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In this work, we study the behaviour of the superfluid fraction f of a bosonic
system under the influence of a speckle potential. We start by introducing and
defining f , and then we present the lower and upper bounds to f derived by
A. Leggett for generic many-body systems. To benchmark our codes, we study
first the case of a periodic optical potential, reproducing results that recently
appeared in the literature. We continue by describing the particular kind of
disordered potential we want to study, and how this is characterized. Finally, we
compute the superfluid fraction as a function of the intensity of the disordered
potential and the interaction strength between the bosons, and we compare our
results to the two bounds in both 1D and 2D.
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1 Basics of the Gross-Pitaevskii theory
The many-body problem in classical physics is well known to quickly become intractable
by analytical means. The same happens in the quantum regime, where we are interested
in modelling the following system:

H =
N∑
i=1

[
P̂2
i

2m + Vext(ri)
]

+
∑
i<j

V (ri − rj). (1)

This Hamiltonian describes a gas of N quantum particles with mass m in an external
potential Vext(ri) interacting through a pair potential V (ri−rj). In the low-energy regime,
the pair potential can be approximated by a contact interaction whose strength is given
by a coupling parameter that we call g. It gives us a measure of the strength of the
interactions, and is related to the three-dimensional s-wave scattering length as through:

g = 4πℏ2as
m

.

Even though it is already an approximation, solving Eq. (1) is a formidable task. In-
stead of doing so, we use a mean-field approach to tackle the problem. Here, we partially
reproduce some key steps of the derivation of the so-called Gross-Pitaevskii equation to
understand the assumptions that are behind the theory.
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In a dilute Bose gas at very low temperatures, all bosons occupy the same single-particle
normalized state, so the multiparticle wavefunction reads:

Ψ({r}) =
∏
i

ϕ(ri).

Computing the energy of this state we find [PS08]:

E = N

∫
dr
[
ℏ2

2m |∇ϕ|2 + V (r)|ϕ(r)|2 + g
N − 1

2 |ϕ(r)|4
]
.

Defining the so-called condensate wavefunction as:

ψ(r) =
√
Nϕ(r)

(∫
dr|ψ|2 = N

)
,

and using the fact that N is large, we can rewrite the energy as:

E =
∫
dr
[
− ℏ2

2m∇2ψ(r) + V (r)|ψ(r)|2 + g

2 |ψ(r)|4
]
. (2)

The next step is to find the optimal form for ψ. This may be done by minimizing the
free energy E −µN for fixed chemical potential µ. Following this procedure, one finds the
time-independent Gross-Pitaevskii equation (GPE from now on):

− ℏ2

2m∇2ψ(r) + V (r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r). (3)

Let us briefly review the conditions of applicability of this equation:

• We are neglecting any interaction between degrees of freedom whose characteristic
length scale is smaller than the average interparticle distance. Their effects are
incorporated in the description through the contact interaction.

• It is necessary that the scattering length is much smaller than the average interpar-
ticle distance (n1/3

0 , n0 = N/L3). This means that the so-called gas parameter must
fulfil: n1/3

0 as ≪ 1. This condition must be met to have a well-defined mean-field pic-
ture. Under these conditions, the depletion of the condensate, which goes as

√
n0a3

s,
is negligible.

• Quantum fluctuations are not captured in this approach, so the mean-field theory
does not give correct results near phase transitions or in strongly interacting systems.

1.1 Relevant energies and length scales
Here we present some important magnitudes that allow us to characterize Bose-Einstein
condensates. The first one is the so-called chemical potential, that has already appeared
in the previous section as a Lagrange multiplier. We can compute it as:

µ =
∫
dr
[
− ℏ2

2m∇2ψ(r) + V (r)|ψ(r)|2 + g|ψ(r)|4
]
. (4)

So we see that the relation between energy and chemical potential is:

E = µ− g

2

∫
dr|ψ(r)|4.
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The chemical potential plays a role similar to that of the energy in the non-interacting
case, in the sense that it gives a measure of the capacity of the condensate to penetrate
potential barriers. Strictly speaking, the chemical potential gives us the energy gained or
released by the system when a particle is added or removed. The chemical potential for a
uniform Bose gas reduces to µ0 = gn0.

The next relevant quantity is the so-called healing length of the condensate. It gives us
a measure of the minimum length scale over which the condensate wavefunction changes.
It is a property of the BEC and completely independent of the external potential. It can
be obtained by finding the length at which the kinetic energy equals the interaction energy.
Calling ξ this natural length scale, the kinetic energy and the interaction term are roughly
equal when:

ℏ2

2mξ2 = gn0 = µ0,

so that the healing length turns out to be:

ξ =
√

ℏ2

2mgn0
=
√

ℏ2

2mµ0
. (5)

2 Superfluid fraction in Bose-Einstein condensates
2.1 Dynamical effects of superfluidity
When describing the state of a Bose-Einstein gas, a quite useful description is that of the
two-fluid model. A Bose-Einstein condensate, at sufficiently low temperature, can have a
fraction of its components in the so-called superfluid state, while the remaining fraction of
the system is referred to as the normal component, associated with excitations.

A superfluid exhibits a series of counter-intuitive properties that are extremely related
to those of superconductors. A couple of these properties are the non-classical responses
to external perturbations or the capacity to flow without losses. In experiments, one can
generally test only the whole system (superfluid plus normal component), therefore it is of
extreme importance to correctly model the fraction of the system which is superfluid.

The superfluid fraction is defined in terms of the dynamical response of the superfluid,
which differs from the one of the normal component. For example, when a BEC is put in
a rotating container, only the normal component reacts to this external perturbation and
rotates along with the container; on the other hand, the superfluid remains still. So, the
superfluid fraction may be defined as:

f = 1 − ⟨L⟩
Iclω

,

where Icl is the classical moment of inertia and ω the angular velocity of the container.
Let us now explain our approach to obtain the superfluid fraction. For conciseness, let

us consider a two-dimensional box and a time-dependent potential moving with constant
velocity along this box. As discussed previously for the rotating container, only the normal
component reacts to the external perturbation and moves along with the potential. If we
change to the reference frame in which the potential becomes time-independent, we see
a static normal component while there appears a superfluid current in our system. By
measuring the ground state’s properties of this system we can obtain information about
the superfluid current, in particular, the desired superfluid fraction.
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The operator implementing the change of reference frame is the Galilean boost and it
takes the form:

U = ei(v·P̂t+mv·R̂)/ℏ.

We are not interested in the actual translation of the system, but rather only in imprinting
a relative velocity between the potential and the BEC. Therefore we can just set t = 0 and
work with the following operator 1 :

U = eimv·R̂/ℏ.

Applying this transformation to the GPE yields the following modified equation:

1
2m

(
P̂ +mv

)2
ϕ(r) + V (r)ϕ(r) + |ϕ(r)|2ϕ(r) = µϕ(r), (6)

where we see that we are just modifying appropriately the kinetic component of the equa-
tion by introducing a constant gauge. This change in the kinetic component yields an
increase in the kinetic energy of the ground state of the modified equation when compared
to the original GPE. The new ground state energy can be written as:

E(v) ≈ E(0) + f
mv2

2 (v → 0),

where in the second term there appears the kinetic energy associated with a current with
velocity v 2. More importantly, we have incorporated the fact that only the superfluid
is flowing, and therefore it is the only component that contributes to the energy increase.
This is the expression that we use to compute the superfluid fraction of our system:

f = E(v) − E(0)
mv2

2
.

Now let us discuss about the boundary conditions in the original and in the new refer-
ence frame. As it is usually done, in the reference frame in which the potential is static,
we want to impose periodic boundary conditions. To derive the boundary conditions in
the laboratory frame, let us consider the relation:

ϕ(r′, t) = eimv·r/ℏψ(r, t),

where ψ is the solution of the original GPE and ϕ that of the modified GPE. Taking
into account that we are imposing periodic boundary conditions on ϕ, one finds that the
corresponding boundary conditions for ψ are:

ψ(x = L, y, z) = eiθψ(x = 0, y, z),

where θ = mvL/ℏ. This relation is called twisted boundary condition, and from the
derivation, we see that this is completely equivalent to imposing a current in our system.

Now, we can either solve the modified equation with periodic boundary conditions, or
the original GPE with the twisted boundary condition. Since the numerical scheme that
we are using relies on the FFT algorithm, which requires the wavefunction to be periodic,
we take the first approach.

1This new operator can be understood by considering the position operator as the generator of translations
in momentum space.

2We must work in the limit v → 0 to avoid generating excitations in the system.
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2.2 Leggett’s bounds
The study of the superfluid fraction of a system had a major breakthrough with the work
of A. Leggett in Ref. [Leg70], that was later followed by a more detailed discussion in
Ref. [Leg98]. In this last work, both an upper bound and a lower bound are given for the
amount of superfluid fraction that we can find in a many-body system at T=0. In this
section, we first present both bounds and then discuss the idea behind these expressions,
and their conditions of applicability.

In his works, Leggett showed that given a bosonic dilute gas which sustains a current
in the x-direction, a strict upper bound for its superfluid fraction is given by:

f+ = 1
n̄

1〈 1
⟨n⟩{ξ}

〉
x

, (7)

where n = |ψ|2 is the particle number density (and n̄ = N/V its mean value), ⟨...⟩i
represents the average over the i-th coordinate, and {ξ} encompasses all degrees of freedom
perpendicular to the axis where the current is applied. On the other hand, the lower bound
for the superfluid fraction is given by:

f− = 1
n̄

〈 1
⟨ 1
n⟩x

〉
{ξ}
.

One important property of these bounds is that they reduce to the same expression in
the cases of a one-dimensional system, or of a separable density:

f− = f+ = 1
⟨nx⟩⟨ 1

nx
⟩
.

Since by definition f− ≤ f ≤ f+, in these two cases it is obvious that the superfluid
fraction coincides with the value of the two bounds: f = f− = f+. To simplify the coming
discussion, we will refer to this last identity as the “one-dimensional Leggett’s result".

The upper bound is tightly connected to the existence of the so-called nodal surfaces,
i.e., regions of space over which the density function vanishes. If we impose a current along
the x-direction and the system hosts a y-slice with a vanishing density, then the upper
bound becomes identically zero, because the superfluid cannot flow across that plane. The
general statement would be to say that whenever we have a nodal surface perpendicular
to the axis of the current, the superfluid fraction vanishes. How these nodal surfaces are
generated completely determines the transition behaviour of the system, explaining, for
example, the differences that we observe between 1D and 2D systems.

Let us now discuss the intuition behind these bounds. For simplicity, let us consider
a two-dimensional box and a current in the x-direction, so that the two bounds take the
simpler forms f+ =

[
n̄
〈 1

⟨n⟩y
〉
x

]−1
and f− = 1

n̄

〈 [
⟨ 1
n⟩x

]−1 〉
y
.

We begin by considering the upper bound. Up to normalization factors, we first average
over the y coordinate and then compute the one-dimensional Leggett’s result using this
effective transversal density. The key idea behind the upper bound is that, by first comput-
ing the y-average, we are erasing all information about the particular path the superfluid
took to traverse the plane. Let us consider the toy example in the left panel of Fig. 1. The
path we are showing there is highly improbable (i.e., energy-costly) since the entry and exit
points are located far apart from each other. But, after averaging over the x1 plane, we are
just left with the total amount of superfluid that can cross that surface, independently of
the particular region it crossed. Thus, since to measure the actual superfluid fraction the
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Figure 1: Toy model to understand how Leggett’s upper and lower are generated. Black rectangles
represent potential walls.

connectivity between the entry and exit point matters a lot, we are producing an upper
bound.

To understand the idea behind the lower bound, we follow a similar approach. This time,
instead of first considering y-slices of the system, we divide our system in one-dimensional
tubes along the x-direction. We compute the one-dimensional Leggett’s result along each
one of these tubes, and then we average the results. By doing this, we are neglecting the
fact that the superfluid cannot only tunnel through the potential barriers but can also flow
around them. By ignoring the cross-talk between the tubes, we are effectively generating
a lower bound for the superfluid fraction.

3 Superfluid fraction in an optical lattice
In this section, we study the response of the superfluid component to the presence of
an optical lattice. As a first test of both the code and the bounds provided before, we
reproduce the results presented in Ref. [CMR+23]. We studied first a 1D BEC in an
optical lattice, and then a 2D BEC in presence of a 1D optical lattice [i.e., in both cases
we take Vext(r) = V0[1 + cos(2πx/alatt)], so that ⟨V ⟩ = V0]. The latter is an example of a
separable potential, which leads to a separable density. The behaviour is completely equal
in both cases, according to the discussion presented before.

To translate the parameters used in Ref. [CMR+23] to our 1D and 2D setup, we first

compute their chemical potential in units of the recoil energy Er = ℏ2

2m

(
2π
alatt

)2
. They used

the following parameters:
n0 = 60 µm−2,

mg

ℏ2 = 0.15.

Then the chemical potential reads:

µ2D = n0g = 9 ℏ2

m · µm2 .

Using the unit cell of the optical lattice (alatt) as our length scale, and the recoil energy
as the corresponding energy scale, the adimensional chemical potential reads:

µ̄ = µ

Er
=

9 ℏ2

mµm−2

ℏ2

2m

(
2π
alatt

)2 = 9
2π2

a2
latt

µm2 .

They used an optical lattice whose constant is alatt = 3.93 µm, therefore:

µ̄ = µ

Er
= 9

2π2 · 3.932 = 7.042.
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So, our effective one-dimensional and two-dimensional coupling constants, computed as
gN = µ/n0,N , are given by:

g1 = µ̄

n0,1
= 7.042L, g2 = µ̄

n0,2
= 7.042L2,

where n0,d = 1/Ld and L is fixed by the grid used in the simulation.
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Superfluid fraction in an optical lattice

Leggett’s result

Local-density approximation

µ0/Er = 7

µ0/Er = 10−5

Figure 2: Superfluid fraction as a function of the depth of the optical lattice for two values of the mutual
repulsion between bosons (i.e., of µ0). The numerical datapoints are computed using twisted boundary
conditions. Our results for a 1D system and a 2D system with a 1D optical lattice coincide and are
identical to those found in Ref. [CMR+23].

Our numerical results for two different values of the chemical potential µ0 are presented
in Fig. 2. We present not only the results obtained through the method of the twisted
boundary condition but also those computed using Leggett’s result. We can clearly see that
both quantities completely agree for all the values of g and amplitudes studied. Moreover,
we have also verified numerically that the results of 1D and 2D systems are also completely
equal, as expected for a separable density.

Analytically, the behavior of f may be understood in two different regimes:

• Non-interacting regime: for very weak interaction between the bosons (i.e., small
µ0), the system has no means to overcome the localization induced by the potential.
This causes the superfluid fraction to rapidly disappear when the potential becomes
noticeable, 1/f = ⟨n⟩⟨1/n⟩ Ref. [CMR+23].

• Local-density approximation (LDA) : for strong repulsion and moderate optical
potential, the kinetic energy becomes negligible, and the density takes the following
(Thomas-Fermi) form: n(r) = [µ − V (r)]/g, with the restriction that n(r) ≥ 0. In
this case, there is an analytical expression for the superfluid fraction 3. When the

31/f = ⟨n⟩⟨1/n⟩ = µ/β
∫ 0.5

−0.5 dx/[µ/β−cos(2πx)] = 2µ/
[
βπ
√

(µ/β)2 − 1
]

limx→1/2 arctan [h (µ/β) tan(xπ)] =
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potential becomes greater than the chemical potential, there appear extended regions
in which the wavefunction vanishes. Thus the system cannot sustain currents, and
the superfluid fraction goes to zero.

For general values of the optical lattice depth V0 we see that f presents a smooth decay; the
interplay between the repulsion of the particles and the optical lattice allows the system
to sustain a superfluid component for deeper optical lattices.

4 Disordered potentials
In this work, we mainly want to study the behaviour of the superfluid fraction when the
system is under the effect of a disordered potential. Let us briefly comment on why it
is interesting to study the behaviour of quantum particles in this kind of potential. The
vast majority of quantum systems that can be solved analytically are based on a series of
assumptions that allow us to simplify them to a level where closed-form solutions can be
found. Nonetheless, it is obvious that in a real quantum system, this idealistic situation can
only be achieved to a certain degree, and some properties of the system, such as transport
phenomena, can be heavily altered due to these small defects. One clear example of this
situation, which is quite related to our work here, relates to the periodic structure in
solids. For example, Bloch’s theory is completely based on the fact that the potential felt
by the particles is periodic. But it is well known that in real materials, this periodicity,
when examined in shorter scales, shows certain irregularities that would destroy, totally
or partially, the periodicity of the system. These spurious effects can be modelled using
disordered potentials. The most prominent example of the effect of randomness in quantum
systems is Anderson localization.

For us physicists, we can understand disordered potentials as smooth realizations of
a random variable, for which we fix the mean value and the so-called correlation length.
This last term is vital for understanding the physics of quantum systems in disordered
potentials, as it gives the crucial length scale over which the effects of the disorder are
noticeable.

In the following we introduce the kind of potential that we use, how it can be generated,
and finally we characterize it.

4.1 Speckle potentials
Experimentally, a speckle pattern is generated by scattering light off a rough surface. Each
independent scatterer emits new waves with a random phase producing the desired random
pattern. A very good exploration of the topic can be found in Ref. [CVR+06].

Numerically we proceed in a very similar fashion. We define our simulation grid, and
we choose an “aperture" in the middle of it. To each point of this aperture, we assign a
random phase picked uniformly in the interval [−π, π]. Then, by computing the Fourier
transform of this aperture function, we obtain the far-field approximation of the electric
field and its modulus squared gives us the speckle pattern. An example of the potential
we are using is shown in Fig. 3.

µ/
[
β
√

(µ/β)2 − 1
]

.
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Figure 3: Realization of a two-dimensional speckle potential.

4.2 Statistical properties of the speckle potential
A relevant feature of our random potential is how the amplitude of the speckles is actually
distributed. Since the scatterers are completely uncorrelated and the phases are random,
the intensity distribution of a speckle pattern follows an exponential law:

P (Vi) = 1
⟨V ⟩

e
− Vi

⟨V ⟩ .

From this, we can conclude that the standard deviation is determined by σ = ⟨V ⟩. We
must say that these results for the statistical properties of the potential only hold in the
thermodynamic limit, for finite-size systems we should expect some deviations.

Another important parameter of our random potential is the average speckle size. To
define it, we make use of the autocorrelation function. The two-point autocorrelation
function is defined as:

C(δr) = ⟨V (r)V (r + δr)⟩.

We can compute this function by resorting to the Wiener-Khinchin theorem Ref. [Wei06],
which states:

C(δr) = F−1 [F [V (r)] F [V (r)]∗] ,

where F and F−1 are, respectively, the Fourier transform and its inverse. Moreover, from
the statistical properties of the potential, one can derive an analytical result for the auto-
correlation function of the speckle potential in one dimension Ref. [Goo07]:

C(δx) = ⟨V ⟩
[
1 + sinc

(
δx

Lc

)2]
, (8)

where sinc(x) = [sin(πx)/(πx)]2 and Lc is the correlation length, which gives us the length
scale over which the potential present correlated structures that we can understand as the
speckles. The expression for higher dimensions is similar. This length scale allows us to
define a characteristic energy scale for the disordered potential: Ed = ℏ2

2mL2
c
.

In Fig. 4 we illustrate this statistical analysis for a specific realization of a one-dimensional
speckle potential. We see that we have a very good agreement between the theoretical re-
sults and our numerical calculations, even for finite-size systems.
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Figure 4: Left panel: the amplitude distribution of a speckle potential is well-fitted by an exponential
law. Right panel: Autocorrelation function of the speckle potential and comparison with the analytical
result Eq. (8). We are defining the correlation length by fitting the numerical result to a sinc function.
Here we use a system size of L = 150Lc.

4.3 Self-averaging property
The random potential that we get from the above-described procedure obviously depends
on the set of random numbers that we use each time for the phases. We are not interested
in the properties of the BEC under the effect of a particular realization of the speckle
potential, but instead, we want to obtain the general behaviour of a BEC under the effect
of this class of random potentials. To achieve this, there are two paths that we can follow.

The first one consists in repeating our calculations for different realizations of the
speckle potential for a fixed set of parameters, and averaging over the various outcomes.

On the other hand, if we are dealing with a system whose size is much larger than the
average speckle size, the results obtained for a particular realization are already very close
to the ensemble average. The basic idea behind this rapid convergence is that in the limit
L ≫ Lc we can find (almost) every possible structure or combination of barriers that can
be generated from the speckle so that the results obtained in the limit are basically the
same as those obtained by explicit ensemble-averaging.

To test if this assumption is reasonable in our setups, we proceed as shown in Ref. [CVR+06].
In the infinite extent limit, the self-averaging property implies: σmi(∞) = ⟨mi(∞)2⟩ −
⟨mi(∞)⟩2 = 0, where mi(d) = 1

d

∫ d/2
−d/2[V (x)]idx and the average is taken over different

realizations of the disorder. If averaging over the disorder makes no difference, then our
potential is indeed self-averaging. Using this criterion, we can put very specific conditions
on when we are considering a potential to be self-averaging.

5 Superfluid fraction in a one-dimensional speckle potential
In this section, we present our results on the superfluid fraction in one-dimensional speckle
potentials. Our main findings are shown in the right panel of Fig. 5.

First, we see that, as expected, our twisted boundary condition results completely agree
with those computed using Leggett’s result. Moreover, we have computed the transition
curve for three different values of the coupling strength, finding that stronger interactions
(smaller healing length) lead to superfluid currents that can be sustained against stronger
disorder. Following this trend, we also observe that in this strong interaction regime, the
transition from the conducting regime to the insulator one becomes much steeper. This
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Figure 5: Left panel: Superfluid fraction of a BEC in an optical lattice as a function of the depth
of the optical potential. Right panel: Superfluid fraction of a BEC in a 1D speckle potential as a
function of the mean height of the speckles. The various curves are computed for different values of the
boson-boson repulsion (quantified by the ratios ξ/alatt and ξ/Lc, respectively). The “one-dimensional
Leggett results" [⟨ρ⟩⟨1/ρ⟩]−1 are plotted as thick blue lines, and match perfectly the numerical data.

result is reasonable; the smaller the healing length, the easier the BEC can adapt to the
potential, so to have a nodal surface, we need very high peaks, but once they appear the
transition is immediate. On the other hand, when ξ ≫ Lc smaller peaks (that can be even
spatially separated) are enough to generate regions with vanishing probability density, and
these are generated more slowly.

Furthermore, it is interesting to analyze these results by comparing them with those
for the optical lattice, which are shown in the left panel of Fig. 5. We observe that for
similar system parameters, the transition takes place way earlier for speckle potentials,
being this transition much steeper too. This result can be understood easily by analyzing
the structure of the ground state in a speckle potential, Fig. 6. We see that even though
most of the disorder peaks are relatively small, there are a few that have amplitudes notably
larger than the average. As visible in the plot, in one dimension these few anomalously-high
peaks alone can generate nodal surfaces in our density function. In one dimension, these
nodal surfaces are nothing but extended regions over which the density vanishes. Then,
we can easily understand why it is more difficult for the optical lattice to generate these
nodal surfaces. We have to wait until its average value reaches a value comparable to that
of the largest peaks of the speckle for it to be able to produce a vanishing density. The
fact that all crests have the same amplitude is also responsible for the smoother transition
observed for optical lattices. In this case, the nodal surfaces are steadily generated.

−60 −40 −20 0 20 40 60

X/Lc

0.000

0.005

0.010

Density distribution of the ground state of the GPE in a speckle potential

Probability density

Speckle potential

Figure 6: Ground state density of a BEC in a 1D speckle potential. This specific realization contains
two “nodal surfaces", at around x/Lc ≈ −32 and x/Lc ≈ 45.
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Figure 7: Superfluid fraction as a function of the average value of the speckle potential. The blue-shaded
region represents the window provided by Leggett’s bounds f− and f+. The right-most curve represents
the behaviour of a BEC with stronger interactions.

6 Superfluid fraction in two-dimensional speckle potentials
In this section, we present the main results of our work, i.e., the analysis of the superfluid
fraction in a 2D speckle potential. As opposed to the 1D optical lattice and speckle
potentials, a 2D speckle pattern is a clear example of a non-factorizable potential. Because
of this, the upper and lower bounds are no longer equal, so we can finally study how
they behave as functions of the different parameters of the system. We first compute the
superfluid fraction as a function of the average amplitude of the speckle, then discuss the
appropriate choice of the wavefunction to compute the bounds. In addition, we analyze
the generation of nodal surfaces in two-dimensional setups, comparing them to the one-
dimensional case, and finally we discuss the finite-size effects present in our calculations,
carefully extrapolating to the thermodynamic limit of infinite size.

The superfluid fraction f is presented in Fig. 7, along with the upper and lower bounds.
Quite remarkably, these bounds provide a relatively narrow window for f ; we see that
the bracketing is looser in the transition region, but nonetheless, it still provides a small
region for the superfluid fraction to be localized in. In particular, for this specific system
we demonstrate that the bracketing is much tighter than the one estimated by Leggett
himself, who expected the lower bound to be "likely much smaller than 1" Ref. [Leg98].

Moreover, we have plotted here the superfluid curve for two different values of the ratio
ξ/Lc; we see that the weaker the coupling, the narrower the bracketing becomes. This is a
result that we can easily intuitively understand. In the limit of a vanishing potential the
density becomes "more separable", and, therefore, the upper and lower bounds approach
the same value. On the other, in the limit of strong disorder the upper and lower bounds
again converge to the same value since the upper bound collapses to zero by the generation
of nodal surfaces in our density function.

So we have two limiting regimes (i.e. vanishing potential and strong disorder) in which
upper and lower bounds coincide. For a weakly interacting Bose gas, the transition be-
tween these two regimes happens for smaller potentials and over a narrower interval when
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Figure 8: Leggett’s bounds computed using both the twisted and untwisted wavefunction. From left to
right, we are increasing the ratio Lc/L and we observe that the choice of the wavefunction becomes
irrelevant.

compared to a strongly interacting gas. This is why we observe a tighter bracketing for
weaker interactions.

We have not investigated the opposite limit of strong interactions further because the
mean-field approach becomes increasingly worse there, but we do not expect the available
window to grow up to a point where the bounds become useless. Rather, we expect to
recover the kind of sharp transitions that we observed for a one-dimensional system. In
this limit, the system can sustain the superfluid current up until a complete nodal surface
appears. At this point, the superfluid fraction suddenly vanishes.

6.1 Choice of the wavefunction
Now, if we recall the procedure we are using to obtain the superfluid fraction, one can see
that we are actually computing two different wavefunctions. So, which one do we have to
use to obtain the bounds? In Fig. 8, we have plotted the behaviour of the bounds, com-
puted using both wavefunctions, for three different system sizes (the system area is L ∗L).
Our results show that the most stable bounds are found using the twisted wavefunction
to compute the lower bound and the untwisted solution for the upper bound. More im-
portantly, the difference seems to become irrelevant in the thermodynamic limit since the
quantity θ/L approaches zero, and there is almost no difference between both solutions.
Nonetheless, this choice is rather relevant for finite-size systems. Even though in Leggett’s
articles it is unclear which wavefunction should be used, our results are completely in-line
with the discussion presented there.

6.2 Localization process in a two-dimensional speckle potential
Let us now further investigate the evolution of the probability density as the average value
of the speckle amplitude increases. This is presented in Fig. 9. We see that relatively
small potentials are again able to produce extended regions over which the probability
density vanishes completely. Nonetheless, we do not see the sharp transitions that we had
for its one-dimensional counterpart. This is because, as the dimensionality of the system
increases, it becomes increasingly difficult for the potential to generate complete nodal
surfaces (CNS). And this is precisely what we observe in our plot. A CNS in this setup
corresponds to a y-slice over which the density function is zero (or very close to it); we see
that due to the uncorrelated distribution of the speckles, we have to wait until the average
value of our potential becomes very large, to be able to generate a disconnected probability
density along the x-axis.

Taking a look at the density distribution, one can also understand the behaviour of
the superfluid fraction as a function of the ratio ξ/Lc or, equivalently, as a function of

14



Figure 9: Localization process of a BEC in a two-dimensional speckle potential, for a bosonic gas with
ξ/Lc = 3.0. From left to right we are increasing the average strength of the disorder. Here |ψ|2 is
normalized to one.

the coupling strength (see Fig. 7). If ξ ≫ Lc (i.e., for weak repulsion), the BEC is not
able to prove the structure of the potential at all; therefore, it cannot find the wells of
the potential. As a consequence, from the very moment that the mean amplitude of the
speckles becomes noticeable (we have just seen that relatively small amplitudes are able to
produce zeroes in the density), the BEC probability density has large regions over which it
vanishes, prompting the appearance of the aforementioned nodal surfaces. In terms of the
coupling strength (using a particle picture), the idea is the following; the particles display
almost no resistance to be packed together, facilitating, therefore, the process of nodal
surface generation, as there appear larger regions over which the density function vanishes.

To understand the opposite limit of strong repulsion, we proceed similarly. Now the
BEC is able to detect and fill the deepest wells of the potential. These structures are
completely uncorrelated due to the random nature of the potential, so it is reasonable to
expect most y-slices to cross at least one of these wells. This limit can also be understood
by considering that we are in the strongly interacting regime. Particles want to be as
spread as possible, hindering the generation of nodal surfaces.

6.3 Finite size effects
In this section, we study how the superfluid fraction changes as we approach the ther-
modynamic limit. Since it is necessary to study systems that only encompass a couple
of correlation lengths as well as those that are in the limit Lc ≫ L, it is important to
pay attention to the considerations presented in subsection 4.3. We have found that the
superfluid fraction is reduced as the average size of the speckle and the size of the system
grows. Our results are presented in Fig. 10, and are completely in-line with those presented
in Ref. [AKN13], proving again that our approach and results are consistent and capable
of reproducing known results4. Moreover, this is especially relevant because the authors
of the latter work compared GPE results with exact ones obtained from diffusion Monte
Carlo (DMC), giving further evidence of the validity of our conclusions.

From our results, it seems reasonable to propose a linear fit to retrieve the value in the
thermodynamic limit of the form:

f(∞) = f(L) + A

L
,

4Even though the overall behaviour is exactly the same, our curves for f as a function of ⟨V ⟩/Ed display
a small offset with respect to the ones presented in Ref. [AKN13]. We have checked that we are able to
reproduce exactly their results, when we used their potentials. Most probably, the origin of the offset is
rooted in a slightly different way of computing the correlation length (which enters in the definition of Ed).
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Figure 10: Relation between the superfluid fraction and the system size for ξ/Lc = 3.0. Points in both
plots correspond to numerical calculation and the dashed lines are linear fits. In the right panel, the
lines correspond, from top to bottom, to increasing values of the quantity ⟨V ⟩/Ed. Note that the x
ranges are not equal.

with A < 0. Another relevant comment that we can make about this plot is how the slope
becomes steeper in the transition region while it remains notably flat in the two limiting
regimes. This fact would allow us to obtain an estimate of the critical value of the potential
that signals the transition between the conducting and the insulating regime.

7 Conclusions
In this last section, we summarize and put in context the results that we have presented
in this work. First of all, we discussed and devised a scheme and a numerical method
to retrieve the superfluid fraction of a system that can be well approximated by a mean-
field description. We tested the validity of our approach by reproducing already published
results, such as the recent Ref. [CMR+23] or those of Ref. [AKN13]. We also presented and
discussed the results of A. Leggett on the upper and lower bounds to the superfluid fraction,
providing the necessary intuition to understand their behaviour in different regimes.

Then, we presented a general discussion on the interest in studying disordered poten-
tials, as well as providing an approach to generate and characterize the particular kind of
potentials that we are using, the speckle patterns. Right after, we presented the results
for a one-dimensional system. There we discussed the different behavior of the superfluid
fraction in optical lattices and disordered potentials, explaining the key role that nodal
surfaces play in the system’s superfluid fraction. Moreover, we also provided numerical
evidence of the validity of Leggett’s result in different regimes.

In the last section, we presented novel results about the behaviour of the bounds for
non-separable potentials. We begun by studying the applicability of the bounds, finding
results that contradict Leggett’s initial intuition. The available window provided by the
bounds is relatively narrow, and the bracketing becomes even tighter as we approach the
non-interacting regime. In addition to this, we also presented some intuition on how we
can understand these results. To complete our comprehension of the bounds, we studied
how to appropriately choose the wavefunction used to compute them. We also verified that,
as expected, this choice becomes irrelevant in the thermodynamic limit. This analysis was
followed by a discussion on the generation of nodal surfaces in two-dimensional systems.
Comparing the results for a two-dimensional system with those of its one-dimensional
counterpart, we provide an intuition of the role of dimensionality in the transition between
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conducting and insulating states. We continued this discussion by analyzing the relation
between the superfluid response and the coupling strength of the BEC.

We finally performed an analysis of the finite-size effects present in our system. We
find that the superfluid fraction is reduced as we approach the thermodynamic limit and
that this behaviour can be well approximated by a linear relation between the superfluid
fraction and the inverse length.

8 Outlook
To conclude this work, we present some ideas that would be interesting to explore to
further improve and complete our investigations of the topic. The first one, and probably
the easiest as it has already been investigated, would be to complement our mean-field
approach with Monte Carlo calculations, which would allow us to prove the limiting regime
in which the GPE is no longer valid.

Another relevant topic that we would like to study is how the limits generalize to
multicomponent systems. In his last article on the topic, Leggett provided some intuition
on how one has to deal with this kind of systems and also on the difficulties that appear
when doing so. We can understand multicomponent systems not only by considering
different species of bosons (isotopes of the same boson, for example) but also by taking
into account the internal degrees of freedom of the particles. For a two-species system,
the GPE easily generalizes to a set of coupled equations, so we expect that a similar
approach to the one we have used here can provide us with useful results. On the other
hand, when taking into account internal degrees of freedom the dynamics of the system are
heavily altered, for example, the number of particles of each species is no longer a conserved
quantity. We probably need to go beyond the mean-field approach to correctly characterize
our system, allowing us to study, for example, the tensor nature of the superfluid fraction
since Hall-like effect may appear on the system.

On another route, it would be really interesting to study the behaviour of the bounds
in fermionic systems. Again, Leggett discussed some of the complications that one faces in
this case but also presented some hints on how to approach the task. The issue seems to
be that a fermionic system may possess nodal surfaces (we have seen that they are crucial
when studying superfluidity) that are completely dictated by symmetry considerations,
while these do not appear in bosonic systems. How this new kind of structure may affect
the superfluid behaviour of the system is not clear yet.

Finally, the approach to compute the bounds that we have described in our work seems
to be relatively simple to reproduce experimentally. In Ref. [CMR+23], they found agree-
ment between experimental results and Legett’s result for separable densities. Exploring
the bounds in a non-separable potential is more difficult but certainly worth exploring,
especially after we have provided numerical evidence that the bounds provide a tight
bracketing of the measured superfluid fraction. Moreover, even though in our work we
have only studied a particular kind of disordered potential, it would be interesting to in-
vestigate whether there are significant changes for other types of random potentials, such
as Bernoulli-disordered potentials. This line of research would allow us to study further
how the bracketing varies in terms of the structure of the potential. We have seen that
there are great variations when we go from a periodic to a non-periodic potential, so now
changing the particular distribution of the peaks as well as their shape may also reveal
interesting properties about the bounds.
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A Numerical solution of the GPE
In this appendix we describe the numerical scheme used to solve the Gross-Pitaevskii
equation. Even though we are tackling a time-independent problem, we make use of the
time-dependent formula to obtain the ground state. The time-dependent equation can be
derived by using the stationary action principle with a properly chosen lagrangian. It takes
the following form:

− ℏ2

2m∇2ψ(r, t) + V (r)ψ(r, t) + g|ψ(r, t)|2ψ(r, t) = iℏ
∂ψ(r, t)
∂t

. (9)

In this work, we use pseudo-spectral methods to solve for the ground state of the
GPE. In particular, we employ both 2nd-order (Strang-Trotter splitting) and 4th-order
(which are based on the latter) split-step Fourier methods combined with imaginary time
evolution. In this section, we only provide a description of the algorithm; in Appendix B,
a more detailed study on the accuracy and stability of the approach is presented.

Let us briefly summarize how these schemes work. According to Eq. (9), the condensate
wavefunction evolves as:

ψ(r, t) = e− iµt
ℏ ψ(r, 0).

So we can identify the evolution operator of the system as:

U(r, t) = exp
[
−it

(
P2

2m + V (R) + g|ψ(x)|2
)]

. (10)

Therefore we obtain, at each time step, our evolved wavefunction by applying the following
rule:

ψ(r, t+ dt) = U(r, dt)ψ(r, t).

The key insight of these pseudo-spectral methods is to notice that our time evolution
operator has two different contributions, one that is diagonal in position representation and
the other which is diagonal in momentum representation. Making use of the Zassenhaus
formula (dual of the Baker-Campbell-Haussdorf formula) Ref. [Mag54] we can, to order
O(dt2), approximate the evolution operator by:

U(x, dt) ≈ exp
[
−i dtP2

2m

]
exp

[
−i dt

(
V (R) + g|ψ(x)|2

)]
+O(dt2).

If we split the evaluation in the position representation into two parts, we can achieve an
O(dt3) scheme called Strang splitting, Appendix B, that reads:

U2(r, dt) ≈ exp
[
− i dt

2
(
V (R) + g|ψ(r)|2

)]
exp

[
−i dtP2

2m

]
exp

[
− i dt

2
(
V (R) + g|ψ(r)|2

)]
+O(dt3).

(11)
We can write this as follows:

U2(r, dt) = Ux/2(r, dt) UK Ux/2(r, dt),

where the definition of the operators Ux/2 and UK is clear. Moreover, taking this splitting
as a reference, we can even construct higher-order splittings by appropriately combining
lower-order approximations. The following scheme, introduced by Suzuki Ref. [Suz91],
offers an error of order O(dt5):
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Figure 11: Right panel: Absolute error between the computed (Ec) and the theoretical (Eth) solution
of a uniform initial guess in a two-dimensional harmonic potential, as a function of the time-step. Even
though the method we provide is fourth-order accurate, due to the symmetries of harmonic Hamiltonian
we are able to achieve an eight-order accuracy. Left panel: a similar study on the absolute error is
performed against the ratio dt/dx2, which is the relevant quantity in Von Neumann’s stability analysis.
We find that, as expected, our time and spatial step size must fulfil dt < αdx2 for some α of order unity.
In this case, α ≈ 6. Here [a.u.] stands for dimensional units.

U4(r, dt) = U2(ω0dt)2 U2((1 − 4ω0)dt) U2(ω0dt)2,

with ω0 = (4−4−1/3)−1. It is a characteristic of this kind of higher-order splitting formulas
that one has to mix steps forward and backwards in time (1−4ω0 < 0). The novelty of the
method proposed by Suzuki is that all prefactors (ω0dt, (1 − 4ω0)dt) are kept smaller than
unity, helping to maintain the method stable and accurate Ref. [McL93]. In exchange, we
are forced to work with a six-stage method. A brief study on the accuracy and stability of
the method is presented in Fig. 11

Once we have presented the fourth-order method that we employ in this work, the
O(dt3) scheme update rule, which is used to construct the higher-order methods, goes as
follows:

ψ(r, t+ dt) = Ux/2
[
F−1

[
UK F

[
Ux/2 ψ(r, t)

]]]
,

where we have chosen the FFT algorithm to approximate the Fourier transform (and its
inverse) and switch between position and momentum representation. Now there is only a
subtlety that we must take into account to retain the third-order accuracy of the method.
In the last step, we have already produced three different wavefunctions:

ψ0 = ψ(t) ψ1 = Ux/2ψ0 ψ2 = F−1 [UKF [ψ1]] .

So which one should we use to construct the last evolution operator Ux/2? According to
Ref. [JR06], in order to maintain the third-order accuracy of the scheme, we can use any
linear combination c0ψ0 + c1ψ1 + c2ψ2 of the three wavefunctions as long as the coefficients
satisfy: c2 = ±1 and c1 = −c0. In particular, we take c1 = c0 = 0 and c2 = 1, i.e., ψ = ψ2.

A.1 Imaginary time evolution
We are interested in finding the ground state of our system. To achieve this, we use the
imaginary time propagation method. It amounts to performing the change of variable
dt → −idτ . It is easy to understand why this method allows us to project our initial guess
onto the ground state. Let us consider that we are working with the Schrödinger equation,
and we expand our initial guess |ψ(0)⟩ in the energy eigenbasis {|ei⟩}:

|ψ(0)⟩ =
∑
i

ci(0) |ei⟩ .
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Figure 12: We present how the energy evolves as a function of the imaginary time for a uniform initial
guess under the effect of a two-dimensional harmonic potential. We verify the convergence is, as
expected, exponential.

Evolving this state, we obtain:

|ψ(t)⟩ =
∑
i

ci(0)e−iEiℏ t |ei⟩ .

Now performing the change of variables to imaginary time, the resulting (unnormalized)
state is:

|ψ(τ)⟩ =
∑
i

ci(0)e−Ei
ℏ τ |ei⟩ .

We see that as τ grows, we are suppressing exponentially fast the high energy components
of the wavefunction, Fig. 12. If, after each iteration, we keep on normalizing our state,
in the limit τ → ∞, we would get the ground state of the system. Here we see also that
for τ finite, what we use, we may have problems identifying the first excited states from
the ground state if their energies are too close. This is a huge issue for random potentials,
where the gap can be quite small.

As a side note, this change of variable dt → −i dτ is also known as a Wick rotation
and can be understood as a kind of mapping between quantum mechanics and statistical
mechanics. Therefore, in this new set of variables, what we are doing is cooling down the
system to obtain the ground state.

One last final comment about this method is about its applicability to solve for the
ground state of the Gross-Pitaevskii equation. Including the non-linearity in our evolution
equation now cause the solutions not to be, necessarily, orthogonal. While this property
of the solutions seems to be key in this method, one can show Ref. [Min18] that even if
this set of orthogonal states is not guaranteed to exist, the imaginary time method still
provides us with an energy-decreasing scheme that ultimately provides us with the ground
state of the system.

B Strang splitting
We make use of the so-called Zassenhaus formula Ref. [Mag54] to split our evolution op-
erator into several different terms. This formula is dual to the Baker-Campbell-Haussdorf
expansion and is very useful for studying the splittings. To second order, it reads:

ek(A+B) = ekAekBe− k2
2 [A,B]O(dt3).

From here, it is trivial to identify A = V + g|ψ|2, B = P2/2m and k = −i dt and arrive at
a first-order expansion for the evolution operator:

U1(r, dt) ≈ e−i dt(V+g|ψ|2)e−i dtP2
2m .
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We can, with almost no extra effort, produce a second-order expansion by writing the
following:

U(r, dt) = e−i dt(V+g|ψ|2
2 + P2

2m+V+g|ψ|2
2 ),

and then, after a first use of the Zassenhaus formula:

U2(r, dt) ≈ e
−i dt

2 (V+g|ψ|2)e−i dt( P2
2m+V+g|ψ|2

2 )e
−dt2

4

[
V+g|ψ|2,P2

2m+V+g|ψ|2
2

]
+O(dt3).

If now we expand again the middle term, we find:

U2(r, dt) ≈ e
−i dt

2 (V+g|ψ|2)e−i dtP2
2m e

−i dt
2 (V+g|ψ|2)e

−dt2
4

[
P2
2m+V+g|ψ|2

2 ,V+g|ψ|2
]
e

−dt2
4

[
V+g|ψ|2,P2

2m+V+g|ψ|2
2

]
+O(dt3),

so finally:

U2(r, dt) ≈ e
−i dt

2 (V+g|ψ|2)e−i dtP2
2m e

−i dt
2 (V+g|ψ|2) +O(dt3).

21



Bibliography
[AKN13] G. E. Astrakharchik, K. V. Krutitsky, and P. Navez. Phase diagram of quasi-

two-dimensional bosons in a laser-speckle potential. Phys. Rev. A, 87:061601,
2013.

[CMR+23] G. Chauveau, C. Maury, F. Rabec, C. Heintze, G. Brochier, S. Nascimbene,
J. Dalibard, J. Beugnon, S. M. Roccuzzo, and S. Stringari. Superfluid fraction
in an interacting spatially modulated bose-einstein condensate. Phys. Rev.
Lett., 130:226003, 2023.

[CVR+06] D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-Palencia, A. Aspect, and
P. Bouyer. Experimental study of the transport of coherent interacting matter-
waves in a 1D random potential induced by laser speckle. New Journal of
Physics, 8(8):165, 2006.

[Goo07] J. W. Goodman. Speckle phenomena in optics: theory and applications. Roberts
and Company Publishers, 2007.

[JR06] J. Javanainen and J. Ruostekoski. Symbolic calculation in development of
algorithms: split-step methods for the gross-pitaevskii equation. Journal of
Physics A, Mathematical and General, 39(12):L179–L184, 2006.

[Leg70] A. J. Leggett. Can a solid be "superfluid"? Phys. Rev. Lett., 25:1543–1546,
1970.

[Leg98] A. J. Leggett. On the superfluid fraction of an arbitrary many-body system at
T=0. Journal of Statistical Physics, 93(3):927–941, 1998.

[Mag54] W. Magnus. On the exponential solution of differential equations for a linear
operator. Communications on pure and applied mathematics, 7(4):649–673,
1954.

[McL93] R.I. McLachlan. Explicit symplectic splitting methods applied to PDEs. Lec-
tures in Applied Mathemathics, 29:325–337, 1993.

[Min18] L. Mingarelli. Simulating Infinite Vortex Lattices in Superfluids: A Novel
Scheme and Its Applications. Imperial College London, 2018.

[PS08] Ch. J. Pethick and H. Smith. Bose–Einstein condensation in dilute gases. Cam-
bridge university press, 2008.

[Suz91] M. Suzuki. General theory of fractal path integrals with applications to
many-body theories and statistical physics. Journal of Mathematical Physics,
32(2):400–407, 1991.

[Wei06] E. W. Weisstein. Wiener-Khinchin theorem. From MathWorld–A Wolfram Web
Resource. http: // mathworld. wolfram. com/ Wiener-KhinchinTheorem.
html , 2006.

22

http://mathworld. wolfram. com/Wiener-KhinchinTheorem. html
http://mathworld. wolfram. com/Wiener-KhinchinTheorem. html

	Basics of the Gross-Pitaevskii theory
	Relevant energies and length scales

	Superfluid fraction in Bose-Einstein condensates
	Dynamical effects of superfluidity
	Leggett's bounds

	Superfluid fraction in an optical lattice
	Disordered potentials
	Speckle potentials
	Statistical properties of the speckle potential
	Self-averaging property

	Superfluid fraction in a one-dimensional speckle potential
	Superfluid fraction in two-dimensional speckle potentials
	Choice of the wavefunction
	Localization process in a two-dimensional speckle potential
	Finite size effects

	Conclusions
	Outlook
	Numerical solution of the GPE
	Imaginary time evolution

	Strang splitting
	Bibliography

