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Abstract

We study the dynamical properties of a single hole on top of a Mott insulator de-
scribed by the Bose-Hubbard Hamiltonian in the strongly interacting regime. The
full Hamiltonian can be mapped to an effective one by means of the perturbation
theory approach, which allows us to obtain the hole effective mass and study the
long-time dynamics of a hole, initially localized with a Gaussian distribution or a
delta function. The hole effective mass becomes infinite at a critical value of the on-
site interaction, which is reflected in its time evolution described by a dispersionless
Gaussian distribution. Moreover, a hole, initially localized in a single site, exhibits
an oscillatory behavior in its time evolution. We also perform exact diagonalization
simulations of the full Bose-Hubbard model and compare the results with the pre-
dictions obtained with perturbation theory. The hole effective mass shows a similar
trend in the strong coupling regime as in our perturbation theory, however, it does
not diverge at a critical on-site interaction. Nevertheless, we also obtain an oscilla-
tory behavior of the hole density in time when starting the time evolution with a
hole localized in a site.

Keywords: Effective Hamiltonian, Effective mass, Quasimomentum, Hole
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1 Introduction
Understanding properties of materials and their main features from a microscopic scale
is crucial to develop new quantum technologies [ABB+18]. In the last decades there
have been tremendous efforts to give theoretical comprehension of exotic phases of mat-
ter such as superconductivity [BCS57], superfluidity [Kap03] or the insulating phase
[Koh64]. Experimental studies need to be performed to verificate theoretical predictions
[FK07, AEM+95, BSH97, BSTH95, DMA+95, FKW+98]. Nevertheless, since quantum
simulators are used to make predicitons as well, their use has vastly increased in the last
years. Some examples of quantum simulators are trapped ions [BCMS19, HJG+98], super-
conducting qubits [DWM04, HWFZ20] and ultracold atoms [SFS+20, LSA+07]. The latter
allows the study of both bosonic and fermionic systems in optical lattices described by the
Ising and Hubbard models, among others. Using ultracold atoms it is possible to study
several phenomena such as Mott-superfluid quantum phase transition [GME+02], Bose-
Einstein condensation [AEM+95], quantum magnetism [WHR15] or superfluidity [Zwi14].

The comprehension of the behavior of some materials is significantly influenced by
the presence of a certain amount of dopants within them. Holes become a relevant en-
tity when describing superfluids and superconductors [AKL+17, BHB+22, BHR+21]. The
mechanism of hole pairing in two-dimensional lattices with fermionic atoms arranged in an
antiferromagnetic order underlies unconventional superconductivity [HCB+23, LGSV98,
BDG22, SSBG23]. Moreover, hole dopants also dictate magnetic correlations of a strongly
interacting fermionic system with specific lattice geometries and temperature of the order
of the hopping strength [MKNS+23, MBHD21]. In a triangular lattice, a hole-doped sys-
tem presents antiferromagnetic correlations given by charge carriers propagating in a spin
incoherent Mott insulator. Such carriers, which can also be defined as antiferromagnetic
polarons, are originated by the kinetic frustration of single holes [MKNS+23, MBHD21].
On the other hand, it has been experimentally proved that doping with holes a fermionic
system in a two-dimensional square lattice results in a reduction of the staggered magne-
tization of the system, which quantifies the global antiferromagnetic order [MCJ+17]. For
hole doping values of about 15%, antiferromagnetic long range order vanishes [MCJ+17].

In this work we investigate a zero temperature bosonic system allocated in a one-
dimensional optical lattice. In Sec. 2 we introduce the Bose-Hubbard Hamiltonian that
describes our system and the two methods we use to extract the main properties of it,
exact diagonalization (ED) and perturbation theory. In Sec. 3, we discuss the different
regimes of the Hamiltonian based on the strength of the interaction between bosons: the
non-interacting limit, the infinite interaction or Tonks-Girardeau limit, and the strongly
interacting regime. Additionally, we introduce holes as quasiparticles and compute an
effective Hamiltonian that gives an accurate description of the full Hamiltonian if the
interaction strength is much larger than the hopping strength of the bosons. In Sec. 4.1
and 4.2 we use the effective Hamiltonian and the full Hamiltonian respectively to examine
the effective mass of a single hole in the system and its dynamics along the lattice. From
our results one can quantitatively evaluate in which regimes the effective Hamiltonian
describes the main features of the system given by the Bose-Hubbard Hamiltonian. Finally,
we summarize our results and display the main conclusions of the work in Sec. 5.
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2 Model and methods
2.1 Model
We study an ultracold bosonic system in a one-dimensional periodic optical lattice [LSA+07],
which is sufficiently high so that particles’ location can be described by discrete positions
called lattice sites, which are distanced from each other by the lattice spacing a, fixed to 1
in this work. A Hamiltonian that describes such system is the Bose-Hubbard Hamiltonian,

Ĥ = −J
Ns∑
i=1

[
b̂†

i b̂i+1 + h.c.
]

+ U

2

Ns∑
i=1

n̂i(n̂i − 1) = ĤJ + ĤU . (1)

Here, Ns is the number of sites in the lattice, b̂†
i and b̂i are operators which create and

annihilate a boson at site i, and n̂i = b̂†
i b̂i is the number operator. The factor J is the

tunneling amplitude between two neighboring sites (the so-called kinetic, hopping or tun-
neling term) which we consider to be positive, and U is the on-site interaction strength
(short-range interaction). If the interaction between two bosons is attractive, then U < 0,
which makes the system reduce its energy when they are in the same site. On the contrary,
if the interaction is repulsive, U > 0.

In this work we mostly focus on the system in the vicinities of the Mott insulator phase,
where the interaction repulsive term is much larger than the hopping term (|U | > J). In
addition, we work in the canonical ensemble, where the total number of particles is a fixed
value and thus, the number operator can be substituted by this value, N̂ =

∑Ns
i=1 n̂i = N .

Specifically, we work with N = Ns − 1, which makes the system having at least one
non-occupied site. We refer to this lattice site as the hole.

2.2 Methods
There are different approaches that can be used to tackle the ground state properties of
the system we want to study. Among them, there is the tensor networks approach of
density matrix renormalization group (DMRG)[Whi92, Whi93, WF04, Sch11], quantum
Monte Carlo methods (QMC) [Ast14, MDK+11, CSPS07, CSSPS08, FCM+11, ZKKT09]
and the one we are using in this work, ED [ZD10, RGLJD17] (performed with the Python
programming language).

The ED method is based on the construction of a Fock basis which defines states
that are modified by operators involved in the Hamiltonian, in our case, creation and
annihilation operators. The Fock basis one needs to work with depends on two parameters,
the number of lattice sites and the number of particles. To define a Fock state, we first
create an array of length Ns, the number of lattice sites. Each element of this array
corresponds to a certain lattice site, and its value corresponds to the amount of bosons
located in the site. As an example, if we have a lattice of Ns = 3 and two bosons located
in the first and last site, we can represent the Fock state |1, 0, 1⟩ as

state = np.array([1,0,1]).

With this method we create the Fock basis with a series of routines that create all the
possible combinations of particles distributions in a lattice (see Appendix A.1). Moreover,
we also define creation and annihilation operators to create the Hamiltonian we work with
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(see Appendix A.2).

One of the greatest inconveniences of the ED method is that the size of the Hilbert
space increases exponentially fast with the number of sites and particles. It is not just
a matter of computation time, but also about memory capacity. To be more specific,
the size of the Hilbert space of a system with Ns lattice sites and N identical bosons is(N+Ns−1

N

)
×
(N+Ns−1

N

)
wich, for the case of Ns = 10, N = 9, becomes 48620 × 48620.

To deal with time and memory capacity issues, we combine ED with the analytical
approach of perturbation theory. This method assumes that one of the factors of the Bose-
Hubbard Hamiltonian, the hopping term ĤJ , is much smaller than the on-site interaction
term ĤU , which tranlates into J/|U | ≪ 1. With this approach it is possible to obtain a
certain manifold of the energy spectrum of the Hamiltonian. Details on the perturbation
theory method can be found in Sec. 3.3.

3 The Bose-Hubbard model
As we have seen in Eq. 1, the Bose-Hubbard Hamiltonian consists of two terms, the hop-
ping and the on-site interaction terms. The main feature of the model is the competition
between the kinetic energy driven by the tunneling factor J and the contact interaction
energy U . The first term allows the bosons to be delocalized in the lattice and make the
ground state be in a superfluid phase [Leg99, RB03, JBC+98], which is characterized by
a quasi long-range phase coherence, among others. When the interaction term dominates,
a Mott insulator phase is formed, which is characterized by a localization of the bosons in
the lattice sites and a reduction of the local particle number fluctuations [JBC+98]. The
presence of a superfluid phase and a Mott insulator phase yields to the existance of a
quantum phase transition, which is found at ratio J/U ≈ 0.3 in one-dimensional systems
[KWM00]. In this section we study the main features of the Hamiltonian in different limits
by modifying both the on-site interaction U and the kinetic term J .

3.1 Non-interacting limit. U = 0
The non-interacting limit corresponds to considering a vanishing on-site interaction po-
tential, U = 0. This case can be analytically solved for any number of sites and particles
performing a Fourier transform of the operators (see Appendix B for a detailed calcula-
tion) to write the Hamiltonian in the momentum space. Note that this transformation is
only valid in a system with periodic bounday conditions [Mis12]. The new Hamiltonian
in momentum space reads

Ĥq = −2J
∑

q

n̂q cos q, (2)

where q is the quasimomentum of a particle and n̂q the number operator in momentum
space, which counts the occupation number of the state with quasimomentum q. Since
the Hamiltonian is diagonal in this basis, it is straightforward to obtain the different en-
ergy levels of the spectrum. The ground state sets all the bosons in the system with a
quasimomentum q = 0. Hence, its energy reads E0 = −2JN = −2J(Ns − 1).

The first excited state is that with a boson promoted to the next q value, in an
increasing order of |q|, which is q = ± 2π

Ns [Mis12]. Since the dispersion relation from
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Eq. 2 is an even function, this state will be doubly degenerate. Its energy reads E1 =
−2J(N − 1 + cos ±2π

Ns
) = −2J(Ns − 2 + cos ±2π

Ns
).

In a general form, all eigenvalues can be written as a sum of single particle dispersion
relations

E =
N∑

i=1
−2J cos qi, qi = 2π

Ns
k


k = 0,±1,±2, ...,−Ns

2 for Ns even,

k = 0,±1,±2, ...,±Ns − 1
2 for Ns odd,

(3)

where qi is the quasimomentum of the i-th particle, which is discretized in units of 2π/Ns.

3.2 Tonks-Girardeau limit. U → ∞

A positive value of the on-site interaction U corresponds to a repulsive behavior between
bosons in the lattice. When this parameter becomes very large, configurations with more
than one boson per site are suppressed, which means that the bosons in the lattice become
impenetrable and can be treated as hard-core bosons.

Hard-core bosons are particles that follow bosonic statistics but have a fermionic-like
behavior, two of them cannot occupy the same lattice site. We define new operators â†

i

and âi, which create and annihilate these new particles at site i. Since these operators are
a crossover between bosons and fermions, they have mixed commutation and anticommu-
tation relations, [âi, â

†
j ] = [âi, âj ] = [â†

i , â
†
j ] = 0 for i ̸= j, {âi, â

†
i } = 1 and (âi)2 = (â†

i )2 = 0
[CLRS11]. Then we rewrite the Hamiltonian with these new operators by associating

b̂i ↔ âi and b̂
†
i ↔ â†

i , which yields

Ĥ = −J
Ns∑
i=1

[
â†

i âi+1 + h.c.
]

+ U

2

Ns∑
i=1

â†
i âi(â†

i âi − 1). (4)

After some mathematical manipulations using the mixed commutation and anticom-
mutation relations of hard-core bosons operators, the on-site interaction term vanishes. To
proceed now, we perform a transformation to “fermionize” the hard-core bosons by modi-
fying the operators into fermionic ones. The transformation between these two operators
is the Jordan-Wigner transformation [JW28], and reads

âj = (−1)
∑

i<j
n̂i ĉj ,

â†
j = (−1)

∑
i<j

n̂i ĉ†
j .

(5)

Substituting these operators in the original Hamiltonian with the vanished on-site inter-
action results in a simple hopping Hamiltonian for fermions, which can be solved again in
the momentum space, (see Appendix B)

Ĥq = −2J
∑

q

n̂q cos q. (6)

Note now that from a mathematical perspective, our system has become fermionic.
This means that the ground state is not anymore that with all particles with q = 0, since
two identical fermions cannot occupy the same quasimomentum state. In fact, the ground
state will be that with all momenta filled until the last particle of the system has the
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maximum quasimomentum, the so-called Fermi momentum qF . Its value can be related
to the number of lattice sites through the expression qF = 2π

Ns
L, where L = N

2 for N

even, and L = N−1
2 for N odd. Hence, all occupation numbers of momentum up to the

Fermi momentum will be one: n̂q = 1 for |q| ≤ qF . The ground state energy of this system
corresponds to the Fermi sea, and reads [Kru16] (see Appendix C for a detailed derivation)

E0 = −2J
∑

q

cos q = −2J
sin
(

πN
Ns

)
sin
(

π
Ns

) = −2J
sin
(

π(Ns−1)
Ns

)
sin
(

π
Ns

) . (7)

The ground state of this system is trivially written, in momentum space and fermionic
operators (note that the actual system is bosonic, thus, it can be written with bosonic
operators using the Jordan-Wigner transformation),

|ψ⟩ =
∏

|q|≤qF

ĉ†
q |0⟩ . (8)

3.3 Strongly interacting regime. J/U ≪ 1
We now consider the system with a strong but finite on-site interaction, where bosons are
penetrable (but still repulsive) and a single site can be occupied by more than one boson
at an energetic cost of U . We use the method of perturbation theory, which allows us to
obtain a good approximation of the energy levels in the first manifold.

In the system we are studying, where N = Ns −1, manifolds are distinguished between
each other by the amount of boson pairs that occupy the same site. Hence, the lowest
manifold is that with no pairs in the same site, which we refer to as the “hard-core bosons
manifold”. The next manifold has one pair of bosons in the same site, and so on. Since
we want to study the ground state of the system, we restrict our system to the hard-core
bosons manifold.

Assuming J ≪ |U |, the hopping term ĤJ corresponds to the perturbative Hamiltonian
while the on-site interaction term ĤU is the non-perturbed Hamiltonian, whose eigenval-
ues and eigenvectors are known (it is diagonal). It is clear that the spectrum of ĤU is
degenerate. The eigenvalue E = 0 is degenerate as many times as the number of combina-
tions of N particles in Ns sites without placing more than one particle in each site. The
next eigenvalue, E = U , is degenerate as many times as the number of combinations of
N particles in Ns sites by having one single site with two particles, and the rest with one
particle. Knowing this, we use degenerate perturbation theory to obtain an approximate
solution of Bose-Hubbard Hamiltonian (see Appendix D.1 for a detailed example).

Since we work in the hard-core bosons manifold, we use a special notation for the
Hilbert space basis. The label of every state is the number corresponding to the lattice
site where there is no boson (note that in this manifold, for N = Ns − 1, there is just one).
We refer to this empty lattice site as the hole. Thus, the notation reads

|3⟩ = |1, 1, 0, 1, 1, 1..., 1⟩ , |5⟩ = |1, 1, 1, 1, 0, 1, 1..., 1⟩ . (9)

Using this basis, an effective Hamiltonian describing the system can be written in matrix
form (see Appendix D.2 for the derivation in detail)
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⟨n| Ĥeff |m⟩ = −J(δn,m−1 + δn,m+1) − 2(Ns − 2)2J2

U
δn,m − 2J2

U
(δn,m−2 + δn,m+2). (10)

Note that the size of this new Hamiltonian matrix is Ns × Ns which is much smaller
than the original Bose-Hubbard Hamiltonian. Hence, now it is possible to perform exact
diagonalization for a system with a larger number of lattice sites. In Fig. 1 we present a
comparison of the ground state energy and the computation time between both Hamilto-
nians.

(a) (b)

Figure 1: (a) Ground state energy of the system in units of U as a function of J/U for Ns = 5,
N = 4 and periodic boundary conditions. Up to J/U = 0.2, the effective Hamiltonian obtained with
perturbation theory gives a very accurate result. (b) Computation time of ED with both full and
effective Hamiltonian as a function of Ns, the size of the lattice. The total number of particles is fixed
to N = Ns − 1.

The perturbation theory approach is also valid when the system is strongly attractive,
|U | ≪ J . In such case, the obtained manifold is not that with the lowest energy, but the
one with the highest. Notice also that both the Full Bose-Hubbard Hamiltonian and the
effective Hamiltonian fulfill the symmetry Ĥ(U) = −Ĥ(−U) if Ns is even and the system
has periodic boundary conditions [LZ09] (see appendices E.1 and E.2 for derivation and
details). This symmetry indicates that the ordering of the spectrum for U > 0 is inverted
with respect that of U < 0. We analyze the spectrum in both regimes and compare them
with the result obtained from the full Bose-Hubbard Hamiltonian in Fig. 2.
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Figure 2: Energy spectrum of both effective Hamiltonian (dashed lines) and full Hamiltonian (solid lines)
as a function of J/U for Ns = 4, N = 3 and periodic boundary conditions. The hopping amplitude is
fixed at J = 1 and U is modified along the horizontal axis. When U is positive, the ground state (red
line) and the three next excited states are plotted. When U is negative, they are not the lowest energy
states, but the highest ones of the spectrum, since the plotted manifold is that of hard-core bosons. The
symmetry Ĥ(U) = −Ĥ(−U) is observed since, for every eigenvalue at a certain U with E(U), exists a
partner eigenvalue with −E(−U). Up to a ratio of J/U = 0.2, the effective Hamiltonian leads to a
very accurate result. While the different eigenstates cross each other in the effective Hamiltonian, they
do not in the full Bose-Hubbard Hamiltonian.

3.3.1 Effective Hamiltonian in operator form

The Hamiltonian represented by the matrix elements in Eq. 10 can be written in opera-
tor form, which leads to an explicit description of the physical processes occurring in the
system. In this section we present its derivation as well as a description of its main features.

We first need to obtain the effective Hamiltonian written in hard-core bosons operators
for an arbitrary number of particles N , which reads (see Appendix D.3 for further details)

Ĥeff = −J
Ns∑
i

[
â†

i âi+1 + h.c.
]

− 4J2

U

Ns∑
i

n̂in̂i+1 − 2J2

U

Ns∑
i

[
â†

i−1n̂iâi+1 + h.c.
]
. (11)

The first term describes a first neighbors hopping process of a particle (note that, since(
â†

i

)2
= 0, the hopping of a particle to an occupied site is not allowed, yielding to the

vanishing of such term). The second term, which is analogous to a superexchange pro-
cess, is an interaction between two particles located in two neighboring lattice sites, its
strength is 4J2/U . The last term, which has a strength of 2J2/U , is a correlated hop-
ping [WK22, Caz03]. It represents an assisted hopping of a hard-core boson to its second
neighbor site. It is assisted because it needs a boson in the middle site to be an allowed
process, which is ensured by the number operator n̂i.

Since we want to treat holes as quasi-particles, we introduce now the operators ĥ†
i and

ĥi, which create and annihilate a hole at site i in a sea of hard-core bosons. The relation
between hard-core boson operators and hole operators reads ĥ†

i ↔ âi, ĥi ↔ â†
i . Thus,

taking into account the mixed commutation and anticommutation relations of hard-core
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bosons operators, it is clear the hole operators fulfill them as well, [ĥi, ĥ
†
j ] = [ĥi, ĥj ] =

[ĥ†
i , ĥ

†
j ] = 0 for i ̸= j, {ĥi, ĥ

†
i } = 1 and (ĥi)2 = (ĥ†

i )2 = 0. Substituting the hole operators
for the hard-core bosons’, the Hamiltonian reads

Ĥeff = −J
Ns∑
i

[
ĥiĥ

†
i+1 + h.c.

]
− 4J2

U

Ns∑
i

ĥiĥ
†
i ĥi+1ĥ

†
i+1− 2J2

U

Ns∑
i

[
ĥi−1ĥiĥ

†
i ĥ

†
i+1 + h.c.

]
. (12)

After some mathematical manipulations using the mixed commutation and anticom-
mutation relations, it reads

Ĥeff = −J
Ns∑
i

[
ĥ†

i ĥi+1 + h.c.
]

− 4J2

U
Ns + 8J2

U

Ns∑
i

ĥ†
i ĥi − 4J2

U

Ns∑
i

[
ĥ†

i ĥiĥ
†
i+1ĥi+1

]

−2J2

U

Ns∑
i

[
ĥ†

i+1ĥi−1 + h.c.
]

+ 2J2

U

Ns∑
i

[
ĥ†

i+1ĥ
†
i ĥiĥi−1 + h.c.

]
.

(13)

For our specific system, where there are N = Ns − 1 particles and hence, a single hole,
several terms can be simplified. While the sum in the third term becomes 1, the fourth
and last terms vanish since they describe interactions and asisted hoppings between two
holes respectively. Thus, the final Hamiltonian written with hole operators for our case
reads

Ĥeff = −J
Ns∑
i

[
ĥ†

i ĥi+1 + h.c.
]

− 4J2

U
(Ns − 2) − 2J2

U

Ns∑
i

[
ĥ†

i−1ĥi+1 + h.c.
]
, (14)

where the first term represents a first neighbor hopping of the hole, the second term is an
Ns-dependent shift in energy, and the last term describes a hopping to second neighbors
of the hole.

It is possible to analytically solve this Hamiltonian by writing it in momentum space
using the Fourier transform (see Appendix B, which is the analogous process with b̂ oper-
ators). The new Hamiltonian in momentum space is diagonal and reads

Ĥeff = −2J
∑

q

ĥ†
qĥq cos q − 4J2

U
(Ns − 2) − 4J2

U

∑
q

ĥ†
qĥq cos 2q. (15)

Since there is a single hole in the system, the sum over the hole occupation number
becomes one. Hence, a single hole with quasimomentum q follows the dispersion relation

Ehole = −2J cos q + 8J2

U
− 4J2

U
Ns − 4J2

U
cos 2q. (16)

From the dispersion relation plot in Fig. 3 we see that, if the quasimomentum of a hole
increases, its energy increases as well and vice versa (as long as |U | ≫ J). This is, whereas
a hole with the lowest possible energy has a quasimomentum of q = 0, a maximally excited
hole has the maximum quasimomentum possible (q = π for Ns even and q = π(Ns −1)/Ns

for Ns odd). Conversely, for smaller values of |U |, the energy of the hole does not grow
along the whole first Brillouin zone when its quasimomentum does.

The same problem can be solved using fermionic operators, which shows a shift in
quasimomentum q → q + π (details on the fermionic formalism in appendices D.4 and
D.5).
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Figure 3: Energy of a hole in units of J as a function its quasimomentum q (known as dispersion
relation) for different values of the ratio J/U and Ns = 8. The limits of the horizontal axis are given by
the frontiers of the first Brillouin zone.

4 Hole dynamics
We have seen that in the limit of J/|U | ≪ 1, it is possible to describe the hole as a
quasiparticle with quasimomentum q which follows the dispersion relation of Eq. 16. We
now study the effective mass of the hole. Additionally, we investigate how a localized
hole evolves in time for different values of J/U . Moreover, we compare the time evolution
obtained with the effective Hamiltonian and the full Bose-Hubbard Hamiltonian.

To analyze how the time evolution changes when the parameters of the Hamiltonian
are modified, we fix the tunneling amplitude J to 1 and modify the on-site interaction
energy U . Taking this into account, the two critical values at which the masses become
infinite for the effective Hamiltonian are Uc = 8 and Uc = −8. We use this Hamiltonian to
perform time evolution of a state with a hole and see how the sign modification of U affects
the result. Note that, if we want to investigate how the state changes over time, our initial
state cannot be an eigenstate of Ĥ since its time evolution just adds a non-observable
global phase to it. Thus, we apply the time evolution operator Û(Ĥ) = exp (−iĤt/ℏ) on
two different states.

We consider first a state with a fully localized hole in the central lattice site and
a single boson in each of the other sites, |ψ⟩ = |1, ..., 1, 0, 1, ..., 1⟩ (note that since the
system has periodic boundary conditions, it is translational invariant and thus there is no
relevant difference if the hole is located in any other site). The second state we consider
is that with a space Gaussian distribution of the hole, centered in the central lattice site.
While we time-evolve the first state both with full Bose-Hubbard Hamiltonian and effective
Hamiltonian, we time-evolve the second state just with the effective Hamiltonian. The
reason for this is that, by simulating the full Hamiltonian with ED, we have a strong
limitation in the number of sites due to lack of computation time and memory capacity.
To define a smooth Gaussian distribution it is required that the lattice spacing is much
smaller than the size of the lattice, hence, a large number of lattice sites Ns is required.
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4.1 Effective Hamiltonian
4.1.1 Hole effective mass

From the analytical expression of the dispersion relation of the hole in Eq. 16, it is straight-
forward to compute the value of the effective mass of the hole, m∗. This result depends
on the quasimomentum of the hole, but we will mostly focus on the regions around q = 0
and q = π. The reason for this is that, at those values, the band presents a minimum or
maximum, which is where it shows a vanishing linear q dependence for a certain ratio J/U .

To calculate the effective mass at certain q values we expand the dispersion relation in
powers of q and identify the kinetic energy Eq = ℏ2q2/(2m∗),

Ehole(q) ≈ −2J − 4J2

U
(Ns − 1) + 1

2

(
2J + 16J2

U

)
q2 + O(q3) for q ≈ 0,

Ehole(q) ≈ −2J − 4J2

U
(Ns − 1) + 1

2

(
16J2

U
− 2J

)
(q − π)2 + O(q3) for q ≈ π.

(17)

Thus, the effective mass at each value of q reads

m∗
q=0
ℏ2 = 1

2J + 16J2

U

≈ 1
2J − 4 1

U
+ 32 J

U2 ,

m∗
q=π

ℏ2 = 1
16J2

U − 2J
≈ − 1

2J − 4 1
U

− 32 J

U2

(18)

This result indicates that, when the hole has a quasimomentum of q = 0, there is a
certain critical value of J/U at which the effective mass becomes infinite, this is J/U =
−1/8. Moreover, when the quasimomentum of the hole is q = π, the critical value at
which the effective mass becomes infinite is J/U = 1/8.

4.1.2 Fully localized hole

After having obtained the value of the effective mass of the hole as a function of the energy
parameters J and U , we analyze the dynamics of the hole and see how the mass and the
time evolution of the state are related. We calculate the time evolution of the hole density
(ρ̂i = ĥ†

i ĥi) expectation value computed with the initially fully localized hole state, here
written as |ψ⟩. The analytical expression for this magnitude reads

⟨ψ| ei
Ĥefft

ℏ ĥ†
i ĥie

−i
Ĥefft

ℏ |ψ⟩ . (19)

We first analyze the limit of U → ∞. In this regime, the effective Hamiltonian (Eq. 14)
becomes a single particle (hole) first neighbors hopping Hamiltonian (ĤJ). Thus, the time
evolution of the density at the site where the hole is initially located is given by (see apendix
F.1 for a detailed calculation),

ρi= Ns
2

(t) = J2
0

(2Jt
ℏ

)
, (20)

where J0 is zeroth order Bessel function of the first kind. This result indicates that the
hole density oscillates over time with a decreasing amplitude (see Fig. 4).
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Let us now consider the regime of strong but finite interactions within the effective
Hamiltonian description. Constant terms can be discarded since they just represent an
energy shift, which yields a non-relevant common phase when performing time evolution.
Hence, the Hamiltonian from Eq. 14 reduces to a single particle hopping to first and second
nearest neighbors with amplitudes J and 2J2/U respectively. The analytical expression
for the hole density over time in the initial site becomes now (see Appendix F.2 for detailed
calculation),

ρi= Ns
2

(t) = Γ(t)∗Γ(t) =
∣∣∣∣∣

∞∑
n=0

(−iλt
ℏ

)n 1
n!

n∑
k=0

(
n

k

)
J2|n−2k|

(2Jt
ℏ

)∣∣∣∣∣
2

, (21)

where λ = 2J2/U is the second neighbors tunneling amplitude, and Jn is the n-th order
Bessel function of first kind.

(a) (b)

Figure 4: (a) Hole density of central site as a function of Jt/ℏ. When U → ∞, the function tends
J0(2Jt/ℏ)2, that obtained for a single particle in an empty lattice. This result does not thake into
account the finite size effects of the lattice. (b) Hole density evolution over time and lattice site
computed with the effective Hamiltonian with U = 10. At Jt/ℏ ≈ 3 the hole wavefront reaches the
lattice edge, which indicates that its speed over the lattice is v ≈ 1.66 ℏ/(Jt) for U = 10.

The position of the first minimum, here defined as ρ0(t0) = ρmin, varies with J/U .
When the contact interaction U becomes larger, the minimum tends to that of the Bessel
function J2

0 (single particle case). The presence of a superexchange process in the Hamil-
tonian based on a mediated hopping to second neighbors can be experimentally captured
by measuring the position of the first minimum in the density over time. If the den-
sity strictly vanishes at 2Jt/ℏ ≈ 2.4, the Hamiltonian does not present a superexchange
process, otherwise, it does.
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(a) (b)

Figure 5: (a) Position of the first minimum of the density over time as a function of U/J . Dashed
line represents this position for the Bessel function J0(2Jt/ℏ)2, the single particle case. (b) Height
of the first minimum in the density over time as a function of U/J . For U → ∞, ρ0(t) tends to
J0(2Jt/ℏ)2, which vanishes at every minimum. Dashed line corresponds to the single particle case,
where ρ0(t0) = J2

0 (2Jt/ℏ).

Since ρ0(t) is an oscillating function and entails a set of frequencies, we find it inter-
esting to perform the Fourier transform F [ρ0(t)] to analyze the frequency spectrum for
each value of J/U . Moreover, we associate a single frequency to each plot taking the
mean frequency value ω∗ =

√
⟨ω2⟩ (see Fig. 6). The expression used to obtain the mean

frequency is

⟨ω2⟩ =
∫ ∞

−∞
F(ρ0(t))ω2dω =

∫ ∞

−∞
ρ̂0(ω)ω2dω. (22)

For the single particle case, the Fourier transform of the squared Bessel function can
be analytically computed. The result reads

F
[
J2

0

(2Jt
ℏ

)]
=
K
(
1 − ω2

16

)
Π
(

ω
8
)

√
2π3/2 , (23)

where K is the complete elliptic integral of the first kind (Eq. 24), and Π
(

ω
8
)
is the box

function, which vanishes for all |ω| > 4 and gets the value of 1 otherwise.

K(m) =
∫ π/2

0

[
1 −m sin2 (t)

]−1/2
dt. (24)
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(a) (b)

Figure 6: (a) Fourier transform of the density of the central site over time as a function of ℏω/J
compared with that of the single particle case (Eq. 23). The sign change of U does not make any
difference in the oscillations, hence, the Fourier transforms for positive and negative U are the same.
When the interaction strength |U | is increased, the frequency distributions tend to the single particle
case, F

[
J2

0 (2Jt/ℏ)
]
. When U is between the two critical values at which the mass of the hole becomes

infinite for q = 0 and q = π (|U | < 8), the frequencies distribution reaches values of |ℏω/J | > 4.
Additionally, for these values of U , the distributions present a discontinuity whose position approaches
to ℏω/J = 0 as |U | → 8. When |U | > 8, frequencies |ℏω/J | > 4 vanish, which also happens in the
analytical expression of the single particle case due to the box function. Moreover, the peaks at the
maximum frequency decrease as U → ∞. (b) Mean frequency of the density in the central site as
a function of J/U . For values of |J/U | > 1/8 = 0.125, the mean frequencies become less smooth
because the maximum frequencies of the spectrum are non-fixed. When |J/U | < 0.125, the frequencies
are enclosed by the box function.

The dynamics of the system with an initial state with a fully localized hole are not
dependent on the sign of the interaction U . No matter if the bosons are repulsive or
attractive, the hole density in the initial site over time oscillates in both cases in the same
way. This oscillation tends to that of the single particle case when the interaction strength
goes to infinity. Hence, increasing the on-site interaction U translates into being able to
treat a fully localized hole as a free fully localized boson.

4.1.3 Gaussian space-distributed hole

We analyze the dynamics of a single hole localized in the lattice with a Gaussian distri-
bution. Since this state is not fully localized, it can be defined with a quasimomentum
distribution centered at any value q0,

|ψ⟩ = 1√
N

Ns∑
j

e−iq0je− (j−x0)2

2σ2 |j⟩ , (25)

where we are using the notation introduced in Eq. 9 and N =
∑Ns

j=1 e
− (j−x0)2

σ2 is the nor-
malization factor that ensures the normalization of the wave function to unity ⟨ψ|ψ⟩ = 1.

To capture information about the effective mass of the hole, we compute now the time
evolution of the width of the Gaussian distribution and compare it with that of the single
particle case, which reads [Dar27]
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σsp(t) =

√
σ2

0 +
( ℏt
m∗σ0

)2
, (26)

where σ0 is the initial width of the distribution and m∗ is the effective mass of a single
particle in a lattice.

Note that in the single particle case, the value that the effective mass takes is m∗ =
1/(2J), obtained from the factor of the second power in q of the expansion of the cosine
dispersion relation of Eq. 2. We show how the width of the Gaussian-distributed hole
tends to that of the single particle when U → ∞ in Fig. 7,

lim
U→∞

σ(J, U, t) = σsp(J, t) =

√
σ2

0 +
(2ℏtJ

σ0

)2
. (27)

To compute the width at every time, we sum the square of all coefficients of the
exponential distribution weighed with the square of the distance between the hole and the
central point. For t = 0, it reads

⟨r̂2⟩ =
Ns∑
j=1

1√
N
e− (j−x0)2

2σ2 eiq0j(j − x0)2 1√
N
e−iq0je− (j−x0)2

2σ2 . (28)

(a) (b)

Figure 7: (a) Width σ(t) of the Gaussian space distribution for the hole with quasimomentum centered
at q = 0 as a function of time for different values of the interaction strength U. For U = −8, the
effective mass of the hole is infinity, which is reflected in the constant width of the wave function. (b)
Width σ(t) of the Gaussian space distribution for the hole with quasimomentum centered at q = π
asa function of time for different values of the interaction strength U. In this case, the effective mass
diverges for U = 8. Both cases have been computed with an initial width of σ0 = 10 and for a lattice
which is long enough such that the expansion is not interfering with itself (Ns = 200).

Assuming the time evolution of the width of the Gaussian distribution has the same
dependence as that of the single particle (Eq. 26), we perfom a fitting with the equation
to compute the effective mass as a function of J/U .
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Figure 8: Inverse of the effective mass m∗ for a hole with quasimomentum q = 0 and q = π as a
function of J/U . For values J/U = ±1/8 = ±0.125 the inverse mass vanishes, which means that the
effective mass tends to infinity, precisely as Eq. 18 suggests analytically.

One can see a perfect agreement between the value of the effective mass obtained from
the time evolution of the width of the Gaussian distribution and the analytical expression.
This result indicates that the expansion of a Gaussian space distributed hole follows the
same dependence as the single particle case (see Eq. 26), even when a superexchange
process is present in the Hamiltonian. Moreover, we prove that in the limit U → ∞, the
effective mass takes the value of the single particle case, m∗ = 1/(2J).

4.1.4 Difference between fully localized and Gaussian distributed holes

We have seen that while the sign modification of U does not produce any difference in
the time evolution of the fully localized hole state, it does in the Gaussian distributed
state. The reason for this is that the fully localized state has the same overlap value with
all eigenstates of the effective Hamiltonian. However, a Gaussian distributed state with
quasimomentum q = 0 overlaps more with those eigenstates with the lowest energy. In
the same way, a Gaussian distributed state with quasimomentum q = π overlaps the most
with the most excited states (see Fig. 9). Since a sign modification of U yields a shift of
π in quasimomentum, a state with a flat quasimomentum ditribution i.e. fully localized
state is not able to capture any difference when U → −U .
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Figure 9: Overlaps of the Gaussian distributed states with three different values of q and the fully
localized state with every eigenstate of the effective Hamiltonian. The Gaussian distribution with q = 0
overlaps the most with the lowest energy eigenstates, that with q = π, with the highest, and that with
q = π/2, with those in the middle of the spectrum. The overlap of the localized state is constant,
the same for all eigenstates of Heff, and takes the value of 1/Ns (this case has been computed for
Ns = 100).

4.2 Full Hamiltonian
4.2.1 Hole effective mass

In this section we extract the effective mass of the hole using the full Bose-Hubbard
Hamiltonian. We obtain the lowest an highest energy bands (for U > 0 and U < 0
respectively) and associate a certain quasimomentum to each eigenstate. To do so, we
introduce the total momentum operator Q̂ in momentum space and transform it into real
space through the Fourier transform, reading

Q̂ =
∑

q

qb̂†
q b̂q = 1

Ns

∑
i,j

∑
q

qeiq(j−i)b̂†
j b̂i. (29)

After diagonalizing this operator and building the change-of-basis matrixM (eigenvec-
tors of Q̂ in columns), we write the Hamiltonian in the momentum basis, ĤQ = M †ĤM .
In this form, the Hamiltonian becomes a block diagonal matrix where each submatrix has
a well-defined quasimomentum (shifted to the first Brillouin zone). Hence, diagonalizing
each block gives the energy and quasimomentum distribution, this is, the dispersion rela-
tion. Note that to check the agreement of this dispersion relation with that of the effective
Hamiltonian for any value of U , both positive and negative, we have to look at the lowest
band for U > 0, and the highest band for U < 0.

We compute the effective mass of the hole by calculating the second derivative of the
band at a certain q using the method of finite differences at q = 0 and q = π. The
expressions read
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1
m∗

∣∣∣∣
q=0

=
E(Q = 2π

Ns
) − 2E(Q = 0) + E(Q = −2π

Ns
)(

2π
Ns

)2 ,

1
m∗

∣∣∣∣
q=−π

=
E(Q = −πNs−2

Ns
) − 2E(Q = −π) + E(Q = πNs−2

Ns
)(

2π
Ns

)2 ,

(30)

where all quasimomentum values are shifted to the first Brillouin zone. Note that this
expression is not valid at q = 0 when the first derivative is not continuous. Hence, since
a vanishing on-site interaction strength leads to a linear dispersion relation (see Fig. 10),
E(q) = c|q|, the second derivative computed with finite differences is not valid in this
limit.

(a) (b)

Figure 10: (a) Comparison of energy bands of the full Bose-Hubbard Hamiltonian (squares and circles)
with those from the effective Hamiltonian (solid lines) for different values of the on-site interaction
energy U . For U = 0, yellow dashed line is the analytical fitting for the band described by the full
Hamiltonian, it has a linear dependence. (b) Inverse effective mass computed with finite differences
in the lowest and highest bands of the spectrum for U > 0 and U < 0 respectively. Upper panel
corresponds to this computation at q = 0, lower panel corresponds to q = π. Each panel has the
straight line corresponding to the inverse effective mass calculated obtained for the effective Hamiltonian
(Eq. 18). For the case q = π, the results for Ns odd do not agree with the effective Hamiltonian
prediction because quasimomentum q = π is not existing for those Ns values. Additionally, it is seen
that the symmetry U → −U yielding a shift of π in quasimomentum, is just present for Ns even. Note
that the computation of the inverse effective mass with the full Bose-Hubbard Hamiltonian is just valid
at J/U ≈ 0 due the limitation in the finite differences method.

We show that the energy bands obtained from the effective Hamiltonian agree with
those from the full Bose-Hubbard Hamiltonian when the interaction strength U is large.
Moreover, this result provides an accurate computation of the effective mass of a hole in
the same limit. Outside this limit, our result is not valid in the Bose-Hubbard Hamiltonian
due to the restriction in the perturbation theory approach. Furthermore, the computation
of the effective mass in the full Hamiltonian in a small-sized system with a small interaction
strength is not accurate due to the limitation in the calculation of numerical derivatives
through finite differences.
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4.2.2 Fully localized hole

To compare how accurate our results with the effective Hamiltonian are, we use now the full
Bose-Hubbard Hamiltonian to evolve in time an initially fully localized hole and calculate
the expectation value of the hole density in the site where the hole was initially located
(as we do in Sec. 4.1.2 with the effective Hamiltonian). Note that, since now we are
using the full Hamiltonian, there are states with more than one boson per site which were
not allowed in the effective Hamiltonian. Notice that working with the full Hamiltonian
imposes a limitation on the number of sites due to the size of the Hilbert space.

(a) (b)

Figure 11: (a) Time evolution of density in central site using the full Bose-Hubbard Hamiltonian. For
U → ∞ the function tends to the Bessel function J2

0 (2Jt/ℏ). For smaller values of U the function is not
analytical. (b) Hole density evolution over time and lattice site computed with the full Bose-Hubbard
Hamiltonian with U = 10. At Jt/ℏ ≈ 2.25 the hole wavefront reaches the lattice edge, which indicates
that its speed over the lattice is v ≈ 1.33 ℏ/(Jt) for U = 10.

Our results in the study of the local time evolution of hole density with the full Bose-
Hubbard Hamiltonian show remarkable features similar to those observed with the effective
Hamiltonian. A constructive interference of the hole wave function produces an oscillating
local density over time which vanishes at infinite time, when the hole has fully scattered
all over the lattice. Additionally, we have shown that the speed of the hole in the effective
Hamiltonian (veff ≈ 1.66) is larger than that obtained from the full Hamiltonian (v =
1.33), differing by a 25%. Thus, we have shown that the effective Hamiltonian is a good
approximation and that perturbation theory is a valid approach to capture effects present
in the full Bose-Hubbard Hamiltonian.

5 Conclusions and Outlook
In this work we have studied the properties of a single-hole system described by the
Bose-Hubbard model. We have analyzed the different regimes of the Hamiltonian: non-
interacting, Tonks-Girardeau (U → ∞) and strongly interacting regimes. The first two
cases can be solved analytically and give rise to a bosonic plane waves spectrum and a
Fermi sea spectrum, respectively. The third limit requires both numerical methods such as
exact diagonalization (ED) and the approximation analytical tool of perturbation theory.

We have performed degenerate perturbation theory method and obtained an effective
Hamiltonian both in matrix and operator forms. In the latter form, we have introduced
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the concept of “hole” as a quasi-particle and defined its creation and annihilation op-
erators in second quantization. The operator formalism has allowed us to analytically
solve the effective Hamiltonian, leading us to the hole dispersion relation, which relates
the quasimomentum of a hole and its energy. At q = 0 and q = π, the hole dispersion
relation presents either a maximum or a minimum, which indicates a vanishing linear q
dependence for certain values of J/U . Hence, we have investigated the effective mass of
the hole at these quasimomentum values. The value of the effective mass is not reflected
in the time evolution of a state with a fully localized hole due to the constant distribution
of the overlaps with the eigenstates of the effective Hamiltonian. However, the effective
mass can be obtained from the time evolution of a space Gaussian distributed hole by
analyzing the time dependence of the width of the distribution. In both the localized and
Gaussian distributed hole, a single particle behavior is observed in the limit of infinite
on-site interaction, both attractive and repulsive.

To finalize, we have compared our previous results obtained with the effective Hamil-
tonian with those obtained from the Bose-Hubbard Hamiltonian. The computation of
the effective mass has been restricted by the limitation in the limits of validity of out
numerical methods. For that reason, our results for the effective mass computed with the
Bose-Hubbard Hamiltonian are valid in the limit J/|U | ≲ 0.1, where they agree with those
from the effective Hamiltonian.

As an extension of this work, it would be interesting to compute the effective mass in
the full Bose-Hubbard model for any interaction strength U . To do so, we would need to
numerically compute the second derivative for functions that are not smooth, such as the
dispersion relation E = c|q|. Moreover, a study of the system with two holes or more could
bring new features. Finally, a better understanding of the dynamics of such systems could
be achieved by adding long-range interactions between atoms, such as dipolar interactions.
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Appendices
A Python code
A.1 Fock basis creation
Here we attach the Python code used to create the basis of Fock states. We have written
the code for the case of two different species. To be used with a single species, just set
Nb = 0.

def tuple_sum(a,b):
output = ()
for i in range(len(a)):

output += ((a[i]+b[i]),)
return output

def create_next_set(set_ini):
v = set_ini.pop()
set_ini.add(v)
N = len(v)
idty = np.eye(N,dtype=int)
output = set()
for i in set_ini:

for j in idty:
j = tuple(j)
output.add(tuple_sum(i,j))

return output

def create_whole_set(N,Ns):
ini_vec = tuple((0 for _ in range (Ns)))
ini_set = set()
ini_set.add(ini_vec)
for _ in range(N):

#print(ini_set)
ini_set = create_next_set(ini_set)

return ini_set

def create_whole_basis(Na,Nb,Ns):
set_a = create_whole_set(Na,Ns)
set_b = create_whole_set(Nb,Ns)
basis = []

for i in (set_a):
for j in (set_b):

#current_vector = np.array((Ns,2))
current_vector = []
for k in range(Ns):

secondary_vector = [i[k],j[k]]
current_vector.append(secondary_vector)

current_vector = np.array(current_vector)
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basis.append(current_vector)

return basis

A.2 Construction of Hamiltonian
Here we attach the Python code to create the operators that define the Bose-Hubbard
Hamiltonian. Every operator is defined as a function that receives a Fock state as input,
and gives as output a new Fock state and a factor. The construction of the Hamiltonian
requires the basis, which is obtained in Appendix A.1.

def c(ket,i,species):
outket = ket.copy()
if ket[i,species] > 0:

outfactor = math.sqrt(outket[i,species])
outket[i,species] = outket[i,species] -1

elif ket[i,species] <= 0:
outfactor = 0
outket[i,species] = 0

return outfactor,outket

def c_dagger(ket,i,species):
outket = ket.copy()
if (i>(len(ket)-1)):

outfactor = 0
#outket[i,species] = outket[i,species]

else:
outfactor = math.sqrt(outket[i,species]+ 1)
outket[i,species] = outket[i,species] + 1

return outfactor,outket

def hopping_right(i,species,ket):
outket = ket.copy()
if (i == len(ket)-1):

factor1 = 0
factor2 = 0

elif (i<(len(ket)-1)):
factor1, outket = c(outket,i,species)
factor2, outket = c_dagger(outket,i+1,species)

outfactor = factor1*factor2
return outfactor, outket

def hopping_left(i,species,ket):
outket = ket.copy()
if (i == 0):

factor1 = 0
factor2 = 0

elif (i>0):
factor1, outket = c(outket,i,species)
factor2, outket = c_dagger(outket,i-1,species)
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outfactor = factor1*factor2
return outfactor, outket

def n(i,species,ket):
outket = ket.copy()
factor1, outket = c(outket,i,species)
factor2, outket = c_dagger(outket,i,species)
outfactor = factor1*factor2
return outfactor, outket

def H_hopping_element_single_site(bra,ket,i):
output = 0

for alpha in range(2):
outfactor_l,outket_l = hopping_left(i,alpha,ket)
outfactor_r,outket_r = hopping_right(i,alpha,ket)
if np.array_equal(bra,outket_l):

output = output - outfactor_l
if np.array_equal(bra,outket_r):

output = output - outfactor_r
return output

def total_H_hopping_element(bra,ket):
output = 0
for i in range(len(bra)):

output = output + H_hopping_element_single_site(bra,ket,i)
return output

def build_H_hopping(basis):
H = np.zeros((len(basis), len(basis)))
for i in range(len(basis)):

for j in range(len(basis)):
bra = basis[i]
ket = basis[j]
H[i,j] = total_H_hopping_element(bra,ket)

return H

def H_contact_element_single_site(bra,ket,i):
output = 0

for alpha in range(2):
outfactor_c, outket_c = n(i,alpha,ket)
if np.array_equal(bra,outket_c):

output = output + outfactor_c*(outfactor_c-1)*1/2
return output
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def total_H_contact_element(bra,ket):
output = 0
for i in range(len(bra)):

output = output + H_contact_element_single_site(bra,ket,i)
return output

def build_H_contact(basis):
H = np.zeros((len(basis),len(basis)))
for i in range(len(basis)):

for j in range(len(basis)):
bra = basis[i]
ket = basis[j]
H[i,j] = total_H_contact_element(bra,ket)

return H

B ĤJ in momentum space
The kinetic term of the bose-Hubbard Hamiltonian can be written in momentum space. To
do so, one needs to apply a Fourier transform on the creation and annihilation operators.
The new operators obtained after the transformation, b̂†

q, b̂q, create and annihilate a boson
with a certain quasimomentum q instead of defining their position. The transformation
reads as

b̂†
j = 1√

Ns

∑
q

e−iqxj b̂†
q,

b̂j = 1√
Ns

∑
q

eiqxj b̂q,
(31)

where the lattice spacing is set to unit and hence, xj ≡ j. Substituting the operators b̂i

and b̂†
i for b̂q and b̂†

q respectively, we obtain the new Hamiltonian

ĤJ = −J
∑
qq′

e−iq
∑

j

1
Ns

e−i(q−q′)j b̂†
q b̂q′ + h.c.

 . (32)

Imposing that the exponentials form an orthonormal and complete basis, the sum over
j equals Nsδq,q′ , which yields to a much more simple expression,

ĤJ = −J
∑

q

[
e−iqn̂q + h.c.

]
= −2J

∑
q

n̂q cos q. (33)

C Fermi sea energy
The ground state of a non-interacting fermionic system described by a hopping Hamilto-
nian can be obtained by computing the sum over the lowest quasimomentum occupied
states (see Eq. 33 from Appendix B), which reads

E0 = −2J
∑

q

cos q. (34)

The quasimomentum q in a fermionic system takes values 2πk/Ns, where k ∈ [−kmax/2, kmax/2].
Hence, the ground state reads
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E0 = −2J
kmax/2∑

k=−kmax/2
cos

( 2π
Ns

k

)
. (35)

The cosine of the sum can be rewritten, using Euler’s identity, as

kmax/2∑
k=−kmax/2

cos
( 2π
Ns

k

)
= 1

2

kmax/2∑
k=−kmax/2

ei 2π
Ns

k + e−i 2π
Ns

k. (36)

Using the change of variables k′ = k + kmax
2 , reads

1
2

kmax∑
k′=0

[
ei 2π

Ns
k′
e−iπ kmax

Ns + e−i 2π
Ns

k′
eiπ kmax

Ns

]
. (37)

Since the sum over the occupation number has as many terms as particles in the
system, the maximum value of the quasimomentum is defined by kmax = N − 1. Setting

the variable z = 1
2
∑N−1

k′=0

[
ei 2π

Ns
ke−iπ N−1

Ns

]
, we see that the sum we are looking for is 2ℜ(z) =

ℜ
(
e−iπ N−1

Ns
∑N−1

k=0 ei 2π
Ns

k
)
. To solve the sum we can use the geometric series, which gives

N−1∑
k=0

ei 2π
Ns

k = 1 − ei 2π
Ns

N

1 − ei 2π
Ns

= 1 − ei 2π
Ns

N

ei π
Ns

(
e−i π

Ns − ei π
Ns

) = e−iπ/Ns

−2i sin π/Ns

(
1 − ei 2π

Ns
N
)

=

e−iπ/Ns

sin π/Ns

−2i
−2ie

iπn
(
e−iπn − eiπn

)
= sin πn

sin π
Ns

ei π
Ns

(N−1).

(38)

Hence, since we need the real part of the product of the last result with the exponential
e−i π

Ns
(N−1), we get

ℜ
(
e−iπ N−1

Ns

N−1∑
k=0

ei 2π
Ns

k

)
= sin πn

sin π
Ns

. (39)

Finally, we add the factor −2J and obtain

EJ = −2J sin πn
sin π

Ns

. (40)

D Degenerate perturbation theory
D.1 Toy example. N = 2, Ns = 3
Let us study the system with N = 2, Ns = 3. To obtain corrections up to second order in
degenerate perturbation theory we need to diagonalize the effective Hamiltonian, whose
matrix elements read

Ĥeff = ⟨α| ĤJ |β⟩− 1
2
∑

γ

⟨α| ĤJ |γ⟩ ⟨γ| ĤJ |β⟩
(

1
Eγ − Eα

+ 1
Eγ − Eβ

)
= Ĥ

(1)
eff +Ĥ(2)

eff . (41)

States |α⟩ , |β⟩ are the degenerate eigenstates of the unperturbed Hamiltonian ĤU and
|γ⟩ is any state that does not belong to the degenerate subspace of |α⟩ and |β⟩. Consider
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the basis {|0⟩ , |1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩} = {|1, 1, 0⟩ , |1, 0, 1⟩ , |0, 1, 1⟩ , |2, 0, 0⟩ , |0, 2, 0⟩ , |0, 0, 2⟩}.
It can easily be seen that, using the unperturbed Hamiltonian ĤU , the first three elements
of the basis share an energy of E = 0 and are the ground state of ĤU . Moreover, the
last three elements have an energy of E = U and are the excited state of ĤU . There are
two energy levels three times degenerate each, it is the ideal situation to use degenerate
perturbation theory.

The ground state first order corrections are obtained by diagonalizing the first order
effective Hamiltonian in the subspace of degenerate ground states of ĤU , this is, diag-
onalizing the matrix given by the matrix elements ⟨α| ĤJ |β⟩, which form the effective

Hamiltonian Ĥ
(1)
eff . The states |α⟩ and |β⟩ are the first three states of the basis. It is

straight forward to see that the matrix and its eigenvalues read

Ĥ
(1)
eff =

 0 −J −J
−J 0 −J
−J −J 0

 →


λ0 = −2J,
λ1 = J,

λ2 = J.

(42)

Up to first order, the degeneracy of the first three degenerate states of ĤU is not com-
pletely broken since two states are still degenerate. For the excited states |3⟩ , |4⟩ , |5⟩ the
degeneracy is not broken at first order since the perturbation ĤJ cannot connect any of

those states (Ĥ
(1)
eff = 0).

To get the second order correction of the ground state, we need to obtain the effective
Hamiltonian up to second order using both terms of Eq. 41. The matrix and its eigenvalues
read

Ĥ
(1)
eff +Ĥ(2)

eff =

 0 −J −J
−J 0 −J
−J −J 0

+


−4J2

U
−2J2

U
−2J2

U
−2J2

U
−4J2

U
−2J2

U
−2J2

U
−2J2

U
−4J2

U

 →



λ0 = −2J − 8J2

U
,

λ1 = J − 2J2

U
,

λ2 = J − 2J2

U
.

(43)

Degeneracy of the ground state is still not completely broken up to second order
corrections. To compute the second order correction for the excited states we need to
find the eigenvalues of the matrix given by Eq. 41 in the subspace of the degenerate
excited states of ĤU , the states |α⟩ , |β⟩ = |3⟩ , |4⟩ , |5⟩ (Note that the first order matrix is
zero). The resultant matrix and its eigenvalues read

Ĥ
(2)
eff =


4J2

U
2J2

U
2J2

U
2J2

U
4J2

U
2J2

U
2J2

U
2J2

U
4J2

U

 →



λ0 = 2J2

U
,

λ1 = 2J2

U
,

λ2 = 8J2

U
.

(44)

Hence, the degeneracy of the excited is not completely broken.

We can now compare how the degeneracy is broken by taking results from exact diag-
onalization and those from perturbation theory.
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Figure 12: Degeneracy breaking for the system with N = 2, Ns = 3 and p.b.c. Dashed gray lines
correspond to the eigenstates of the full Bose-Hubbard Hamiltonian. Solid coloured lines correspond to
the eigenstates of the effective Hamiltonian. Orange and green lines are degenerate. For small values of
J/U , perturbation theory works very good and agrees with the full model.

We can check the relative error of perturbation theory in the enrgy of the ground state
as a function of the perturbative parameter.

Figure 13: Relative error of the ground state energy of the system as a function of J/U (∆E0 =
|Eeff

0 − E0|). For an approximate ratio J/U < 0.1, the error is less than 10%, which can be considered
as a good approximation. Afterwards, this percentage increases linearly with J/U .

D.2 Effective Hamiltonian. Matrix form
To obtain an effective Hamiltonian from the Bose-Hubbard Hamiltonian with N = Ns − 1
for the lowest manifold, we need to compute the matrix elements given by Eq. 41. States
|α⟩ and |β⟩ are all the degenerate eigenstates of ĤU with the lowest energy, and |γ⟩ are all
states from the original Hilbert space that do not belong to the subspace of lowest energy
of the spectrum of ĤU . Since the lowest manifold can be described by as many states
as sites in the lattice, Ns, we use the notation describing the position of the hole in the
lattice,

|3⟩ = |1, 1, 0, 1, 1, 1..., 1⟩ , |5⟩ = |1, 1, 1, 1, 0, 1, 1..., 1⟩ . (45)
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The first order correction in Eq. 41 consists of a single hopping connection of two
states which both belong the the lowest energy manifold. Given that the Hamiltonian
that connects both states performs a hopping of a boson to first neighbor lattice site, the
corresponding matrix elements read

⟨n| Ĥ(1)
eff |m⟩ = −J(δn,m−1 + δn,m+1). (46)

The second order correction consists of both diagonal and non-diagonal terms. Let
us obtain first the diagonal ones. Note that the process yielding diagonal terms has to
perform a hopping of a boson to an occupied lattice site (due to the constraint of |γ⟩ states
not to belong to the initial degenerate subspace), and brings it back to the initial site. It

is straighforward to see from Eq. 41 that this process results in a factor of −2J2

U . Since
we have to sum over all intermediate states |γ⟩, we just need to multiply the amount of
these states, which is 2(Ns − 2), by the previous factor. Hence, the diagonal terms read

⟨n| Ĥ(2)
eff |m⟩ = −2(Ns − 2)2J2

U
δn,m. (47)

The last second order correction is that obtained by connecting two different states of
the lowest manifold of ĤU by means of two hoppings. Following the requirements of Eq
41, the only states |β⟩ to which an initial state |α⟩ can be connected are those where the
hole is located two sites apart from the initial position. The amplitude of this process is,
again, −2J2

U . Thus, the final matrix elements read

−2J2

U
(δn,m−2 + δn,m+2). (48)

Combining the three terms that we have obtained and taking into account periodic
boundary conditions, which translates into ⟨1|Ns + 1⟩ = 1, ⟨2|Ns + 2⟩ = 1, the final
effective Hamltonian matrix elements can be written as

⟨n| Ĥeff |m⟩ = −J(δn,m−1 + δn,m+1) − 2(Ns − 2)2J2

U
δn,m − 2J2

U
(δn,m−2 + δn,m+2). (49)

D.3 Effective Hamiltonian. Hard-core bosons operators
We can write the effective Hamiltonian from Eq. 49 in operator form. Since we restrict
the spectrum to that of hard-core bosons, where there is no more than a single boson
per site, we can use hard-core bosons operators â†

i and âi, which create and annihiliate a
hard-core boson at site i respectively. They have mixed commutation and anticommuta-
tion relations, [âi, â

†
j ] = [âi, âj ] = [â†

i , â
†
j ] = 0 for i ̸= j, {âi, â

†
i } = 1 and (âi)2 = (â†

i )2 = 0
[CLRS11].

Each factor of the effective Hamiltonian is obtained by the perturbation theory expres-
sion (see Eq. 41). States |α⟩ and |β⟩ belong to the hard-core bosons subspace, and |γ⟩
states are those which do not belong to that subspace. The first order term is straighfor-
wardly a hard-core boson hopping into a hole since there is no other process that connects
two states in the hard-core bosons manifold. Thus, it reads

Ĥ
(1)
eff = −J

Ns∑
i

[
â†

i âi+1 + h.c.
]
. (50)
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Note that this term takes into account the forbidden double occupation of a site due
to the relation (â†

i )2 = 0.

The second order correction has both diagonal and non-diagonal terms, let us first
obtain the diagonal terms. The only way to connect a state with itself through a double
hopping is by having two particles in first neighboring sites and making one of them hop
to the other site and back (the same process can be done with the other particle). This
process requires an energy of −2J2/U and, since there are two possible processes, the
prefactor is −4J2/U . Thus, since such process needs two bosons to be in neighboring
sites, its operator form reads

Ĥ
(2)
eff = −4J2

U

Ns∑
i

n̂in̂i+1. (51)

Non-diagonal terms are obtained by a correlated hopping process, where a boson hops
to a second neighbor site due to the presence of another boson in the middle site. The
energy required for this process is −2J2/U . Thus this term in operator form reads

Ĥ
(2)
eff = −2J2

U

Ns∑
i

[
â†

i−1n̂iâi+1 + h.c.
]
. (52)

The number operator ensures that there is a boson in the middle site which can mediate
the superexchange process. With all three terms, the whole effective Hamiltonian in
operator form can be written as

Ĥeff = −J
Ns∑
i

[
â†

i âi+1 + h.c.
]

− 4J2

U

Ns∑
i

n̂in̂i+1 − 2J2

U

Ns∑
i

[
â†

i−1n̂iâi+1 + h.c.
]
. (53)

D.4 Effective Hamiltonian. Fermionic hole operators
The Hamiltonian represented by the matrix elements in Eq. 49 can be written in operator
form using hole operators ĥ†

f and ĥf , which create and annihilate holes that fulfill fermionic
statistics. To do so, we start from the expression of Eq. 53, computed in Appendix D.3.
We can rewrite the Hamiltonian with fermionic operators ĉ† and ĉ using the Jordan-Wigner
transformation (see Eq. 5). The new Hamiltonian written with fermionic operators reads

Ĥeff = −J
Ns∑
i

[
ĉ†

i ĉi+1 + h.c.
]

− 4J2

U

Ns∑
i

n̂in̂i+1 + 2J2

U

Ns∑
i

[
ĉ†

i−1n̂iĉi+1 + h.c.
]
. (54)

To follow up, we can now transform our operators again, this time from fermionic
operators to hole operators, which will trivially follow the same statistics: ĉi ↔ ĥ†

i , ĉ
†
i ↔ ĥi

and {ĥi, ĥ
†
j} = δi,j , {ĥi, ĥj} = {ĥ†

i , ĥ
†
j} = 0,

(
ĥ†

i

)2
=
(
ĥi

)2
= 0 (we drop the subscript f

for these hole operators for more clear notation). After some mathematical manipulations,
the Hamiltonian written with fermionic hole operators reads

Ĥeff = J
Ns∑
i

[
ĥ†

i ĥi+1 + h.c.
]

− 4J2

U
Ns + 8J2

U

Ns∑
i

n̂h
i − 4J2

U

Ns∑
i

n̂h
i n̂

h
i+1

−2J2

U

Ns∑
i

[
ĥ†

i+1ĥi−1 + h.c.
]

+ 2J2

U

Ns∑
i

[
ĥ†

i ĥ
†
i+1ĥi−1ĥi + h.c.

]
,

(55)
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where n̂h
i is the hole number operator, which counts the number of holes at site i (observe

that, since
(
ĥ†

i

)2
= 0, the only possible values of the number operator are 0 or 1). Note

that the fourth term of this Hamiltonian represents an attractive interaction between two
holes (when U > 0). In addition, last term vanishes as long as the system has a single
hole. Since we are working in the space with a single hole, the effective Hamiltonian for
our specific case can finally be written as

Ĥeff = J
Ns∑
i

[
ĥ†

i ĥi+1 + h.c.
]

− 4J2

U
(Ns − 2) − 2J2

U

Ns∑
i

[
ĥ†

i+1ĥi−1 + h.c.
]
. (56)

This Hamiltonian can be solved analytically by going to momentum space and applying
the Fourier transformations

ĥ†
j = 1√

Ns

∑
q

e−iqxj ĥ†
q,

ĥj = 1√
Ns

∑
q

eiqxj ĥq.
(57)

Hence, the effective Hamiltonian in momentum space reads

Ĥeff = 2J
∑

q

ĥ†
qĥq cos q + 8J2

U

∑
q

ĥ†
qĥq − 4J2

U
Ns − 4J2

U

∑
q

ĥ†
qĥq cos 2q. (58)

It is straightforward to obtain the dispersion relation for the system with a single hole,
which reads

Ef
hole = 2J cos q + 8J2

U
− 4J2

U
Ns − 4J2

U
cos 2q. (59)

It is shown that the dispersion relation for fermionic holes differs from that of bosonic
holes by a sign in the linear term in J .

D.5 Shift in quasimomentum between hard-core bosons and fermions
We can see that the energy of the system treated with bosonic and fermionic holes differs
on a single sign,

Ef
hole = 2J cos qf + 8J2

U
− 4J2

U
Ns − 4J2

U
cos 2qf ,

Eb
hole = −2J cos qb + 8J2

U
− 4J2

U
Ns − 4J2

U
cos 2qb.

(60)

Since we know that the energy spectrum should be the same, we can guess that the
quasimomentum distribution for both cases is different and hence, the states have different
q (that is why we made the distinction of qb and qf ). Mathematically it is easily seen that,
in order to get the same energy for both cases, it is requested qf = π ± qb.

To see this in a clearer way, we can analyze the state with N = Ns −1. We can write it
with operators for fermions and hardcore bosons (we will write the states as plane waves
in order to make them have well defined quasimomentum q):
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|ψf ⟩ =
∑

j

eiqxj

[
ĉj

Ns∏
i

ĉ†
i |0⟩

]
xj ≡ j,

|ψb⟩ =
∑

j

eiqxj

[
âj

Ns∏
i

â†
i |0⟩

]
xj ≡ j.

(61)

Applying then the Jordan-Wigner transformation on the bosonic state leads to the
state

|ψb⟩ =
∑

j

eiqj

[
e

iπ
∑

k<j
n̂k ĉj

Ns∏
i

eiπ
∑

l<i
n̂l ĉ†

i |0⟩
]
. (62)

The second J-W exponential does not play any role since the Mott state is filled from
i = Ns to i = 1. Thus, no minus sign would be added to the state. The first exponential

can be re-written as e
iπ
∑

k<j
n̂k = eiπ(j−1) since all sites k < j are occupied. Thus, a

non-relevant global phase appears as well as a shift in quasimomentum,

|ψb⟩ = (−1)
∑

j

[
ei(q+π)j ĉj

Ns∏
i

ĉ†
i |0⟩

]
. (63)

Hence, the difference between the state defined with hard-core bosons and fermions is
a shift in quasimomentum, which results in a differing sign in the first term of the energy.

E Ĥ(U) = −Ĥ(−U) symmetry
E.1 Bose-Hubbard Hamiltonian
The Bose-Hubbard Hamiltonian reads

Ĥ = −J
Ns∑
i

[
b̂†

i b̂i+1 + h.c.
]

+ U

2

Ns∑
i

n̂i(n̂i − 1). (64)

A sign change of the on-site interaction U would just change the second term. We can
then apply the following unitary transformation to the bosonic creation and anihilayion
operators, which reads

b̂′†
k = e−iπk b̂†

k,

b̂′
k = eiπk b̂k.

(65)

Substituting the new operators in the original Hamiltonian yields a change of sign of
the hopping term as long as the number of sitesNs is even for periodic boundary conditions,
or the system has open boundary conditions regardless the value of Ns. Assuming one of
these two conditions is fulfilled and combining both the unitary transformation and the
change of sign of U , one gets

Ĥ(U) = −Ĥ(−U). (66)

This result shows that, from Eq. 65, a state with quasimomentum q at a certain
value of U in the system will change its quasimomentum to q′ = q − π when the on-site
interaction changes its sign.
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E.2 Effective Hamiltonian
The effective Hamiltonian reads

Ĥeff = −J
Ns∑
i

[
ĥ†

i ĥi+1 + h.c.
]

− 4J2

U
(Ns − 2) − 2J2

U

Ns∑
i

[
ĥ†

i+1ĥi−1 + h.c.
]
. (67)

A sign modification of U changes the sign of the second and third terms of the Hamil-
tonian. We apply then a unitary transformation to the hole creation and annihilation
operators,

ĥ′†
k = e−iπkĥ†

k,

ĥ′
k = eiπkĥk.

(68)

Substituting the new operators in the original effective Hamiltonian yields a change
of sign of the hopping term to first neighbors as long as Ns is even for periodic boundary
conditions, or the system has open boundary conditions regardless the value of Ns. As-
suming one of these two conditions is fulfilled and combining the unitary transformation
with the sign change of U , one gets

Ĥeff(U) = −Ĥeff(−U). (69)

This result shows that, from Eq. 68, a state with quasimomentum q at a certain
value of U in the system will change its quasimomentum to q′ = q − π when the on-site
interaction changes its sign.

F Time evolution
F.1 Single particle
To deal with the single particle case, let us consider the state |0, 0, 0, ..., 0, 1, 0, ..., 0, 0, 0⟩
as the initial state of the system. To simplify the notation we will write this state as
|ψ0⟩, where the subscript indicates the position where the particle is found with respect
to the initial state (note that every state of the Fock basis can be uniquely written in this
notation). Hence, |0, 0, 0, ..., 1, 0, 0, ..., 0, 0, 0⟩ ≡ |ψ−1⟩, |0, 0, 0, ..., 0, 0, 1, ..., 0, 0, 0⟩ ≡ |ψ1⟩
and so on.

We want to calculate the density of the site i = Ns
2 over time, which is written as

ρi= Ns
2

(t) = ⟨ψ0(t)| b̂†
Ns
2
b̂Ns

2
|ψ0(t)⟩ = ⟨ψ0| ei Ĥt

ℏ b̂†
Ns
2
b̂Ns

2
e−i Ĥt

ℏ |ψ0⟩ . (70)

Considering that the state |ψ0⟩ is the only state of the basis with non-vanishing density
at site i = Ns

2 , we can write

b̂†
Ns
2
b̂Ns

2
|ψn⟩ = n̂0 |ψn⟩ = δ0,n |ψ0⟩ . (71)

This allows us to consider n̂0 as a projector over the state |ψ0⟩, n̂0 ≡ |ψ0⟩ ⟨ψ0| = P̂0 for
our problem. Hence, the result we are looking for can be written in a more elegant way

ρi= Ns
2

(t) = ⟨ψ0| ei Ĥt
ℏ b̂†

Ns
2
b̂Ns

2
e−i Ĥt

ℏ |ψ0⟩ =
∣∣∣∣⟨ψ0| e−i Ĥt

ℏ |ψ0⟩
∣∣∣∣2 . (72)
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We can expand the exponential in powers of −i Ĥt
ℏ obtaining

e−i Ĥt
ℏ =

∞∑
n=0

(
−iĤt
ℏ

)n 1
n! = 1 − i

t

ℏ
Ĥ − t2

ℏ22!Ĥ
2 + i

t3

ℏ33!Ĥ
3 + t4

ℏ44!Ĥ
4 − ... (73)

Considering that each power of Ĥ introduces a factor −J and a hopping term to both
right and left directions, we can apply the exponential to |ψ0⟩ obtaining

e−i Ĥt
ℏ |ψ0⟩ = |ψ0⟩ + i

tJ

ℏ
(|ψ−1⟩ + |ψ1⟩) − t2J2

ℏ22! (|ψ−2⟩ + 2 |ψ0⟩ + |ψ2⟩)

−i t
3J3

ℏ33! (|ψ−3⟩ + 3 |ψ−1⟩ + 3 |ψ1⟩ + |ψ3⟩) + ...

(74)

One can see that the factors of each superposition of states at each order of Jt
ℏ are all

terms in every row of the triangle of Pascal. Furthermore, they are the amount of possible
paths that a boson can follow to reach the corresponding state from |ψ0⟩ by applying the
Hamiltonian a certain amount of times, which is precisely the order of tJ

ℏ . Taking into
account that the state of Eq. 74 will be projected into |ψ0⟩, just those terms proportional
to this state will play a role. Precisely those terms can be written in a general form as(2n

n

)
(which is the central number of every odd row of the triangle of Pascal), where n is

the power of Ĥ. Thus, the whole sum reads

⟨ψ0| e−i Ĥt
ℏ |ψ0⟩ =

∞∑
n=0

(
itJ

ℏ

)2n
(

2n
n

)
1

(2n)! = J0

(2tJ
ℏ

)
, (75)

where J0 is the Bessel function of first kind. Hence, following Eq. 72, the density in the
central site over time will read

ρi= Ns
2

(t) = J2
0

(2tJ
ℏ

)
. (76)

F.2 Single hole
We use here the same notation as in Appendix F.1. Consider the initial state |ψ0⟩ =
|1, 1, 1, ..., 1, 0, 1, ..., 1, 1, 1⟩. The hole density over time of the central site can be written
as

ρi= Ns
2

(t) = ⟨ψ0(t)| ĥ†
Ns
2
ĥNs

2
|ψ0(t)⟩ = ⟨ψ0| ei

Ĥefft

ℏ ĥ†
Ns
2
ĥNs

2
e−i

Ĥefft

ℏ |ψ0⟩ , (77)

where the Hamiltonian Ĥeff consists of a first and second neighbors hopping terms,

Ĥeff = −J
Ns∑
i

[
ĥ†

i ĥi+1 + h.c.
]

− 2J2

U

Ns∑
i

[
ĥ†

i+1ĥi−1 + h.c.
]
. (78)

Following the same procces as in Appendix F.1, we can write this result in a shorter
way by using the fact that our initial state is the only eigenstate of the density operator
with eigenvalue 1, while all the rest have 0 eigenvalue. This result reads

ρi= Ns
2

(t) =
∣∣∣∣⟨ψ0| e−i

Ĥefft

ℏ |ψ0⟩
∣∣∣∣2 =

∣∣∣∣∣
∞∑

n=0

(−it
ℏ

)n 1
n! ⟨ψ0| Ĥn

eff |ψ0⟩
∣∣∣∣∣
2

= Γ∗(t)Γ(t). (79)
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Following a similar procedure as in Appendix F.1, to connect a state with itself by the
effective Hamiltonian to a certain power n, we have to calculate the number of closed paths
that a boson can perform by applying the Hamiltonian n times [Mor22] (note these values
are not anymore those from the triangle of Pascal). In the current case, the tunneling
amplitude is not the same for every hopping, which requires to write the prefactor as a
weight. Consider N±1 and N±2 as the number of hoppings performed to first and second
neighbors respectively. The number of weighed possible paths obtained by applying the
effective Hamiltonian n times can be written as [Mor22]

⟨ψ0| Ĥn
eff |ψ0⟩ = f(n, J, U) =

n∑
N−1=0

n∑
N+1=0

n∑
N−2=0

n∑
N+2=0

(−J)N+1+N−1

(
−2J2

U

)N+2+N−2

(
n

N+1 +N−1

)(
N+1 +N−1

N+1

)(
n−N+1 −N−1
N+2 +N−2

)(
N+2 +N−2

N+2

)
.

(80)

The power n of the Hamiltonian and the fact that the paths are closed impose two
conditions,

N−1 +N+1 +N−2 +N+2 = n,

N+1 + 2N+2 = N−1 + 2N−2.
(81)

With this, Eq. 80 can be simplified by writing it as a function of N+2, N−2 and n,

f(n, J, U) =
n/2∑

N−2=0

n/2∑
N+2=0

(−J)n−N+2−N−2

(
−2J2

U

)N+2+N−2

(
n

n−N+2 −N−2

)(
n−N+2 −N−2
n
2 + N−2−3N+2

2

)(
N+2 +N−2

N+2

)
.

(82)

Note that with the conditions we have imposed so far we are not eliminating those so-
lutions that have a non-integer value of N±1. To impose integer values, we need an extra
rule. If the power n of the Hamiltonian is even, we need N+2 and N−2 to have the same
parity, which means that their sum has to be even, N+2 +N−2 = 2k. Nevertheless, if the
power n of the Hamiltonian is odd, N+2 and N−2 need to have different parity, meaning
that their sum has to be odd as well, N+2 +N−2 = 2k+1. Then we can divide the function
Γ(t) in two sums, one for even n and another one for odd n. Since each of those sums has
a power of the amplitude of the hopping to second neighbors which is N+2 +N−2, we can
expand the function in powers of this amplitude (we will rename it as −2J2

U = −λ). While
all the even powers of this amplitude will be obtained from the sum of even n, the odd
powers will be obtained from the sum of odd n.

It is clear that for the power 0 (λ0), the result should be the Bessel function. Let us
check that, the factor f(n, J, U) of Eq. 80 reads

f(n, J, U) = (−J)n

(
n
n
2

)
(83)

Note that this power in λ just takes into account even values for n, hence,
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Γ(t) =
∞∑

n=0

(−it
ℏ

)2n 1
(2n)! (−J)2n

(
2n
n

)
= J0

(2Jt
ℏ

)
. (84)

To obtain first order in λ, since N+2 + N−2 = 1, the powers of n that contribute are
those which are odd. Hence, in the sums of Eq. 82 there will be two terms, one with
N+2 = 1, N−2 = 0, and another one with N+2 = 0, N−2 = 1. These two terms have the
same value since the function f(n, J, U) is symmetric under the swap of N+2 and N−2.
Hence, their sum gives

f(n, J, U)
∣∣∣
N+2=0,N−2=1

+ f(n, J, U)
∣∣∣
N+2=1,N−2=0

= 2(n)!
(n

2 + 1
2)!(n

2 − 3
2)!
. (85)

Plugging this into the definition of the Γ(t) function and taking into account that now
just those n-terms which are odd must be taken into account, we get

∞∑
n=0

(−it
ℏ

)2n+1
(−J)2n(−λ) 1

(2n+ 1)!
2(2n+ 1)!

(n+ 1)!(n− 1)! =

i2λt
ℏ

∞∑
n=0

(
−t2J2

ℏ2

)n 1
(n+ 1)!(n− 1)! = − i2λt

ℏ
J2

(2Jt
ℏ

)
.

(86)

Following this method, to obtain the second order in λ, the sum in Eq. 82 will have
3 terms, one with N+2 = 2, N−2 = 0, one with N+2 = 0, N−2 = 2, and one with
N+2 = 1, N−2 = 1. Computing the first orders and after some algebraic manipulations, it
is straighforward to find the pattern. The expression for Γ(t) reads

Γ(t) =
∞∑

n=0

(−iλt
ℏ

)n 1
n!

n∑
k=0

(
n

k

)
J2|n−2k|

(2Jt
ℏ

)
. (87)

This expression can be described as a Taylor expansion of the exponential exp (−iλt/ℏ)
where each term of the expansion is weighed with a sum of Bessel functions, each of those
with a weigh corresponding to its position in the triangle of Pascal. Each value of n
corresponds to the row in the triangle while each value of k corresponds to the position in
the row, from 0 to n. Note that while the amplitude of the hopping to second neighbors (λ)
just appears in each power of the expansion, the amplitude of hopping to first neighbors
(J) is just present in the argument of the Bessel functions.
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Figure 14: Comparison of the analytical result up to order 15 in 2J2/U (the second neighbor hopping
amplitude) in Γ(t), the exact result obtained from the simulation by exponantiating the effective
Hamiltonian to perform the time evolution, and the Bessel function J2

0 (2Jt/ℏ), corresponding to the
limit of the single particle case. The cases for the effective Hamiltonian have been computed for
J/U = 0.1.
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