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Quantum computation has emerged as a promising paradigm shift in the
field of computing, and with the advent of new quantum computers, it has
become crucial to assess and quantify their performance. Benchmarking, a well-
established practice in the field, plays a vital role in this regard. One effective
way to evaluate a quantum computer’s capabilities is by measuring the amount
of entanglement it exhibits, as entanglement is a fundamental characteristic of
quantum systems. In this thesis, we provide a comprehensive overview of the
current landscape of quantum benchmarking and propose several protocols for
estimating the Rényi entropy of quantum states, which offers valuable insights
into the entanglement structure of these states. We present a protocol based on
the renowned Swap test, specifically designed for future fault-tolerant devices,
as well as another protocol based on randomized measurements to address the
limitations of current NISQ devices. We have implemented these protocols on
the quantum simulation framework of Qibo, ensuring an efficient and reliable
execution on any quantum computer, in particular the one at the Barcelona
Supercomputing Center (BSC). Through this work, we aim to contribute to
the advancement of quantum benchmarking and facilitate the assessment of
entanglement in quantum computing systems.
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1 Introduction
Over the past decade, we have witnessed an astonishing development of quantum tech-
nologies promising a paradigm shift in the way classical computers have conventionally
addressed our computational problems. Quantum computation has risen up to exploit
the principles of quantum physics in order to store and process information. While clas-
sical computers rely on bits representing 0s or 1s, quantum devices employ qubits, which
manifest two interesting properties: superposition and entanglement.

On the one hand, superposition states that when a physical system has the potential
to exist in multiple configurations or states, it can be described by a combination of all
these possibilities. In other words, rather than being restricted to a single state like in
classical physics, a quantum system can simultaneously occupy different states with specific
probabilities assigned to each configuration. On the other hand, entanglement involves
creating pairs of qubits that are interconnected in such a way that their states become
correlated beyond what classical correlation can describe. When qubits are entangled, the
state of one qubit is intrinsically linked to the state of the other, persisting regardless of
space. By leveraging the principles of superposition and entanglement, quantum computers
hold the potential to solve complex computational problems more efficiently than classical
computers. Quantum algorithms, such as Shor’s algorithm [1] for integer factorization and
Grover’s algorithm [2] for database searching, demonstrate the power of qubits in solving
problems substantially faster than classical algorithms, providing a remarkable advantage
over classical computation.

Building the perfect quantum computer is hard and several challenges must be over-
come. Those challenges stem from the inherent nature of the quantum world, as observing
a quantum system disrupts its behavior. To exemplify this concept, we can take a look
at decoherence. Qubits lose their quantum properties due to environmental interactions,
therefore needing protective measures and error correction techniques. Thus, it is impera-
tive to achieve near-perfect isolation from the external environment while enabling strong
interactions between qubits. But despite these hurdles, quantum computers hold promise
for transforming industries and advancing scientific research, offering unprecedented com-
putational power that could revolutionize scientific discovery and unlock breakthroughs
that were once thought to be out of reach.

A significant breakthrough has been the recent appearance of noisy intermediate-scale
quantum (NISQ) devices [3], acting as a bridge between the classical realm and the even-
tual realization of fault-tolerant quantum computers. Rather than being a world-changing
technology on its own, NISQ devices should be seen as a step towards more powerful quan-
tum technologies that will be developed in the future. The term "noisy" emphasizes that
we will have imperfect control over those qubits, arising noise that will place a serious
limitation on what quantum devices can achieve in the near term. Several different quan-
tum platforms fall under the NISQ category, each with its own unique architecture and
technology. Some of the commonly known quantum platforms on NISQ devices include:
superconducting qubits [4], trapped ion qubits [5], topological qubits [6], photonic quantum
computing [7] and quantum dot qubits [8].

The characterization and performance study of NISQ devices has emerged as an impor-
tant challenge within the field. Fortunately, quantum researchers find solace in the practice
of benchmarking, a longstanding tradition within the realm of computation. Similar to
traditional classical benchmarking, quantum benchmarking involves running specific tests
and algorithms on quantum hardware to evaluate their efficiency, accuracy, and reliability.
As quantum technology advances, it becomes increasingly important to have standardized
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benchmarks that can provide meaningful comparisons across different quantum platforms.
Benchmarking helps researchers and developers identify the strengths and weaknesses of
quantum systems, make improvements, and optimize their performance. It also enables
the evaluation of different quantum algorithms and protocols, contributing to the overall
progress and development of quantum computing. By establishing benchmarks, the quan-
tum community can ensure reliable and objective measurements, foster competition, and
drive innovation in the field.

This project can be distinctly divided into two parts. First, we will embark on a
comprehensive exploration of a variety of certification protocols that hold great significance
in the quantum domain, serving as powerful tools for benchmarking the performance of
quantum devices. The primary aim of this initial segment is to serve as an introductory
encounter, inviting all those intrigued by the recently unfolding and captivating realm of
benchmarking and quantum computer characterization. Regardless, for the second part
of the work we will adopt a more practical approach. Our attention will be centered on
presenting two benchmark protocols that assess the quantum device’s capability to generate
entanglement in qubits. In particular, we will focus on the estimation of the so-called
Rényi entropy (Section 3). The first protocol is relatively modest and intended for future
fault-tolerant quantum computers (Section 4). Nevertheless, the second protocol is more
complex and it is specifically designed to be effectively applied on current NISQ devices
(Section 5). Both protocols will be programmed in Qibo [9], an open-source full-stack
application programming interface (API) for quantum simulation and quantum hardware
control, with the final objective of establishing a library to test quantum entanglement in
the future quantum computer located at the Barcelona Supercomputing Center (BSC).

2 Quantum Benchmarking
This section will serve as a concise overview of the most commonly used and well-known
benchmarks in the field of NISQ computers. We will classify them into three categories
according to their level of application in the circuit: gate-level benchmarks, circuit-level
benchmarks, and application benchmarks. To elucidate, Figure 1 shows a schematic view
of the benchmarks that we will discuss below.

Although all the protocols we are addressing provide some insight into the quantum
computer’s performance, relying on a single application may be insufficient for testing
overall system performance. This is why benchmark suites have been introduced. They
allow us to address a variety of different problems in a more simple and easy-access way.
A few noteworthy examples include: the Application-Oriented Performance Benchmarks
[10, 11]; QASMBench [12, 13]; and SupermarQ [14, 15].

A fundamental and straightforward way to assess the performance of a Quantum Pro-
cessor Unit (QPU) is by examining its inherent physical features, serving as indicators of its
most general capabilities. Important physical metrics for evaluating quantum computers
include gate fidelity and readout fidelity, the number of qubits and their interaction, and
T1 and T2 times. By considering these metrics together, users can gain insights into the
performance of a quantum processor and assess its capabilities based on several parameters.

To begin with, it is important to define the concept of quantum fidelity, as it is a key
technique used in the vast majority of quantum benchmarking. The fundamental principle
of fidelity estimation is to achieve quantum state verification from only a few measurements,
without the necessity of applying full tomography [16] over the desired computed state ρ.
Many methods have already been presented in order to accomplish this in an efficient and
rapid way, without using an exponentially increasing number of measurements [17]. One of
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Figure 1: Diagram of the quantum benchmarks we are addressing in this introduction.

its majors drawbacks is its focus on a concrete variety of states, such as Bell states, cluster
states, graph states, and Dick states. That being said, many benchmarking protocols use
this technique to extract some knowledge about the current quantum state of the device.

Next, the number of qubits plays a crucial role in the complexity and scale of quantum
algorithms, thus impacting the computational power and capabilities of the system. Cer-
tain quantum algorithms, such as the already mentioned Shor’s algorithm [1] and Grover’s
algorithm [2], exhibit significant speedup over their classical counterparts but require a
sufficient number of qubits to be effective. As the number of qubits increases, more infor-
mation could potentially be processed and manipulated.

Besides, direct connections between all qubits may not always be present within the
QPU. A simple way to comprehend and address the interaction between qubits is by
treating the problem as a graph. In this representation, qubits are situated at the ver-
tices, while the edges symbolize the existing coupling between adjacent/successive qubits.
Consequently, when qubits are not directly coupled, executing two-qubit gate operations
becomes unfeasible. In essence, the quality of qubit connectivity directly impacts the capa-
bilities of the QPU: the better the connectivity among qubits, the better the capabilities
of the QPU.

Finally, we need also to address the issue of NISQ devices regarding the decoherence
time. This way, longer coherence time is essential to the device’s performance, as a more
significant number of operations can be accomplished before getting an erroneous output
beyond a tolerance limit [18]. The period for a qubit’s natural decay from the excited state
|1⟩ to the ground state |0⟩ is called T1 coherence time (referred to as amplitude damping
or energy decay). This temporal parameter characterizes the longitudinal relaxation rate.
However there is another important metric to benchmark the quality of qubits, known as
T2 coherence time (also referred to as phase dumping), focused on dephasing time. T1 can
be estimated using the Rabi experiment [19] while T2 can be computed with the Ramsey
experiment [20]. Together, these coherence time measurements serve as vital benchmarks
to assess the quality and reliability of qubits in quantum computing systems.

2.1 Gate-Level Benchmarks
The manipulation and transformation of qubits are performed by quantum gates. Un-
like classical logic gates, which operate on bits, quantum gates leverage the properties of
qubits, such as superposition and entanglement, to enable powerful computations. They
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can flip qubit states, create superposition states, and enable interactions between qubits.
By combining sequences of quantum gates, quantum algorithms can be constructed to
solve complex problems.

Therefore, various protocols have been developed over the past few years for assessing
the performance of these fundamental building blocks of QPUs, quantum gates. Among
these protocols to evaluate the performance of quantum gates there are the so-called gate-
level protocols, designed to assess the quality of individual quantum gates and their ability
to perform specific tasks. By providing meaningful metrics, gate-level protocols enable the
comparison of different implementations of quantum technologies while offering insights
into the suitability of QPUs for running certain types of quantum circuits. Here, we will
discuss some of the most widely used protocols for characterizing the gate-level quality of
any QPU.

Gate Set Tomography. The initial motivation behind the creation of quantum bench-
marks was the need to comprehend the specific processes implemented by the quantum
hardware in the presence of noise and imperfect control gates. Thus, quantum process to-
mography [16] is a widely recognized technique that enables the complete characterization
of any quantum process. When this technique is used in a QPU to test its performance by
measuring its ability to implement a set of pre-determined quantum gates, the procedure
gets the name of Gate Set Tomography (GST) [21–23]. The GST method yields the specific
error and noise models of each quantum operation performed by the QPU (including gates,
state preparation, and measurement) in order to accurately determine those underlying
operations.

To carry out GST, a set of carefully chosen quantum gates is applied to the QPU,
and the resulting output states are measured. By analyzing the data obtained from these
measurements, GST aims to reconstruct a model of the QPU’s underlying gate set and
quantify the errors associated with each gate operation. Thus, GST has become an im-
portant tool for benchmarking and diagnosing errors, as it provides a comprehensive and
detailed characterization of their performance at the gate level.

However, the ability to account for higher-order errors beyond one-qubit and two-qubit
errors is challenging in terms of both classical processing and data collection. Its cost
scales exponentially with the number of qubits involved, making it a non-trivial task to
extend GST to larger QPUs. As a result, while GST has been useful for diagnosing and
characterizing the performance of small-scale QPUs, its applicability to larger ones in
real-world applications is limited by these scalability issues. In response to this problem,
randomized benchmarking (RB) [24] was introduced.

Randomized Benchmarking. RB refers to a collection of methods used to reliably
estimate the magnitude of average fidelity f or average error rate ϵ = 1 − f of a given
quantum gate set, requiring only polynomial classical resources. Its execution is simple:
apply sequences of randomly selected gates with varying lengths. Besides, this approach
is robust against state preparation and measurement (SPAM) errors. SPAM errors are
often considered together as they can be challenging to distinguish. For instance, when
preparing the state |0⟩ and measuring it, if the outcome is |1⟩, it is difficult to determine
whether the inconsistency is primarily due to errors in the state preparation or errors in
the measurement process.

However, just as GST, RB gives little information about neither the performance of
circuits nor their applications, thus being difficult to predict the performance of a concrete
algorithm given only the obtained RB metrics of its independent gate sets [25]. This is
because specific-designed circuits are more sensitive to error than randomized ones. Their
arrangement and order of the gates are carefully chosen to perform a specific computational
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task or implement a particular algorithm. This constrained structure can make the circuit
more susceptible to errors because any deviation or perturbation in the individual gates
can propagate and affect the overall computation.

Another RB’s major drawback is its limited ability to detect crosstalk errors [26], which
can significantly impact QPU’s performance at the circuit level. In the context of quantum
computing, crosstalk errors refer to undesired effects resulting from the interaction of vari-
ous components or subsystems within a QPU. When two or more subsystems inadvertently
interact, crosstalk emerges. Thus, unwanted interactions can cause deviations from the ex-
pected behavior of quantum gates and circuits, which are crucial for performing accurate
quantum computations. Although recent research has proposed ways to extend RB to in-
clude crosstalk estimation [27, 28], the need for alternative benchmarking techniques that
can better address crosstalk errors remains a priority in the field of quantum computing.

RB has received significant attention in the literature, leading to the development of
numerous variations and types of RB protocols. As a result, the classification of RB
protocols has become complex and difficult to navigate. We recommend Ref. [29] to get a
more general and efficient approach to all kinds of RB protocols.

Cycle Benchmarking. Finally, it is worth mentioning that Cycle Benchmarking [30]
(CB) has been recently introduced to go beyond the limitations of RB and GST. CB
allows us to estimate the fidelity of a global noise process affecting a QPU that occurs
when a cycle of operations is applied to a quantum register. We define each cycle as a
parallel set of gates (in analogy with a digital clock cycle), typically cycles of single-qubit
gates and cycles of multi-qubit gates. The CB operates under the assumption that the
noise occurring during each cycle of independent single-qubit gates is independent of the
specific gates being executed, thus following the Markovian assumption. Besides, CB is
designed to be resilient against SPAM errors and can effectively characterize processes in
larger quantum registers, as the number of required measurements to accurately estimate
the process fidelity remains relatively unaffected by the number of qubits.

2.2 Circuit-Level Benchmarks
We have previously discussed the performance at the gate level, reflecting aspects of a few
qubit’s performance. Now, we are going to focus on some aggregated metrics proposed to
directly characterize the performance of the overall quantum computer system.

Mirroring Benchmarking. While many benchmarks provide valuable insights into a
processor’s performance, some fall short in directly measuring the processor’s ability to
run real-world programs (e.g. RB), particularly on devices large enough to potentially
demonstrate quantum advantage. To address this, Mirroring Benchmarking (MB) [25, 31,
32] has been introduced. MB involves the use of "mirror circuits" that execute a set of
calculations and then reverse them, providing predictable outcomes compared to complex
quantum programs. Researchers created two types of benchmark programs using circuit
mirroring: one with random sequences of operations and another with highly structured
procedures. The method offers a more accurate and flexible assessment of quantum pro-
cessor capabilities compared to existing benchmarks, which often lack scalability and fail
to capture the relationship between circuit structure and performance.

Quantum Volume. IBM’s proposal to circuit-level benchmarks was Quantum Volume
(QV) [33]. QV is a metric used to evaluate the performance of near-term quantum com-
puters with limited size, considering both the number of qubits and the quality of gate
operations and measurements. It is a single-number measurement that also takes into
account the error rates of the system and it is affected by uncontrolled interactions that
may occur within the system. QV assesses the largest random circuit of equal width and
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depth that a quantum computer can successfully execute, based on the performance of
random circuits with a fixed and generic structure. Its core metric is based on the heavy
output generation probability (HOG) [34], so it assures that the correct output is generated
with a probability equal to or greater than 2/3. Thus, it requires an exponentially costly
computation of probability amplitudes, and these approaches are not scalable.

Its main drawback is that QV considers only square circuits (meaning circuits with
equal width and depth), failing to capture algorithms that do not present this specific
shape (e.g. the Shor algorithm [1], with width n but depth n3). Therefore, QV is hardly
suitable for giving an accurate performance of a QPU on a real application. However,
Volumetric Benchmarking (VB) [35] has recently been presented to generalize QV to non-
square circuits. Furthermore, a new metric called Algorithmic Qubits (AQ) [36, 37] has
also been introduced to address the limited scalability of QV.

Cross-Entropy Benchmarking. In October 2019, Google claimed to have reached quan-
tum supremacy [38], where a series of operations was made in 200 seconds that would take
a supercomputer about 10 thousand years to complete. In order to verify that their QPU
was working properly they used Cross-Entropy Benchmarking (XEB) [39], which is a quan-
tum benchmarking method that quantifies the similarity between the output distribution
of a quantum device and the ideal one. The XEB technique compares the frequency of
each bitstring observed experimentally with its corresponding ideal probability computed
through simulation on a classical computer. For a given circuit, bitstring measurements
are collected, and the linear cross-entropy fidelity FXEB is computed as the average of the
simulated probabilities of the measured bitstrings [38],

FXEB = 2n⟨P (xi)⟩k − 1 = 2n

k

(
k∑

i=1
| ⟨0n|C |xi⟩ |2

)
− 1, (1)

where k represents the number of samples, n is the number of qubits and P (xi) is the
probability of a bitstring xi for a quantum circuit C.

It can be intuitively understood as a measure of how frequently we sample high-
probability bitstrings in a quantum circuit. In the absence of errors, the probability dis-
tribution follows an exponential pattern, leading to a FXEB = 1. Conversely, sampling
from a uniform distribution results in an average probability ⟨P (xi)⟩ = 1/2n, yielding
an FXEB = 0. Thus, FXEB values between 0 and 1 indicate the likelihood of no errors
occurring during the circuit execution. The XEB approach aims to demonstrate that the
samples obtained from the quantum device achieve high fidelity values, indicating a strong
correlation with the ideal distribution. While obtaining the probabilities P (xi) requires
classical simulation of the quantum circuit, computing FXEB becomes computationally
intractable in the quantum supremacy regime. However, by employing specific circuit
simplifications, quantitative fidelity estimates for a fully operational processor executing
complex quantum circuits with large dimensions can be derived. Overall, XEB is a promis-
ing tool for evaluating the performance of NISQ devices and assessing their capabilities
for practical quantum applications, such as quantum chemistry simulations, optimization
problems, machine learning tasks, cryptography, and quantum simulation.

Unfortunately, one of the main challenges with the XEB protocol is its reliance on
classical resources. This means it scales exponentially with the number of qubits, limiting
its scalability. However, a new method has been proposed to address this issue: Clifford
XEB [40], as Clifford circuits can be simulated in polynomial time [41], enabling the scaling
to much larger systems.

Circuit Layer Operations per Second. Up until now, we focused on the quality and
scale of the QPUs, but there is one feature we have not taken into account yet: speed.
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Figure 2: Scheme of the VQA execution [43].

The speed of a quantum computer can be estimated by the Circuit Layer Operations
per Second (CLOPS) method [42]. It is a metric that considers the interaction between
classical and quantum computing, as real-world applications may include both classical and
quantum processing. Some examples of hybrid algorithms are called Variational Quantum
Algorithm (VQA) and they allow to combine a short-depth quantum circuit with classical
optimization to evaluate a cost function that depends on the parameters of a quantum gate
sequence. Figure 2 show a schematic representation of how VQAs work. By minimizing this
cost function using well-established classical optimizers, VQA strikes a balance between
quantum circuit depth and classical processing, making them efficient for solving complex
problems. Thus, they provide a promising approach to exploiting the capabilities of NISQ
devices by utilizing both quantum and classical resources in a synergistic manner.

CLOPS protocol is formally defined as the number of QV layers executed per second,
and it includes hundreds of parameterized predefined circuits that may be used, similar to
the ones of quantum volume, except that each SU(4) random unitary is left fully parame-
terized. The main drawback of CLOPS is its primary focus on the quantum aspect while
considering classical computations as merely auxiliary. As a result, any enhancements in
the performance of the classical component would have minimal impact on improving the
CLOPS metric.

2.3 Application-Level Benchmarks
It is challenging to ascertain whether one quantum computer can outperform another
solely based on its physical characteristics. Consequently, some performance metrics have
emerged, focusing on the evaluation of quantum computers’ real-world applications. Us-
ing application-level metrics enables straightforward cross-platform comparisons between
different quantum architectures and classical approaches.

Q-score and QPack. The first application-level benchmark we are addressing is Q-score
[44]. Q-score [44] is a single-numeric metric (just like QV) that measures the performance of
a quantum computer in solving combinatorial optimization problems. It allows us to mea-
sure the maximum number of quantum bits that a quantum computer can effectively use
to solve combinatorial optimization problems, specifically MaxCut [45]. Besides, Q-score is
perfectly scalable, so it is not restricted to NISQ devices. The Quantum Approximate Op-
timization Algorithm (QAOA) [46] is commonly used for Q-score, but any other suitable
quantum algorithm tackling the combinatorial optimization problem can be considered
as well. An open-source implementation of Q-score regarding the MaxCut problem with
QAOA is available for anyone who wants to test it on their QPU [47].

Despite its widespread use, the Q-score benchmark is limited in its ability to evaluate
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the overall performance of a QPU. Its use of a single problem, MaxCut, raises concerns
about its applicability to other problems, as a QPU could be optimized for specific tasks
but perform poorly on others. To address this limitation, QPack [48, 49] was recently intro-
duced as a universal benchmark that includes several combinatorial optimization problems,
such as MaxCut, the dominating set problem (DSP) [50] and the traveling salesman prob-
lem (TSP) [51].

QPack is designed as a comprehensive evaluation protocol for NISQ computers using the
QAOA algorithm. It provides a universal benchmark for quantum computers that focuses
on the maximum problem size a device can handle, its required runtime, and the accuracy
achieved. This protocol comprises three main parts: the problem library, which contains
a set of problems to be evaluated; the QAOA, which is used to find approximate solutions
to the problems; and the performance algorithm, which evaluates runtime, accuracy, and
scaling of the QPU’s performance. QPack’s current implementation on Qskit is available
on the GitHub repository [52], while another implementation using the XACC library can
be found at [53].

Quantum many-body problems and chemistry. One of the most promising applications
of QPUs is their capability to solve quantum many-body problems. Thus, the Fermionic
Depth (FD) [54] benchmark has been presented as a performance metric to assess this issue.
FD employs the one-dimensional Fermi-Hubbard model [55], a well-established model in
solid-state physics useful in simulating strongly correlated fermionic systems. This model
is particularly helpful as an application benchmark for variational quantum simulations as
it can be solved exactly using the Bethe ansatz [56] on a classical computer for both finite
and infinite chains.

The protocol involves calculating the approximate ground state energy of the 1D Hub-
bard model using the variational quantum eigensolver (VQE) [57, 58] for different system
sizes and comparing the results with the exact energy at the infinite size. Due to the effects
of decoherence, the deviation curve will display a minimum at a particular length, referred
to as the fermionic length of the QPU. This fermionic length is an indication of the maxi-
mum size of a fermionic problem that the QPU can handle. Although the fermionic length
is specific to the 1D Fermi-Hubbard model, it provides valuable insight into a QPU’s abil-
ity to tackle quantum many-body problems, which is a crucial factor in evaluating QPU’s
performance.

A quantum chemistry simulation benchmark has also been proposed in the literature
[59], with a specific focus on small molecules, such as alkali metal hydrides. This benchmark
allows for the evaluation of a QPU by defining a series of electronic structure calculation
examples that can be executed on the hardware to determine the molecule’s ground state.
This provides a performance metric by comparing the results with the theoretically exact
solution. An open-source implementation is available on [60].

3 Entanglement Benchmarking
An intriguing aspect of benchmarking in quantum computing involves exploring the level of
entanglement that can be attained during the execution of quantum circuits. We categorize
entanglement benchmarks as part of the circuit-level benchmarking approach, as they
enable to assess entanglement performance of the entire QPU without focusing on a unique
quantum application.

Measurement and certification of entanglement have long been subjects of study due
to their fundamental significance in quantum systems. As a result, numerous approaches
have been proposed to experimentally detect, certify, and quantify entanglement. For
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comprehensive insights into prominent entanglement detectors and quantifiers, we highly
recommend consulting Ref. [61], which provides valuable perspectives on the state-of-
the-art methods in the field of entanglement assessment. Moreover, a recent noteworthy
contribution in this field is presented in Ref. [62], where a volumetric benchmark is intro-
duced based on the generalization and verification of entanglement across multiple qubits
using graph states.

The importance and relevance of entanglement in quantum computation has motivated
our thesis to focus on advancing this particular area of study, presenting a couple of recent
and hardly-known protocols that address the quantification of entanglement on the quan-
tum device after a circuit execution (Sections 4 and 5). We would also like to comment
that other entanglement measures where also considered, like the ones presented in Ref.
[63, 64], where a variational quantum singular value decomposition (QSVD) algorithm is
studied with the final objective of computing the Von Neumann entropy. Unfortunately,
due to a lack of time, it was not possible to include the QSVD approach into this thesis.

Let’s focus now on how entanglement could potentially be estimated. Given a density
matrix ρAB that represents a bipartite quantum state, there are several ways to quan-
tify entanglement between two subsystems. The best-known is the so-called Von Neu-
mann entropy, which is defined over one of the subsystems as S(ρA) = − Tr{ρA log ρA} =
− Tr{ρB log ρB} = S(ρB), with ρA = TrB{ρAB} being the reduced density matrix of sub-
system A. However, during this work we will be dealing with the so-called Rényi entropies
Sn, which are also defined in terms of the reduced density matrices and the order n. Thus,
the n-order Rényi entropy Sn is given by the expression

Sn = 1
1 − n

logRn, Rn = Tr{(ρn
A)}, (2)

where we make this explicit distinction of Rn because the algorithms we work with do not
estimate directly the entropy but this concrete magnitude Rn. In the limit when n −→ 1,
we recover the Von Neumann entropy.

It is important to distinguish between entanglement estimation and entanglement cer-
tification. Thus, the protocols we will be discussing work only as entanglement estimators.
However, they can also certificate entanglement under the assumption that the initial quan-
tum state is pure, but not if it is mixed. Therefore, we can always run these methods to
quantify the entropy, but that does not mean that actual entanglement is present in the
system if the initial state is mixed. In these mixed-state cases, once entanglement on the
system is proven, we can accept the entropy value given by the algorithm. A major discus-
sion regarding entanglement certification and quantification is performed in Appendix C,
where we also present a method to assess entanglement certification through the random-
ized protocol we introduce in Section 5.

4 n-order Rényi entropy estimation by the Swap Test
In this section, we will present a straightforward and effective protocol for estimating the
n-order Rényi entropy. This method builds upon previous works by Johri et al. [65] and
Linke et al. [66]. Our main objective is to provide a general framework for computing the
Rényi entropy of any order n using Qibo.

This protocol allows us to estimate the entanglement spectrum via the Swap Test [67],
a well-known algorithm used to determine the overlap of two quantum states. It provides a
way to compare both states without directly measuring them, involving an extra auxiliary
qubit. Figure 3 shows a better perspective on how the algorithm is implemented.
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|0⟩ H • H

|ψ⟩ ×
|ϕ⟩ ×

Figure 3: General circuit for the Swap Test, estimating the overlap |⟨ψ|ϕ⟩|2.

One of its main challenges is the requirement of a large number of qubits in a quantum
computer. To compute the n-order Rényi entropy, we need n identical copies of the initial
quantum state |ψ⟩. For example, estimating the 2-order Rényi entropy necessitates two
copies, while estimating the 5-order Rényi entropy requires five identical copies. Specifically,
the number of qubits needed is given by #qubits = n×m+ 1, where n is the order of the
Rényi entropy, m is the number of qubits in the initial pure state |ψ⟩, and the additional
"+1" accounts for the auxiliary qubit. Consequently, the algorithm becomes impractical
when the available quantum computer does not have a sufficient number of qubits.

Furthermore, implementing this method on NISQ devices presents additional challenges,
as NISQ computers suffer from noise and decoherence issues, leading to errors in state
preparation, measurement, and gate operations. These errors can introduce significant
inaccuracies in the estimation of the Rényi entropy, making it challenging to obtain reliable
results. That is why other alternatives have been studied, like the one we present and
address in Section 5. However, it is still a functional protocol that will efficiently work on
future fault-tolerant quantum computers.

Before we delve into the intricate steps of the methodology, it is important to clarify
a fundamental limitation of this protocol: it can only be applied to pure states (similar
to the Swap Test). This restriction arises from the specific nature of the protocol and
the underlying mathematical framework used for its derivation, where we are sinking in
Section 4.2. The protocol relies on specific properties and transformations of pure quantum
states, which may not hold or produce meaningful results when applied to mixed states. It
is crucial to highlight this limitation to avoid any misconceptions and misinterpretations
when applying the protocol. If the initial state under investigation is known or suspected
to be mixed, alternative approaches or techniques must be employed.

4.1 Methodology
To begin with, our first step on the protocol is to create the state |ψ⟩ we want to focus on,
which must be a bipartite pure state, living in a Hilbert Space composed of two subspaces
A and B, HAB. As we have already mentioned, the implementation of this code relies
on several copies of the initial state |ψ⟩ and an extra qubit. Specifically, to estimate the
n-order Rényi entropy we need up to n identical copies of |ψ⟩ plus the auxiliary qubit.
Thus, as analogous to the Swap Test, the Hadamard Test is performed by implementing
several Control-Swap gates (also known as Fredkin gates) only to the qubits of subsystem
A. The amount of Control-Swap gate will depend on the number of qubits that constitute
the state and the number of n copies, as #C-Swap = (n− 1) · #qubits on A. This is because
we must apply the C-Swap gates to two consecutive copies, acting first on copies 1 and 2,
then on 2 and 3, and so on. Thus, the general expression for Rn is given by

Rn = ⟨ψ|⊗n PermA |ψ⟩⊗n , (3)

where PermA = Swapn↔(n−1)
A Swap(n−1)↔(n−2)

A . . . Swap3↔2
A Swap2↔1

A , and the SwapA op-
erator acts as the common Swap operator but only on subspace A of the system, as follows

12



SwapA |ψ⟩ |ψ⟩ = SwapA

∑
ij

cij |ai⟩ |bj⟩
∑
i′j′

ci′j′ |ai′⟩ |bj′⟩ =
∑
ij

∑
i′j′

cijci′j′ |ai′⟩ |bj⟩ |ai⟩ |bj′⟩ .

(4)
where {|ai⟩} and {|bj⟩} form a set of orthonormal bases of subspaces A and B respectively.
Moreover, we would like to highlight that the special case of R2 describes the purity of ρA,
and is given just by

R2 = ⟨ψ| ⟨ψ| SwapA |ψ⟩ |ψ⟩ = Tr{SwapA ρAB ⊗ ρAB}. (5)

Figure 4 shows an example for the estimation of R2, which is nothing more than the purity
of subsystem A, performed in a quantum computer of 5 qubits.

Finally, Rn is computed by the statistics obtained when measuring the auxiliary qubit
multiple times as

Rn = Paux(0) − Paux(1). (6)

4.2 Proofs and derivations
Let’s prove Eq.(3). The protocol forces us to make n copies of the initial state, of the form

|ψ⟩⊗n =
∑

all indices
ci1j1 . . . cinjn |ai1⟩ |bj1⟩ . . . |ain⟩ |bjn⟩ ,

where we are using the enumeration with numbers il to simplify later on the calculations.
First, let’s get a general expression for the left-hand side of the equation.

Rn = Tr{ρn
A} = Tr

{( ∑
all indices

ci1j1c
∗
i′
1j1

∣∣∣ai1

〉〈
ai′

1

∣∣∣)n}
=

∑
all indices

ci1j1c
∗
i2j1ci2j2c

∗
i3j2 . . . cin−1jn−1c

∗
injn−1cinjnc

∗
i1jn

=
∑

all indices
γi1i2γi2i3 . . . γin−1inγini1 ,

where γi1i2 =
∑

j1 ci1j1c
∗
i2j1 . Now, let’s compute the right-hand side of the equation,

⟨ψ|⊗n PermA |ψ⟩⊗n = ⟨ψ|⊗n PermA

( ∑
all indices

ci1j1 . . . cinjn |ai1⟩ |bj1⟩ . . . |ain⟩ |bjn⟩
)

=
(∑

all
c∗

i′
1j′

1
. . . c∗

i′
nj′

n
⟨ai′

1
| ⟨bj′

1
| . . . ⟨ai′

n
| ⟨bj′

n
|
)

·
(∑

all
ci1j1 . . . cinjn |ai2⟩ |bj1⟩ . . . |ai1⟩ |bjn⟩

)
=

∑
all indices

ci1j1c
∗
i′
1j′

1
. . . cinjnc

∗
i′
nj′

n
δi′

1i2δj′
1j1δi′

2i3δj′
2j2 . . . δi′

ni1δj′
njn

=
∑

all indices
ci1j1c

∗
i2j1ci2j2c

∗
i3j2 . . . cinjnc

∗
i1jn

=
∑

all indices
γi1i2γi2i3 . . . γin−1inγini1 .

As we can see, both sides of the equation are the same, proving the general statement
Eq.(3).
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aux. |0⟩ H • H

1 - A |0⟩
|ψ⟩

×

1 - B |0⟩

2 - A |0⟩
|ψ⟩

×

2 - B |0⟩
Stage 1 Stage 2 Stage 3 Stage 4

Figure 4: General circuit for the 2-Rényi entropy estimation using the Swap method. Numbers 1 and
2 represent the two different systems, while A and B represent their own subspaces. aux. indicates
auxiliary qubit.

Now, let’s focus on the derivation of Eq.(6) to show the usefulness of an auxiliary qubit.
Let’s have a look at the situation of all our systems at any stage of the circuit. Figure 4 is
oriented in a 5-qubit system, but it can help us get a better notion of the overall process
for the general case.

• Stage 1. Trivially, the state of the system at the beginning is

|Stage 1⟩ = |0⟩ |ψ⟩⊗n .

• Stage 2. After applying the Hadamard gate on the auxiliary qubit we get

|Stage 2⟩ = |0⟩ |ψ⟩⊗n + |1⟩ |ψ⟩⊗n

√
2

.

• Stage 3. Control-SwapA gates are applied consecutively, affecting only subspace A,
which is nothing more than the previous PermA operator.

|Stage 3⟩ = |0⟩ |ψ⟩⊗n + |1⟩ PermA |ψ⟩⊗n

√
2

• Stage 4. The final state of the system is then

|Stage 3⟩ = |0⟩ |ψ⟩⊗n + |1⟩ |ψ⟩⊗n + |0⟩ PermA |ψ⟩⊗n − |1⟩ PermA |ψ⟩⊗n

2
= 1

2 |0⟩
(
|ψ⟩⊗n + PermA |ψ⟩⊗n

)
+ 1

2 |1⟩
(
|ψ⟩⊗n − PermA |ψ⟩⊗n

)
.

Assuming that Rn must be a real value, as we have previously proven Eq.(3), then
⟨ψ|⊗n PermA |ψ⟩⊗n = ⟨ψ|⊗n Perm†

A |ψ⟩⊗n, and the probabilities of finding the auxiliary
qubit at state 0 or 1 are

Paux(0) = 1 + ⟨ψ|⊗n PermA |ψ⟩⊗n

2 = 1 +Rn

2 ,

Paux(1) = 1 − ⟨ψ|⊗n PermA |ψ⟩⊗n

2 = 1 −Rn

2 .

Adding both previous relations, we get the final expression for the n-Rényi entropy as given
by Eq.(6).
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Figure 5: Error scaling of the Swap Test protocol to estimate the Rényi entropy of the GHZ state with
6 qubits. Plot (a) shows the difference of Tr{ρn

A} between the protocol and the expected value as a
function of the number of measurements NM and the Rényi order n and subsystem size NA = 5; while
plot (b) shows the scaling of the required number of measurements NM to determine Tr{ρn

A} up to an
average relative error of 0.12 as a function of the subsystem size NA and the Rényi order n.

4.3 Results and error scaling
Here, we will take a look at how our implementation of the protocol on Qibo works for the
maximally entangled Greenberger–Horne–Zeilinger state (GHZ), |ψ⟩GHZ = |0⟩⊗N +|1⟩⊗N

√
2 ,

with N the number of qubits.
Figure 5a shows the difference on Tr{ρn

A} between the protocol and the expected value
as a function of the number of measurements NM and the order n, for the maximally
entangled GHZ state, with N = 6 qubits and subsystem NA = 5. As the NM increases, the
error decreases, because we get a better approximation to the real values of the probabilities
Paux(0) and Paux(1). We can see how the influence of the Rényi order n is minimum, as
they scale similarly. In particular, it scales as 1√

NM
.

Figure 5b shows how NM scales with the subsystem size NA, where the error as been
truncated to 0.12. As expected NM does not scale with NA, as only measurements on
the auxiliary qubits are made. However, it does scale with the order of the Rényi entropy.
That is because the creation of multiple copies results in an expansion of the Hilbert space
of the entire system, leading to an increased number of basis states and a greater variety
of possible quantum states that can be observed upon the collapse. Consequently, a larger
number of measurements is required to obtain a reliable approximation of the probabilities
of the auxiliary qubit when the number of possible outcomes increases.

5 2-order Rényi entropy estimation by randomized measurements
In this section, we introduce a protocol for estimating the second-order Renyi entropy
through statistical correlations between randomized measurements, as measurement out-
comes performed on a random basis contain information about a system’s purity Tr

{
ρ2

A

}
of a reduced density matrix ρA and, according to expression (2), the second-order Renyi
entropy of the whole bipartite state ρAB. Our algorithm builds upon the proposals put
forth in Ref. [68–70] and has been implemented on Qibo.
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On the one hand, this method differs from the previous one (Section 4), as it requires
only a single copy of the quantum system to compute its entropy. This represents a
great advantage for the user, as all qubits in the quantum computer can be used for
representing the quantum state of study. Besides, this protocol allows us to work with
random mixed states, a consequence of the protocol’s specific nature and its mathematical
framework. This feature represents a major advantage with respect to the previous Swap
method. On the other hand, similar to the previous approach, this protocol makes no
a priori assumption regarding the final structure of the quantum state and it lowers the
number of measurements needed compared to other protocols, providing an advantage over
computationally expensive tomographic methods [71]. Furthermore, the inherent random
nature of the algorithm allows us to mitigate the errors caused by NISQ devices, which
translates into better data and statistics.

We must recall that this protocol only works as an entanglement witness if the initial
bipartite state is pure. Thus, getting a second-order Rényi entropy value greater than zero
does not guarantee the state is entangled without making the initial assumption that the
state is completely pure. In Appendix C, we are delving deeper into the intricacies of this
topic and mixed states, and we are discussing how it would be possible to implement an
effective method to overcome this situation.

5.1 Methodology
Before we begin, it is worth mentioning that this procedure is not only feasible with qubits
but it can be generalized into qudits. So, we are going to address the protocol in the more
general path, only to focus later on the more specific part of qubits. The experimental
procedure to estimate the purity of a reduced density matrix ρA of a subsystem A composed
by NA qudits (each one inhabiting a Hilbert space H of dimension d) consists of several
steps. First, a random unitary UA is applied to ρA. This can either be (i) a global
random unitary sampled form the Circular Unitary Ensemble (CUE) defined on the entire
Hilbert space HA = H⊗NA of dimension DA = dNA , or (ii) local random unitaries of the
form UA = ⊗i∈AUi where each Ui is again sampled independently from the CUE defined
on the local Hilbert space H of dimension d. We are discussing the CUE and the Haar
measure in Appendix B, while the global and local approaches are discussed ahead in
this section. Secondly, several measurements are performed in the computational basis,
only over the subsystem A, with the same set of random unitaries UA in order to extract
statistics and compute the occupation probabilities PU (sA) = Tr

{
UρU † |sA⟩⟨sA|

}
, where

|sA⟩ represents the possible outcome of the measurements over subsystem A, of the form
|sA⟩ = |s1, . . . , sNA

⟩ with si = 1, . . . , d for i ∈ A (i.e. 0 or 1 for qubits). Finally, this
procedure is repeated using different random unitaries, and the average probability over
the ensemble of those random unitaries is estimated.

Thanks to the second-order cross-correlations across the random unitary ensemble given
by the set of outcome probabilities PU (sA), the purity of ρA can be estimated following
two expressions. For the global unitary case, we should follow

Tr
{
ρ2

A

}
= (DA + 1)

∑
s

PU (sA)2 − 1. (7)

However, for the local unitary case, the expression is

Tr
{
ρ2

A

}
= dNA

∑
sA,s′

A

(−d)D[sA,s′
A]PU (sA)PU (s′

A), (8)
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where D[sA, s
′
A] represents the Hamming distance, which given two states |sA⟩ =

= |s1, . . . , sNA
⟩ and |s′

A⟩ = |s′
1, . . . , s

′
NA

⟩, it returns the number of constituents i ∈ A where
si ̸= s′

i.
As mentioned before, the approach to this method regarding global and local unitaries

differs in some aspects. In the realm of real quantum computers, the implementation of
global random unitaries poses certain challenges due to the need for effective interactions
between qubits. Therefore, the dynamic nature of these interactions often makes their im-
plementation complex and subject to variation. As a result, local random unitaries emerge
as a more viable solution. By focusing on single-qubit operations, local random unitaries
offer several advantages. They can be implemented with higher fidelity, ensuring greater
accuracy in the manipulation of individual qubits, and improving performance and relia-
bility of the quantum system. Besides, local operations allow for increased repetition rates,
an aspect particularly valuable for the protocol, as we must keep the same set of random
unitaries to extract statistics. Therefore, the utilization of local random unitaries provides
a practical and efficient approach to quantum computation, leveraging the strengths of
single-qubit operations to overcome the challenges associated with implementing global
random unitaries. Furthermore, if we already got the data regarding subsystem A, the
local approach allows us to estimate the entropy of any other subsystem A′ ⊆ A without
the need to run again the protocol. Finally, as we will see in future Section 5.3, both
strategies manifest different error scaling and sensibility.

5.2 Proofs and derivations
Before beginning with the derivation, previous knowledge about the Haar measure and
unitary t-designs is required. We recommend the reader take a closer look at Appendix B
to get a better understanding of the topic. Our main objective here is to find an expression
for the purity of a density matrix ρ as a function of the ensemble average of second-order
cross-correlation of the outcome probabilities, in order to prove Eqs. (7) and (8). A first
approximation can be just a linear combination of the form

Tr
{
ρ2
}

= f
(
PU (s)PU (s′)

)
=
∑
s,s′

Os,s′PU (s)PU (s′), (9)

where Os,s′ are arbitrary coefficients depending on the outcome s. Remembering that
PU (s) = Tr

{
UρU † |s⟩⟨s|

}
, it is straightforward to check that PU (s)PU (s′) =

= Tr
{
U⊗2(ρ⊗ ρ)(U †)⊗2 |s⟩⟨s| ⊗ |s′⟩⟨s′|

}
. We can then replace this expression with the

previous one as

∑
s,s′

Os,s′PU (s)PU (s′) =
∑
s,s′

Os,s′ Tr
{
U⊗2(ρ⊗ ρ)(U †)⊗2 |s⟩⟨s| ⊗

∣∣s′〉〈s′∣∣}

= Tr

∑
s,s′

Os,s′ |s⟩⟨s| ⊗
∣∣s′〉〈s′∣∣U⊗2(ρ⊗ ρ)(U †)⊗2

,
(10)

where we have used the cyclic properties of the trace. Now, it is possible to define an
operator O =

∑
s,s′ Os,s′ |s⟩⟨s| ⊗ |s′⟩⟨s′| and use the k-twirl channel, Φ(k)

Haar(·), to get

Tr
{
ρ2
}

= Tr
{
O Φ(2)

Haar(ρ⊗ ρ)
}
. (11)
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However, implementing the k-twirl channel using the Haar measure becomes unfeasible
(look Appendix B). That is why we can replace the k-twirl channel, Φ(k)

Haar(·), with the k-
twirl channel over the well-limited ensemble E(N) (which depend on the number of qudits
N of the subsystem), Φ(k)

N (·) = Φ(k)
Haar(·). Once again, using the cyclic properties of the

trace and the previous definitions, it is possible to rewrite expression (11) as

Tr
{
ρ2
}

= Tr
{
OΦ(2)

N (ρ⊗ ρ)
}

= Tr
{

Φ(2)
N (O)ρ⊗ ρ

}
, (12)

where the final expression is analogous to Eq.(5). This way, we can intuitively under-
stand the ensemble average over the second cross-correlations as an effective construction
of the swap operator on two virtual copies of the state ρ, making a connection with the
Swap protocol. Thus, to get the final expression for the purity, we must find the operator
O such that

Φ(2)
N (O) = Swap. (13)

Before we continue, we must mention that the k-twirl channel, Φ(k)
Haar(·), may be

spanned by the permutation operators Wπ, for permutations π = (π(1), . . . , π(k)) ∈ Sk

in the symmetric group Sk, as permutation operators are invariant under the projection
Φ(k)

Haar. Proven by the Schur Weyl duality [72], we find

Φ(k)
Haar(O) =

∑
π,σ∈Sk

Cπ,σ Tr{WσO}Wπ, (14)

where the coefficients Cπ,σ are found in the so-called Weingarten matrix. It is worth
mentioning that this matrix is invertible for k ≤ d, with values (C−1)π,σ = d#cycles(πσ),
where #cycles(·) gives the number of cyclic permutations of a given permutation function.

To continue with, we are using an homogeneous ansatz O = ⊗N
i=1o, where o is a

local operator on each qudit, o =
∑d

s,s′=1 os,s′ |s⟩⟨s| ⊗ |s′⟩⟨s′|. It can be checked that

Φ(k)
N (⊗N

i=1o) = ⊗N
i=1Φ(k)

1 (o) =
(
Φ(k)

1 (o)
)⊗N

. Thus, it is sufficient to find o such that

Φ(2)
1 (o) = W(2,1) = Swap. (15)

Using Eq.(14), we need to find

Tr{Wσo} = (C−1)(2,1),σ = d#cycles((2,1)·σ) ∀σ ∈ S2 (16)

Therefore, replacing the local operator o, we find two equations that must be satisfied,

Tr
{
W(1,2)o

}
=

d∑
s,s′=1

os,s′ = d, (17)

Tr
{
W(2,1)o

}
=

d∑
s=1

os,s = d2, (18)

and the values that achieve this are

os,s′ = (d+ 1)δs,s′ − 1 = d(−d)−DG[s,s′] (19)

with DG[s, s′] the Hamming distance of the whole state s and s′ (i.e. DG[s, s] = 0 and
DG[s, s′] = 1 if s ̸= s′). Finally, the operator O remains as
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O = o⊗N = dN
∑
s,s′

(−d)−D[s,s′] |s⟩⟨s| ⊗
∣∣s′〉〈s′∣∣ , (20)

with D[s, s′] =
∑N

i=1DG[si, s
′
i]. Replacing O in Eq.(11) gives us the expression for the local

random unitary case (8). Eq.(7) for the global approach can easily be proven departing
from the local expression (8), by setting NA = 1 and d −→ DA = dNA , and replacing∑

sA,s′
A ̸=sA

PU (s′
A) = 1 − PU (sA). Thus, they can be understood as a single qudit with

dimension DA.

5.3 Results and error scaling
Let’s take a look at how the error of the protocol scales with the number of measurements
performed and the system’s size. This will give us a better perspective of the protocol’s
performance. We are going to test it using two different states: a maximally entangled
state GHZ, and a random mixed state (RMS). Those RMS are performed by creating
10 different random density matrices of the form ρi

AB = |ψi⟩⟨ψi| and adding them as
ρRMS =

∑10
i=1 piρ

i
AB, where pi are random probabilities that add to one,

∑10
i=1 pi = 1.

For the case of global unitaries, Ref. [73] shows how the scaling of statistical error of
the estimated purity would perform, following

| Tr
{
ρ2

A

}
e

− Tr
{
ρ2

A

}
| ∼ 1√

NU DA

(
c1 + c2

DA

NM

)
(21)

where c1 and c2 are constants of order O(1). This expected tendency is represented in
Figure 6a and 6c, showing a good agreement with the GHZ state. In the case of local
random unitaries, Ref. [68] suggests an empirical scaling law of the form

| Tr
{
ρ2

A

}
e

− Tr
{
ρ2

A

}
| ∼ 1√

NU

(
c3 + 20.75NA

NM

)
, (22)

where c3 is another constant of order O(NA). Figure 6b and 6d shows how the obtained
data follows the expected error.

Figure 6 shows the difference between the computed and expected purity for the GHZ
state (a pure state) and RMS, with an average statistical error extracted from 100 numerical
experiments. The scaling with NU an NM follow the expected behavior of Eq.(21) and
Eq.(22) for the product state. Moreover, we can see how the statistical error of the mixed
state is smaller. For a pure state, the density matrix represents a specific quantum state
with no uncertainty, and fluctuations across the unitary ensemble can be significant. In
contrast, mixed states represent ensembles of quantum states with varying probabilities,
and this ensemble averaging leads to reduced fluctuations in the statistical properties.
Besides, we acknowledge that the local protocol is more susceptible to statistical errors
in comparison to the global protocol, probably because the estimator we are using on the
global approach works better (see Appendix A for more information).

We can also foreshadow a serious problem with the protocol: when the total number
of random unitaries NU is not big enough, the purity can be greater than 1. By definition,
the purity of a reduced density matrix always satisfies Tr

{
ρ2

A

}
≤ 1, so getting a result

over 1 does not have any physical sense. This problem can be explained by revisiting
the mathematical derivation of the protocol. In the previous proof, we explicitly used the
2-fold twirl channel over a unitary ensemble E , Φ(2)

E , to efficiently substitute the 2-fold
twirl channel over the Haar measure, Φ(2)

Haar. The problem is that we do not work with an
ensemble E that spans a 2-design, but with a random ensemble that follows the distribution
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Figure 6: Error scaling of the randomized protocol. All plots show the difference in purity between
the protocol and the expected value for systems of 10 qubits. Plots (a) global approach and (b)
local approach as a function of the number of unitaries NU for a fixed set of measurements NM and
different states, maximally entangled state GHZ (which is pure) and randomized mixed states RMS, in
a subsystem size of NA = 8 qubits. Plots (c) global approach and (d) local approach as a function of
NM with fixed unitaries NU = 512 and different subsystem size NA. Dashed lines are estimated from
the scaling laws. All data is extracted from 100 numerical experiments.
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Figure 7: Error scaling of the randomized protocol. Plot (a) shows the required number of measurements
NUNM to determine the purity up to an average relative error inferior to 0.12 as a function of the
subsystem size NA. Plot (b) shows the difference of purity between the protocol and the expected value
in the local approach as a function of the number of measurements NM for a fixed set of unitaries
NU = 24NA in a system size of NA = {1, 2} qubits, for a GHZ state comparing random unitaries
following the Haar measure (Random) and a set of fixed unitaries from the Clifford group (Cliff.).

given by the Haar measure and allows us to implement an ϵ-approximate t-design. Thus,
when NU is not big enough to reconstruct a good approximation of the entire Hilbert space,
the equality does not hold and the obtained results should not be considered valid. We
highlighted this flaw of the protocol, as it is not properly discussed on the original studies
[68–70].

To continue with, Figure 7a shows the total number of shots NUNM that must be per-
formed to get an error lower than 12% as a function of the system size NA, for a GHZ state.
We have fitted the obtained data into a function of the form 2a+bNA so we could compare
it with tomographic methods. We see that the required total number of measurements
scales as ∼ 2(0.44±0.02)NA , proving favorable compared to full state tomography [71].

Furthermore, we can see the effect of the chosen ensemble E in Figure 7b. Here, we are
comparing the random ensemble extracted from the CUE E with a fixed ensemble given
by the Clifford group C (composed of 24 elements). We are only focusing on subsystems of
1 and 2 qubits, as for the local unitary approach NU scales as 24NA . A better discussion
on the use of the Clifford group as a t-design can be consulted in Appendix B.2. We are
also fixing NU = 24NA for both ensembles, otherwise the comparison would be futile. As
we clearly see, using an exact unitary 2-design allows us to get better results for higher
dimensions. In fact, for an infinite NM , the estimation should be exact. This implementa-
tion is not usually practical, as we mentioned that NU scales exponentially as 24NA , but
may be of utility for QPUs of a few qubits, like the one available in the BSC with 5 qubits,
where to estimate the entropy, the higher number of qubits we find in a subsystem is 2.

We would like to comment that all results simulated in Qibo are in good agreement
with previous studies.
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6 Conclusions
Throughout this research, we have presented cutting-edge techniques for estimating the
n-order Rényi entropy of bipartite states on quantum computers, with the ultimate goal
of developing quantum benchmarking protocols to assess entanglement properties. As a
starting point, we provided a concise overview of various benchmarking protocols, serving
as a gateway for new readers to this field. We ensured that the protocols were explained
in a clear and accessible manner, accompanied by extensive references for those interested
in delving deeper.

Next, we introduced a protocol utilizing the Swap Test to estimate the n-order Rényi
entropy. This protocol is tailored for future fault-tolerant quantum computers and is
restricted by the number of qubits available on the quantum device, as it relies on multiple
identical copies of the quantum state. The error analysis we conducted on the protocol
yields promising results, as with only a few thousand measurements on a single qubit, we
achieved an error rate below 5% for pure states. With further research and improvements,
and the future exploration and inclusion of mixed states, this protocol holds promise for
enhancing the accuracy and scalability of entanglement estimation on future fault-tolerant
quantum devices.

Lastly, we investigated a randomized protocol specifically designed for estimating the
second-order Rényi entropy of bipartite states. This method was developed with NISQ
devices in mind, as its randomized nature helps mitigate errors inherent in this kind of com-
puters. We compared the local and global random unitary approaches and demonstrated
that the global approach reduces statistical errors and improves performance. However,
in the context of current NISQ devices, the local approach remains more practical. Addi-
tionally, our findings reveal that when the number of random unitaries NU is insufficiently
large, the protocol yields non-physical outcomes. In such cases, it becomes challenging to
achieve a reliable reconstruction of the complete Hilbert space. This limitation emphasizes
the importance of employing a sufficiently high number of random unitaries in order to
ensure accurate and meaningful results in the protocol. At last, we examined the scaling
behavior of the protocol for the GHZ state, a maximally entangled pure state, and found it
to exhibit favorable scaling compared to tomographic methods. However, further investiga-
tions are necessary to test this method against states with varying degrees of entanglement
and different basis configurations.

Unfortunately, it is important to note that the protocols presented in this work primar-
ily serve as entanglement detectors and quantifiers for pure states. In the case of mixed
states, it only works as entanglement quantifiers but not as detectors. Certification would
require the implementation of additional techniques, which can be achieved through ran-
domized measurements. Although an initial study has been conducted and its findings
can be consulted in Appendix C, further investigation in this area is planned for future
research. By exploring the implementation of these techniques, we aim to enhance our un-
derstanding of entanglement properties in mixed states and develop more comprehensive
benchmarking protocols. This ongoing exploration will contribute to the advancement of
quantum benchmarking and provide valuable insights into the behavior of entangled states
in practical scenarios.

Finally, we must mention that the initial main goal of this work was to run these
protocols on the quantum computer of the BSC. Nevertheless, this was not possible due
to some project delays, but it is planned to conduct the desired testing in the near future.
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Code repository
The current implementation of both quantum entanglement benchmarks programmed in
Qibo is available on the github repository: https://github.com/Juanfurk/Entanglement_
measures/tree/main.
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A Error propagation
It is worth mentioning how the outcome probabilities P (sA) is computed. For the simple
case of the probability P , a well-known estimator P̃ is found by performing NM measure-
ments on the state and dividing the number of outcomes s by the totalNM . Mathematically
it is described by

P̃ := P̃ (s) = 1
NM

NM∑
l=1

δs,l, (23)

where l represents the variable describing the l-measurement. Going back to the random-
ized protocol, expressions (7) and (8) show the product of probabilities. This product can
be performed between probabilities that will be the same and the rest that will be different.
Thus, our interest is to find a better estimator to find the product of probabilities. It is not
possible to find such an estimator for a product of different probabilities, but it is feasible
to find one if those probabilities are the same, as we must estimate only P 2. Nevertheless,
P̃ 2 is a biased estimator of the probability squared. Thus, another unbiased estimator
should be used, which we will denote by P̃2 and is given by

P̃2 = P̃ (P̃NM − 1)
NM − 1 . (24)

We are using these unbiased estimators to simulate numerically the experiments with a
finite number of measurements [73].

Regarding the confidence intervals of the data, we made use of one again of the Wald
interval. The success probability P is estimated as

P =

P̃ ± z

√
P̃ (1 − P̃ )
NM

 , (25)

where we use z = 1 for a standard error. In ther case of the Swap protocol, it is possible
to study their error propagation through Eq.(6) using these error intervals, given by

∆Rn =
√

(∆P̃0)2 + (∆P̃1)2, (26)

with ∆P̃i =
√

P̃i(1−P̃i)
NM

. Then, a mean of over 100 experiments is computed and the
necessary statistical treatment through error propagation is performed.

Nevertheless, for the case where the product of probabilities differ PiPj , we use

PiPj =
(
P̃iP̃j ±

√
(P̃i∆P̃j)2 + (P̃j∆P̃i)2

)
. (27)

However, for the case where the probabilities are the same P 2
i , we get

P 2
i =

(
P̃2 ± 2P̃NM − 1

NM − 1 ∆P̃
)
. (28)

From these error intervals, it is possible to study the error propagation through Eq.(7) and
Eq.(8), using well-established statistical methods. Then, a mean of over 100 experiments
is computed and the necessary statistical treatment is performed to compute the average
and their error intervals.
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B Random unitaries
Before embarking on the formal demonstration of expressions (7) and (8), it is imperative
to address pertinent topics that provide a comprehensive understanding of the procedure
and shed light on the subsequent steps involved.

B.1 The Haar measure
Quantum computer operations are mathematically described by unitary matrices, which
can be parameterized using a set of specific coordinates. A single-qubit local unitary
matrix can be conceptually understood as a rotation around the Bloch sphere, allowing
any initial vector state to be transformed to any other point on the sphere without altering
its dimensions. The most general rotation can be expressed according to three parameters
as

U(θ, ϕ, ω) =
(
e−i ϕ+ω

2 cos θ
2 −e−i ϕ−ω

2 sin θ
2

e−i ϕ−ω
2 sin θ

2 ei ϕ+ω
2 cos θ

2 .

)
(29)

Furthermore, it is important to recall one of the general properties that define the set of
unitary matrices: given a unitary U , its conjugate transpose (denoted by a dagger †) is its
inverse,

UU † = U †U = I. (30)
The set of unitary matrices of size N ×N constitute the so-called unitary group U(N). As
a group, it is possible to sample uniformly from it. When doing the sample, it is important
to add correctly the measure. The measure describes the distribution of each parameter
according to the space they live in, weighing points differently depending on which part of
the space they inhabit. It allows to sample correctly, so the points are uniformly distributed.
Therefore, the Haar measure emerges as the correct measure to work with when playing
with the unitary group. It is worth mentioning that the distribution of the Circular Unitary
Ensemble (CUE) follows this Haar measure on U(N).

Suppose a function f acting on the elements of the unitary group U(N) and we would
like to compute the integral over the whole group. Then, we would need the Haar measure,
usually denoted by µN , to tell us how the elements are distributed inside the group. This
way, the integral could be computed as∫

V ∈U(N)
f(V )dµN (V ). (31)

Qibo offers the command ’qibo.quantum_info.random_unitary()’ to compute random
local unitaries (more details on its repository [74]). Besides, with the tool measure = ’haar’,
it is possible to compute a random local unitary following the Haar measure. The method
used to perform the sample is by taking the QR decomposition of a complex matrix. The
procedure is well explained in Ref. [75].

An important property of the Haar measure that is worth mentioning is the left and
right invariance under unitary transformations. That is

∫
V ∈U(N)

f(WV )dµN (V ) =
∫

V ∈U(N)
f(VW )dµN (V ) =

∫
V ∈U(N)

f(V )dµN (V ), (32)

which holds for any W ∈ U(N), as the random nature of V ensures that the product with
any other unitary matrix remains random as well.
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As we saw, our randomized protocol requires that we compute the so-called k-fold
channel of a given operator O, of the form

Φ(k)
Haar(O) =

∫
Haar

dU(U †)⊗kOU⊗k, (33)

in order to compute the average ensemble over the cross-correlations of the probability
PU (s)PU (s′). However, computing this value requires an infinite number of unitaries drawn
from the Haar distribution, which is not feasible in practice. Similarly, numerically evaluat-
ing the integral becomes impractical due to the overwhelming number of variables involved.
Consequently, an alternative approach emerges: the use of unitary t-designs. These designs
enable us to determine the exact value of the integral using a finite set of unitary matrices,
circumventing the challenges posed by the infinite parameter space.

B.2 Unitary t-design
Before diving into the unitary design, it may be better to have a look at the spherical
design to gain some intuition. Suppose we have a polynomial in d variables and we would
like to compute its average over the surface of a d-dimensional sphere, S(Rd). One way
to do it is by integrating over the sphere using the proper measure, but that would imply
keeping track of a lot of parameters. Another simple possibility would be to sample random
uniformly distributed points from the sphere, evaluate the function at those points and then
compute the average value. This method is intuitive and will always take us close to the
exact value, but it is just an approximation.

Therefore, a spherical t-design has been introduced to compute the exact result in a
simpler and faster way. They can be understood as a set of points evenly distributed on
the surface of the sphere. The only limitation of the t-design is that they can only be used
if the terms in the polynomial have all the same degree of at most value t. Here we present
a proper definition:

Let pt : S(Rd) −→ R be a polynomial in d variables, with all terms the same degree, at
most t. A set X = {x : x ∈ S(Rd)} is a spherical t-design if

1
|X|

∑
x∈X

pt(x) =
∫

S(Rd)
pt(u)dµ(u), (34)

where dµ is the spherical measure. It is worth mentioning that a spherical t-design is also
a k-design for all k < t.

With all this in mind, we can approach now the unitary design. Basically, unitary
designs extend the previous concept from evenly-distributed points to evenly-distributed
unitaries. Here we present a proper definition:

Let Pt(U) be a polynomial with all degrees the same, at most t, in d variables in the
entries of a unitary matrix U . A unitary t-design is a set of K unitaries {Uk} such that

1
K

K∑
k=1

Pt(Uk) =
∫

V ∈U(d)
Pt(V )dµ(V ), (35)

where, one again, dµ(V ) is the proper Haar measure.
Therefore, one can say that an ensemble E = {pi, Ui} forms a unitary k-design if and

only if Φ(k)
E = Φ(k)

Haar. Once again, for our case, evaluating PU (s)PU (s′) requires a unitary
2-design, as the unitary matrices U and U † of the k-fold channel (33) appear at the same
degree of 2. A proper unitary 2-design to work with is the Clifford group.
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The Clifford group Cn exhibits the property of being a unitary 3-design, thereby also
serving as a 1-design and 2-design. This group consists of unitary matrices that, when ap-
plied to an n-qubit system, can transform any Pauli operator into another Pauli operator.
In the case of the 1-qubit Clifford group C1, which is particularly relevant for the local
unitary scenario of the randomized protocol, it comprises a mere 24 elements, which are
primarily combinations of Hadamard and Phase gates. Consequently, when evaluating the
purity in the randomized protocol, there is no longer a need for multiple random matrices
following the Haar measure. Instead, only the 24 unitaries from C1 are required. However, a
challenge arises with the size of the subsystem NA. Since there are 24 elements, the number
of unitaries to be applied NU , scales exponentially, specifically as 24NA . This exponential
growth renders the "exact" evaluation of purity using unitary k-designs impractical, except
for cases with a small number of qubits, such as 1, 2, or even 3. Furthermore, the impracti-
cality intensifies when dealing with the global unitary measure, as the number of elements
in Cn increases exponentially. To illustrate, the C2 group encompasses a staggering 11 520
elements, making the procedure highly unfeasible.

This way, when dealing with a large number of qubits, the randomized protocol must be
performed using the so-called ϵ-approximate k-design. Given by an ensemble E , it allows
to get and approximation of the form ∥ Φ(k)

E − Φ(k)
Haar ∥< ϵ. On one hand, in the case

of local unitaries, this ensemble will be nothing more than the needed number of random
local unitaries following the Haar measure. If the number of unitaries drawn from the CUE
is not enough, then our ϵ-approximate k-design is not sufficient to obtain good data and
nonphysical values may arise, just like we can observe in our simulations. On the other
hand, the global unitary implementation is not straightforward. In our case, we decided
to implement a global efficient unitary design using random diagonal circuits (RDC) [76],
following the implementation given in [77].

While this procedure does not yield an "exact" result, it provides a reliable approxi-
mation. It allows us to obtain results that are sufficiently close to the outcome we would
get using the complete Haar measure. Therefore, even though we do not achieve perfect
accuracy, we can consistently obtain a good approximation of the desired results.

C Mixed-state discussion of the protocols
All these presented protocols work assuming that the initial quantum state is pure. But
we must also discuss the case where the initial bipartite state ρAB is mixed. In this section,
we will take a closer look and talk about it.

First, let’s consider a pure bipartite state of the form ρAB = |ψ⟩⟨ψ|. General properties
of pure states tell us that the purity Tr

{
ρ2

AB

}
= 1 always. Now, when tracing over B, the

reduced state ρA will contain the information shared with system B. Thus, if the purity
Tr
{
ρ2

A

}
= 1, that means that our original pure bipartite state could have been written as

a product ρAB = ρA ⊗ ρB. However, if Tr
{
ρ2

A

}
< 1 that means some correlation existed

between subsystems A and B and, therefore, that some entanglement is manifested in the
system. It could seem at first that purity could work as an entanglement checker, but we
should continue.

Let’s see what happens when working with bipartite mixed states. In this case, a
bipartite state is said to be separable if ρAB =

∑
i piρA,i ⊗ ρB,i and no entanglement is

presented between both subsystems [78]. Nevertheless, it is straightforward to check that
ρA becomes a mixed state,
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ρA = TrB ρAB =
∑

i

pi TrB ρA,i TrB ρB,i =
∑

i

piρA,i (36)

which means it fulfils the property Tr
{
ρ2

A

}
< 1 (presented on all mixed states). In this case,

the purity does not seem to play the same role as before (for pure states) and now it does
not work as an entanglement detector, as our initial hypothesis is that this bipartite state
is separable and thus with no entanglement. A useful example to illustrate this dilemma
is the one presented by the Werner state,

ρW
AB = p

∣∣Ψ−〉〈Ψ−∣∣+ (1 − p) I
4 , (37)

This bipartite state is clearly mixed, but is it also separable? Finding the density matrix
of subspace A, ρA, we see

ρA = TrB ρAB = I
2 , (38)

which is again a mixed state. That means its purity is Tr
{
ρ2

A

}
< 1, in particular Tr

{
ρ2

A

}
=

1/2. So, we could think that it may present some entanglement. However, by applying the
Peres-Horodeki criterion [79] we find that it actually becomes an entangled mixed state for
p > 1/3 (whenever there is a negative eigenvalue). This shows perfectly how purity does
not work properly as a criterion to distinguish entanglement.

This way, the protocols discussed in this work only run under the assumption that the
initial quantum state is pure. We can always run these methods to estimate the Rényi
entropy, but that does not mean that actual entanglement is present in the system if the
initial state is mixed. In this case, only once entanglement on the system is proven, we
can accept the 2-order Rényi entropy estimation.

Furthermore, there is a straightforward method to guarantee entanglement certification
of a state [80]: entanglement exists between two subsystems of a bipartite state if

S2(ρA) > S2(ρAB) (39)

S2(ρB) > S2(ρAB)

However, this criterion is sufficient but not necessary. Thus, entanglement may still be
present when Eqs.(39) do not hold.

C.1 p3 - PPT Condition
As a matter of fact, a pure state only exists as an idea. The real world is full of actually
highly mixed states, either due to decoherence or because they describe a subregion of a
larger and globally entangled system. Thus, developing protocols to first detect entangle-
ment in a mixed state is crucial. As we have previously seen, computing the Rényi entropy
does not assure that the state presents entanglement; only if entanglement is present we
can then compute its entropy to quantify it.

Therefore, the randomized protocol we previously presented can only be used assuming
that the initial state is pure, so if we get any value on the entropy that is greater than zero
it is sufficient to tell that the initial state exhibits any kind of entanglement. However, if
the initial state is mixed, we cannot make the same statement. That is why the p3 - PPT
condition has been proposed and experimentally demonstrated to ensure entanglement
certification [81]. As the name tells, the protocol is based on the Positive Partial Transpose
Condition (PPT condition), which checks if the partially transpose density matrix ρTA

AB
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is positive semidefinite (i.e. all eigenvalues are non-negative). If the PPT condition is
violated, A and B must be entangled. Furthermore, it is possible to turn this condition
into a quantitative entanglement measure, the negativity, N(ρAB) =

∑
λ<0 |λ| (where λ are

the eigenvalues), which is positive if and only if the state violates the PPT condition.
Unfortunately, computing the negativity requires estimating the spectrum of ρTA

AB ac-
curately (i.e. use tomography techniques). This challenge is overcome by the moments of
the partially transposed density matrix (PT-moments):

pn = Tr
{

(ρTA
AB)n

}
, for n = 1, 2, 3 . . . (40)

Let’s take a look at the first values. p1 = Tr{ρAB} = 1 always following the definition of
density matrix; p2 = Tr

{
ρ2

AB

}
is the purity of the system, which we have already discussed

that does not work as an entanglement certification measure. Hence, p3 is the lowest
PT-moment that can capture meaningful information about the partial transpose [82].
PT-moments can be used to define a simple and powerful test for bipartite entanglement
certification:

ρAB ∈ PPT =⇒ p3 ≥ p2
2. (41)

We will name p3-PPT condition to the contra-positive of the previous assertion. Thus, if
p3 < p2

2, then ρAB violates the PPT condition and A and B must be entangled.
It is important to emphasize that the randomized protocol can be implemented globally

to estimate higher Rényi orders recursively, and thus estimate p3. In Ref. [73] they showed
that:

PU (s)k = 1
Dk

∑
b1,...,bk∈N0

conditioned to∑k

l=1 lbl=k

Cb1,...,bk

k∏
l=1

Tr
{
ρl
}bl
, (42)

where Dk =
∏k−1

i=0 (D + i) and Cb1,...,bk
denotes the number of permutations σ ∈ Sk with

typ(σ)= 1b12b2 . . . kbk given by

Cb1,...,bk
= k!
b1! · b2! · . . . bk! · 1b1 · 2b2 · . . . kbk

. (43)

With all this, we can get an expression for p3 as

Tr
{
ρ3
}

= 1
2

(
(D + 1)(D + 2)

∑
s

PU (s)3 − 3 Tr
{
ρ2
})

, (44)

where p2 can be estimated with the randomized method we addressed on this work. Nev-
ertheless, the generalization of Eq.(44) using local unitaries is not simple and has not been
studied yet.
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