cos(∆t/2)− σy sin(∆t/2).
The integral over the temperatures in (128) is analytically computable, however results

in a very long expression which we omit presenting here. Overall the family of master
equations characterizing the initially correlated spin-boson model reads

∂tτab(t) = −i[HS , τab(t)]− pb
∫ t

0
dt′
(
ν(t′)

[
σz, [σ̃z(−t′), τab(t)]

]
− κ(t′)

[
σz, {σz(−t′), τab(t)}

])
+
∫ β

0
dβ′ ⟨Πbσ̃z(−i(β − β′))⟩ϱth

S

[
ν(t− i(β − β′))− iκ(t− i(β − β′))

]
[σz, τa(0;−t)].

(129)

Besides the spectral density, which remains to be chosen (often times it is of interest to
explore different functions), all other relevant functions of the model have been computed
analytically. Thus, the family of master equations given in (129) can be solved numerically
for any given preparation P using an appropriate technique, such as the Runge-Kutta
method.

9For the spin-boson model the interaction is of the type VSB = A ⊗ B, yielding a single correlation
fucntion, C(t).
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