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Abstract

Bifurcation theory has found contemporary applications in synthetic biology, par-
ticularly in the field of biosensors [43]. The aim of this thesis is to expand upon the
framework presented in the referenced paper, which introduces a model depicting
the behavior of mushroom bifurcations. The mushroom bifurcation diagram ex-
hibits four saddle-node bifurcations and involves bistability. Our goal is to develop
a comprehensive mathematical formalism that can effectively describe this behavior,
both deterministically and stochastically. By doing so, we seek to uncover additional
properties regarding the transients exhibited by these biosensors, specifically focus-
ing on optimizing their timer-effect, memory properties, and signaling capabilities.
We will introduce stochastic dynamics by considering intrinsic noise in the molec-
ular processes, allowing us to investigate the slowing-down effects in the vicinity
of the saddle-nodes and transcritical bifurcations. To conduct this study, we will
use three fundamental mathematical tools, which can be regarded as the backbone
of our analysis. These mathematical vertebrae include the Lemma of Morse, the
Weierstrass Preparation Theorem and, most notably, the Implicit Function Theorem.
Through this rigorous analysis, we aim to enhance our understanding of the un-
derlying dynamics of these biosensors and facilitate their further improvement and
utilization in various applications.

Resum

La teoria de bifurcacions ha trobat aplicacions contemporànies en la biologia
sintètica, particularment en el camp dels biosensors [43]. L’objectiu d’aquesta tesi
és ampliar el marc establert en l’article referenciat, el qual presenta un model que
descriu el comportament de les bifurcacions bolet. El diagrama de bifurcació bolet
presenta quatre bifurcacions sella-node i involucra bistabilitat. El nostre objectiu és
desenvolupar un formalisme matemàtic exhaustiu que pugui descriure eficaçment
aquest comportament, tant de manera determinística com estocàstica. D’aquesta
forma, pretenem descobrir propietats addicionals relacionades amb els transitoris
que presenten aquests biosensors, amb un enfocament específic en l’optimització de
l’efecte timer, les propietats de memòria i les capacitats de senyalització. Introduirem
la dinàmica estocàstica considerant el soroll intrínsec en els processos moleculars, el
que ens permetrà investigar els efectes de retard en la proximitat dels punts de sella
i les bifurcacions transcrítiques. Per dur a terme aquest estudi, utilitzarem tres eines
matemàtiques fonamentals, que es poden considerar el fonament del nostre anàlisi.
Aquestes eines matemàtiques inclouen el Lema de Morse, el Teorema de Preparació
de Weierstrass i, sobretot, el Teorema de la Funció Implícita. Amb aquest anàlisi
rigorós, pretenem millorar la nostra comprensió de la dinàmica subjacent d’aquests
biosensors i facilitar-ne la millora i ús en diverses aplicacions.
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Introduction

Synthetic biology is a scientific discipline that focuses on the modification of or-
ganisms to enhance their functionality by introducing novel abilities through genetic
engineering [58]. In essence, scientists combine extensive stretches of DNA and in-
tegrate them into an organism’s genetic material. These synthesized DNA segments
may originate from genes found in different organisms or be entirely new constructs.

The primary objective of synthetic biology is to modify organisms so that they
can generate substances such as medicines or fuels, or acquire novel abilities such
as environmental sensing. Remarkable examples of accomplishments in synthetic
biology include:

1. Microorganisms utilized for bioremediation to clean pollutants from our water,
soil and air [26].

2. Rice modified to produce beta-carotene, a nutrient usually associated with car-
rots, that prevents vitamin A deficiency. Vitamin A deficiency causes blindness
in 250,000 - 500,000 children every year and greatly increases a child’s risk of
death from infectious diseases [64].

Modern applications of synthetic biology demand the design of gene circuits to
complex and versatile functionalities, such as division, cognition, and motility ex-
hibited by engineered biological systems. These behaviors involve sophisticated in-
teractions and responses orchestrated by gene circuits within cells [43]. However, the
limited resources within a cell pose a challenge when combining multiple functional
circuits within a single organism. Therefore, it becomes crucial to design regulatory
networks that can exhibit distinct dynamical behaviors, enabling a cell to respond
differently to various signals [43,63].

Bifurcation theory offers valuable tools to address these design challenges. It al-
lows us to understand the relationship between the network’s topology -represented
by a set of parameterized differential equations- and its different dynamic behav-
iors under controllable inputs or signals. Each bifurcation in the system alters the
number and nature of long-term dynamics, such as transitioning from a single stable
state to multiple stable states or from a stable steady state to an oscillatory behavior.

This thesis focuses on investigating the robustness of the so-called mushroom
bifurcations in gene circuits, exploring their ability to effectively respond to various
signals even in the face of parameter perturbations and intrinsic noise. Mushroom bi-
furcations represent circuit topologies that exhibit resilience, maintaining functional-
ity despite smooth and small changes in parameters. The study we present examines
these bifurcations from both deterministic and stochastic perspectives. One signifi-
cant contribution of this research is the exploration, to the best of our knowledge, of
a previously unexplored area related to mushroom bifurcations. Specifically, we in-
vestigate the approximation and overlapping of two saddle nodes, their interaction,
and the potential synergistic effect at the level of transients. The limited understand-
ing in this area prompted our investigation, recognizing its substantial importance in
comprehending these complex behaviors, which can have a relevant applied impact.
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Chapter one presents a comprehensive overview of our theoretical model, fol-
lowed by an investigation of the behavior of ghosts and transients near the bifurca-
tions in Chapter two. In Chapter three, we undertake a stochastic study using the
Gillespie algorithm, illustrating the robustness of mushroom bifurcations even in
noisy intra-cellular environments. Chapter four presents our main results, detailing
the interplay between two saddle nodes and its influence on transients and scaling
laws.

Trickey and Virgin [61] were pioneers in exploring the concept of "ghosts", specif-
ically in the context of electronic circuits. These authors provided the first experi-
mental evidence of this phenomenon. Interestingly, Dai et al. built a saddle-node bi-
furcation diagram in their experiments involving yeast Saccharomyces cerevisiae; their
work included the direct observation of critical slowing down before the population
collapse [9]. The term "ghost" [6,11,18,51,55] refers to a region of the phase space
where the dynamics of the system are extremely slow due to the lingering influence
of two fixed points that have collided and been destroyed in a bifurcation event such
as a saddle-node bifurcation. This phenomenon shows a form of system ’memory’,
which involves a delay in the time in which a trajectory spends in the vicinity of the
destroyed attractor.

Remark 0.1. Although the terminology "destruction" of the attractor point is com-
monly used, a more accurate description involves the transition of the fixed points
into the complex phase space. For further details, please refer to the research paper
by Fontich and Sardanyés [11], as well as the work by Canela et al. [7].

A time transient [7] refers to the temporary behavior that a system exhibits before
it settles down to its long-term behavior.

When the system resides in the proximity of a bifurcation point, the trajecto-
ries experience a notable deceleration in their evolution. This slowdown effect is
considered a ’time delay’ phenomenon associated with the ghost, as it represents a
temporary but prolonged period during which the trajectories are delayed in their
evolution before returning to their expected behavior over an extended period.

One remarkable property observed near critical points is the presence of univer-
sal scaling laws, which describe the characteristic slowing down of processes.

A scaling law refers to a mathematical relationship that quantifies the systematic
variation of properties of the system, such as time scales, amplitudes, or frequencies,
as characteristic dependencies on the control parameters, near critical transitions or
bifurcation points.

In particular, when observing scaling laws associated with ghosts, one typically
encounters a power law behavior, where the relevant quantities vary as a power of
the distance from the critical point. These power law relationships provide insights
into the underlying mechanisms governing the system’s dynamics and can often
reveal universal behavior across different systems and scales. Such a power-law
behaviour was indeed found in the abovementioned experiments with the electronic
circuit [61].
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Specifically, in the context of the deterministic s-n bifurcation, the scaling behav-
ior is represented by a power law relationship between the transient time (τ) and the
difference (|ϵ − ϵc|) between the control parameter (ϵ) and its critical value (ϵc). This
power law relationship is given by τ ∼ |ϵ − ϵc|−1/2.

Notably, this scaling power law and the appearance of "ghosts" have been iden-
tified in mathematical models of phenomena such as electronic circuits [61], charge
density waves [56] and metapopulations 1 without habitat destruction [11, 18]. These
phenomena represent a universal property of saddle-node bifurcations [55].

Example 0.2. Let us describe an autocatalytic replicator model with intra-specific
competition and density-independent degradation, as discussed in [18]. The state
variable x(t) represents the population of a replicator species that undergoes self-
replication. The dynamical system describing this process can be written as:

dx
dt

(t) = f (x) = kx2(t)
(

1 − x(t)
k

)
− εx(t)

where k represents the replication rate, k is the carrying capacity of the environ-
ment, and ε denotes the degradation rate.

The dynamical system has three equilibrium points, denoted as x∗ ∈ {x0, x±},

where x0 = 0 and x± = 1
2

(
1 ±

√
1 − 4ϵ

k

)
.

The ghost phenomenon becomes apparent following the saddle-node bifurcation
(Figure 1).

Figure 1: The bifurcation diagram illustrates the autocatalytic replicator system increasing
the degradation rate (ε) while keeping k = 1 constant. It shows the stable (x+) and unsta-
ble (x−) equilibria denoted by solid and dashed lines, respectively. Arrows indicate the flow
direction in the one-dimensional phase space, with x+ marked by a black circle and x− by a
gray one. At ε = εc, a saddle-node bifurcation occurs, causing the equilibria to converge (ver-
tical red line). Following the bifurcation, there is a transient phase with a delayed transition
towards the remaining attracting fixed point x∗ = 0, represented by a small blue rectangle.
This delayed transition exhibits an inverse square-root law relative to the distance Φ from the
bifurcation value εc (see the inset). Obtained from [18].

1A metapopulation consists of a group of spatially separated populations of the same species which
interact at some level.
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To account for the stochastic nature of cellular systems [50], we introduce noise
by implementing small fluctuations in molecule concentrations. This stochastic sce-
nario enables us to explore the influence of intrinsic fluctuations on cellular dy-
namics, providing valuable insights into the behavior of gene circuits. To simulate
these dynamics, we use the well-known Gillespie algorithm [14, 15], widely used in
stochastic simulations in systems biology.

Intrinsic fluctuations arise from the inherent randomness observed in molecular
processes within cells. Molecular events such as molecule binding and unbinding,
enzymatic reactions, and transcription processes involve random interactions, result-
ing in stochastic dynamics within the system. Furthermore, small molecule numbers
contribute to inherent stochasticity in cellular contexts [31,49]. By considering these
intrinsic fluctuations, we gain a deeper understanding of how cells are influenced
by the inherent stochasticity of their molecular processes, being our analyses more
realistic from a biological point of view. This knowledge is crucial for comprehend-
ing the behavior of gene circuits in synthetic biology, as it analyzes the extremely
important impact of variability on cellular dynamics.

Motivation and Goals

This thesis aims to apply the knowledge gained during my academic journey
on this degree to contribute to the field of synthetic biology, with a specific focus
on understanding the mushroom bifurcation and the implications of overlapping
local bifurcations, such as the saddle-node and transcritical bifurcations, and their
influence on transients. A core objective of this research is to explore the robustness
of our model in the face of parameter variations and to elucidate its qualitative
properties, both deterministic and stochastic.

Throughout this research, I aim to showcase the complexities involved in under-
standing mushroom bifurcations, shedding light on their broader implications for
the design and optimization of gene circuits in synthetic biology. Ultimately, this
study seeks to advance our understanding of the intersection between mathematics
and biology, particularly in the field of bifurcation theory. Furthermore, this thesis
aims to open up new possibilities for the application of synthetic biology in the de-
velopment of novel treatments and solutions for various disease-related challenges.

2020 Mathematics Subject Classification. 26B10, 26C10, 32A10, 32B05, 32B10, 34A34, 34C55, 34C60,
34M05, 35B06, 35B25, 35B32, 35Q92, 37A50, 37G05, 37G10, 37G35, 60G05, 60J05, 60J10, 37H05, 37N25,
37N30, 92C40, 92C42, 92C47.



viii Introduction

“The difference between the poet and the mathematician is that the poet tries to get his head
into the heavens while the mathematician tries to get the heavens into his head."

- G.K. Chesterton



Chapter 1

A Systematic Description of the
Mushroom Bifurcation Model

A multifunctional behaviour of special interest for synthetic biology applications
is the mushroom bifurcation, named after its mushroom-shaped bifurcation dia-
gram. It was initially observed in models for neural stem cell differentiation [52, 53].
The mushroom bifurcation diagram is formed by combining two toggle switches, re-
sulting in four saddle node bifurcations and three disconnected stable steady states
[43]. The presence of a mushroom-shaped locus of equilibria provides the system
with unique hysteresis properties, where the state of the cell will be determined
by the signal history. Furthermore, it supplies the system with bistability - the ca-
pacity for the system to inhabit one of two stable states under the same parameter
conditions. This phenomenon bears profound significance in various fields such as
synthetic biology, microbiology, and mammalian cellular biology [45].

Bistability serves a pivotal role in cellular differentiation [10, 46], a process whereby
a homogeneous cell population differentiates into two distinct cell types based on
the stable state they adopt. Furthermore, bistability is thought to be indispensable
for embryonic development [40], where distinct cell types are needed in different
regions. Maternal signals play a critical role in providing positional information,
signals present within an organism that provide spatial guidance and determine the
identity or fate of cells within specific positions or regions during development for
further tissular differentiation.

Moreover, bistability plays an integral role in cellular decision-making processes
[19], often regarded as a form of cellular memory. Under this mechanism, a cell
retains information about its state and bestow this information to its progeny dur-
ing cell division. This attribute can also confer a degree of robustness to the system
against inherent stochasticity prevalent in gene expression, which can cause protein-
level fluctuations. In the context of cancer cells [48], cellular decision-making pro-
cesses play a crucial role in the fate and behavior of tumor cells, as well as into the
path towards malignancy.

Mushroom bifurcations have been experimentally observed in hormone-related
systems prone to generating conditions such as Post Traumatic Stress Disorder (PTSD)

1



2 A Systematic Description of the Mushroom Bifurcation Model

or other stress-related disorders [54]. A detailed exploration near the mushroom bi-
furcation reveals the potential for isola bifurcation diagrams, which have not been
experimentally confirmed yet.

1.1 Topology of the Mushroom Bifurcation: Biology Basics

A mushroom bifurcation (Figure 1.1) refers to a dynamic system with four saddle-
node (SN) bifurcations that mark the boundaries of steady-state branches, giving rise
to an intermediary steady state. The intermediary steady state, labeled as the "ON"
state, exists within a specific range of signal values s (Figure 1.1 (C)). On the other
hand, the remaining steady states, denoted as the "OFF" states, correspond to the
extremities of the signal spectrum, high and low signal values.

An important aspect of mushroom bifurcations is that, while the signal varies,
the expression levels along each locus also change correspondingly. Therefore, these
changes do not alter the overall structure of the bifurcation diagram. A bifurcation
diagram is a graphical representation which displays the possible long-term changes
of the system behavior when the value of the control parameter is varied [1]. Typi-
cally, to depict the branches corresponding to the stable fixed points of the bifurca-
tions, solid lines are used, while dashed lines represent the branches corresponding
to unstable fixed points. This convention is exemplified in Figure 1.1.

A distinctive feature of the mushroom bifurcation is its multidimensionality, it is
dependent on more than one parameter. This characteristic enables the classification
of the mushroom bifurcation to remain independent of the specific genes employed
in its representation. Thus, it can be applied in a range of contexts within biological
systems.

Figure 1.1: (A) Mushroom bifurcation diagram showcasing four saddle-nodes, accompanied
by their corresponding stability branches stable in solid lines and unstable in dashed ones.
(B) Both bistability regions are highlighted as Re1 and Re2. (C) "ON" and "OFF" states
represented. Images from [43].

.

1.1.1 Introduction to Biological Fundamentals

In the field of biology, autocatalysis is the ability of systems, such as molecules,
to promote copies of themselves. Systems where autocatalysis is accompanied by
information transfer, the transmission of the genetic instructions or molecular in-
formation necessary for replication, and heredity, referring to the replication of the
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genetic material with a high degree of fidelity, are said to be self-replicating [38].
DNA and RNA exemplify self-replicating molecules.

A self-replicating molecule can operate both as a catalyst and a template, as
ribozymes (catalytic RNAs). A catalyst is a substance that accelerates the rate of a
chemical reaction, defined as the change in concentration of a substance divided by
the time interval during which this change is observed, without itself undergoing
any permanent chemical change. The template is the strand of DNA or RNA that
guides the creation of a complementary strand during the replication process.

To provide an example of a catalyzed reaction, let us talk about enzyme-catalyzed
reactions. Enzyme catalysis is the process by which enzymes accelerate or facilitate
chemical reactions. Enzymes are specialized proteins that act as biological catalysts,
meaning they increase the rate of a chemical reaction without being consumed or
permanently altered in the process.

Figure 1.2: Enzymatic catalysis of a reaction between two substrates. The enzyme provides
a template upon which the two substrates are brought together in the proper position and
orientation to react with each other. Figure from [8].

.

In order to define our model, it is important to introduce the concept of hyper-
cyles (refer to Figure 1.3), a set of self-replicating entities, such as molecules or genes,
that mutually depend on each other for replication, forming a cyclic network [51, 57].

Definition 1.1. (Hypercycle) An hypercycle refers to an abstract model that describes the
organization of self-replicating molecules interconnected in a cyclic and autocatalytic manner.

Figure 1.3: General catalytic hypercycle of n species. Self-replication is represented with
thick closed arrows and catalytic aid with thin arrows [51].
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To present the mushroom bifurcation model comprehensively, it is necessary to
introduce several additional definitions, including the concept of a gene circuit. A
gene circuit is defined as an assembly of biological parts encoding RNA or pro-
tein that enables individual cells to respond and interact with each other to perform
some logical functions, such as boolean logic operations, using gene regulatory el-
ements and their interactions to process input signals and generate specific cellular
responses [29].

In the context of gene circuits, the property of signaling is essential for un-
derstanding how different components influence one another. Signaling refers to
the mechanism by which cells and organisms communicate to coordinate various
physiological and behavioral responses. It covers the exchange of molecular signals
to transmit information and trigger appropriate reactions within the system. One
important aspect related to signaling is the concept of affinity between molecules.
Affinity reflects the strength of the interaction between molecules, and it influences
the system’s response to signals. For instance, high affinity implies that even with
low signal levels, the system exhibits a robust and pronounced response. This
affinity-driven response is crucial for understanding how molecular components
within the gene circuit coordinate and modulate their behaviors based on the in-
coming signals.

The process of transcription holds significant importance when examining genes
and proteins. It involves the synthesis of an RNA from a gene’s DNA sequence,
akin to translating a book from one language to another [59]. Please see Figure 13 in
Appendix C.

Furthermore, when considering a cellular model, it is essential to recognize and
provide a definition for the concept of housekeeping genes. Housekeeping genes
are constitutive genes, which means that are always transcribed and translated -the
process by which a cell makes proteins using the genetic information carried in mes-
senger RNA. They play a vital role in maintaining fundamental cellular functions,
irrespective of their specific functions in a tissue or organism. As a result, these
genes are typically expressed in all cell types within an organism [25].

To complete the necessary definitions, the final concept to expose is as follows:

Definition 1.2. (Hill-Langmuir function) A Hill-Langmuir function is a mathematical
representation commonly used to describe the binding behavior between a ligand, the binding
molecule, and a receptor protein, a protein that has binding sites and can interact with specific
ligands. It is characterized by the equation:

θ =
[L]n

Kd + [L]n
, n ∈ N.

Here, [L] represents the total concentration of the ligand, n represents the Hill coeffi-
cient, which determines the cooperative interaction strength between the ligand, the binding
molecule, and the receptor, and Kd is the apparent dissociation constant, which descrives
binding affinity of an enzyme for its substrate.

Remark 1.3. In the context of the mushroom bifurcation, we will focus our analysis
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on the case n=2. By considering this restriction, we can still capture the essen-
tial properties of the system, both from a biological perspective, where it implies
that two molecules are required for protein transcription, and from a mathematical
standpoint, as it simplifies the study of parameters.

1.1.2 Definition of the Model: Biological Description

Pérez-Carrasco et al. [43] employed a mixed-integer programming (MIP) frame-
work to develop a model for the mushroom bifurcation based on the gene circuit
depicted in Figure 1.4. MIP is a powerful approach that addresses problems where
some of the decision variables are constrained to be integer values at the optimal
solution [12]. The dynamics of gene regulation within this model involve the inter-
action between the gene circuit and the signaling of the substrate S, subsequently
influencing the gene U. These dynamics are represented by a one-dimensional de-
terministic autonomous ordinary differential equation.

Definition 1.4. (Mushroom bifurcation model) We define the mushroom bifurcation
model as:

u̇ = f (u, r, s) = r + a(s)
u2

1 + u2 − u, r ∈
(

0,
1

3
√

3

)
. (1.1)

Figure 1.4: Schematic diagram of the system modeled by Eq. (1.1) exhibiting mushroom
bifurcation behavior, linked to the signaling of substrate S and its effect on gene U. 1) Rep-
resents the substrate S’s capacity to activate the expression of gene U, translating the gene’s
information into a functional protein. 2) Gene translation inhibition. 3) As U reaches satu-
ration due to high levels of concentration, self-inhibition occurs, leading to a decrease of its
activity.

Notation Meaning

u State variable: concentration of the protein expressed by gene
U

r Parameter: concentration of constitutive housekeeping gene
s Parameter: concentration of biochemical signal inducer S
H(s, u) = a(s) u2

1+u2 Hill function that indicates the concentration of activating tran-
scription factor, the protein that increases transcription of the
gene, regulated by s
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Given q ∈ R+,
a(s) = sq − s2, s ∈ [0, q] (1.2)

encodes the incoherent signalling. Due to a(s) parabola-shape (see Figure 1.5), given
a(s) defines the transcription factor, at low signals -small values of s-, S activates
the transcription of U; oppositely, at high signals, when having a low affinity, the
transcription process is repressed (refer to Figure 1.4). Moreover, the Hill-Langmuir
form of H(s, u) captures the phenomenon of autosaturation, which occurs in the
presence of high concentrations of u.

Figure 1.5: Function f(u, r, s) with r = 0.14 and varying values of s. A distinctive observation
from the graph is the parabolic pattern exhibited, particularly evident when comparing the
effects of s = 1 and s = 4.

Remark 1.5. While the concepts of protein and gene may overlap in certain contexts
within this study, it is important to clarify that a protein is the product of a gene, and
they are distinct entities. In our specific case, the gene U is responsible for producing
proteins u, which subsequently exerts an influence on it.

Understanding the stability of branches in the mushroom bifurcation (Figure
1.6), specifically the neck region, is important in biology. The neck acts as a unique
biosensor [43] by enabling precise activation levels of a target signal within a limited
range, given the "ON state" is only available for a reduced range of signals. Moreover,
the size of the mushroom head provides memory, preserving the activation state for
a broader range of signals than necessary. By regulating parameters like the gene
degradation rate, it becomes possible to control the size of the neck in the mushroom
bifurcation. This control enables the manipulation of both the range and the required
duration of target signals. This way the mushroom not only serves as an accurate
signal detector but also as a timer. Additionally, the isola in the bifurcation diagram,
a closed curve in the bifurcation diagram, serves as a sensor of extreme values with
infinite memory, capable of detecting past high or low signal levels.

Remark 1.6. The chosen domain for the parameter r, specifically r ∈
(

0, 1
3
√

3

)
, is

non-trivial. It is important to note that for values of r greater than 1
3
√

3
, there are no
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Figure 1.6: (A) Mushroom bifurcation represented with 0 ≤ s ≤ 3 for r = 0.14 and q = 3.
Solid and dashed lines respectively indicate stable and unstable branches. (B) Mushroom
bifurcation for r = 0.14 and q =. (B) The emergence of an isola is observed, exhibiting
a transcritical (T) bifurcation alongside two saddle-node (SN) bifurcations, for a value of q
equal to 2.7849536194134643. (C) Isola formed with the absence of a transcritical bifurcation,
with q set to 2.61.

positive roots. Consequently, in the real space, no bifurcation would occur in this
range, rendering it unsuitable for further analysis.

1.2 Bifurcation Analysis of the Model

In the context of continuous dynamical systems described by the differential
equation ẋ = f (x), fixed points are solutions to the equation f (x) = 0. These
fixed points represent constant solutions or steady states of the system.

Definition 1.7. (Continuable fixed point) A continuable fixed point, denoted by a point
where f (x0, λ0) = 0 and ∂ f

∂x (x0, λ0) ̸= 0, is locally continuable in the sense that a path of
zeroes extends from it through a neighborhood of (x0, λ0).

Consequently, the Implicit Function Theorem can be applied, enabling the de-
scription of the graph of a function locally within the set of zeros of its derivative.

1.2.1 Saddle-Node (S-N) Bifurcation

Let f : I × Λ → R be a continuously differentiable function, where I, Λ ⊂ R are
open intervals, giving rise to a family of continuous dynamical systems ẋ = fλ(x),
where fλ : I → R is given by fλ(x) = f (x, λ) for each λ ∈ Λ. Let (x0, λ0) ∈ I × Λ be
a point in the bifurcation diagram, i.e., a point where f (x0, λ0) = 0.

Theorem 1.8. (Saddle-Node Bifurcation) Assume

∂ f
∂x

(x0, λ0) = 0, A :=
∂ f
∂λ

(x0, λ0) ̸= 0, B :=
∂2 f
∂x2 (x0, λ0) ̸= 0.
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Then, there exists λ∗ : (x0 − η, x0 + η) → R, C∞, such that

(1) λ∗(x0) = λ0, (3) λ′
∗(x0) = 0,

(2) f (x, λ∗(x)) = 0, (4) λ′′
∗ = − B

A
̸= 0.

Proof. To prove the existence of λ∗, it is necessary and sufficient to verify that the
conditions required for the application of the Implicit Function Theorem around the
point (x0, λ0) are satisfied. Under the given assumptions that (x0, λ0) is a continuable
fixed point, there exists a C∞ function λ∗(x) such that λ∗(x0) = λ0 and f (x, λ∗(x)) =
0 for all x in a small enough interval around x0, namely, (x0 − η, x0 + η), for a
certain η. This follows from the Implicit Function Theorem, which states that if the
conditions for a local inversion are satisfied, then there exists a unique function λ∗(x)
that locally solves the equation f (x, λ∗(x)) = 0 and satisfies the initial condition
λ∗(x0) = λ0. Therefore, the existence of λ∗ is established; furthermore, (1) and (2)
are a direct consequence of the definition of the implicit function λ∗.

(3) λ′
∗(x0) = 0.

We have

f (x, λ∗(x)) = 0

Let us compute the derivative of this equation with respect to the variable x:

0 =
d f
dx

(x, λ∗(x)) =
∂ f
∂x

(x, λ∗(x))
dx
dx

+
∂ f

∂λ∗
(x, λ∗(x))

dλ∗
dx

(x). (1.3)

Evaluating this equation at (x, λ∗(x)) = (x0, λ∗(x0)) and noticing that dx
dx = 1, we

obtain

dλ∗
dx

(x)
∣∣∣∣

x=x0

= −
d f
dx (x0, λ∗(x0))
∂ f

∂λ∗
(x0, λ∗(x0))

= 0

(4) λ′′
∗ (x0) ̸= 0.

Differentiating (1.1) with respect to x once more, we obtain:

d2λ∗
dx2 (x, λ∗(x)) =

− ∂2 f
∂x2 (x, λ∗(x)) ∂ f

∂λ∗
(x, λ∗(x)) + ∂2 f

∂λ2
∗
(x, λ∗(x)) ∂ f

∂x (x, λ∗(x))

( ∂ f
∂λ∗

(x, λ∗(x)))2
. (1.4)

Hence, evaluating (1.2) at (x, λ∗(x)) = (x0, λ∗(x0)), we obtain λ′′
∗ (x0) = − B

A ̸= 0,
provided.

The stability of the branches emerging from the bifurcation point (x0, λ0) can be
determined by examining the sign of the second partial derivative of the function f
with respect to x, denoted as ∂xx f [22]. To simplify notation, let ∂xx f be denoted as
fxx.
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1. If fxx(x0, λ0) < 0, the upper branch (for x > x0) consists of stable fixed points.
In this case, any perturbation from the bifurcation point will lead the system to
converge back to the upper branch. Conversely, the lower branch (for x < x0)
is composed of unstable fixed points.

2. If fxx(x0, λ0) > 0, the upper branch becomes unstable. Any perturbation from
the bifurcation point will cause the system to diverge from the upper branch.
Meanwhile, the lower branch remains stable

Remark 1.9. When considering and defining the model, it is crucial to examine
its differentiability. For instance, in the case of n = 1.8, the function f would be
continuously differentiable (C1) but not twice continuously differentiable (C2) at
u = 0. However, outside of u = 0, the function f is infinitely differentiable (C∞).

Application to Equation 1.1

The mushroom bifurcation model describes a dynamical system in which the rate
of change of a quantity u is governed by a function f (u, r, s). Let us investigate the
system for conditions under which a saddle-node bifurcation occurs, and to further
analyze the bifurcation.

Let us descrive equation 1.1 as:

u̇ = f (u, s, r) = r + a(s)g(u)− u, (1.5)

Here, a(s) > 0. The function g(u) is defined as g(u) = un

1+un , which has a

derivative g′(u) = nun−1

(1+un)2 . It can be observed that g(0) = 0, g(u) is increasing,
and limu→∞ g(u) = 1. It can be seen g′(u) > 0 and there exists a unique point u∗
where g′′(u) = 0.

The saddle-node bifurcation occurs when the following system is satisfied:


0 = f (u, s) = r + a(s)g(u)− u,

0 = ∂ f
∂u = a(s)g′(u)− 1,

0 ̸= ∂ f
∂s (u, s),

0 ̸= ∂2 f
∂x2 (u, s).

(1.6)

To investigate the saddle-node bifurcation, we will need to find the value of s, for
q, r fixed, for which the above system has a single solution, and evaluate the stability
of that solution.
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Figure 1.7: Function g represented by the orange curve, along with its first derivative g’
displayed in dark red. Prior to the dotted line, the function displays a convex shape, indicating
that the second derivative g”(u) is greater than zero. At the inflection point denoted as u∗,
marked by the dotted line, the curvature of g undergoes a transition, characterized by a switch
from a positive to a negative sign of g”(u), leading to a concave shape in the subsequent
region.

In the case of g(u) = un

1+un , the derivative g′(u) = nun−1

(1+un)2 , and we have d f
du =

a(s)g′(u)− 1. Substituting this back into our system of equations, we find the equi-
librium points and the associated values of s.

In order to evaluate the stability of the equilibrium points, we need to compute
the second derivative of f with respect to u, ∂2 f

∂u2 = a(s)g′′(u). If the second derivative
is negative, the equilibrium point is stable, while if it is positive, the point is unstable.

As a(s) is parabola-shaped, there exists a′(s0) = 0 such that a(s0) is maximized.
Consider u∗ the inflection point, and let g′(u∗) = D. Based on the constraint g′(u) >
0, we have three cases:

1. If 1
a(s0)

> D, there are no solutions to system 1.6 .

2. If 1
a(s0)

= D, then u = u∗, the inflection point. We find a(s0) = − r−u∗
g(u∗)

.
Therefore, the Jacobian matrix of f at (s0, u∗) in this case is singular, given
fs(s0, u∗) = a′(s0)g(u∗) = 0 and fuu(s0, u∗) = a(s0)g′′(u∗) = 0. Due to the
non-degeneracy conditions of system 1.6, there are no solutions to the system.

3. If 1
a(s0)

< D, there exists at least one solution to the system.

Remark 1.10. Given the mushroom-shaped form, it is possible that depending on
the value of q and r, we will have two or four saddle-nodes.

Remark 1.11. It is worth mentioning that in the case where 1
a(s0)

= D, the described
situation serves as the foundation to characterize the collision of two degenerate
saddle-node bifurcations, which results in a transcritical bifurcation.
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As a(s) reaches a maximum at D for some s0, we will have a situation where the
stability of the equilibrium point changes as s varies.

Numerically, the objective is to identify Saddle-Node bifurcations in the nonlinear
function described by Equation 1.1. The system will be solved by employing the
Newton-Raphson numerical method, where q and r are fixed while treating s as the
parameter. The implementation specifics of this method can be found in Appendix
B.1.

 f (u0, s0) = r + s(q − s) u2

1+u2 − u = 0,
∂

∂u f (u0, s0) =
2qs0u0−2s2

0u0−(u2
0+1)2

(u2
0+1)2 = 0.

(1.7)

The expression s(q − s) can be considered as a(s, q) for convenience. Solving
system 1.7, we obtain a(s, q) = (1+u2)2

2u . Substituting this expression into f , it gives:

f̃ (u) = u3 − u + 2r. (1.8)

Once Equation 1.8 has been solved for r = 0.14, the subsequent step involves
solving the following equation for q = 3 and the specific positive values of u, consid-
ering it must be biologically meaningful, as there can only be positive concentrations
of proteins:

−s2 + sq =
(1 + u2)2

2u
. (1.9)

Hence:

u0i s01i
s02i

0.309706449507606 0.942318787810669 2.057681212189331
0.808506228591647 0.752459879654676 2.247540120345324

Table 1.1: Values of u0i and s0i for i ∈ {1, 2}.

1.2.2 Transcritical Bifurcation: Lemma of Morse

Descriving f as in the beginning of the previous section:

Theorem 1.12. (Transcritical Bifurcation [23]) Assume

∂ f
∂x

(x0, λ0) = 0,
∂ f
∂λ

(x0, λ0) = 0, A11A22 − A2
12 < 0, A11 ̸= 0,

where

A11 :=
∂2 f
∂x2 (x0, λ0), A12 :=

∂2 f
∂λ∂x

(x0, λ0), A22 :=
∂2 f
∂λ2 (x0, λ0)

Then, there exist two curves of fixed points given by x± : (λ0 − η, λ0 + η) → R, C∞, such
that

(1) x±(λ0) = x0, (3) x′±(λ0) = (−A12 ±
√

A2
12 − A11A22)/A11,

(2) f (x±(λ), λ = 0.
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In order to prove Theorem 1.12, let us define the concept of the index of a non-
degenerate critical point, i.e., a point where the Hessian is non-singular.

Definition 1.13. (Index) The index of a non-degenerate critical point is the number of
negative eigenvalues of the Hessian matrix.

The Morse lemma [21] allows for the local characterization of non-degenerate
critical points of a function based on their index. In order to prove this theorem,
we will employ the method of deformation or homotopy [13] in conjunction with
Differential Equations.

Definition 1.14. (Homotopy) Let X and Y be topological spaces, and let f0, f1 : X → Y
be continuous maps. We say that f0 and f1 are homotopic if there exists a continuous map
F : X × [0, 1] → Y such that F(x, 0) = f0(x) and F(x, 1) = f1(x). In this case, we write
f0 ∼ F ∼ f1 and we say that the map F is a homotopy between f0 and f1.

Theorem 1.15. (Lemma of Morse) Let f : U → R be a C3 function defined on the open
set U ⊂ Rn. Suppose x0 ∈ U is a non-degenerate critical point of f with index s. Then,
there exists a C1 diffeomorphic immersion G : V → U, where V ⊂ Rn is an open set, such
that g = f ◦ G : V → R is of the form

g(x) = f (x0)− x2
1 − . . . − x2

s + x2
s+1 + . . . + x2

n.

Before proceeding with the proof of the theorem, we will introduce the Lemma
of Hadamard [41], which will be used in the proof. Firstly, let us define the concept
of convexity of subsets:

Definition 1.16. (Convex subset) A subset S of a vector space X over K is convex if,
whenever S contains two points x and y, S also contains the segment of the straight line
joining them, i.e.,

∀x, y ∈ S, ∀α, β ∈ R such that α, β ≥ 0 and α + β = 1, we have αx + βy ∈ S.

Lemma 1.17. (Lemma of Hadamard [41]) Let f be a C∞ function in a convex neighbor-
hood V of 0 in Rn, with f (0) = 0. Then

f (x1, . . . , xn) =
n

∑
i=1

xigi(x1, . . . , xn)

for some suitable C∞ functions gi defined in V, with gi(0) =
∂ f
∂xi

(0).

Proof. We have

f (x1, . . . , xn) =
∫ 1

0

d
dt

f (tx1, . . . , txn) dt =
∫ 1

0

n

∑
i=1

∂

∂xi
f (tx1, . . . , txn)xi dt.
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In the first equality, we have used the Fundamental Theorem of Calculus, which
states that if F(t) is an antiderivative of f (t), then

∫ b
a f (t) dt = F(b)− F(a). In this

case F(t) = f (tx1, . . . , txn), we have

f (x1, . . . , xn) = f (x1, . . . , xn)− f (0, . . . , 0).

For the second equality, by using the chain rule, we express the derivative as a
sum of partial derivatives.

Therefore, we can define functions gi(x1, . . . , xn) as follows:

gi(x1, . . . , xn) =
∫ 1

0

∂

∂xi
f (tx1, . . . , txn) dt.

At this stage, the proof of Theorem 1.15 can be presented:

Proof of Theorem 1.15. Assume that x0 = 0 and f (x0) = 0 by making appropriate
translations. Similarly, the open ball U centered at x0 = 0 can also be assumed. By
applying the Hadamard lemma (1.17), the following expression can be obtained:

f (x) =
n

∑
i=1

xiFi(x), Fi(x) =
∫ 1

0

∂

∂xi
f (tx1, . . . , txn) dt.

For easier notation, let us consider writing tx = (tx1, . . . , txn). Since Fi(0) = 0 for
i = 1, . . . , n, applying the Hadamard lemma again on Fi, we have:

Fi(x) =
1
2

n

∑
j=1

xjHij(x), Hij(x) = 2
∫ 1

0

∂2F
∂xi∂xj

(µx) dµ = 2
∫ 1

0

∫ 1

0

∂2 f
∂xi∂xj

(µtx)µ dµ dt.

Defining the vector function F(x) = (Fi(x))i and the symmetric matrix function
H(x) = (Hij(x))ij, we easily obtain the following identities:

f (x) = F(x)Tx =
1
2

xT H(x)x, F(x) =
1
2

H(x)x.

The differential matrix of G(x) is denoted as DG(x). Using the differentiation
rule for transposed matrices, we find that the differential of the transposed function,
D(F(x)T), is equivalent to the transpose of the differential matrix, (DF(x))T. Em-
ploying the property that for any matrix F and vector x, the product xT F equals Fx
and applying the product rule for differentiation:

D f (x) = (DF(x))Tx + F(x) = xTDF(x) + F(x).

Next, we express DF(x) in terms of H(x).

DF(x) =
1
2

DH(x)x +
1
2

H(x).

Substituting DF(x) into the expression for D f (x), we get
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D f (x) = xT
(

1
2

DH(x)x +
1
2

H(x)
)
+ F(x) = xT(DF(x) +

1
2

H(x)).

Note that due to regularity properties, since f is C3, then F is C2 and H is C1.
Furthermore, H(0) = D2 f (0) = H f (0) is the Hessian matrix at the critical point,
and DF(0) = 1

2 H(0).
In order to find the function F, we will define immediately a homotopy repre-

sented by Φt. This homotopy enables us to gradually deform the function f while
preserving its critical properties. Through this deformation process, we aim to sim-
plify f and determine the appropriate function F.

Let us define the homotopy Φt = Φt(t; 0, ·), induced by a non-autonomous vector
field Xt = X(t, ·), such that

ft(x) = (1 − t)
1
2

xT H(0)x + t
1
2

xT H(x)x,

satisfies ft ◦ Φt = f0 for all t ∈ [0, 1] in a neighborhood of 0. Therefore, for F = Φ1,
we have f ◦ F = f0, which is a quadratic function. The result will follow from the
theorem of diagonalization of quadratic forms [4] and Sylvester’s inertia law [2].

Theorem 1.18. (Sylvester’s Law of Inertia) Given a real quadratic form Q : Rn → R,
which can be represented in the form:

Q(x) =
n

∑
i=1

aix2
i

for some coefficients ai ∈ {0, 1,−1}, and for a suitable non-singular linear transformation,
the quadratic form Q can be transformed to a diagonal form.

The law of inertia then states that the number of positive, negative, and zero coefficients
ai are invariants of Q. This means, regardless of the choice of diagonalizing basis, the count
of positive, negative, and zero coefficients remains the same. In mathematical notation, the
number of ai > 0, ai = 0, and ai < 0 are conserved under any suitable basis transformation.

The rate of change of ft along the flow lines of Xt can be represented by ∂
∂t ( ft ◦

Φt). If we focus on a critical point of ft, by definition, the rate of change of ft at this
point along any direction, including along the flow lines of Xt, should be zero.

Thus, Φt = Φ(t; 0, ·), where Φ is the evolutionary process of an ordinary differ-
ential equation ẋ = Xt(x), must satisfy the equation:

0 =
∂

∂t
( ft ◦Φt) =

∂ ft

∂t
(Φt(x))+D ft(Φt(x))

∂Φt

∂t
=

∂ ft

∂t
(Φt(x))+D ft(Φt(x))Xt(Φt(x)).

Here, ∂ ft
∂t (x) represents the partial derivative of ft with respect to t, and D ft(x)

denotes the derivative of ft with respect to x. Since Φt is a diffeomorphic immersion,
the derivative of Φt with respect to t can be expressed as Xt(Φt(x)). Therefore, the
equation simplifies to:
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∂ ft

∂t
(x) + D ft(x)Xt(x) = 0 (1.10)

We obtain an equation for the non-autonomous vector field Xt. Since

∂ ft
∂t

(x) + D ft(x)Xt(x) = xT
(

1
2
(H(x)− H(0))x +

(
H(0) + t

(
1
2

DH(x) + H(x)− H(0)
))

Xt(x)
)

.

we have
∂ ft
∂t

(x) + D ft(x)Xt(x) = xT
(

1
2
(H(x)− H(0))x +

(
H(0) + t

(
DF(x) +

1
2

H(x)− H(0)
))

Xt(x)
)

.

Let us define H(0) + t
(

DF(x) + 1
2 H(x)− H(0)

)
= Ht(x). To make 1.10 vanish,

we take

Xt(x) =
1
2

Ht(x)−1(H(x)− H(0))x,

where Ht(0) is non-degenerate for all t ∈ R, then there exists a neighborhood
U1 ⊂ U of 0 such that Ht(x) is non-degenerate for t ∈ (− 1

2 , 3
2 ). Thus, as Ht(x)

remains invertible in U1, Xt(x) is defined in the open set Ω = (− 1
2 , 3

2 )× U1.
Since Xt is C1, the associated evolutionary process Φ is C1 in an open set D ⊂

(− 1
2 , 3

2 )× Ω. Furthermore, Xt(0) = 0 for all t ∈ (− 1
2 , 3

2 ), and thus Φ(t; t0, 0) = 0 for
all t, t0 ∈ (− 1

2 , 3
2 ). In particular, there exists a neighborhood V ⊂ U1 of 0 such that

(t; 0, x) ∈ D for all t ∈ (− 1
4 , 5

4 ) and x ∈ V.
Therefore, G = Φ1 : V → U satisfies f ◦ G = f0.

We have seen that the Morse lemma is a fundamental theorem in Differential
Topology that relates the geometry of a smooth function close to a critical point.
Now we are ready to prove Theorem 1.12:

Proof of 1.12. Let us consider the Hessian matrix of f :

H =

[
A11 A12

A21 A22

]
.

The determinant of H, denoted as Det(H), is defined as Det(H) = A11A22 −
A12A21. By hypothesis, it is negative, which implies that H is non-degenerate, as it
is not zero.

By applying the Morse Lemma, we can assert that there exists a local diffeomor-
phism

h : (0, 0) ∈ J1 × J2 −→ I0 × Λ0 ∋ (x0, λ0)

(j1, j2) 7→ (x, λ)

such that h(0, 0) = (x0, λ0) and f ◦ h(j1, j2) = j1 j2.
Taking h−1 = (j1, j2), there exists j1, j2 : I0 × Λ0 −→ R that are C∞ such that for

every (x, λ) ∈ I0 × Λ0:

• f (x, λ) = j1(x, λ)j2(x, λ),



16 A Systematic Description of the Mushroom Bifurcation Model

•

∣∣∣∣∣∂x j1 ∂λ j1
∂x j2 ∂λ j2

∣∣∣∣∣ ̸= 0, as at least ∂x j1 or ∂x j2 ̸= 0 at (x0, λ0),

• j1(x0, λ0) = j2(x0, λ0) = 0.

From the hypothesis conditions, we note that j1(x0, λ0) = j2(x0, λ0) = 0.
We then translate the conditions over j1, j2 on conditions over f :

∂ f
∂x

=
∂j1
∂x

j2 + j1
∂j2
∂x

,

∂ f
∂λ

=
∂j1
∂λ

j2 + j1
∂j2
∂λ

,

∂2 f
∂x2 =

∂2 j1
∂x2 j2 + 2

∂j1
∂x

∂j2
∂x

+ j1
∂2 j2
∂x2 ,

∂2 f
∂λ2 =

∂2 j1
∂λ2 j2 + 2

∂j1
∂λ

∂j2
∂λ

+ j1
∂2 j2
∂λ2 ,

∂2 f
∂x∂λ

=
∂2 j1

∂x∂λ
j2 +

∂j1
∂x

∂j2
∂λ

+ j1
∂2 j2
∂λ2 +

∂j1
∂λ

∂j2
∂x

.

The determinant of the Hessian of f evaluated at (x0, λ0) is then given by:

∣∣∣∣∣ 2∂x j1∂x j2 ∂x j1∂λ j2 + ∂λ j1∂x j2
∂x j1∂λ j2 + ∂λ j1∂x j2 2∂λ j1∂λ j2

∣∣∣∣∣ = −(∂x j1∂λ j2 − ∂λ j1∂x j2)2 < 0,

which is not equal to zero since∣∣∣∣∣∂x j1 ∂λ j1
∂x j2 ∂λ j2

∣∣∣∣∣ ̸= 0.

From the transcritical bifurcation, we find that fxx(x0, λ0) ̸= 0, which implies
∂x j1(x0, λ0)∂x j2(x0, λ0) ̸= 0.

Let us analyze this locally. Given fxx(x0, λ0) ̸= 0, then there exist x̄1, x̄2 : Λ0 → I0

that are C∞ such that

{(x, λ) ∈ I0 × Λ0 : g(x, λ) = 0} = {(x̄−(λ), λ)|λ ∈ Λ0} ∪ {(x̄+(λ), λ)|λ ∈ Λ0}.

Now we can prove (1) and (2) by rewriting noting that:

1. 0 = f (x±(λ), λ), meaning that x±(λ) is a root of the function f for each λ,

2. 0 = ∂x f (x±(λ), λ)x′±(λ) + ∂λ f (x±(λ), λ).

By taking the derivative again, we get

0 = ∂xx f (x±(λ), λ)(x′±(λ))
2 + 2∂xλ f (x±(λ), λ)x′±(λ) + ∂x f (x±(λ) + λ)x′′±(λ) + ∂λλ f (x±(λ), λ).

Evaluating at λ = λ0 and x±(λ) = x0, we get
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x′±(λ0) =
−∂xλg(x0, λ0)±

√
(∂xλg(x0, λ0))2 − ∂xxg(x0, λ0)∂λλg(x0, λ0)

∂λλg(x0, λ0)
,

which proves (3).
In conclusion, the transcritical bifurcation conditions are satisfied, and the proof

is complete.
We aim to study the stability of the two curves. For simplicity, we denote ± as ±

and similarly for x0 and λ0.
The derivative of f at ± and λ can be expanded as:

∂ f
∂x

(x±, λ) =
∂ f
∂x

(x0, λ0)+
∂2 f
∂x2 (x±, λ0)x′±(λ0)+

∂2 f
∂x∂λ

(x±, λ0)(λ−λ0)+O((λ−λ0)
2).

We have 0 = f (x±, λ), and thus ∂ f
∂x (x±, λ) can be rewritten as:

∂ f
∂x

(x±, λ) = 0 ±
√
−det (Hessian( f (x0, λ0))) + O(λ − λ0)

2.

The stability of the curves x±(λ) is then determined by the sign of the right-
hand side. The ± sign implies that the stability of x±(λ) changes at the bifurcation
value λ = λ0. When the square root term is positive, x±(λ) is stable, and when
it is negative, x±(λ) is unstable. The term O((λ − λ0)2) indicates the error when
approximating near λ = λ0, and it tends to 0 as λ approaches λ0.

Theorem 1.12 can also be proven based on interpreting it from a Hamiltonian
point of view. This approach involves the introduction of a lemma by Liu et al. [39]
which addresses the existence of two intersecting curves. let us first introduce the
(Un)Stable Manifold Theorem [44].

Theorem 1.19. (The Stable Manifold Theorem) Let E be an open subset of Rn contain-
ing the origin, let f ∈ C1(E), and let ϕt be the flow of the nonlinear system ẋ = f (x).
Suppose that f (0) = 0 and that D f (0) has k eigenvalues with negative real part and n − k
eigenvalues with positive real part. Then there exists a k-dimensional differentiable manifold
S tangent to the stable subspace Es of the linear system ẋ = D f (x0)x at 0 such that for all
t ≥ 0, ϕt(S) ⊆ S and for all x0 ∈ S,

lim
t→∞

ϕt(x0) = 0.

Similarly, there exists an (n − k)-dimensional differentiable manifold U tangent to the
unstable subspace Eu of ẋ = D f (x0)x at 0 such that for all t ≤ 0, ϕt(U) ⊆ U and for all
x0 ∈ U,

lim
t→−∞

ϕt(x0) = 0.
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Lemma 1.20. Suppose that (x0, y0) ∈ R2 and U is a neighborhood of (x0, y0). Assume
that f : U → R is a Cp function for p ≥ 2, f (x0, y0) = 0, ∇ f (x0, y0) = 0, and the
Hessian H = H(x0, y0) is non-degenerate. If H is indefinite, then there exist two Cp−1

curves (xi(s), yi(s)), i = 1, 2, s ∈ (−δ, δ), such that the solution set of f (x, y) = 0 consists
of exactly the two curves near (x0, y0), (xi(0), yi(0)) = (x0, y0). Moreover, t can be rescaled
and indices can be rearranged so that (x′1(0), y′1(0)) and (x′2(0), y′2(0)) are the two linear
independent solutions of

fxx(x0, y0)η
2 + 2 fxy(x0, y0)ητ + fyy(x0, y0)τ

2 = 0. (1.11)

Proof. Consider the differential equation described by the following Hamiltonian
system:

ẋ =
∂ f (x, y)

∂y
, ẏ = −∂ f (x, y)

∂x
, (x(0), y(0)) ∈ U. (1.12)

Here, f (x, y) represents the potential function, and (x0, y0) is the only equilibrium
point within the region U. The Jacobian of this Hamiltonian at (x0, y0) is given by:

J =

[
fxy(x0, y0) fyy(x0, y0)

− fxx(x0, y0) − fxy(x0, y0)

]
(1.13)

Since the trace of J is zero, and the determinant of J is negative, it follows that
(x0, y0) is a saddle-type equilibrium of the system described in Eq. (1.12). The
eigenvalues of J are ±k for some positive k.

Based on the theory of invariant manifolds in differential equations, there exist
two unique curves, namely the stable manifold Γs and the unstable manifold Γu,
both lying within the region U. These curves are invariant under the dynamics of the
system, and for initial conditions (x(0), y(0)) ∈ Γs or Γu, the trajectory (x(s), y(s)) →
(x0, y0) as t approaches infinity or negative infinity, respectively. According to the
stable and unstable manifold theorem, both Γs and Γu are Cp−1 one-dimensional
manifolds.

On Γs ∪ Γu ∪ {(x0, y0)}, the Hamiltonian function f (x, y) equals zero since it rep-
resents the potential function of the system. Conversely, for any point (x, y) not
lying on Γs ∪ Γu ∪ {(x0, y0)}, the function f (x, y) does not equal zero. This property
is a consequence of the Morse lemma, indicating that the Cp−1 curves must coincide
with Γs ∪ Γu.

Lastly, let us consider the tangential direction of Γs and Γu. Denoting the curves
as (xi(s), yi(s)) for i = 1, 2, we have:

f (xi(t), yi(s)) = 0. (1.14)

Differentiating equation (1.14) twice with respect to t:

fxx(x(s), y(s))(x′(s))2 + 2 fxy(x(s), y(s))x′(s)y′(s) + fyy(x(s), y(s))y′(s)2

+ fx(x(s), y(s))x′′(s) + fy(x(s), y(s))y′′(s) = 0

and evaluating at s = 0 with ∇ f (x0, y0) = 0, we obtain equation (1.11).
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Remark 1.21. If we prove theorem 1.12 using the Lemma of Morse, we deduce the
curves belong to the class Cp−2 since this Lemma is applicable for functions Cp for
p ≥ 3. Alternatively, if we apply Hamiltonian arguments, the regularity condition is
p ≥ 1, therefore we conclude that the curves are Cp−1. See Appendix A.1.1 to see a
proof of Theorem 1.12 using Hamiltonian arguments.

Corollary 1.22. If the determinant of the Hessian matrix of a smooth function f (x, λ)

at a non-degenerate critical point is positive, then the function exhibits isolas in a small
neighborhood around the critical point.

Proof. By hypothesis, the Hessian matrix H of f is positive, therefore, H is non-
degenerate, as it is not zero. By applying the Morse Lemma, we can assert that there
exists a local diffeomorphism

h : (0, 0) ∈ J1 × J2 −→ I0 × Λ0 ∋ (x0, λ0)

(j1, j2) 7→ (x, λ)

such that h(0, 0) = (x0, λ0) and ( f ◦ h) (j1, j2) = j21 + j22, where we assume with-
out loss of generality that ∂xx f > 0, in case it was negative, we define f ◦ h(j1, j2) =
−j21 − j22. Distinctly as in the case of the transcritical bifurcation, here the level
of curve f (x, λ) = 0 is just a point. The set of points satisfying the equation
f ◦ h(j1, j2) = 0 forms a set of isolas in the j1-j2 plane. Since the transformation
h is a local diffeomorphism, these isolas map to a set of isolas in the x-λ plane.

The equation ( f ◦ h)(j1, j2) = 0 implies j21 + j22 = 0, which corresponds to the
point (0, 0). Now, if we look at a small neighborhood around (0, 0), the equation
( f ◦ h)(j1, j2) = c for small c > 0 describes a set of points forming a circle with
radius

√
c around the origin. This is due to the fact that for small c > 0, j21 + j22 = c

corresponds to a circle with radius
√

c in the j1-j2 plane.
When these circles are transformed by h into the x-λ plane, they form isolas in

a small neighborhood around the critical point (x0, λ0). This is possible because
the transformation h preserves the topology of the small neighborhood around the
origin, and thus the isolas in the j1-j2 plane become isolas in the x-λ plane.

Therefore, if the determinant of the Hessian matrix of a smooth function f (x, λ)

at a non-degenerate critical point is positive, then the function exhibits isolas in
a small neighborhood around the critical point. This argument relies on the local
structure of the function around the critical point, captured by the Morse Lemma,
and the positive determinant of the Hessian matrix ensuring a non-degenerate criti-
cal point.

Application to Equation 1.1

The transcritical bifurcation with respect to s, for a fixed r occurs when the fol-
lowing system is satisfied:
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0 = f (u, s, q) = r + a(s, q)g(u)− u,

0 = ∂ f
∂u = a(s, q)g′(u)− 1,

0 = ∂ f
∂s = a′(s, q)g(u),

0 ∂2 f
∂u2

∂2 f
∂s2 − ∂2 f

∂s∂u

2
,

0 ∂2 f
∂u2 = a(s, q)g′′(u).

(1.15)

As a(s, q) is parabola-shaped, there exists a′(s0, q0) such that a(s0, q0) is maxi-
mized. Consider u∗ the inflection point, and let g′(u∗) = D. Based on the constraint
g′(u) > 0, we have three cases:

1. If 1
a(s0,q0)

> D, there are no solutions to system 1.6 .

2. If 1
a(s0,q0)

= D, then u = u∗, the inflection point. We find a(s0, q0) = − r−u∗
g(u∗)

.
The Hessian matrix of f at (u0, s0, q0) in this case is singular. Due to the non-
degeneracy conditions of system 1.6, there are still no solutions to the system.

3. If 1
a(s0,q0)

< D, there exist u− < u∗ < u+ such that g′(u±) = 1
a(s0)

. We have

a(s0, q0) = − r−u±
g(u±

. Consider u+:

a(s0)g′′(u+)a′′(s0)g(u+) > 0

Therefore, the isola condition is met, given g′′(u+) < 0.

Consider u−:

a(s0)g′′(u−)a′′(s0)g(u+) < 0

Therefore, there is a transcritical bifurcation, given g′′(u+) > 0.

The stability of the two branches involved in the bifurcation is determined by
the sign of the second derivative of f with respect to u, which is ∂2 f

∂u2 (s0,±u±), given
the second derivative provides information about the local curvature of f at these
fixed points. If the second derivative of f with respect to u is negative at a particular
fixed point, it indicates that the function f is locally concave at this point, indicating
stability. Conversely, if the second derivative of f with respect to u is positive at
a particular fixed point, f is locally convex at this point, indicating instability.The
negative branch (u−) becomes unstable as the system parameter r increases, while
the positive branch (u+) becomes stable.

Finally, if we define a(s(q), q) as s(q− s), the condition s(q) = q
2 is satisfied. Thus,

a(s(q), q) = q2

4 .
In this section, we aim to solve the system 1.7 with the inclusion of a third equa-

tion. The system is represented as follows, considering s, q as parameters and r
fixed:
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Figure 1.8: 3D representations of the mushroom bifurcation, with the values of q ranging
from 0 to 5 and r fixed at 0.14. The progression from continuous trajectories to transcritical
and saddle-node bifurcations can be observed.



f (u0, s0) = r + s(q − s)
u2

1 + u2 − u = 0

∂ f (u0, s0)

∂u
=

2qs0u0 − 2s2
0u0 − (u2

0 + 1)2

(u2
0 + 1)2

= 0

∂ f (u0, s0)

∂s
=

(q − 2s)u2

(1 + u2
0)

= 0

(1.16)

By analyzing these equations, we derive the relationship a(s, q) = (1+u2)2

2u from
equation (2), and subsequently substitute it into equation (1) to determine the cor-
responding value of u0. Equation (3) provides us with the constraint q = 2s. To
explore the critical behavior of the system, we consider the function f (u, s, q) and
focus on identifying the value of qc at which a transcritical bifurcation occurs. For
our analysis, we fix the value of r = 0.14. Our calculations reveal a unique critical
value, denoted as qcritical, where the transcritical bifurcation manifests.

qcritical ucritical scritical

2.7849536194134648 0.309706449507606 1.3924768097067324

Using Corollary 1.22, it can be seen that the emergence of an isola is observed at a
critical value denoted as qisola = 2.6009104317327796. At this point, two saddle-nodes
are formed within the isola, representing crucial bifurcation points. In contrast, the
other branch of solutions does not exhibit any distinct behavior. Beyond the critical
value qc, the system no longer undergoes transcritical bifurcations. This finding im-
plies that the transcritical bifurcation phenomenon ceases to occur beyond a certain
threshold.

Summing up, the table below desplays the properties of the system under study:

1.3 Robustness of Bifurcations: Structural Stability

A phase portrait is said to be structurally stable if its topology cannot be changed
by an arbitrarily small perturbation to the vector field [55].
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Value of q Value of s Bifurcation
0 < q < qisola s ∈ [0, q] None

q ∈ (qisola, qtrans) s ∈ [scritic_1, scritic_2] for a certain u > 0 One isola and two Saddle-Node
bifurcations with a symmetry axis

s = q/2
q = qtrans s ∈ [scritic_1, scritic_2] for a certain u > 0

such that: max{r + (1+u2)u
2 − u = 0}

A Transcritical bifurcation at
s = q/2 with 2 Saddle-Node

bifurcations having a symmetry
axis s = q/2

q > qcritical s ∈ [scritic_1, scritic_4] for certain
u1, u2, ui > 0 such that:

Four Saddle-Node bifurcations
with a symmetry axis s = q/2

r + (1 + u2)u/2 − u = 0

1.3.1 Codimension 1 Bifurcations

In dynamical systems, codimension refers to the number of dynamic variables
that are necessary to fully describe the behavior of a system in relation to the number
of fixed parameters.

Given a parameter value of r = 0.14 and considering our dynamical system with
a codimension of 1, we can establish the robustness of the saddle-node bifurcation.
This implies that the saddle-node bifurcation persists and maintains its qualitative
behavior in the system under small perturbations or variations of the parameter
values.

Theorem 1.23. Let f = f (x, s, q) be a smooth function. If, for a fixed value q0, the function
f undergoes a saddle-node bifurcation at the point (x0, s0), then for any q within the interval
(q − ϵ, q + ϵ), where ϵ > 0, the function f (x, s, q) exhibits a saddle-node bifurcation at the
point (x(q), s(q)). As a consequence, the function f (x, s, q) is structurally stable.

Proof. By adjusting q within a neighborhood of qc, we produce a smooth disturbance
in the dynamical system. For the system represented by f (x, s, q), we have the asso-
ciated Jacobian matrix as follows:

J =

[
∂ f
∂x (xc, sc, qc)

∂ f
∂s (xc, sc, qc)

∂2 f
∂x2 (xc, sc, qc)

∂2 f
∂x∂s (xc, sc, qc)

]

Under the given hypothesis, the Jacobian matrix J is nonsingular. Thus, by ap-
plying the Implicit Function Theorem, we can infer the existence of a unique smooth
curve of solutions to the system given by{

x = x(q),

s = s(q)

with x(qc) = xc and s(qc) = sc. Consequently, for q in a neighborhood of qc, it holds
that f (x, s, q) exhibits a saddle-node bifurcation at the point (x(q), s(q)).

Remark 1.24. The Jacobian matrix has dimensions of 2x2 in this context because the
variable q is treated as a parameter rather than a variable. Specifically, the Jacobian
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matrix characterizes the relationship between changes in the variables x and s and
their corresponding effects on the values of f and fx, while keeping the parameter q
constant.

Figure 1.9: Structural stability of the four saddle-nodes for different values of q and their
corresponding bifurcation parameter (s) values : (a) q=5, (b) q=3, (c) q=2.8, (d) q=2.79.

However, it is important to note that the transcritical bifurcation is not robust in
this context. This is evident as it occurs only for one isolated value of the parameter q,
indicating that slight changes or perturbations in the parameter value can cause the
transcritical bifurcation to disappear or transition into a different type of bifurcation.

1.3.2 Codimension 2 Bifurcations

Due to the inherent robustness of the codimension 1 saddle-node bifurcation, we
can assert that if the system exhibits this bifurcation for a specific parameter, it will
continue to exhibit similar qualitative behavior when subjected to perturbations in a
new parameter, therefore the structural stability holds for the codimension 2 scenario
as well.

If we introduce a parameter, denoted as r, that perturbs our system, we can
investigate the robustness of the transcritical bifurcation:

Theorem 1.25. Let f = f (x, s, q, r) be a smooth function. If, for a fixed value r0, the
function f undergoes a transcritical bifurcation at the point (x0, s0, q0), then for any r in
a sufficiently small neighbourhood (r − δ, r + δ), where δ > 0, the function f (x, s, q, r)
exhibits a transcritical bifurcation at the point (x(r), s(r), q(r)). As a consequence, the
function f (x, s, q, r) is structurally stable.

Proof. By adjusting r within a neighborhood of rc, we produce a smooth disturbance
in the dynamical system. For the system represented by f (x, s, q, r), consider the
associated Jacobian matrix as follows:
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J =


∂ f
∂x

∂ f
∂s

∂ f
∂q

∂2 f
∂x2

∂2 f
∂x∂s

∂2 f
∂x∂q

∂2 f
∂s∂x

∂2 f
∂s2

∂2 f
∂s∂q


(xc,sc,qc,rc)

Let us analyze the determinant of the Jacobian matrix, denoted as Det(J), which
is computed as follows:

Det(J) = fx fxs fsq + fxx fss fq + fsx fs fxq − fq fxs fsx − fxx fs fsq − fx fss fxq.

This determinant is evaluated at the point (xc, sc, qc, rc). Given the conditions that
fx = 0 and fs = 0, the determinant simplifies to:

Det(J) = fq( fxx fss − f 2
xs)

According to the Transcritical Bifurcation theorem 1.12, for the system to exhibit
a transcritical bifurcation, it is necessary that the expression fxx fss − f 2

xs is negative.
Additionally, to ensure the form of a transcritical bifurcation, the coefficient fq must
not equal zero. As a consequence, the determinant of the Jacobian matrix, denoted
as Det(J), is non-zero. Hence, we can apply the implicit function theorem once again.
This theorem guarantees the existence of a unique smooth curve of solutions to the
system represented by: 

x = x(r),

s = s(r),

q = q(r)

with x(rc) = xc, s(rc) = sc. Consequently, for r in a neighborhood of rc, it holds
that f (x, s, q, r) exhibits a transcritical bifurcation at the point (x(r),s(r),q(r)).

Figure 1.10: Structural stability of the transcritical bifurcation - and the two saddle-nodes
- for different values of r and their corresponding bifurcation parameter (s,q) values : (A)
r=0.01, (B) r=0.05, (C) r=0.1, (D) r=0.15, (E) r=0.19.



Chapter 2

Deterministic Study of Delayed
Transitions

2.1 Bottleneck effect

The dynamics of complex systems involve intricate interactions and transitions
influenced by multiple factors. To comprehensively understand these dynamics and
transitions, it is crucial to examine the underlying system structure, behavior, and
their response to perturbations. This section focuses on a specific phenomenon in
system dynamics known as the bottleneck effect.

In the field of dynamical systems, the bottleneck effect [6,11,18,51], occurs when
the system’s evolution undergoes a significant slowdown due to a "bottleneck" in
its phase space. This effect becomes apparent when the system encounters regions
that force it to spend an extended period of time within them, resulting in a per-
ceived delay in the overall system evolution. One particular manifestation of this
phenomenon is known as a "delayed transition" or "ghost", which arises right after a
saddle-node bifurcation:

Definition 2.1. (Ghost) A delayed transition or ghost is defined as a region G in the phase
space Ω where the system’s dynamics exhibit prolonged temporal behavior characterized by
reduced rates of evolution. This phenomenon arises due to the persistent influence of an
attractor A, which was destroyed via a saddle-node bifurcation. The ghost region G can be
described as G = {x ∈ Ω : ϕ(t, x) ≈ R for t ≥ T}, where ϕ(t, x) represents the system’s
trajectory at time t starting from the initial condition x, R denotes the remnants of the
destroyed attractor, and T is a threshold time indicating the duration for trajectories to spend
near the remnants.

In the context of bifurcation theory, the understanding of such ghost regions can
lead to the derivation of scaling laws to the saddle-node. Moreover, post-bifurcation
delays are also found in other bifurcations, such as the transcritical. The investi-
gation, verification, and formalization of these delayed transitions following both
types of bifurcations will be addressed in sections 2.3 and 2.4. Prior to that, we will
introduce several theoretical fundamentals in the following section.
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2.2 Weierstrass Preparation Theorem

In complex analysis, one of the central objects of study are holomorphic functions
[33]. These are complex functions that exhibit relevant properties connected to the
smoothness and differentiability of real functions.

Definition 2.2. (Holomorphic) Let U ⊂ Cn be open. A function f : U → C is holo-
morphic if it is locally bounded and holomorphic in each variable separately. That is, f is
holomorphic if it is locally bounded and complex-differentiable in each variable separately:

lim
ξ∈C→0

f (z1, . . . , zk + ξ, . . . , zn)− f (z)
ξ

exists for all z ∈ U and all k = 1, 2, . . . , n

The ring of holomorphic functions ties together algebra and complex analysis, by
endowing the set of all holomorphic functions with the structure of a ring. There-
fore, making it an algebraic object and providing a natural context for studying the
properties and behavior of holomorphic functions.

Definition 2.3. (Ring of holomorphic functions) Let U ⊂ Cn be an open set. Define
H(U) to be the ring of holomorphic functions.

The notion of a germ of a function is fundamental for comprehending the lo-
cal behavior of functions. It arises from the recognition that in mathematics, our
interest extends beyond the global behavior of a function to the examination of its
characteristics within infinitesimally small neighborhoods of specific points.

Definition 2.4. (Germ of a function) Let p be a point in a topological space X. Let Y be
a set and U, V ⊂ X be open neighborhoods of p. We say that two functions f : U → Y and
g : V → Y are equivalent if there exists a neighborhood W of p such that f |W = g|W .

An equivalence class of functions defined in a neighborhood of p is called a germ of a
function.

The notation nHp = Hp represents the ring of germs at p of holomorphic func-
tions.

The order of vanishing of a function at a point provides valuable insight into the
behavior of the function in the vicinity of its zeros. It quantifies the number of times
the function is required to pass through the origin when its argument approaches a
specific value.

Suppose f is (a germ of) a holomorphic function at a point p ∈ Cn. Write

f (z) =
∞

∑
k=0

fk(z − p),

where fk is a homogeneous polynomial of degree k, i.e., fk(tz) = tk fk(z).
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Definition 2.5. (Order of vanishing) Let p ∈ Cn and f be a. holomorphic function in a
neighborhood of p. If f is not identically zero, define

ordp f = min{k ∈ N0 : f(k) ̸≡ 0}

If f ≡ 0, then define ordp f = ∞. The number ordp f is called the order of vanishing of f
at p.

The Weierstrass polynomial is a significant intermediary tool connecting holo-
morphic functions and polynomial functions. These polynomials possess a specific
structure that enables them to emulate the behavior of arbitrary holomorphic func-
tions in a particular manner.

Definition 2.6. (Weierstrass polynomial) Let U ⊂ Cn−1 be open, and let z′ ∈ Cn−1

denote the coordinates z′ = (z′1, . . . , z′n−1). Suppose a polynomial P ∈ H(U)[zn], the ring
of holomorphic functions defined on the open set U ⊂ Cn−1, extended by the variable zn, is
monic of degree k ≥ 0, that is,

P(z′, zn) = zk
n +

k−1

∑
j=0

cj(z′)z
j
n,

where cj are holomorphic functions defined on U, such that cj(0) = 0 for all j. Then, P
is called a Weierstrass polynomial of degree k. If the cj are germs in H0 = n−1H0 , then
P ∈ H0[zn] and P is a germ of a Weierstrass polynomial.

The Weierstrass Preparation Theorem is a crucial result in complex analysis that
establishes a relationship between holomorphic functions and Weierstrass polynomi-
als. It serves as a powerful tool for dissecting the structure of a holomorphic function
and uncovering its fundamental properties.

The objective of this section is to demonstrate that every holomorphic function
within the ring H0 can be expressed, up to a unit and a possible small rotation, as
a Weierstrass polynomial. This polynomial effectively represents the zeros of the
original function. Consequently, the algebraic and geometric properties of H0 can
be comprehended through the analysis of the algebraic and geometric properties of
n−1H0[zn].

It should be noted that definition 2.2 and theorem 2.8 remain applicable even
when considering the case where n = 1. In such instances, the only Weierstrass
polynomial of degree k is simply zk. Additionally, when k = 0, the polynomial P
becomes the constant function 1.

Definition 2.7. (Polydisc) For ρ = (ρ1, . . . , ρn), where ρj > 0 and a ∈ Cn, we define the
polydisc of center a and polyradius or simply radius ρ as:

∆ρ(a) =
{

z ∈ Cn : |zj − aj| < ρj for j = 1, 2, . . . , n
}
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Theorem 2.8. (Weierstrass Preparation Theorem [33]) Suppose f ∈ O(U) for an open
U ⊂ Cn−1 × C, where 0 ∈ U and f (0) = 0. Suppose zn 7→ f (0, zn) is not identically zero
near the origin, and its order of vanishing at the origin is k ≥ 1.

Then, there exists an open polydisc V = V ′ × D ⊂ Cn−1 × C with 0 ∈ V ⊂ U, a
unique u ∈ O(V) such that u(z) ̸= 0 for all z ∈ V, and a unique Weierstrass polynomial P
of degree k with coefficients holomorphic in V ′ such that

f (z′, zn) = u(z′, zn)P(z′, zn)

and such that all k zeros (counting multiplicity) of zn 7→ P(z′, zn) lie in D for all z′ ∈ V ′.

Before introducing the proof, we need some one-variable previous results [33,62].

Definition 2.9. (Piecewise-C1) A function P ∈ C[a, b] is Piecewise-C1 (denoted P ∈
C1[a, b]) provided that there is a finite (irreducible) partition a = C0 < C1 < . . . < CN+1 =

b such that P may be regarded as a function in C1[Ck, Ck+1] for each k = 0, 1, 2, . . . , N.
When present, the interior points Ck for k = 1, 2, . . . , N are called corner points of P.

Theorem 2.10. (Argument Principle) Suppose U ⊂ C is an open set, and γ is a piecewise-
C1 simple closed path in U such that the interior of γ is in U. Suppose that f : U → P1 is
a meromorphic function, a function that can locally be written as a quotient of holomorphic
functions, with no zeros or poles on γ. Then:

1
2πi

∫
γ

f ′(z)
f (z)

dz = N − P,

where N is the number of zeros of f inside γ and P is the number of poles inside γ, both
counted with multiplicity.

Furthermore, suppose h : U → C is holomorphic. Let z1, . . . , zN be the zeros of f inside
γ and w1, . . . , wP be the poles of f inside γ. Then:

1
2πi

∫
γ

h(z)
f ′(z)
f (z)

dz =
N

∑
j=1

h(zj)−
P

∑
j=1

h(wj) (7.2.27)

Proof of Theorem 2.8. Consider a small disk D centered at the origin. This disk is
chosen such that it lies within U and f (0, zn) ̸= 0 for zn ∈ D \ {0}

By continuity of f, we know that f remains non-zero on a neighborhood of any
point where it is initially non-zero. Therefore, if we fix z′ in a neighborhood of the
origin, the function zn 7→ f (z′, zn) will not be zero when zn is on the boundary of
the disk D. This holds true for a suitable choice of the neighborhood V ′ of z′, and
therefore, for a suitable polydisk V = V ′ × D.

We then apply the argument principle to find out the number of zeros of the
function zn 7→ f (z′, zn) within D. The argument principle is expressed as a contour
integral over the boundary of D:

1
2πi

∫
∂D

∂ f
∂zn

(z′, ζ)

f (z′, ζ)
dζ
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The integral is a continuous integer-valued function of z′, which means it doesn’t
jump abruptly for small changes in z′. Since we know that f (z′, zn) has a zero of
multiplicity k at zn = 0 when z′ is close to 0, the value of this integral is k when
z′ = 0. Therefore, due to its continuity, the integral remains constant and equals k
for all z′ in the neighborhood V ′.

Next, we associate each zero of the function zn 7→ f (z′, zn) within D with a func-
tion αj(z′), and these zeros are ordered arbitrarily. We then construct the Weierstrass
polynomial P which is a product of linear factors corresponding to these zeros. By
design, the polynomial P has the same zeros as f within D:

P(z′, zn) =
k

∏
j=1

(zn − αj(z′)) = zkn + ck−1(z′)z(k−1)n + . . . + c0(z′),

The coefficients of P, cj are defined in terms of symmetric functions of the zeros
of f . We we will prove that the functions cj are holomorphic. The Fundamental
Theorem of Symmetric Polynomials demonstrates that the elementary symmetric
functions can be expressed as polynomials in the power sum functions involving the
αj values.

sm(z′) =
k

∑
j=1

αj(z′)m, m = 1, . . . , k.

Therefore, if we establish that the power sums sm are holomorphic functions, it
follows that the functions cℓ are also holomorphic.

A more refined version of the argument principle states the following: If h and g
are holomorphic functions on a disc D, continuous on D, where g has no zeros on
∂D, and α1, . . . , αk are the zeros of g in D, then

1
2πi

∫
∂D

h(ζ)
g′(ζ)
g(ζ)

dζ =
k

∑
j=1

h(αj).

The formula above, with h(ζ) = ζm and g(ζ) = f (z′, ζ), says that

sm(z′) =
k

∑
j=1

αj(z′)m =
1

2πi

∫
∂D

ζm
∂ f
∂zn

(z′, ζ)

f (z′, ζ)
dζ

The function sm is evidently continuous, and by differentiating under the integral
with respect to ∂

∂zl
for ℓ = 1, . . . , n − 1. Hence, it follows that sm is holomorphic.

Our goal is to demonstrate that P divides f as claimed. To do so, we consider
each fixed value of z′. According to the one-variable theory, the function zn 7→
f (z′, zn)P(z′, zn) only has removable singularities, and the zeros of f (z′, zn) coincide
with the zeros of P(z′, zn). This implies that the singularities can be "cancelled out"
by multiplying f (z′, zn) with P(z′, zn).

Furthermore, we have defined the Weierstrass polynomial P to have the same ze-
ros as f (z′, zn) within the disc D. Therefore, when we multiply f (z′, zn) by P(z′, zn),
the zeros of f are cancelled out by the zeros of P. Consequently, the function
f (z′, zn)P(z′, zn) has no zeros within D.
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By applying the Cauchy formula to f
P , we can conclude that the function

u(z′, zn) =
1

2πi

∫
∂D

f (z′, ζ)P(z′, ζ)(ζ − zn)dζ

The function u is equal to f (z′, zn)P(z′, zn). Moreover, u is clearly continuous and
holomorphic in zn for each fixed z′. By differentiating under the integral, we find
that it is also holomorphic in z′.

Therefore, the Weierstrass polynomial P and the function u have been constructed
such that they satisfy all the conditions of the Weierstrass Preparation Theorem,
thereby completing the proof.

2.3 Saddle-node Scaling Law

From now on, we shall consider one-dimensional flows only, such as:

ẋ = f (r, x) for x ∈ R and r ∈ R

2.3.1 Normal Form of the S-N

Saddle-node bifurcations have been extensively studied in dynamical systems.
The normal form in the context of ordinary differential equations is given by

ẋ = r + x2 for x ∈ R and r ∈ R (2.1)

where x ∈ R is the state variable and r ∈ R is the bifurcation parameter.
To determine the fixed points of the system, we solve the equation r + x2 = 0.

This equation has two solutions: x± = ±
√
−r.

For r > 0, there are no real solutions to the equation r + x2 = 0, indicating that
there are no fixed points in this parameter range. At the bifurcation parameter value
r = 0, the equation r + x2 = 0 yields a single solution, namely x± = 0. However, this
fixed point is non-hyperbolic since the linearization of the system at x = 0 results in
a zero eigenvalue. For r < 0, the equation r + x2 = 0 has two distinct real solutions:
an attracting fixed point x− and a repelling fixed point x+. This configuration of
fixed points indicates the presence of a saddle-node bifurcation at r = 0.

Suppose we consider the initial condition x(0) = x0. In order to investigate the
scaling law provided by the ghost, our focus lies in determining the perturbations
on the time it takes trajectories for each value of r after the saddle-node bifurcation,
gradually approaching the bifurcation parameter until r = rc + ϵ.

To determine the time evolution, we can solve equation (2.1) by employing the
method of separation of variables.

∫ x(t)

x0

1
r + s2 ds =

∫ t

0
dt as r → 0

By applying trigonometric substitution, we obtain:
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arctan
(

x(t)√
r

)
− arctan

(
x0√

r

)
= t

√
r

Consequently, using the oddness of the tan−1 function, the duration of time that
a trajectory spends within the interval I = [−1, 1] can be calculated as:

2 arctan
(

1√
r

)
√

r
= t

In the limit as r approaches zero, we have:

t ∼ π√
r

Remark 2.11. The scaling law states that τ ∼ (r − rc)−1/2, which remains unchanged
regardless of the longitude of the interval I. The only requirement is that the value
xc lies within the interval I.

Figure 2.1: The unstable branch is denoted as x− (represented by dashed lines). The stable
branch is denoted as x+ (solid lines). Within this plot, there are several trajectories depicted
in blue color. These trajectories correspond to the values of x that will be evaluated. The solid
lines represent the exact x-values that are being evaluated.

2.3.2 General Non-Degenerate S-N Bifurcation

Definition 2.12. The genericity and transversality conditions in this case are:

∂2 f
∂x2 (0, 0) ̸= 0 (2.2)
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∂ f
∂r

(0, 0) ̸= 0 (2.3)

If the necessary conditions and (2.2)-(2.3) are satisfied, we call a saddle-node non-degenerate.

To prove the scaling law in non-degenerate saddle-nodes, we can utilize a special
case of Theorem 2.8, as presented in [28], but considering the complex phase space
as [11], to take advantage of the information of the features of the dynamics in C.

Corollary 2.13. Suppose f (r, x) is an analytic function with respect to x ∈ C in a neigh-
bourhood of x=0 such that it exhibits a saddle-node bifurcation at the origin. Then, there exists
a smooth function c(r, x) which is nonzero in a neighborhood near the origin N = [−ϵ, ϵ]2,
such that f can be locally given by:

f (x, r) = c(r, x)(r + a(x))

where a(x) satisfies a(0) = a′(0) = 0 and a′′(0) ̸= 0.

Proof. Given the assumptions, we can consider the function f (x, r) as an analytic
function on the complex plane C2, with variables r and x. By assumption, f (0, 0) = 0
and the function isn’t identically zero near the origin. Additionally, the order of
vanishing at the origin is 2 with respect to the variable x, which can be see from
the requirement of the saddle node bifurcation that the second derivative of f with
respect to x is nonzero at the origin. The Weierstrass Preparation Theorem implies
that there exists an analytic function u : C2 → C and a Weierstrass polynomial
P : C2 → C of degree 1 respect r such that

f (r, x) = u(r, x)P(r, x)

in a neighbourhood of the origin, identifying z′ = x and zn = r.
The given conditions state that the function a(x) has no dependence on r and only

depends on x. It is known that f (0, 0) = 0 and u(0, 0) ̸= 0, which implies a(0) = 0.
For a saddle-node bifurcation, it is required that ∂x f (0, 0) = 0. By expanding this
expression, we find ∂x f (0, 0) = u(0, 0)a′(0). Hence, a′(0) = 0 to satisfy the condition.
Additionally, a saddle-node bifurcation occurs when the sign of the real part of
∂xx f (0, 0) changes. This condition implies that a′′(0) ̸= 0.

Then there exists a function c : C2 → C, which is analytic in a neighbourhood of
the origin, such that f (x, r) = c(r, x)(r + a(x)), where c(r, x) = u(r, x).

Furthermore, the derivative of f with respect to r is given by

d f
dr

=
dc
dr

(r + a(x)) + c(r, x).

Upon evaluation at the origin and taking into account that a(0) = 0, we get

d f
dr

∣∣∣∣
(0,0)

=
dc
dr

∣∣∣∣
(0,0)

· 0 + c(0, 0) · 1 = c(0, 0).

Therefore, at the origin, the derivative of f with respect to r equals the value of the
function c(r, x) at the same point, which aids in justifying this transformation, by
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showing that the system’s dynamics in the r direction at the origin are governed by
the factor c(r, x), as expected in this normal form.

In conclusion, in a neighbourhood of the origin, f (r, x) = c(r, x)(r + a(x)), where
c(r, x) is the analytic function guaranteed by the Weierstrass Preparation Theorem,
and a(x) is an holomorphic function of degree 2 satisfying a(0) = a′(0) = 0 and
a′′(0) ̸= 0. This confirms that the function f (r, x) is of the form typically associated
with a saddle-node bifurcation.

The sign of (̧0, 0) determines the stability of the fixed point at the origin along the
r-direction. If c(0, 0) > 0, the fixed point is stable; if c(0, 0) < 0, it is unstable. This
comes directly from the derivative of f with respect to r at the origin being equal to
c(0, 0).

The sign of a′′(0), on the other hand, is tied to the behavior of the system along
the x-direction near the bifurcation. More specifically, the sign of a′′(0) dictates the
directional unfolding of the bifurcation. If a′′(0) > 0, the saddle-node bifurcation
opens towards the positive x-axis. On the other hand, if a′′(0) < 0, the bifurcation
opens towards the negative x-axis.

Assume, for the sake of concreteness, that both c(0, 0) and a′′(0) are positive. The
other scenarios can be readily obtained by switching x → −x and/or r → −r. Thus,
we’ll present the reasoning for one of the four potential cases.

The conditions imposed on the function a(x) can be formally encapsulated by
writing a(x) = â(x)x2, where â(x) ̸= 0. With r > 0 and â(0) > 0, we stipulate that
â(x) is bounded as a2 ≥ â(x) ≥ a1 > 0, and that c(0, 0) > 0, with c(x, r) similarly
bounded as c2 ≥ c(x, r) ≥ c1 > 0. Given these conditions, the scaling behavior near
a generic non-degenerate saddle-node bifurcation can be characterized through the
following inequality:∫ ϵ

−ϵ

1
c2(r, x) (r + a2x2)

dx ≤
∫ ϵ

−ϵ

1
c(r, x) (r + â(x)x2)

dx ≤
∫ ϵ

−ϵ

1
c1(r, x) (r + a1x2)

dx

Suppose that c(r, x) is a bounded and nonzero function on the interval [−ϵ, ϵ].
We then obtain:

∫ ϵ

−ϵ

1
c (r + ax2)

dx =
1
cr

∫ ϵ

−ϵ

1
1 + (

√ a
r x)2

dx =
1
cr

arctan(
√ a

r x)√ a
r

∣∣∣∣∣
ϵ

−ϵ

This simplifies to:

1
c
√

a
1√
r

2 arctan(
√

a
r

ϵ)

Finally, as r → 0+, the asymptotic behavior of the integral is given by τ ∼ π√
r . This

approximation validates that the integral demonstrates a consistent scaling behavior
as r → 0+, which is independent of the precise form of the function c(r, x). Hence,
this scaling law, characterized by an inverse square root dependency, reaffirms our
argument.

Remark 2.14. This method of study can also be applied to analyze general degener-
ate saddle nodes, including systems of the form ẋ = −r − x2.
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2.4 Transcritical Scaling Law

In order to examine the transcritical slowing down effect, it is necessary to define
the specific normal form under study:

Consider the system described by the differential equation

ẋ = x2 − r2 + c,

where c represents a positive real parameter and r represents a real parameter.
For c < 0, no bifurcation occurs. When c = 0, a transcritical bifurcation takes

place, and for c > 0, two saddle-nodes approach each other, leading to a transcritical
bifurcation (refer to Figure 2.2).

Let us consider a fixed value of c. We examine the scaling law by introducing r =
A
√

c, where A ranges from −1 to 1. We study the following integral for r → ±
√

c:∫ ϵ

−ϵ

1
c − r2 + x2 dx =

∫ ϵ

−ϵ

1
c − A2c + x2 dx =

= −2
1√

c(1 − A2)
arctan

(
ϵ√

c(1 − A2)

)
=

1√
c(1 − A2)

π

As we consider the limit of r approaching ±
√

c (corresponding to moving to-
wards the right or left saddle-node bifurcation, see Figure 2.2), we find that the
scaling law is given by the factor τ ∼ 1√

1−A2
√

c
, following the inverse square root de-

pendency found on the previous section, but now incorporating a factor depending
on c as 1√

c that tends to infinity as c approaches 0.
If we consider c as the control parameter and examine the slowing down effect

resulting from the transcritical bifurcation, we can observe a paradigm shift. To
analyze the impact of the coupling between the two saddle-nodes on the observation,
we keep the time trajectory constant at the symmetry axis, r = 0, and bring the
functions closer to our perspective, as shown in Figure 2.2.

The integral representing the time scale τ(c, r) is given by:

τ(c, r) =
∫ ϵ

−ϵ

1
c − r2 + x2 dx = 2

1√
c − r2

arctan
(

ϵ√
c − r2

)
From this expression, we can deduce the following relationship:

τ(c, r) c→0∼ π√
(
√

c − r)(
√

c + r)
∼ π

(r − rcrt)

Hence, we can conclude that there exists an inverse dependency between τ and
(r − rcrt), which follows a scaling law of the form τ ∼ (r − rcrt)−1.

It should be noted that due to the divergence factor mentioned earlier, this inverse
dependency is only valid within a certain range of c.

Remark 2.15. Due to the divergence factor found before, this inverse dependency is
only available for a certain range of c.
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Figure 2.2: (A) Families of saddle-nodes with a fixed parameter c, as c approaches zero and
its impact on time trajectories. The time trajectory of interest is depicted by a solid blue line,
at r=0. For c>0, two saddle nodes converge, whereas no bifurcations occur when c < 0 . In
the case of c=0, the plot represents the transcritical bifurcation scenario with a bolder line.
(B) The graph shows the significance of the parameter c, where the distances to the saddle
nodes are given by

√
c.



Chapter 3

Stochastic Dynamics

In the study of chemical reaction systems, it is crucial to have a thorough compre-
hension of the temporal processes at play. This entails a careful consideration of why
we opt for deterministic or stochastic approaches and the boundaries for treating the
system as a -possibly- continuous or discrete process.

From a deterministic perspective, the progression of time can be viewed as a con-
tinuous process. However, the variation in molecular populations occurs in discrete
integer increments. Additionally, the temporal evolution is not strictly determinis-
tic, even when classical mechanics is considered without accounting for quantum
effects. Predicting future molecular population levels with absolute precision is fun-
damentally unattainable. Such a prediction would require exhaustive knowledge of
the exact positions and velocities of all the molecules involved, which is practically
impossible [15].

Consequently, while the temporal behavior of a chemically reacting system may
seem deterministic when considering the overall position-momentum phase space,
this determinism fails to extend to the specific N-subspace representing the pop-
ulation numbers of individual species. This limitation hampers the effectiveness of
deterministic equations, known as "reaction-rate equations", as they often struggle to
capture fluctuations in molecular population levels. In certain cases, these limitations
can have significant implications, emphasizing the need for a stochastic approach to
studying these systems.

3.1 Introduction

In this work, the first two chapters have primarily focused on the determinis-
tic approach for studying the temporal behavior of spatially homogeneous chemical
systems, a system in which the concentration or distribution of chemical species is
uniform throughout the entire system (i.e., the limit of infinite diffusion). This deter-
ministic perspective considers time progression as a continuous process, completely
predictable in nature. It relies on an autonomous ordinary differential equation,
commonly known as the reaction-rate equation.

Remark 3.1. In such systems, the properties and behavior of the chemical species

36



3.2 Theorical Basis 37

are assumed to be independent of their spatial position or location.

The field of chemical kinetics, particularly in the context of stochastic dynamics,
has been profoundly influenced by the groundbreaking contributions of Daniel T.
Gillespie (1938-2017) [14 - 16]. In 1976 he derived the stochastic simulation algo-
rithm (SSA), broadly known as the Gillespie algorithm (see Section 3.3). It is im-
portant to recognize that earlier researchers, such as A. Rényi, A. Bartholomay and
D. McQuarrie [36], have made significant preliminary contributions to the stochastic
approach in chemical kinetics. One of the first attempts to apply stochastic concepts
to chemical kinetics can be attributed to Kramers [27], who aimed to describe macro-
scopic rate processes using molecular parameters and treated chemical reactions as
Brownian motions 1 of particles.

In contrast, this chapter explores the theorical basis of the stochastic approach,
which views temporal progression as a type of random-walk process.

In probability theory, a random walk process refers to a stochastic process used
to determine the probable location of a point undergoing random movements. The
process involves considering the probabilities, which remain constant at each step,
of moving a certain distance in a specific direction.

Remark 3.2. Random walks [5] serve as illustrations of Markov processes, where
the future behavior is independent of the past history, as will be explained in the
following section.

This stochastic process is governed by a unique differential-difference equation,
an equation in an unknown function and certain of its derivatives, evaluated at argu-
ments which differ by any of a fixed number of values [3]. This equation is referred
to as the "master equation." Therefore, the deterministic and stochastic approaches
provide complementary perspectives to comprehend the dynamics of chemical reac-
tions.

3.2 Theorical Basis

In order to establish a theoretical foundation for incorporating intrinsic noise into
chemical reaction processes, it is necessary to lay a basis of definitions. A Markov
process [34], named after Andre Markov (1856-1922), is a random process that is
indexed by time and possesses the property that the future is independent of the
past, given the present.

3.2.1 Markov process

Definition 3.3. (First-order Markov process) A random process {X(t), t ∈ T} is called
a first-order Markov process if, for any t0 < t1 < . . . < tn, the conditional cumulative dis-
tribution function (CDF) of X(tn), given the values of X(t0), X(t1), . . . , X(tn−1), depends

1The erratic random movement of microscopic particles in a fluid, caused by constant collisions
with the molecules of the surrounding medium.
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only on X(tn−1). Mathematically, this can be expressed as:

Pr (X(tn) ≤ xn | X(tn−1) ≤ xn−1, X(tn−2) ≤ xn−2, . . . , X(t0) ≤ x0)

= Pr (X(tn) ≤ xn | X(tn−1) ≤ xn−1)

This means that, in a first-order Markov process, given the present state of the
process, the future state is independent of the past. This property is commonly
referred to as the Markov property.

Remark 3.4. A Markov process may have various orders, with a first-order Markov
process being the specific case where the future state depends only on the present
state.

A Markov chain is a specific type of Markov process that involves a discrete-time,
discrete-state sequence of random variables. In the case of a finite Markov chain, the
set of possible states is finite, and the chain can only be in one of these states at any
given time [37].

Definition 3.5. (Finite Markov chain) A finite Markov chain is a Markov chain in which
there exists only a finite number, k, of possible states denoted by s1, . . . , sk. At any given
time, the chain can be in one of these k states.

Definition 3.6. (Transition probability) The transition probability is the conditional prob-
ability that the next state, Xn+1, is equal to a particular state, sj, given that the current state,
Xn, is equal to another state, si. It can be expressed as:

P(Xn+1 = sj | Xn = si)

Therefore, the transition probability captures the dynamics of the Markov chain
by quantifying the likelihood of moving from one state to another. It represents the
conditional probability of observing a particular state in the next time step, given
the current state.

3.2.2 The Propensity Function

The general problem we address in this study can be formulated as follows:
Consider a volume V containing molecules of N chemically active species Si (i =

1, . . . , N), along with molecules of several inert species. Chemically active species
are those involved in the reaction mechanism but not present as either reactants or
final products. Inert species, also known as spectator species, remain unchanged
throughout the reaction and are neither consumed nor produced.

It is further assumed that these N chemical species Si, well-stirred and at a con-
stant termperature, can participate in M chemical reactions Rµ (µ = 1, . . . , M), each
characterized by a numerical reaction parameter cµ, which will be defined shortly.
We specify the dynamical state of this system by X(t) = (X1(t), . . . , XN(t)), where
Xi(t) represents the number of Si molecules in the system at time t, with i = 1, . . . , N.
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The fundamental hypothesis of the stochastic formulation of chemical kinetics
(and the sole assumption for the Gillespie method) is that the reaction parameter cµ

[14], which describe the reaction Rµ, can be defined as follows, which characterize
reaction Rµ ( Ri), can be defined as follows [14]:

Definition 3.7. (Average probability) The quantity cµδt is the average probability, to first
order, in δt, that a particular combination of Rµ reactant molecules will react accordingly in
the next time interval δt.

Example 3.8. Consider a reaction Rµ of the form:

Si + Sj → reaction products (i ̸= j) (3.1)

The probability that a specific pair of molecules Si and Sj will undergo a reaction
of the type (3.1) within the next time interval δt, averaged over all possible Si-Sj

pairs, can be expressed as cµδt + o(δt). Here, o(δt) represents unspecified terms that
satisfy o(δt)

δt → 0 as δt → 0.

Remark 3.9. Note that every reaction Rµ is unidirectional, so any reversible reaction
must be considered as two separate undirectional reactions.

The molecular populations, denoted as Xi(t), are inherently random variables
since we do not track the precise positions and velocities of all the molecules in the
system. Instead, we rely on numerous nonreactive molecular collisions to constantly
’stir’ the system, promoting interactions between molecules. In this context, it can
be demonstrated that each reaction channel, represented by Rj, possesses a distinct
and well-defined function known as the propensity function, denoted as aj [15].

Definition 3.10. (Propensity function) The propensity function for Rj, denoted as aj(x),
represents the probability, given X(t) = x, that one reaction Rj will occur somewhere inside
V in the next infinitesimal time interval [t, t + dt], where j = 1, . . . , M.

The function aj(x) can be expressed mathematically as:

aj(x) = cjhj(x) (3.2)

Here, cj is the reaction parameter or specific probability rate constant for channel,
a possible pathway or route that a reaction can take, Rj. The function hj(x) in (3.2)
is defined as the number of distinct combinations of Rj reactant molecules available
in the state x. It can be determined by inspecting the left-hand side of reaction Rj.

Example 3.11. Let R1 be the reaction X1 + X2 → 2X1, we would have a1(x) =

c1x1x2. Now, suppose R2 was the inverse of that reaction, we would have a2(x) =

c2x1

(
x1−1

2

)
.

The propensity function aj and the state-change vector vj together completely
specify the reaction channel Rj. The ith component of the state-change vector vj is
defined as follows:

vji (the change in the number of Si molecules produced by one Rj reaction),

where j = 1, . . . , M and i = 1, . . . , N.
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Remark 3.12. Understanding the distinction between the reaction parameter and the
propensity function can be challenging. The reaction parameter primarily character-
izes the intrinsic rate of a reaction, whereas the propensity function incorporates
both the reaction rate and the current state of the system. The propensity function
is a mathematical entity that allows for the application of probability theory in the
analysis of reaction kinetics.

3.2.3 Consequences of the Propensity function: Master Equation

The propensity function (3.10), seen as an evolution law , implies that the state
vector X(t) follows a jump-like or discrete Markov process on a non-negative N-
dimensional integer lattice. To analyze such a process, the focus is often on its singly
conditioned probability function P(x, t|x0, t0), which represents the probability of
X(t) being in state x at time t, given that X(t0) = x0. We use an upper case letter
to denote a random variable, and the corresponding lower case letter to denote a
possible value of that random variable

To obtain a time evolution equation for the singly conditioned probability func-
tion, we consider a small time interval dt. During this interval, the probability of
multiple reactions happening simultaneously is very small compared to the proba-
bility of a single reaction occurring. Therefore, we can focus on the probability of
zero or one reaction taking place within dt.

Remark 3.13. The assumption of negligible probability for multiple reactions in a
small time increment dt is not based on the total number of molecules, but rather on
the average number of reactant molecules participating in a particular reaction.

Using (3.10) and the laws of addition and multiplication in probability theory, the
probability of the system being in state x at time t + dt [15], given the initial state x0

at time t0, can be expressed as the sum of probabilities of mutually exclusive events
involving zero or one reaction in [t, t + dt) :

P(x, t + dt|x0, t0) = P(x, t|x0, t0)x[1 −
M

∑
j=1

aj(x)dt] +
M

∑
j=1

P(x − vj, t|x0, t0)a(x − vj)dt (3.3)

Some algebraic rearrangements and taking the limit as dt → 0 leads to the chem-
ical master equation:

Definition 3.14. (Chemical master equation) The chemical master equationc is defined as
follows:

∂

∂t
P(x, t|x0, t0) =

M

∑
j=1

[
aj(x − vj)P(x − vj, t|x0, t0)− aj(x)P(x, t|x0, t0)

]
(3.4)

If it can be solved for P, then we can, in principle, determine all the information
about the process X(t). However, in practice, obtaining exact solutions of Equation
(3.14) is rarely feasible.
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3.3 Gillespie Algorithm

Another consequence of Equation (3.10) is the existence and form of the next-
reaction density function p(τ, j|x, t), defined as the probability that, given X(t) = x,
the next reaction in the volume V will occur in the infinitesimal time interval [t +
τ, t + τ + dτ), and will be an Rj reaction.

Since aj(x)dt represents the probability of a reaction happening within the next
small time interval dt, we can use basic probability reasoning to conclude that
exp

(
∑j aj(x)t

)
corresponds to the probability that no reaction occurs during a time

period t. By multiplying this probability with the probability stated in Equation
(3.10), we obtain the probability described by the next-reaction density function. As
a result, the function P can be expressed as follows:

P(τ, j|x, t) = aj(x) exp

(
−

M

∑
k=1

ak(x)τ

)
for (0 < τ < ∞; j = 1, . . . , M) (3.5)

The formula mentioned above forms the fundamental framework for the stochas-
tic simulation algorithm (SSA). SSA entails a straightforward digital computer algo-
rithm that utilizes a Monte Carlo procedure to generate random pairs (τ, j) based
on the joint density function (3.5). to simulate the temporal evolution of the given
chemical system. Similar to the master equation, this stochastic simulation algorithm
accurately considers the inherent fluctuations and correlations that the deterministic
formulation overlooks. These random pairs are then used to construct "unbiased
realizations" of the process X(t). It is worth noting that these realizations are con-
sistent to the chemical master equation (3.14), as they are derived from it. For a
description of the SSA algorithm, please see the Appendix A.1.2.

Remark 3.15. Note that the stochastic simulation algorithm is not a method used to
numerically solve the chemical master equation. Numerically solving the chemical
master equation is typically a considerably more difficult undertaking.

3.4 Analyzing the Transition from Deterministic to Stochas-
tic Systems and Its Implications

In reference to [31], we will introduce a change in notation for clarity. Instead of
using the notation aj(x) for the transition rates and vj for the propensity rates, we
will adopt the notation Wi(X) and ri, respectively. Additionally, we will replace the
symbol V with Ω to represent the system’s size.

3.4.1 From deterministic to stochastic scenario: Law of large Numbers

Consider a system governed by certain dynamics or processes, where random
fluctuations or noise are inherent. Let X(t) represent the state of the system at time
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t, and let P(X(t)) denote the probability distribution function associated with the
system’s state.

As the system size Ω increases, due to the law of large numbers, the probability
distribution function P(X(t)) tends to converge towards a more concentrated distri-
bution around a specific value or set of values, denoted as X0.

According to this law, as the number of independent random variables increases,
the average behavior of these variables becomes more predictable and deterministic.
Consequently, the system’s overall behavior exhibits reduced randomness and tends
to follow deterministic patterns.

The convergence can be expressed as:

lim
Ω→∞

P(X(t)) = δ(X(t)− X0)

where δ(X(t)− X0) represents the Dirac delta function centered at X0.
This implies that as the system size grows, the probability of observing states

other than X0 diminishes significantly.
In order to proceed further with our analysis, we assume that the transition rates,

upon rescaling, satisfy the following scaling relation [31]:

Wi(X) = Ωwi(x) +O(Ω0) (3.6)

where Ω is the system’s size and x = X
Ω is the rescaled state variable.

Therefore, x = X
Ω is indeed a deterministic variable, often called the "macrostate"

of the system. Here, X can be viewed as a "microstate" - a specific configuration of
the system that might change stochastically over time due to random interactions,
while Ω is the system’s size or volume.

In equation (3.6) Wi(X) is the stochastic rate of change (which can vary ran-
domly), and Ωwi(x) is the deterministic rate of change (which doesn’t vary ran-
domly). The O(Ω0) term represents the order of the approximation, essentially
saying that any randomness becomes less important as the system size Ω increases.

Therefore, the relationship between the deterministic and stochastic scenarios
can be understood as a system transition from stochastic behavior at small scales,
characterized by randomness and uncertainty, to deterministic behavior at larger
scales, where the system’s behavior becomes more predictable and follows regular
patterns.

Remark 3.16. The concept of transitioning from a deterministic to a stochastic ap-
proach (or vice versa) is rooted in the scales at which we study these systems.

3.4.2 Deriving the rates: Law of Mass Action

In chemistry, the law of mass action [32], formulated by Cato M. Guldberg and
Peter Waage during 1864–1879, is a fundamental principle that describes the relation-
ship between the rate of a chemical reaction and the concentrations of the reacting
substances. It provides a mathematical framework for understanding how the con-
centrations of reactants influence the rate at which a reaction proceeds.
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Figure 3.1: Application of the Gillespie Algorithm to the Mushroom Model, characterized
by initial conditions x(0) = 0.1Ω, parameters q = 3 and s = 0.95. The stochastic graph
is rendered in red, while the deterministic counterpart is represented in blue. Two panels
are presented with a system size of Ω = 200 (left) and Ω = 2000 (right). Notably, the
panels demonstrate the convergence of the stochastic graph towards the deterministic graph,
highlighting the approximation behavior.

An important application of the law of mass action is in the formulation of the
Michaelis-Menten-Hill (MMH) kinetics, which describe enzyme-catalyzed reactions.
The Michaelis-Menten-Hill equation demonstrates the relationship between the sub-
strate concentration and the reaction rate. At low substrate concentrations, the re-
action rate is directly proportional to the substrate concentration, approaching first-
order kinetics. As the substrate concentration increases, the reaction rate approaches
saturation, and further increases in substrate concentration have less impact on the
reaction rate.

Corollary 3.17. Rates derived from the Law of Mass Action or Michaelis-Menten-Hill ki-
netics satisfy condition 3.6.

Please see Appendix A.1.3 for a detailed description of the Law of Mass Action,
MMH kinetics and Corollary 3.17.



Chapter 4

Results and Discussion

In this section, the specific results obtained from our investigation will be dis-
cussed. These results are built upon the theoretical foundations established in Chap-
ters 2 and 3.

4.1 Bottleneck effect

Let us calculate the potential function U(u, a(s)) =
∫
− f (u, a(s))du of Eq. 1.1:

U(u, a(s)) =
1
2

u2 − (r + a(s))u + a(s) arctan(u) (4.1)

4.1.1 Monostability and Bistability: Analysis of the Potential Function

In Figure 4.7, on the upper-left panel, a representation of the potential function
is displayed based on the parameter value of s. At s = 0.34, the potential function
demonstrates a single well. This well signifies a stable fixed point within the system.
This fixed point is analogous to a ball at rest at the bottom of a well or valley,
where the potential remains unchanged [49]. As we increase the parameter s, the
potential function undergoes a transformation, evolving into a broad plateau. This
change in landscape signifies a period of slow relaxation, exhibiting the delayed
transition phenomenon, as showcased in the middle panels of Figure 4.7. When
the parameter s surpasses a certain critical threshold, the plateau feature within the
potential function dissipates.

More examples on the ghost phenomenon can be found in Appendix C.

4.1.2 S-N Scaling Law

The saddle-node scaling law, given by τ = (scrt − s)−
1
2 , is investigated, approxi-

mating the two lower SN’s in Figure 4.2. The phenomenon observed when reducing
the distance ϕ between the two SN reveals that while the scaling law is preserved,
there is a significant increase in the transients time to complete the trajectory, starting
from an initial value of u(0) = 0.28 and reaching u(fin) = 0.33:

44
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Figure 4.1: Potential function U(x), computed using equation 4.1, with r=0.14 and q=5.
The parameter values s are varied from left to right and top to bottom, taking values of
0.34, 0.364860, 0.375, 0.4, 0.423701, and 0.63. The gray region represents biologically
meaningless population values (u < 0). Notably, there is an inverse relationship between the
stabilities, resulting from the symmetry of the SN bifurcations. Similarly, the stabilities of
SN3 and SN4 are symmetric to SN1 and SN2, respectively.

Figure 4.2: The left panel represents the scaling law on SN4, while the right panel shows
the scaling law on SN2. By decreasing the value of q, the distance ϕ between SN1 and SN4
is reduced. This adjustment allows SN2 and SN3 to maintain a sufficient distance from each
other, preventing mutual interference during the analysis of transients. Dotted circles are
used to illustrate the impact of the proximity between SN1 and SN4.
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If we study the relationship of the regression lines for the functions depicted on
the left panel of Figure 4.2, we find that they follow approximately a function of the
form y = 1√

x , like the diverging coefficient we found in Section 2.4:

Figure 4.3: Function in dotted lines is y = 1√
x−2.78

− 0.8, the dots represent the b coefficient
from the regression line applied to each function in Figure 4.2. We observe the inverse squared
relationship.

4.1.3 Critical Slowing Down: the transcritical bifurcation

The transcritical scaling law, represented by τ = (strans(qtrans)− s)−1, is illustrated
in Figure 4.4. The observed "divergence" phenomenon depicted within the dotted
circle will be discussed continuously.

Figure 4.4: Transcritical slowing down law for the Mushroom Model. The red solid line
represents the original form, while the overlapped dotted blue line represents a translated
version to the origin, that retains the symmetry axis at s=0 and the same relationship.

Upon thorough examination, it becomes evident that there is an absence of per-
fect symmetry between SN1 and SN4. This observation is supported by the fact that
the minimum values for the transients do not always align with the symmetry axis
at s=q/2.
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For instance, when q = 2.8, the anticipated minimum value is expected to occur
at s = 1.4. The recorded values fluctuate around this point:

Transient Value s Value
44.53813356283553 1.39999908088089
44.53813361380771 1.40000095088088
44.53813370361276 1.39999928088089
44.53813372096411 1.39999737088090

For q = 2.785, the minimum value should be at s = 1.3925:

Transient Value s Value
1249.032288758 1.392203054
1249.033250866 1.392202893
1249.034038978 1.392202756
1253.830297479 1.392619724

For q = 2.784953619413649, the minimum value should be at s = 1.3924768097068245:

Transient Value s Value
20416457.58951539173722 1.39247682092831
20416457.58951539173722 1.39247680699806863913

Figure 4.5: In the study of the transition from SN4 to SN1, we observe two distinct panels.
In the left panel, the parameter q is measured to be approximately 2.784953619413649, while
in the right panel, q is recorded as 2.8. A parabola-shaped function appears to be a plausible
fit based on visual inspection. However, upon closer examination of the data, fluctuations
can be observed, indicating a more complex behavior.
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4.2 Stochastic study

4.2.1 Markovian stochastic system

Given the mushroom model defined by Eq. 1.1, let us consider the Markovian
stochastic system whose mean-field limit undergoes our deterministic model f:

Transition rates
Stoichiometry

coefficient
Description

W1 = Ω r r1 = +1
Constant housekeeping

genes transcription
W2 = X r2 = −1 Linear degradation

W3 = Ωsq X2

Ω2+X2 r3 = +1 Quadratic autocatalysis
W4 = Ωs2 X2

Ω2+X2 r4 = −1 Quadratic inhibition

Table 4.1: Transition rates for the Mushroom Bifurcation Model, including constant tran-
scription, saturation under a Hill function dynamic and linear degradation.

Defined by the following elementary processes:

Elementary process
Stoichiometry

coefficient
Description

∅
W1−→ A r1 = +1

Constant housekeeping
genes transcription

A W2−→ ∅ r2 = −1 Linear degradation

A + A
W3−→ A + A + A r3 = +1 Quadratic autocatalysis

A + A
W4−→ A r4 = −1 Quadratic inhibition

Table 4.2: Elementary processes and their descriptions.

Taking x= X/Ω it follows that

ω1 = W1(x Ω)
Ω = Ω r

Ω = r, as W1(X) = Ω r ∀X∈ N, ω2 = W2(x Ω)
Ω = Ω x

Ω = x,

ω3 =
W3(Ωsq x2

Ω2+x2 Ω)

Ω = sq x2

1+x2 , ω4 =
W4(Ωs2 X2

Ω2+x2 Ω)

Ω = s2 x2

1+x2

4.2.2 Heat Maps and Time Lags

The presence of noise can cause transitions between stable states, even when
both states are inherently stable. This phenomenon can be observed in the presence
of bistability, where the system can switch between two stable branches. Including
the graph presented in Figure 4.8, it becomes evident how noise-induced fluctuations
can lead to a jump from one stable branch to another.
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Figure 4.6: Averaged transition probabilities to the lower stable branch (upper panel) and the
upper stable branch (lower panel) over 200 runs of the Gillespie algorithm, with a system size
of Ω = 3000 and a target concentration of u = 1.6. The analysis focuses on specific regions of
interest in a mushroom, excluding the portion indicated by a dotted line, considered irrelevant
for the analysis. Notably, an asymmetry in behavior between the left and right areas can be
observed.

Figure 4.7: The heatmap presents the logarithmic-scale representation of the transient time
required for transitions to the lower (upper panel) or upper (lower panel) stable branch. Blank
spaces in the heatmap indicate regions where the probability of transitioning to a specific
stable branch is zero. The presence of the ghost effect can be observed in the red darker areas.
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Figure 4.8: For a system’s size of Ω = 3000 and initial concentration u(0) = 1.45Ω, the
analysis is conducted over 109 iterations. In the deterministic scenario, the system should
remain in the stable branch with u=1.015. However, due to the presence of noise induced by
the system’s size, over a sufficiently long period of time, the system undergoes a "jump" and
transitions to the lower branch with u=0.21873.

In the stochastic field, an intriguing property is observed where the bifurcation
value is influenced by the system size Ω [49]. The stochastic dynamics exhibit a more
pronounced deviation from the deterministic behavior as the system size decreases,
as in Figure 4.9.

Figure 4.9: The gray area signifies the region where the bifurcation value is likely to occur.
The study involves a system with a size of Ω = 500 with the mean value of u calculated over
100 runs of the Gillespie algorithm at 107 number of inner iterations of the algorithm.

4.2.3 Coupling effect of SN bifurcations

To investigate the impact of noise induction on the transient times during the
approximation of SN1 and SN4, let us consider the following graphics.
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Figure 4.10: Taking a gap of 1/8 from the initial SN (ϕ1), we conducted a study on the mean
time it takes to reach u = 1.4. The study was based on 50 Gillespie runs, with CC = 3000,
starting from u = 0.2. The y-axis represents the relative increase obtained by studying the
mean time (T̄interval) compared to the mean time it took when considering the entire interval
between the two SN. We observed that when the two SN values are very close, their effects
overlap and show minimal differences. Similarly, for larger distances (on the order of 102 and
above), the interval under study of the two SN does not significantly influence the results.



52 Results and Discussion

Figure 4.11: The colored band in each image represents a heatmap of the times required
to reach u=1.4 using the Gillespie method (dashed line colored mustard). The wider figure
applies a logarithmic rescaling (base 10) to accommodate the data distribution, which predom-
inantly ranges from 0 to 1 but includes some higher values, approximately of the order of 102.
The analysis comprises 50 Gillespie runs with a system size Ω = 3000 and 100 interval divi-
sions. The images correspond to different parameter configurations: (A) q=2.784953619424,
(B) q=2.789, (C) q=2.85, (D) q=9. The larger plot presents standard normalized deviation
calculations and mean averages across 100 initial conditions, each involving 50 runs of the
algorithm.
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This work presents a thorough deterministic and stochastic mathematical analy-
sis of the mushroom bifurcation, given the model developed in [43].

The first chapter laid the foundation of the mathematical and biological frame-
work to describe the model. That allowed me to understand its implications on
biology, particulary in the context of biosensors. Consequently, it inspired me to in-
vestigate further into mathematics, recognizing that a deeper understanding of them
would enable me to contribute more effectively to the field of biology, fostering a
synergy.

In the second chapter, we shifted our focus to the ghost effect and the numerical
techniques required to accurately capture this phenomenon. We studied the specific
numerical methods that were necessary to effectively simulate and represent the
ghost effect in our models. The carachterization of the slowing down effect on the
convergence of two saddle nodes into a transcritical bifurcation moved our research
further –an event that, to our knowledge, had not been previously identified.

In the third section, we discussed the fundamentals of stochastic dynamics, pro-
viding a solid foundation for conducting a noise-induced study on our model, which
we explored further in the fourth chapter. This section enabled us to examine the
interdisciplinary nature of our research: from understanding the biochemistry be-
hind reaction definitions, to the analogies found on physics, when reading about the
relationship of Hamiltonians and stochasticity on cells, as outlined in [31].

In Chapter four we discussed the results of implementing the fundamentals from
the previous chapters to our model. Notably, we corroborated the SN-scaling law
and through the approximation of the two lower saddle-nodes in our model, we
found the preservation of the scaling law with extended transient periods necessary
for the trajectory to unfold completely. We also investigated the transcritical scaling
law, examining the divergence phenomenon and potential asymmetry within our
model by studying the coefficients that influence the asymptotic behavior. Moreover,
during our noise-induced study, we observed an asymmetry phenomenon when
considering the Markovian stochastic system, on the heat map 4.6. In Figure 4.11,
we visually demonstrated the impact of approximating the lower saddle nodes, re-
vealing a distinct pattern in the time lags. Instead of observing a gradual spectrum
of time, we observed the combined effect of the two saddle nodes, emphasizing
their collective influence. These findings contribute to a deeper understanding of
the dynamics within our model and provide valuable insights into the intricate rela-
tionships between system components, noise, and temporal behavior.

As an overall personal reflection, while the journey to completing this thesis
presented numerous challenges, the sense of achievement is immeasurable. I feel
tremendous proud for the entire team, whose hard work and dedication allowed us
to successfully meet our research objectives, particularly in investigating the intrica-
cies of the transcritical bifurcation.

Our work has also unveiled potential areas for further investigation, particularly
concerning the potential asymmetric behaviour observed in the lower saddle-node
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bifurcations. Despite successfully identifying and providing examples of this phe-
nomenon, formalizing it represents an exciting opportunity for future research en-
deavors.

Ultimately, I hope that this thesis contributes meaningfully to existing knowl-
edge, and plays a role in optimizing biosensors and synthetic biology, thereby aiding
the development of improved treatments.
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Appendix A

.1 Additional insight

.1.1 Proof of Theorem 1.12 using Hamiltonian arguments

Proof. Consider the Hessian matrix of f:

H =

[
A11 A12

A21 A22

]
The determinant of H, denoted as Det(H), is defined as Det(H) = A11A22 − A2

12.
By hypothesis it is negative, which implies that H is non-degenerate, as it is not zero.

Next, we proceed to explore the eigenvalues of H by solving the equation det(H −
µI) = 0, where I is the identity matrix and µ represents the eigenvalues we are
seeking. This leads us to a second-degree equation:

µ2 − (A11 + A22)µ + A11A22 − A2
12 = 0

Using elementary algebra, we know that the constant term of the equation is
the product of the roots, which in this context are the eigenvalues. By applying
our established relationship A2

12 > A11A22, we observe that the eigenvalues have
opposite signs, therefore the conditions for a saddle node point are met, indicating
that H is indefinite.

We can now apply Lemma 1.20, which guarantees the existence of two curves x±
of fixed points in a neighborhood of (x0, λ0), where x±(λ0) = x0. Hence, proving
(1).

(2) Directly follow from the fact that the curves x± are defined in a neighbour-
hood of λ0 such that they are the solution set of f (x, λ) = 0.

(3) According to Lemma 1.20, the derivatives 1.20, x′±(λ0) must be the two linear
independent solutions of:

A11η2 + 2A12(x0, λ0)ητ + A22(x0, λ0)τ
2 = 0

By solving this equation, the derivatives can be written in the following form:

x′±(λ0) =
−2A12 ±

√
4A2

12 − 4A11A22

2A11
=

−A12 ±
√

A2
12 − A11A22

A11
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.1.2 Structure of the Gillespie Algorithm (SSA)

Equation 3.5 forms the core principle of the stochastic simulation method, SSA.
[17] It suggests that τ follows an exponential random distribution with an average
(and standard deviation) of 1

a0(x) , where a0(x) = ∑M
j=1 aj(x). Meanwhile, j is an

independent integer random variable with point probabilities of aj(x)
a0(x) .

There are several accurate Monte Carlo methods to create samples of τ and j
based on these distributions. One simple approach is the direct method, which is
established by employing the standard inversion generating method of Monte Carlo
theory. In this method, we draw two random variables r1 and r2 from a uniform
distribution within the unit range, and set:

τ =
1

a0(x)
ln
(

1
r1

)
, (2)

j = the smallest integer satisfying
n

∑
j=1

aj(x) > r2a0(x). (3)

This method (or any equivalent one) allows us to follow a stochastic simulation
algorithm (SSA) to build an accurate numerical representation of the X(t) process.
The steps of the SSA are as follows:

1. Initialize the time t = t0 and the systemâs state x = x0.

2. With the system in state x at time t, compute all aj(x) and their sum a0(x).

3. Generate values for τ and j using equations 10a and 10b (or their equivalent).

4. Implement the next reaction by setting t to t + τ and x to x + νj.

5. Document the pair (x, t) as needed. Repeat from Step 1, or finish the simula-
tion.

Remark .1. It is important to implement conditions for stopping the calculations
when the predetermined time or reaction count is reached, or when the sum of the
a-values, a, becomes zero.

.1.3 Law of Mass Action and Michaelis-Menten-Hill equation

Law of Mass Action: The law of mass action states that the rate of any chemical
reaction is proportional to the product of the masses of the reacting substances, with
each mass raised to a power equal to the coefficient that occurs in the chemical
equation.

For a general reaction of the form:

aA + bB → cC + dD
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Figure 12: Figure taken from [15], schematic of the stochastic simulation algorithm.

where A and B are reactants, and C and D are products, the rate of the reaction
can be expressed as:

r = k[A]a[B]b

where [A] and [B] represent the concentrations of reactants A and B, respectively,
k is the rate constant, and a and b are the stoichiometric coefficients for A and B,
respectively.

Michaelis-Menten-Hill (MMH) equation: The MMH equation is given by:

v =
Vmax · [S]
Km + [S]

where:

- v is the reaction rate or velocity.

- Vmax is the maximum reaction rate, which represents the rate of the reaction
when the enzyme is fully saturated with substrate.

- [S] is the substrate concentration.

- Km is the Michaelis constant, which represents the substrate concentration at
which the reaction rate is half of the maximum rate. It is a measure of the
affinity of the enzyme for the substrate.
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In summary, the law of mass action is a fundamental principle in chemistry that
relates the rate of a chemical reaction to the concentrations of the reacting species. It
serves as the basis for understanding reaction rates and has applications in various
fields, including chemical kinetics and enzyme kinetics.

Corollary .2. Rates derived from the Law of Mass Action or Michaelis-Menten-Hill kinetics
satisfy condition (3.6).

Proof. In the context of the Law of Mass Action, the rate of a chemical reaction
is proportional to the concentrations of the reacting species raised to their respec-
tive stoichiometric coefficients. As the system size Ω increases, the concentrations
become larger, and the rate Wi(X) scales up proportionally, satisfying the scaling
relationship.

Similarly, in the case of Michaelis-Menten-Hill kinetics, the rate of an enzyme-
catalyzed reaction is characterized by the Michaelis-Menten equation, which involves
the enzyme and substrate concentrations. When the system size Ω is large, the con-
centrations become significant, and the macroscopic rate Wi(X) can be approximated
by scaling up the intrinsic rate wi(x) with respect to the concentrations, following
the scaling relationship.

Therefore, the rates derived from the Law of Mass Action or Michaelis-Menten-
Hill kinetics satisfy the scaling relationship because they capture the behavior of the
system at a macroscopic scale by scaling up the intrinsic rates or dynamics at the
microscopic or molecular level.
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.1 Numerical Tools

Numerical tools were employed to integrate the delay differential equation (DDE)
model using a 7th-8th order Runge-Kutta-Fehlberg method, thanks to Josep Sar-
danyés, and also a Runge-Kutta-Verner algorithm of orders 8 and 9, thanks to Àngel
Jorba. The numerical approximation used automatic step size control and a local
relative tolerance of approximately 10−15, even though it was adaptive depending
on the problem requirements.

To understand how the numerical solution approximated the DDE model, it
is important to note some distinctions compared to standard ordinary differential
equation (ODE) solvers. The DDE given by Eq. (4) can be written as

dx
dt

(t) = f (x(t), x(t − τ)),

where f is a suitable function and τ represents the time delay. The initial condition,
denoted by a continuous function u on the interval [−τ, 0], plays a crucial role.
The initial value problem can be treated as a chain of ODEs within each interval
(lτ, (l + 1)τ), where l is a positive integer. Thus, a natural approach for integrating
such DDEs is to employ a standard ODE solver and integrate within each distinct
interval.

Consequently, the DDE model is effectively solved by considering a standard
ODE solver and performing integration within each individual interval.

For graphic representation, Gnuplot, MATLAB and Python libraries such as
Seaborn and Matplotlib has been used.

.1.1 Newton-Raphson and Citardauq formula

Newton-Raphson program to calculate the fixed points and critical values.
In order to avoid or control subtractive cancellation, we have used an implemen-

tation of the Citardauq1 formula, avoiding the numerical instability of solving the
second-degree equation.

The Citardauq formula [60] consists of using:

x± =
2c

−b ∓
√

b2 − 4ac
(4)

1As the reader may see, Citardauq is Quadratic spelled backwards

65
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The combined formula is:

x− =
−b − sign(b)

√
b2 − 4ac

2a
, x+ =

c
a

x− (5)

Listing 1: C code
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

double ** resol(double a, double b, double c, int* num_solutions);

double f(double x, double r) {
return r + (((1 + x * x) * x) / 2) - x;

}

double df(double x) {
return -0.5 + 1.5 * x * x;

}

int es_repetit(double x, double ** solutions , int num_solutions) {
for (int i = 0; i < num_solutions; i++) {

if (fabs(x - *( solutions[i])) < 1e-8) {
return 1; // x is a repeated answer

}
}
return 0; // x is not a repeated answer

}

void free_solutions(double ** solucions , int num_solucions){
if(num_solucions != 0){

for(int i=0; i<num_solucions; i++){
free(solucions[i]); //free memory

}
}
free(solucions);

}

int main() {
double x0_start = -1, x0_end = 15, x0_step = 0.25; // range

of initial guess values
double r = 0.14; // given value of r

double tolerance = 1e-8; // tolerance for convergence
int max_iterations = 1000000; // maximum number of iterations

double roots [1000]; // array to store roots found so far
int num_roots = 0; // number of roots found so far
FILE* file = fopen(" NAME OF THE .DAT FILE", "w"); // open
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file for writing

for (double x0 = x0_start; x0 <= x0_end; x0 += x0_step) {
double x = x0;
int i = 0;
for (; i < max_iterations; i++) {

double fx = f(x, r);
double dfx = df(x);
double dx = -fx / dfx;
x += dx;
if (fabs(dx) < tolerance) {

double ** solutions;
int num_solutions;
double x_nova;

x_nova = ((1 + x * x) * (1 + x * x)) / (2 * x);

solutions = resol ( -1 ,2.78495361941546 , -x_nova , &
num_solutions);

if (num_solutions == 2) {
int is_repeated = 0;
for (int j = 0; j < num_roots; j++) {

if (fabs(x - roots[j]) < 1e-8) {
is_repeated = 1;
break;

}
}
if (! is_repeated) {

// check if the new root is not repeated
fprintf(file , "Root found for x0 =%.12f:

%.15f %.15f %.15f\n", x0 , x, *(
solutions [0]), *( solutions [1]));

roots[num_roots] = x; // add the new root
to the array

num_roots ++; // increment the number of
roots found so far

}

}
free_solutions(solutions , num_solutions);
break;

}
}
if (i == max_iterations) {

fprintf(file , "Root not found for x0 =%.12f within max
iterations .\n", x0);

}
}
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return 0;
}

Resol uses Pau Soler Valadés’ implementation of the Citardauq formula, as shown
below.

Listing 2: C code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define DELTA 1e-12

double ** resol(double a, double b, double c, int *num_solucions)
{
double discriminant;
double ** solucions;

discriminant = b * b - 4 * a * c;

if (discriminant < 0) {
printf("Negative discriminant , no solution\n");
*num_solucions = 0;
solucions = NULL;
return solucions;

}

solucions = (double **) malloc(sizeof(double *) * 2);

if(solucions != NULL){

if (a != 0 || fabs(a) >= DELTA) {
double x1, x2;
double sgn_b = (b >= 0) ? 1.0 : -1.0;

x1 = (-b - sgn_b * sqrt(discriminant)) / (2 * a);
x2 = c / (a * x1);

if (fabs(discriminant) < DELTA || discriminant == 0)
{
solucions [0] = (double *) malloc(sizeof(double));
if(solucions [0] != NULL){

*solucions [0] = x1;
*num_solucions = 1;
printf("Discriminant 0 i a no es 0\n");

}else{
printf("Problems allocating memory\n");
*num_solucions = -1;
return NULL;
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}

} else {
solucions [0] = (double *) malloc(sizeof(double));
solucions [1] = (double *) malloc(sizeof(double));

if(solucions [0] != NULL && solucions [1] != NULL){
*solucions [0] = x1;
*solucions [1] = x2;
*num_solucions = 2;

}else{
printf("Problems allocating memory\n");
*num_solucions = -1;
return NULL;

}
}

} else {
if (b != 0 || fabs(b) >= DELTA) {

solucions [0] = (double *) malloc(sizeof(double));

if(solucions [0] != NULL){
*solucions [0] = -c / b; // degree 1 equation
*num_solucions = 1;
printf("Equation of degree 1\n");

}else{
printf("Problems allocating memory\n");
*num_solucions = -1;
return NULL;

}

} else {
printf("No equation\n");
*num_solucions = 0;
free(solucions);
return NULL;

}
}

return solucions;
}else{

printf("Problems allocating memory\n");
*num_solucions = -1;
return NULL;

}
}
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.1.2 Gillespie Algorithm: Heat map Stochastic scenario

Listing 3: C code
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <time.h>

/**
* Return the probabilities of being in the lower branch or the

upper branch after performing n runs of Gillespie.

*@param s system parameter , substrate concentration
*@param q system parameter , modifies the shape of the bifurcation
*@param x initial condition , protein concentration
*@param NUM_ITERATION number of Gillespie runs
*@param n_iter number of internal runs
*@param probability1 result of the probability in the lower

branch
*@param probability2 result of the probability in the upper

branch
*@return void , the results are stored in probability1 and

probability2.
*/

void gillespie(double s, double q, double x_ini , double CC,
double interval_startlow , double interval_endlow , double
interval_starthigh , double interval_endhigh , int
Max_iterations , int n_iter , double *probability1 , double *
probability2){
int num_in_interval1 =0;
int num_in_interval2 =0;
for(int iteration = 0; iteration < Max_iterations; iteration

++) {
double time = .0, tau = .0; // Time // Waiting time

// W’s
double W1, W2 , W3, W4 = .0;
double W0 = .0; // Sum of Wi’s

// Uniform z’s
double z1, z2 = 0;

// Initial population
double x = x_ini* CC;

double W[4];

for (int it = 0; it < n_iter; it++) {
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// Transition rates for each reaction
W1 = CC * 0.14;
W2 = x;
W3 = CC * s * q * x * x / (CC * CC + x * x);
W4 = CC * s * s * x * x / (CC * CC + x * x);

W[0] = W1;
W[1] = W2;
W[2] = W3;
W[3] = W4;

// Compute z1 , z2
z1 = drand48 ();
z2 = drand48 ();

// Compute W_0 = sum W’s
W0 = W1 + W2 + W3 + W4;

// Compute waiting time , tau
tau = (1.0 / W0) * log (1.0 / z1);

// Reaction at time tau
double suma = 0;
int kk = 0;

while (suma < z2 * W0) {
suma += W[kk];
kk++;

}

if (kk == 1) {
x = x + 1.0;

} else if (kk == 2) {
x = x - 1.0;

} else if (kk == 3) {
x = x + 1.0;

} else if (kk == 4) {
x = x - 1.0;

}

time += tau;

if (x > 0) {
if (it % 100 == 0) {

// printf ("%.7lf %.4lf\n", time , x);
}

} else {
// printf ("%.7lf Extinction\n", time);
break;
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}
}

double norm_x_ts = x / CC;
// printf (" Iteration %d: norm_x_ts = %.7lf\n", iteration +

1, norm_x_ts);

// Check if norm_x_ts falls within the interval
if (norm_x_ts >= interval_startlow && norm_x_ts <=

interval_endlow) {
num_in_interval1 ++;

}

if (norm_x_ts >= interval_starthigh && norm_x_ts <=
interval_endhigh) {
num_in_interval2 ++;

}
}
num_in_interval1 =( double)num_in_interval1;
num_in_interval2 =( double)num_in_interval2;

// Calculate the probability of norm_x_ts falling within the
interval

*probability1 = (double)num_in_interval1 / Max_iterations;
*probability2 = (double)num_in_interval2 / Max_iterations;
// printf ("prob1 %.7le: prob2 = %.7le\n", *probability1 , *

probability2);

return;
}

Code to plot the Heat Maps using Seaborn library:

Listing 4: Python code

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Open the file in read mode
with open("Probabilitat.txt", "r") as file:

# Read all lines from the file
lines = file.readlines ()

# Create lists to store the values
u_values = []
prob_branca_sota_values = []
s_values = []
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# Extract the values from the file
for line in lines:

columns = line.split()
column1_value = float(columns [0])
s_values.append(column1_value)

column2_value = float(columns [1])
u_values.append(column2_value)

column3_value = float(columns [3])
prob_branca_sota_values.append(column3_value)

# Create a DataFrame with the data
df = pd.DataFrame ({

’S’: s_values ,
’U’: u_values ,
’Probabilidad ’: prob_branca_sota_values

})

# Reorganize the data into a 2D matrix using pivot
heatmap_data = df.pivot(’U’, ’S’, ’Probabilidad ’)
heatmap_data = heatmap_data.iloc [::-1]

# Plot the heatmap using Seaborn
plt.figure(figsize =(7, 7))
sns.heatmap(heatmap_data , cmap=’hot’)
plt.show()



74 Appendix B

.1.3 Saddle-node Scaling Law

Program used to find the Scaling Law near SN1 for q = 2.78495381941348, r =

0.14:

Listing 5: C code
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "rkv89.h"

double e[2];

void var0(double t, double x[], int m, double xm[])
{

xm[0] = 0.14 + e[0] * (e[1] -e[0])* ((x[0] * x[0]) / (1 + x
[0] * x[0])) - x[0];

}

int main()
{

double x[1];
e[1] = 2.78495381941348;
double time = 0.0;
double pas = 0.00001;
double eps = 1e-9;
double s_crit =1.392475142707961;
x[0] = 0.28;
e[0]=1.392477;

const unsigned long MAX_ITERATIONS = 1e11;

FILE *file = fopen("SN1_prova.dat", "w"); // open file for
writing

do
{

unsigned long iterations = 0;
time = 0.0;
x[0] = 0.28;
pas = 0.00001;

do
{

rkv89(&time , x, 1, &pas , 1, eps , NULL , NULL , var0);
iterations ++;

if (iterations > MAX_ITERATIONS)
{
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printf("Exceeded maximum allowed iterations .\n");
break;

}
} while (time < 1e13 && x[0] < 0.45);
fprintf(file , "%.13lf %.16lf\n", log10(fabs(time)), log10

(fabs(s_crit -e[0]))); // print to file instead of
console

e[0] -= 1e-12;
} while (e[0] > s_crit);

fclose(file); // close file

return 0;
}
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.1.4 Transcritical Scaling Law

Listing 6: C code
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "rkv89.h"

double e[2];
double ** resol(double a, double b, double c, int *num_solutions)

;

void var0(double t, double x[], int m, double xm[])
{
xm[0] = 0.14 + (e[0] * (e[1] - e[0])) * ((x[0] * x[0]) / (1 + x

[0] * x[0])) - x[0];
}

int main()
{

double x[1];
double crit;
e[1] = 2.785;
double time = 0.0;
double pas = 0.00001;
double eps = 1e-7;
e[0] = e[1] / 2;
x[0] = 0.25;

const unsigned long MAX_ITERATIONS = 1e11;
const double MIN_E1 = 1e-10;

FILE *file = fopen("transcriticaoriginal.dat", "w"); // open
file for writing

do
{

unsigned long iterations = 0;
time = 0.0;
x[0] = 0.25;
pas = 0.00001;
double ** solutions;
int num_solutions;
solutions = resol(-1, e[1], -1.9389916635675362 , &

num_solutions);
e[0]=e[1]/2;
printf("%.9le %.9le %.9le\n", e[1], e[0], x[0]);
do
{
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rkv89(&time , x, 1,&pas , 1, eps , NULL , NULL , var0);
iterations ++;

if (iterations > MAX_ITERATIONS)
{

printf("Exceeded maximum allowed iterations .\n");
break;

}
} while (time < 1e13 && x[0] < 0.35);
if (num_solutions == 2) {

fprintf(file , "%.13lf %.16lf\n", log10(fabs(time)),
log10(fabs(* solutions [1] -1.3924768097067324)));
// print to file instead of console

}
e[1] -= 1e-11;
free(solutions);

} while (e[1] > 2.7849536194134648);

fclose(file); // close file

return 0;
}
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Figure 13: Transcription Process: This copy, called messenger RNA (mRNA), carries
the gene’s protein information encoded in DNA. In humans and other complex organisms,
mRNA moves from the cell nucleus to the cell cytoplasm (watery interior), where it is used
for synthesizing the encoded protein. Image from [59].

Figure 14: Ghost effect:Time series (in log-linear scale) for different initial conditions near
bifurcation threshold s = s + 10−8 for SN2 and SN3, and s = s − 10−8 for SN2 and SN4.
In all the analyses, we have used r = 0.14 and q = 5.
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