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Abstract
Theoretical models describing quantum metrology schemes and the corre-

sponding experimental demonstrations have so far mainly described step-by-
step protocols that involve the preparation of the sensor into a carefully en-
gineered quantum state; interaction of the sensor with an external (unknown)
field and measurement of the sensor to retrieve information about the signal.
However, the process of preparation can sometimes be lengthy and require fine
tuning in time. The main goal of this project is to contribute to this challenge
by using many-body interactions to entangle the state while field encodes its
information into it. In this way the process of preparing the state is eliminated
along with the different challenges that come with it.
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Acronyms

FI Fisher Information.

GHZ Greenberger–Horne–Zeilinger.

HS Heisenberg Scaling.

IID Independent and Identically Distributed.

MSE Mean Squared Error.

PDF Probability Density Function.
POVM Positive Operator Valued Measure.

QFI Quantum Fisher Information.

SLD Symmetric Logarithmic Derivative.
SNL Shot-Noise Limit.

Symbolist

F Quantum Fisher Information
F Fisher Information (Classical)
E POVM
Ex Outcome of a POVM
ρ Density matrix (might be of a pure state)
1 Identity matrix
σi Pauli matrix, i ∈ {x, y, z}
E[·] Expected value
R Real Number
|a⟩ |b⟩ |a⟩ ⊗ |b⟩, Usually the tensor product is not shown.
⊗ Tensor product
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1 Introduction
This thesis delves into the field of Quantum Metrology, with a particular focus on magne-
tometry, that is, the measurement and estimation of magnetic fields.

Quantum Metrology is an essential field of Quantum Information Theory. It is con-
cerned with the precise estimation of unknown physical parameters, which can range from
the strength of a magnetic field to the temperature of ultra-cold gases, by exploiting quan-
tum resources like quantum coherence or entanglement. The precise estimation of physical
parameters is of utmost importance in any discipline in natural sciences and has all sort of
applications, e.g. medical diagnosis, navigation systems, gravitometry. Thus this has been
a widely studied topic [TA14, DDJK15]. Probably the most famous application in recent
years of this field is the detection of gravitational waves by LIGO [A+16], however, it has
also been used for atomic clocks [LBY+15] or magnetometers [KKAR03].

With the advancement of technology current experiments have managed reduce the
noise to a limit where quantum effects are noticeable. The stochastic nature of quantum
measurements actually sets a fundamental limit to the estimation precision. Indeed, con-
sider that we have a number of resources N (this can be for example the number of particles
or photons, or the duration of the experiment), and we wish to maximise the amount of
meaningful information one can obtain on a certain parameter (or any finite number of
them) Classically, the only way to improve the precision is to repeat the experiment a
number N of times over identically prepared systems thereby reducing the estimation er-
ror by a factor 1/N , the so called Shot-Noise Limit (SNL) or Shot Noise Scaling. However,
using quantum mechanical features, notably entanglement, one can find ways to enhance
the precision using the same resources by a factor 1/N2 (specifically in magnetometry1),
the so called Heisenberg Scaling (HS) [GLM06, GLM11].

The usual way to proceed when doing quantum metrology is to map the physical
unknown quantity to a phase shift in a quantum state. That is, the step by step process
involves the preparation of a state used as sensor, the interaction of this state with the
signal (i.e. the unknown field), a measurement of the sensor to retrieve information about
the signal and a final stage of data analysis optimized to most accurately infer the signal
from the measurement outcomes [PSO+18].

However, in the experimental setting, even though there are different examples of over-
coming the shot noise limit, either the performance is not close to what could be [WJK+10],
or the number of particles used is small [MLS04], thus not taking full advantage of the
higher power of the HS. That is because creating and maintaining highly entangled states
of large dimension is very difficult[HHR+05] due to the decoherence and noise. Moreover,
the preparation of such states, might require long preparation times, and often needs fine
tuning in the control interactions.

The main goal of this project is to propose a metrology scheme that might alleviate these
problems. For that, this thesis aims to study the possibility of using many-body interactions
while the state interacts with the system. This might be able to create entanglement while
the system gains information about the unknown parameter, and thereby surpass the SNL.

1This can be easily generalized, and will depend on the difference between the maximum and the
minimum eigenvalues of the Hamiltonian describing how the external parameter is coupled to the system.
In this thesis we will assume that the magnetic field to estimate couples to each system independently
(H = g

∑
i
σ

(i)
n , where (i) indicates the position of the particle).
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2 Metrology formalism
As mentioned above, metrology is the field that studies how and how much information
about an unknown parameter can be obtained by a (noisy) measurement. The act of
measurement is modeled by taking one or several samples from random variable X whose
distribution depends on the unknown parameter, i.e. it is characterized by a family of
Probability Density Function’s fϕ

X(x) = f(x;ϕ) where x is the measurement outcome and
ϕ the unknown parameter. A PDF is defined as

Definition 2.1 (Probability Density Function (PDF)). The PDF fϕ
X(x) of a random

variable X is a non-negative function characterizing the relative likelihood of the possible
outcomes of X, or in other words:∫ x

−∞
fϕ

X(x′)dx′ = Pr(X ≤ x;ϕ) . (1)

The family of {fϕ
X(x) : ϕ ∈ Ω} constitutes the parametric model of the measurement.

With this, the expected value of a function g(X) is defined as:

Definition 2.2 (Expected value). Given a function g(X), where X is a random variable
with a PDF fϕ

X(x), then the expected value of the function is

Eϕ
X [g(X)] =

∫ ∞

−∞
g(x)fϕ

X(x′)dx′ (2)

In general, both the superscript ϕ and the subscript X will not be written to avoid cluttering
of symbols (as long as these are implicit in the context).

If the same experiment is repeated many times under the same conditions, the outcomes
will be distributed according to an:

Definition 2.3 (Independent and Identically Distributed (IID)). A collection of random
variables X = (X1, X2, X3, ..., XN ) with a joint PDF fϕ

X(x) is said to be IID if, given that
thePDF’s for the random variables Xi are fϕ

Xi
(x), then

fϕ
X(x) =

N∏
i

fϕ
Xi

(x) (3)

Under the frequentist approach, the estimated parameter is assumed to be a determin-
istic variable. For example, if one tries to estimate the phase ϕ in a Bloch vector, it is
assumed that this parameter exists, and it is not determined by our measurements2.

However, this does not mean that this parameter will be ever known. Given a parameter
ϕ, the best one can hope for is to possess a reliable estimator for this parameter. This
is usually noted like ϕ̂ and is a statistic, a function of a certain set of outcomes xϕ =
(x1, x2, ..., xN ). Given that the outcomes of a measurement are random variables, our
estimator will also be a random variable.

The quality of an estimator is usually quantified by this cost function:

2This work will be developed under this assumption. However, it is important to notice that there is
also the Bayesian approach. In it, this parameter is itself considered to be a random variable distributed
according to a prior PDF.
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Definition 2.4 (Mean Squared Error (MSE)). The Mean Squared Error of an estimator
ϕ̂ for a parameter ϕ is defined as

MSE
(
ϕ̂
)

=
(
∆ϕ̂
)2

= Eϕ
X

[(
ϕ̂− ϕ

)2
]

(4)

Again, in order to avoid cluttering of symbols in the notation we do not make explicit
its dependence on ϕ. However it is important to emphasize that the MSE quantifies the
dispersion of the estimated values with respect to the true value, and will generally depend
on the value of ϕ.

There are many different estimators. These are chosen according to their simplicity
and mathematical properties. A minimal requirement on an estimator is that its value
gets closer to the true value as one gathers more measurement data. Mathematically this
is characterized by the consistency property.

Definition 2.5 (Consistency). A sequence of statistics {ϕ̂n} is said to be a consistent
estimate of a parameter ϕ if for every ϵ > 0

lim
n→∞

Pr
(
|ϕ̂n − ϕ| ≤ ϵ

)
= 0 , (5)

for n ∈ N.

Usually, one also requires this property to hold for all values of the parameter ϕ, at
least in a given in interval.

One can define many different estimators that will fulfil this property. A common
choice is the parameter that maximizes the Likelihood function. As shown in [MCBS22]

Definition 2.6 (Likelihood Function). Suppose X = (X1, ..., XN ) are jointly continuous
random variables whose distribution depends on a parameter ϕ and have a PDF f(x;ϕ).
The likelihood of the parameter ϕ given x observations is denoted by L(ϕ|x) and is defined
to be

L(ϕ|x) := f(x;ϕ) , (6)

From this, one can define the estimator ϕ̂ such that L(ϕ|x) is maximized:

Definition 2.7 (Maximum Likelihood Estimator (MLE)). Suppose that a sample x =
(x1, ..., xN ) has likelihood function L(ϕ) = L(ϕ|x) depending on a parameter ϕ. Then a
Maximum Likelihood Estimator (MLE) ϕ̂MLE is the value of the parameter that maximizes
L(ϕ) if a maximum exists. In other words

ϕ̂MLE = arg max
ϕ

L(ϕ|x) , (7)

This estimator fulfils two important properties. It is consistent3 and efficient; in other
words, it saturates the Cramer – Rao bound [Cra46] in the asymptotic limit of a large
number of measurements.

Theorem 2.1 (Cramer-Rao bound). Let X = (X1, ..., XN ) be a jointly continuous random
variable with a PDF f(x;ϕ), let ϕ̂N be an unbiased estimator of ϕ, such that it does not
depend on ϕ for the region with non-zero probability, then(

∆ϕ̂N

)2
≥ F−1

N , (8)

where FN is the Fisher Information.
3For the interested reader, this property implies that the estimator is unbiased, i.e. E

[
ϕ − ϕ̂

]
= 0

(however the converse is not true).
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Definition 2.8 (Fisher Information (FI)). Let X = (X1, ..., XN ) be a jointly continuous
random variable with a PDF f(x;ϕ). Then the FI is given by

FN := E

[(
∂ logL(ϕ|x)

∂ϕ

)2]
. (9)

It is important to notice that due to the additivity property of the FI we can write as
FN = NF1 when X = (X1, ..., XN ) is a jointly random variable of IID of random variables
Xi. This is an important result, as it means that for every measurement the same amount
of information is extracted.

Recall that ϕ̂MLE saturates Th. 2.1 in the asymptotic limit. Indeed, this this means that
this estimator will extract the maximum information for a given set of random variables
XN ∼ f(x;ϕ).

2.1 Quantum Metrology
All these concepts can also be defined for quantum states. In this work, we are mainly
concerned with the Quantum Fisher Information. However, let us first introduce some
basic definitions and notation. A Positive Operator Valued Measure is, as in [Pre14]:

Definition 2.9 (Positive Operator Valued Measure (POVM)). A POVM E is the most
general concept of measurement in Quantum Mechanics. It is characterized by a set of
operators {Ex} that have to fulfil the following conditions

1. Positivity: ⟨ψ|Ei |ψ⟩ ≥ 0 ∀ |ψ⟩ or in simpler notation Ex ≥ 0.

2. Completeness:
∑

xEx = 1.

Now, let ρϕ be a state that depends on the parameter ϕ. If we choose POVM E with
outcomes Ex and make a measurement into the state, the outcome of such measurement
will be a random variable X distributed according to a PDF fϕ

X(x) = Tr{Exρϕ}. With
this probability distribution, we can compute the FI. This is, according to Def. 2.8

F =
∑

x

Tr{Ex∂ϕρϕ}2

Tr{Exρϕ}
. (10)

However, as there are infinitely different POVM’s to choose, and each of them might
give a different PDF, it is not automatic which one to choose. Luckily, this can be avoided
via the Quantum Fisher Information.

Definition 2.10 (Quantum Fisher Information (QFI)). Let ρϕ be a state and E a POVM,
then the QFI is defined as follows

F = max
E

F (ρϕ, E) . (11)

This can be written in terms of a closed formula [BC94a], depending only on ρϕ =∑
k λk |k⟩⟨k| and its derivative ∂ϕρϕ with respect to the unknown parameter:

F(ρϕ) = 2
∑
k,l

|⟨k| ∂ϕρϕ |l⟩|2

λk + λl
. (12)

Another way of defining the QFI is via the Symmetric Logarithmic Derivative. This is
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Definition 2.11 (Symmetric Logarithmic Derivative (SLD)). The Symmetric Logarithmic
Derivative (SLD) is denoted as Lϕ is defined in the following way. For a state ρϕ that
depends on a parameter ϕ

Lϕρϕ + ρϕLϕ

2 = ∂ϕρϕ . (13)

With this definition, the QFI can be written as

F(ϕ) = Tr
{
L2

ϕρϕ

}
. (14)

Now, if ρϕ = |ρϕ⟩⟨ρϕ| is a pure state4, the QFI can be rewritten as

F(ρϕ) = 4(⟨∂ϕρϕ|∂ϕρϕ⟩ − |⟨∂ϕρϕ|ρϕ⟩|2) . (15)

When considering ρϕ a pure state, the dependance on ϕ can be written as ρϕ =
e−iAϕ |ρ0⟩⟨ρ0| eiAϕ where Aϕ is an Hermitian matrix that depends on ϕ. Now, particu-
larly, in the case of Aϕ = ϕtH, the QFI can be written as

F = 4t2(∆H)2
ρ0 , (16)

i.e. the variance of H with respect to the initial state.
The above expression for the QFI gives the optimal (classical) FI extracted via a E

measurement. However, it is often important to construct the POVM that attains it. Any
POVM E = {Ex} attaining the QFI must satisfy the following conditions

• Tr{ExρϕLϕ} ∈ R

• For every outcome of the POVM Ex, a cx ∈ R exist such that√
Ex

√
ρϕ = cx

√
ExLϕ

√
ρϕ . (17)

There is also a quantum counterpart to the Th. 2.1. This is the Quantum Cramer-Rao
bound [BC94b], and states that the bound on the variance imposed by the QFI is also
attainable asymptotically with the number of measurements.

Now that all the mathematical tools required are defined, let us start with the problem
to study.

4For pure states |ρ⟩ is understood to be the unique nonzero eigenstate of ρ. That is ρ = |ρ⟩⟨ρ|.
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3 Magnetometry
Magnetometry is defined as the study of the measurements of magnetic fields. When
someone wants to measure the strength of a magnetic field, i.e. estimate the parameter g
from the following Hamiltonian H = gSz, the usual (classical) approach will consist of the
following three steps, as can be seen in Fig. 1:

a) Take a spin particle perpendicular to the direction of the magnetic field in the Bloch
Sphere (so the state feels the maximum amount of "change").

b) Let the spin particle evolve under the magnetic field Sz, for a known time t.

c) Measure the final state to retrieve information from the magnetic field.

Figure 1: Canonical quantum metrology scheme: (a) Take a spin particle ρ perpendicular to the
direction of the magnetic field. (b) Let it evolve a time t, (c) Make a measurement M on the particle.

To get an estimator ĝ for the parameter g, the procedure is repeated independently
N times or, equivalently, the quantum system consists of N independent spins, i.e. its
state does not exhibit quantum correlations. Since this corresponds to the IID sampling
presented above it inevitably leads to a MSE with SNL, i.e. as 1/N . Even doing more
sophisticated collective measurements cannot improve this since the QFI is additive. That
is, for IID states F(ρ⊗N

g ) = NF(ρg) = t2N , where we have used (16) to compute the
single particle QFI, F(ρg) = 4t2(∆H)2

ρ = t2. Using this procedure, the advantages that
the quantum realm can provide to us are not taken into account, and the QFI scales as
F = t2N . That is, to reduce the variance of your estimator to 1

N , N resources will be
required.

However, the quantum realm, and especially taking advantage of entanglement, allows
for much faster convergence. That is if one entangles the initial state in some particular
way5, less than N resources will be required to reduce the variance of your estimator by
a factor 1/N . In order to exploit the quantum correlations, one can adapt the previous
protocol in the following way (see also Fig. 2).

a) Take N spin particles6.

b) Entangle these particles into a state that will give you an advantage with respect to
the SNL.

c) Let the entangled state evolve under the magnetic field Sz, for a known time t.

5The entanglement must be done in such a way that allows for a higher QFI. Some examples can be
found in [TA14]. Moreover, for the interested reader, the role of entanglement in Quantum Metrology has
been studied asymptotically here [AKS+16].

6Given that some unitary operations will be applied to these particles, there is no need to require any
other restriction.
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Figure 2: Scheme to obtain Heisenberg Scaling (F ∝ N2): (a) Take N spin particles. (b) Entangle
them. (c) Let the entangled state evolve a time t under the magnetic field, (d) Make a measurement
M on each particle.

d) Measure the final state to retrieve information from the magnetic field. Of particular
relevance are those measurements which are local, that is one can measure each
particle separately.

The most efficient state to do so is the so-called Greenberger–Horne–Zeilinger (GHZ)
state [GHSZ90]. Defined as

|GHZ⟩ = 1√
2

(
|λmax⟩⊗N + |λmin⟩⊗N

)
, (18)

where |λmax,min⟩, refer to the states which have larger and lower eigenvalues of the magnetic
field, i.e. gSz |λmax,min⟩ = ±gN

2 |λmax,min⟩7. That is because this state is the one that
maximizes the variance of Sz, as ⟨Sz⟩GHZ = 0, and

〈
S2

z

〉
GHZ = ||S2

z ||.8. The QFI is
F = t2N2. This is referred to as Heisenberg Scaling (HS), and it reduces the number of
resources required by one order of magnitude.

Other quantum states can give a F = γN2t2 where γ ∈ (0, 1]. These states are
very variate, but they all share one characteristic: they are highly entangled states that
minimize the expected value of Sz while taking advantage of the quantum correlations to
maximize the expected value of S2

z . Here we put a lot of emphasis on the QFI being of the
order F ∼ t2N2, however, it is important to highlight that anything above F = t2N is a
quantum advantage.

As mentioned in the introduction, the practical implementation of such schemes is far
form this ideal situation. The difficulty to prepare the GHZ state, the presence of noise
and limited experiment duration makes it hard to reach a practical quantum advantage in
sensing. With the hope to solve (at least partially) some of these problems, in this work we
will put forward an approach that breaks with the standard paradigm presented above.

7For a magnetic field, i.e. a set of spins, the |GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
, where |0⟩ , |1⟩ are the

eigenstates of σz. It is usually referred to as the maximally entangled state.
8Here || · ||2 stands for the operator norm defined as maxϕ ⟨·⟩ϕ.
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4 Dynamical Fisher Information with no entanglement
In this thesis, we will use many-body controlled interactions that will generate entangle-
ment while at the same time encoding the information of g into the state. Therefore, the
Hamiltonian that will determine the evolution of the state is

H = gSz +
∑

j

λjhj , (19)

where the {λj} are control parameters and {hj} are the associated operators. This can
potentially reduce the overall time of the protocol (hence reducing decoherence/dissipation)
and avoids using time-dependent control. More precisely, the approach presented is the
following

1. Prepare a product state, i.e. a pure state with no quantum correlations.

2. Let the estate evolve under the Hamiltonian in Eq. (19). This substitutes steps (b)
and (c) in the previous protocol (Fig. 2).

3. Measure the final state to retrieve information from the magnetic field. This measure-
ment can in principle be arbitrary, although one can considers schemes with some
restrictions (e.g local, repeated, separable).

Fig. 3 shows a comparison between the two approaches. In this new approach the
two-step process of entangling and encoding the information into the state (via a phase
difference) is done at the same time. Moreover, while the previous approach (Fig. 3a)
requires some form of time-dependent control to prepare the state, in this one (Fig. 3b)
this is not required. This is because the interaction is switched on and kept. This protocol
might also be more resistant to noise and decoherence9.

Figure 3: Comparison between a) the standard approach explained in the previous section and b) the
new approach studied here, consisting on entangling the state and embedding the parameter g to it at
the same time.

In this setting it is not clear how the QFI will behave, or even whether HS will be
achievable. Given that we will use pure states, the starting point will be the expression of
the QFI given in Eq. (15). The initial state is taken to be an uncorrelated (product) pure

9Intuitively, this is justified because the interaction is kept on during the estimation process. Then when
the state decays or suffers from noise, it will be prepared "again" into an entangled state.
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state denoted by |ρ0⟩, and it evolves under U(t) = eitH(g), where H is the Hamiltonian
from Eq. (19) and g is the unknonw parameter. Then using the derivation by [Wil67]

|ρ̇g⟩ := d

dg
U |ρ0⟩ = −it

∫ 1

0
e−istHSze

−i(1−s)tHds |ρ0⟩ . (20)

With this expression, one can show that for the long-time regime, we get a very similar
expression to Eq. (16). Let Pk be the projectors of the Hamiltonian in Eq. (19), that is
H =

∑
k EkPk. Then if we define the Pinched Hamiltonian as Hp =

∑
k PkSzPk, the QFI

is
F ≈ 4t2(∆Hp)2

|ρ0⟩ . (21)

Sketch of the proof10

To see this one just needs to realize that when expressing Eq. (20) in its projector form, the
only terms that will be proportional to t are those in which the product of the exponential
eigenvalues equals one, that is

∫ 1

0
e−istHSze

istHds =
∫ 1

0

N∑
j,k

e−ist(Ek−Ej)PkSzPjds =
∑

k

PkSzPk + 1
t

∑
k,l|k ̸=l

PkSzPlck,l

(22)
where ck,l = e−itEk −e−itEj

Ek−Ej
are bounded. This can be readily understood, since for times

much larger than the smallest energy gap in the Hamiltonian, the rapid oscillating phase
in the integral will cancel, except when k = j.

Notice this expression gives us some insights into the properties of our choice of Hamil-
tonian to surpass the SNL. Mainly, for the long-time regime, one sees that the entanglement
is being shifted from the states as in Fig. 3a, to the eigenstates of Sz, the magnetic field
in Fig. 3b using the “pinching” (i.e. the action of erasing out diagonal blocs,

∑
k PkSzPk).

However, this result does not assure us in any way that HS can be achieved. To show
it, a protocol that achieves it is presented.

10Find a full proof at Annex A.
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5 Protocol 1: Many Body
With this protocol, the maximum QFI that one can achieve is F = 1

2N
2t2. Thus, HS is

achievable. This protocol consists of the following. Consider the Hamiltonian in Eq. (19),
then the terms {λjhj} are defined as follows∑

j

λjhj = Nλ (|N⟩⟨0| + |0⟩⟨N | + |−N⟩⟨0| + |0⟩⟨−N |) , (23)

where Sz |±N⟩ = ±N
2 |N⟩ are the states with all N spins up or down respectively, while

Sz |0⟩ = 0 is a state with the same number of spins up than spin downs. Note that the zero
eigenspace of Sz is very degenerate, so this choice of |0⟩ is not unique. However, since the
optimal input state is also |ρ0⟩ = |0⟩, if this ought to be a product state we must choose

|0⟩ := |↑⟩⊗ N
2 |↓⟩⊗ N

2 or permutations thereof.
With this, the QFI is dependant on the relation between g, λ,

F = 4t2N2 g2λ2

(g2 + 2λ2)2 . (24)

As said before, the maximum of f(g, λ) = 4 g2λ2

(g2+2λ2)2 has a maximum at 1
2 . That happens

when λ = g√
2 , as can be seen in Fig. 4.

Figure 4: Representation of the QFI normalized with the factor N2t2 with respect to λ/g. In this figure
one can appreciate that when λ is close to g 1√

2 the QFI F → 1
2N

2t2.

Sketch of the proof11

The intuition behind this result is connecting the highest and lowest values of our Hamil-
tonian, basically doing the same as the GHZ state does. Follows easily from writing the
interacting Hamiltonian as∑

j

λjhj = Nλ
√

2 (|GHZ⟩⟨0| + |0⟩⟨GHZ|) , (25)

where |GHZ⟩ is the one in Eq. (18). As an intuition, the prefactor of 1
2 of the F can be

seen as being one half of the time in the |GHZ⟩ and the other in the |0⟩ state.
Even though it might be counter-intuitive that the QFI depends on the parameter that

we are trying to estimate, it is not something uncommon. However, this might indeed

11Find a full proof at Annex B.
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cause some problems when trying to estimate the parameter. One can use other methods
using few resources to get a rough estimate of g, and then use this strategy to reduce it to
HS12.

Overall, here it is shown that this way of proceeding can lead to HS. That is, the best
quantum advantage when doing magnetometry can be achieved, even when g is very small.

5.1 Comparison with the standard GHZ state protocol
Let us highlight the two main difference between the our scheme (Fig. 3b with the inter-
acting term in Eq. (23)) and the protocol using a GHZ (Fig. 3a using the state shown in
Eq. (18)):

1. Preparation: The standard protocol, requires a preparation stage. In particular
to attain the optimal scaling one needs to prepare a GHZ state , for example by
applying consecutive CNOT gates to the state |+⟩ |0⟩⊗N . This means that the unitary
operation

Ui,i+1(τ) = eiτ(1(i)−σ
(i)
z )⊗(1(i+1)−σ

(i+1)
x ) (26)

with a precise time of τ = π/4 has to be applied in every pair of particles (indicated
by the labels i, i+ 1). Thus fine time tuning is required.

In the strategy studied in this thesis (Fig. 3b), there is no preparation. Therefore,
no time tuning is required.

A challenge of our protocol is that it requires N -body interactions, whereas the
standard one can be done concatenating two-body operations (CNOT gates). This
motivates next section. Also the preparation of the GHZ will increase linearly with
N , dis does not happen for the protocol studied here.

2. Scaling: In the standard protocol to achieve HS (Fig. 3a) the QFI scales as F = N2t′2.
t′ is the time that one lets the state interact with the Hamiltonian (step c of Fig. 2).

In the strategy studied in this thesis (Fig. 3b), the QFI is F = 1
2N

2t2 (in the
best case scenario). However, because there is no preparation of the state, this time
compared to the protocol with the GHZ is t = t′ + τ . Basically, this means that
by avoiding the preparation step, more time is put into the encoding, thus a higher
scaling is achieved.

Here it is shown that both protocols are different in nature, therefore they lead to
different results and also have different requirements to give the maximum scaling. Last
but not least, let us point out that the proposed scheme serves the purpose to show that
quantum correlations, required for HS, can be established while the sensor is exposed to
the magnetic field. However, the required Hamiltonian in (23) is not readily available in
nature, and it seems very unlikely that it can be engineered. With this in mind next section
is devoted to find more feasible schemes requiring only two-body interactions.

12A possible approach might be to use the Standard Quantum Limit get an estimate of g to bound the
function f(g, λ) and then use this protocol.
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6 Protocol 2: Two Body
Motivated by the possibility of implementing this approach experimentally, now we consider
two-body interactions. These interactions have a Hamiltonian of the following form

H =
∑
i,j

ci,j,k,lσ
(i)
k ⊗ σ

(j)
l , (27)

where σk ∈ {1, σx, σy, σz}, for k ∈ {0, x, y, z} and where the (i) in σ(i) indicates the position
of the particle in the chain (or surface, 3d-space, etcetera).

6.1 Quantum advantage using one-axis twisting Hamiltonian
Now, we show that we can achieve a quantum advantage using just a one-axis twisting
control term, i.e. S2

x =
∑N

i,j σ
(i)
x ⊗ σ

(j)
x (where the indices i, j refer to the position of the

particle), that is, all the particles interact with each other with the same weight13. Notice
that this interaction, where there is an all-to-all Hamiltonian (as in Eq. (27)) and the
number of particles is very high, might be very difficult to implement in systems based
on localized qubits (such as those in a quantum computer), but is very natural in atomic
ensembles used in magnetometry.

The proof for the quantum advantage turns out to be quite subtle. Let us consider
H = gSz + λS2

x and a state with an N−odd number of particles. Then if λ ≫ g, it can be
proven that

F = t2
N3/2
√

2π
+ O

(
g

λ

)
. (28)

That is, by letting N particles (where N is odd), pointing initially in the y direction in
the Block Sphere14, and letting them evolve under this Hamiltonian with the controlled
parameter λS2

x, one can get over the Shot Noise Limit by a factor of
√
N .

Scketch of the proof15

First notice, that in the eigenstates of S2
x, Sz will act as a linear combination of the ladder

operators S+, S−. That is

Sz |sx,m⟩ ∝ a |sx,m+ 1⟩ + b |sx,m− 1⟩ , (29)

where a, b are the constants given by the ladder operators S+, S−.
|Ek⟩ = |Ek⟩(0) + g

λ |Ek⟩(1) + O
(

g2

λ2

)
, where (i) refers to the order of the correction16. By

imposing large times one can compute F via Eq. (21).
When computing the pinched Hamiltonian Hp, since Sz will again behave as a linear

combination of ladder operators, the only “pinching” that will survive at 0−th order will

13The operators Sx, Sy, Sz refer to the generalized spin. More information can be found in [SN13]. This
operators are defined as Sn =

∑N

i=0 σ
(i)
n , where n represents the direction of the Pauli Matrices. Therefore,

these are one-body interactions and S2
n are two-body interactions.

14For the unfamiliar reader, the Block Sphere is the geometrical representation of the space of one qubit.
For more information please review the section Quantum Bits from [NC10].

15Find a full proof at Annex C.
16The 0−th order eigenstate will be also affected by the perturbation as S2

x is degenerate. Thus the
perturbation breaks this degeneracy.
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be the subspace of mx = ±1
2 (e.g.

〈
sx,m = 5

2

∣∣∣Sz

∣∣∣sx,m = ±5
2

〉
= 0). This is why the

condition of an N−odd number of particles is required. Hp then looks like

Hp =
√
N

2

(
N

2 + 1
)

− 1
4 (|sx,+⟩⟨sx,+| − |sx,−⟩⟨sx,−|) , (30)

where
|sx,±⟩ = 1√

2

(∣∣∣∣sx,m = 1
2

〉
±
∣∣∣∣sx,m = −1

2

〉)
+ O

(
g

λ

)
. (31)

Finally, it is just a problem of optimization to see which state of the form of |θ, ϕ⟩⊗N

maximizes the QFI. Intuitively, the state of that will maximize this is in the y direction
because it will “feel” both interactions the most. And it is. Therefore, the state that is
chosen is |y⟩⊗N , to finally obtain Eq. (28).17

Now that we have shown there is a quantum advantage, we study how robust these
results are, i.e. how far can the setting be from the assumptions to work. Firstly, in Fig.
5a it is clear that the time convergence to the QFI given by Eq. (21) is very fast with just
one unit of time (in natural units) the value already reaches the “steady state”. Moreover,
both N and g/λ do not affect such convergence in a significant way18. The convergence of
this protocol to the “steady state” seems independent of the relation g/λ (as long as it is
small). That is, for a fixed N the QFI does not vary when changing g/λ. Regarding the
value of N , it might seem that lower values of N converge faster to this value. However, as
can be seen in Fig. 5b the lower values of N have a higher value of F/(t2N3/2). Therefore,
it is just a matter on where the “steady state” is.

This brings us to Fig. 5b, where the relation between N and F/(t2N3/2) is shown.
Clearly, for all values of g/λ the smaller N the higher F/(t2N3/2). Also, the approximation
breaks down for values of g/λ ≳ 0.001. This is because in this setting the terms O(g/λ)
start having a significant weight due to the correction of Sz being more significant.

The last figure in this set of plots is Fig. 5c). The relation between F/(t2N3/2) and
g/λ is shown for a different number of particles. The important, or most interesting aspect
of this figure is how, for the larger values of N the approximation breaks down.

6.2 Comparison with one-axis twisting using the standard protocol.
Let us compare this protocol to the standard scheme in Fig. 3a. There are several papers
[PS09] studying the effects of a non linear evolution of S2

n to prepare the state (that is,
using U = e−iτS2

n in step b of Fig. 2) to do magnetometry. The two main differences are
outlined next and summarized in Table 1:

1. Preparation: As mentioned before, both protocols use the same interaction term. The
protocol presented in [PS09] (of the type of Fig. 3a) requires the previous preparation
of the state. This time is independent of the dimension of the state. Whereas
the protocol studied in this thesis (Fig. 3b) does not require any preparation time.
However, the protocol studied in this thesis requires and odd number of particles N .

2. Scaling: The protocol studied in [PS09] (of the type of Fig. 3a) achieves a QFI of
F ∼ t′2N2f(τ)+O(N), where τ is the preparation time. f(τ) ∈ [0, 1] is bounded and
dependant on τ . Therefore a small change in the preparation time can change the

17Notice that there might be a state that gives a further advantage in this protocol. However, we have
restricted ourselves to the set of states |θ, ϕ⟩⊗N

18Recall that the QFI is natural such that F/(t2N3/2)
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prefactor in the QFI19. Also, notice that t′ is the time in which the state is interacting
with the field to study (step c of Fig. 2). For the protocol studied in this thesis (of
the type Fig. 3b), the QFI behaves as F ∼ t2N3/2 and it works only for N−odd
number of particles. Therefore, the two main differences are the power in the scaling
with the dimension (N2f(τ) vs N3/2) and the scaling with time (t′2 vs t2 ∼ (t′ +τ)2).

Figure 5: Representation of the different relations of F/(t2N3/2) with parameters of the problem. The
dashed line represents the QFI from Eq. (28). (a) Relation of F/(t2N3/2) with t (in natural units) for
two radically different values of g

λ and N . It can be seen that the effects of g
λ are null in the convergence

to the Hp expression. However, there is a small effect due to N . (b) Relation between the F/(t2N3/2)
and the number of particles used (recall that N is always odd) for different relations between g/λ. Here
it is very clear that the approximation holds up to g/λ = 0.001. (c) Relation between F/(t2N3/2) and
g/λ (at the long time regime) for a different number of particles used. This figure highlights the fact
that the higher the number of particles, the smaller the relation between g/λ has to be.

19Notice that f(τ) can also have a value of 0 in extreme cases. This means the quantum advantage of
the protocol can be completely destroyed.
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Table 1: Comparison between the the standard approach shown in Fig. 3a and the approach studied in
this thesis (Fig. 3b). Both for using the non-linear interaction S2

n.

Standard approach Approach studied here
Requires preparation Yes No

Requires fine time tuning (τ) Yes No
Scaling in time (F) t′ ∼ (t− τ)2 t2

Scaling in the dimension (N) N2 N3/2

Dependency on the parity of N No Yes

6.3 Achieving QFI with local observables.
Finally, we will show that, quite crucially, our bounds can be attained by a simple, experi-
mentally available measurement. We show that measuring the observable Sx is enough. To
prove so, compute the FI20 F of the state ρ = U |y⟩⟨y|⊗N U †, where U gives the evolution
under H = λS2

x + gSz. With this measurement FSx = F .

Scketch of the proof21

This proof is long but very simple to see. Just notice that the projectors Ei into the subspace
of |sx,±⟩ (i.e. the subspace of Hp) for E = Sx are into the states

∣∣∣sx,
±1
2

〉
. Then substitute

this into Eq. (10) and you find FSx = F . One would also expect this observable to be, as
is the one that will be able to measure the most change from Sz without being affected by
the one-axis twisting caused by S2

x.
The fact that this can be achieved with macroscopic measurements is of the most

importance. That is because the whole idea of this project is to avoid applying intricate
operations, usually very difficult to perform in an experimental setting, However, if the
measurements were to be non-macroscopic and entangled, that would just seem like shifting
the intricacies, from the beginning of the protocol to the end. Nevertheless, let us note
that this is still a nontrivial interesting task because performing intricate POVM’s is often
easier than preparing nontrivial states.

In addition, note that while entanglement is strictly necessary to achieve HS, as pointed
out in [GLM11], the QFI can be always achieved using the asymptotic limit of large N ,
with an estimation strategy constructed via local measurements and adaptive estimators, a
strategy that employs only Local Operations and Classical Communication (LOCC). And
even though this might seem to solve the problem, finding the adaptive estimators might
be extremely complicated.

In this section, it has been shown that a quantum advantage (even though not full HS)
is possible using the approach in Fig. 3b) with only two-body interacting terms. Thus
making it more feasible to produce in an experimental environment. Finally, it has been
proven that this can be achieved by performing macroscopic (local) measurements that
do not require to adress individual particles. This final point, also being of out-most
importance due to the feasibility of implementing such measurements.

20For the experienced reader, you might be wondering why the Error Propagation Formula, (∆g)2 =
(∆E)2

|∂g⟨E⟩|2 , is not used. As highlighted in [PSO+18] this is just an approximation and is not always valid.

21Find a full proof at Annex D.
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6.4 Improving the quantum advantage in the symmetric space
Using Pytorch [PGM+19] a library for Python, we have been able to show numerically
that there are protocols that perform even better. More specifically, we have used the
Adam22 process for stochastic optimization to perform a gradient-based optimization on
the QFI. These gradients are computed using automatic differentiation23, to ensure a better
convergence and precision for the QFI. Using these tools we optimize over a larger family of
symmetric Hamiltonians and show that better scaling for the QFI can be attained. These
results are as follows. Firstly, the states that are chosen are [MWSN11]

|η⟩ = |θz, ϕz⟩⊗N = 1
(1 + |η|2)s

s∑
m=−s

(
2s

s+m

)1/2

ηs+m |sz,m⟩ , (32)

where η = − tan
(

θ
2

)
e−iϕ. This is because to achieve HS one usually takes advantage

of the symmetric space (where S2 has a maximum value). Moreover, the dimension of
the symmetric space grows linearly with the number of particles (dimsim = N + 1 vs
dimtot = 2N for all the space). With this the QFI can be modelled for a larger number of
particles, therefore the asymptotic limit for N (when the number of particles N is large)
can be studied.

Motivated by these considerations, we define the Hamiltonian as H = gSz + αS2
x +

βS2
y , where g is the unknown magnitude. Therefore we optimize over 4 parameters.

{θ, ϕ, α, β}.24 Furthermore, the optimization will be conducted for the long-time regime.
That is, mathematically one could set it into Eq. (21).

With this optimization we find that the following Hamiltonian H ′ = gSz +λS2
x + 1√

N
S2

y

achieves a higher scaling than the protocol we showed before, for g ≪ λ. The full list
of parameters is {θ = π

4 , ϕ = π
2 , α = λ, β = 1√

N
} 25. In Fig. 6 different results for this

optimization are shown.
First of all, it is important to realize that the same condition in N for long-time regimes

holds. The plot is done for N−odd number of particles. Because for N even, the results of
the optimization are once again 0. This comes, again, from the “pinching” as when having
Sz act as a ladder operator, only certain sub-spaces survive.

In Fig. 6, it is apparent there is a significant increase in the value of the F/(t2N3/2),
in relation to N . This protocol seems to outperform the one shown before, and not by
a constant, but by a value dependant on N . This clearly suggests the possibility of a
different scaling in N . That is, almost all the combinations shown, the QFI is higher and
dependant on N . This motivates us to look for another normalization. This is shown in
Fig. 7. Here we change the normalization constant from F/(t2N3/2) to F/(t2N2).

In Fig. 7a the relation between F/(t2N2) and t (in natural units) is presented. It
is seen that in this protocol the convergence to the ”steady state” is very similar to the
previous protocol. The effects of N and g/λ are negligent in reaching such steady state.

22This is one type of algorithm to compute stochastic optimizations of functions using first-order gradient
descent. A process that takes advantage of the local derivatives to "search" for the minimum of a function.
More information can be found here [KB17]

23This is a process that combines analytical derivatives and the chain rule (∂xf(g(x)) = f ′(g(x)) ∗ g′(x))
with numerical differentiation to make the computation of the gradients both more efficient and precise.

24Find the full code for the optimization in Annex E
25The parameter λ has to fulfil the condition of g ≪ λ. However, for consistency, it has been chosen

at λ = 100. This condition is imposed so the results are somewhat independent of the other variables.
Otherwise, the behaviour of the QFI is extremely sensitive to the dimension and g. Also for each g, N the
landscape of optimization is very flat, thus it takes a lot of resources to optimize the values.
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Figure 6: Relation between the F/(t2N3/2) and the number of particles used (recall that N is always
odd) for different relations between g/λ, and for the long time regime. Here it is very clear that even
when g = 0, the current protocol outperforms Eq. (28). In this setting, when g/λ < 0.001 the changes
are insignificant. However, when g/λ is increased this changes.

Fig. 7b reflects the main purpose of the re-scaling. It is seen that independently of the
values of g/λ (for the regime of large times) there is HS. In this figure, we also plot two
different regressions of the type f(N) = a+b/

√
N+c/N for g/λ = 0, g/λ = 0.01, shown in

dotted lines. This are, respectively fg=0(N) = 0.141−1.193/
√
N+5.498/N, fg=10−2(N) =

0.196 − 2.311/
√
N + 12.159/N . Also, we plot the asymptotic limit of this functions shown

in dashed lines. Both of them are shown to converge to HS. Therefore, we expect that
if this results are extended to a dimension as high as desired, the value of F/(N2t2)
would converge to this one shown by the dashed lines. That is, we expect to achieve a
F ≈ 0.15t2N2 in the asymptotic limit.

Lastly, Fig. 7c shows that in the regime of g/λ ≪ 1 larger values of this relation
increase the QFI. This is not independent of the number of particles N , but the HS for all
of them.

With this, we have shown numerically that the previous protocol can be improved, to
the point that one can reach HS. That is, still there are better ways to perform magne-
tometry, even in the symmetric space and in this particular setting. Moreover, this is still
done with fairly simple control Hamiltonians and without time control interactions.
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Figure 7: Representation of the different relations of F/(t2N2) with respect to important parameters
of the problem. Figures (b,c) are studied in the long time regime. With the re-scaling it seems that
HS is achieved. (a) Relation of F/(t2N2) with t (in natural units) for two radically different values of
g
λ and N . It can be seen that both parameters have a negligent effect on reaching the ”steady state”.
(b) Relation between the F/(t2N2) and the number of particles used (recall that N is always odd)
for different relations between g/λ. Here is where the apparent HS is most obvious. Two regression
functions (shown in dotted lines) of the form f(N) = a+ b/

√
N + c/N are shown with their asymptotic

convergence (in dashed lines). This are for g = 0 in red, and g = 10−2 in blue. The regressions are
fg=0(N) = 0.141 − 1.193/

√
N + 5.498/N, fg=10−2(N) = 0.196 − 2.311/

√
N + 12.159/N (c) Relation

between F/(t2N2) and g/λ for the different number of particles N . This figure highlights the fact that
the QFI is almost with respect to the relation between g/λ.
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7 Conclusions
In this thesis, we have studied a different setting to perform quantum metrology with a
special focus in magnetometry.

The usual setting to extract information of a parameter in a magnetic field consists of
the following steps: prepare a sensor into a carefully engineered quantum state, let the state
interact with the magnetic field and finally measure the state (as shown in Fig. 3a). In this
project we have focused on exploiting interacting many-body dynamics to entangle a state
while a magnetic field encodes its information into it (Fig. 3b). With this approach, we
avoid the preparation of the state, and thus, circumvent the different problems that come
with this. With this approach, we have shown that the SNL can be surpassed and therefore
have a quantum advantage in the amount of information gained for each measurement. Or
in other words, we show that a QFI higher than the FSNL = t2N is achieved.

This new approach opens new doors to tackle new challenges in the field of quantum
metrology. Particularly, on those that arise when trying to achieve a quantum advantage
in the QFI. Indeed this approach might help reduce the overall time of the protocols that
require a previous state preparation, reduce the time control required to prepare highly
entangled states, as well as potentially being more resistant to noise and decoherence. The
results obtained in this thesis are summarized below.

Firstly, in Section 4 we prove a new expression for the QFI for pure states. In the
long time regime we get the same well known F = 4t2(∆Hp)ρ0 , where the generator Sz is
replaced by its pinched version Hp =

∑
k PkSzPk. Also, it helps into understanding how to

achieve HS. By means of entangling the eigenstates of the Hamiltonian via the projectors
of the Hamiltonian, instead of having an entangled initial state. Firstly, this expression
is very similar to the QFI for the standard protocol and pure states. Secondly, it is time
independent (under the assumption of large times).

Secondly, in Section 5 we present a novel protocol to achieve a quantum advantage
proportional to HS. Using many-body interactions we can achieve a fraction of the maxi-
mum value of the QFI. Thus achieving the maximum scaling of F ∼ t2N2. This is very
important, as it shows the feasibility of this new approach (Fig. 3b).

Motivated by the possibility of implementing this approach experimentally, in Section
6 we study two body interactions to create entanglement. In this case, we showed that
a one-axis twisting term is enough to create a quantum advantage when the interacting
strength is much larger than the value of the estimated parameter. It also requires an odd
number of particles. This quantum advantage is of order F ∼ t2N3/2.The approximation
has been studied numerically to see that it holds for different values of t, N, g/λ, the three
important parameters of this study. Finally, it has been shown that a feasible measurement
of Sx is enough to achieve this value of the QFI. Moreover, this result has been compared to
other results in the literature for a similar protocol using the two step process of preparing
and interacting the state (in Fig. 3a) with the signal. This highlighted the main differences
between the two protocols.

In Section 6 we have also done a gradient-based optimization of the QFI using Pytorch
[PGM+19]. This consists of a gradien-based optimization of four parameters of θ, ϕ, α, β.
With this we have shown numerically that for a certain value, a better QFI than the
previous two body protocol can be achieved. This has also been studied numerically to
show that it holds even better than the previous two body protocol. Indeed, we have found
that even the scaling changes, achieving HS F ∼ N2t2.

In conclusion, studying this framework has resulted in a new expression for the QFI, as
well as showing that a quantum advantage is attainable in different settings. Even though
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full HS has not been achieved (F = N2t2), particular approaches that might be more
feasible to implement have been shown and studied. This thesis opens new doors for the
further study and development of quantum-enhanced estimation protocols, by developing
an alternative approach that is able to eliminate time control required in the established
protocol and reduce its overall time. Potentially, it might be more robust to noise and
decoherence.

8 Ongoing work & outlook
A crucial issue that has not been tackled in this work is robustness to noise. Indeed, for
the standard approach (Fig. 3a) there have been some recent results showing that deco-
herence prevents Heisenberg scaling, in fact bounding it to shot-noise scaling [DDKG12].
Interestingly, these results do not necessarily apply to our approach (Fig. 3b) due to the
presence of interactions. An important open question is to characterise the robustness of
the quantum advantages under decoherence and noise. Moreover, it has been shown that
entangled states can be created even under the presence of dissipative evolution [ZV21].
Therefore, the presence of interactions suggests an exciting open direction: can dissipative
dynamics be exploited to create useful states for sensing?

A challenging future endeavour is to characterize the potential for metrology of stan-
dard many-body systems, which feature two-body local interactions. An example of such
interaction is a spin chain in which every particle only interacts with its closest neigh-
bours. Luckily there are already some tools developed to ease this process. These are
Matrix Product Operators (MPO) and Matrix Product States (MPS), fundamental tools
from Tensor Networks. Because of the already discussed flatness of the QFI, using greedy
searches might not be enough. Thus the strategy would be to assume some form of the
Hamiltonians that generate the interactions using MPO and then optimize those with the
implementation of optimization methods such as the one used in this thesis.
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A Proof: Quantum Fisher Information for the long time regime
Let us start by defining the setting. Let us have an state |ρg⟩ = e−itH(g) |ρ0⟩, where
H = gSz +

∑
j λj +hj ({λj} are control parameters and {hj} are the associated operators).

Now to compute the QFI F , Eq. (15) is used:

F = 4(⟨ρ̇g|ρ̇g⟩ − |⟨ρ̇g|ρg⟩|) (33)

Also to compute |ρ̇g⟩, Eq. (20) is used. Let Ek be the energies of H, Pk be the projector
of H (notice how the projectors include all the degeneracy, that is Pk =

∑
i

∣∣∣E(i)
k

〉〈
E

(i)
k

∣∣∣,
where (i) accounts for the degenerate orthogonal states in the subspace), then if we write
e−itH(g) =

∑
k Pke

−itEk

|ρ̇g⟩ = − it

∫ 1

0

N∑
k

e−istEkPkSz

N∑
j

e−it(1−s)EjPjds |ρ0⟩ =

= − it
N∑
k,j

PkSzPj

∫ 1

0
e−it(Ej−(Ej−Ek)s)ds |ρ0⟩ =

= − it
N∑
k

PkSzPke
−itEk |ρ0⟩ +

N∑
k,j|j ̸=k

e−itEk − e−itEj

Ek − Ej
PkSzPk |ρ0⟩ ≈

(A)
≈ − it

N∑
k

PkSzPke
−itEk |ρ0⟩ = −itHp |ρg⟩ ,

(34)

where in (A) the largest order in t is kept. This is motivated because the leading term in
the QFI will go with the time squared. Moreover, the terms that are not considered are
bounded with the inverse of ∆E = minE |Ek −El|. Also, in the last inequality, it has been
defined Hp :=

∑
k PkSzPk.

From this point on-wards is just a matter of substituting this result into Eq. (15). The
first term will look like

⟨ρ̇g|ρ̇g⟩ =t2 ⟨ρg|H2
p |ρg⟩ = t2 ⟨ρ0|U †H2

pU |ρ0⟩ =

=t2 ⟨ρ0|
N∑
l

PlSzPle
+itEl

N∑
k

PkSzPke
−itEk |ρ0⟩ =

=t2 ⟨ρ0|
N∑
k

PkSzPkSzPk |ρ0⟩ = t2 ⟨ρ0|H2
p |ρ0⟩ .

(35)

And the second

⟨ρ̇g|ρg⟩ = it ⟨ρg|Hp |ρg⟩ = ⟨ρ0|U †HpU |ρ0⟩ =

=it ⟨ρ0|
N∑
l

Ple
itEl

N∑
k

PkSzPke
−itEk |ρ0⟩ =

=it ⟨ρ0|Hp |ρ0⟩ ,

(36)

thus
F = 4t2(∆Hp)2

|ρ0⟩ + O(t) . (37)
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B Proof: Achieving Heisenberg Scaling with many-body interactions
For this proof we require to choose a setting that allows us to achieve Heisenberg Scaling.
Let us have an state |ρg⟩ = e−itH(g) |ρ0⟩, where H = gSz +

∑
j λj + hj ({λj} are control

parameters and {hj} are the associated operators). Let us choose (with an even number
of spins) the following setting∑

j

λjhj = Nλ (|N⟩⟨0| + |0⟩⟨N | + |−N⟩⟨0| + |0⟩⟨−N |) , (38)

where Sz |N⟩ = N, Sz |−N⟩ = −N |−N⟩ , Sz |0⟩ = 0 (i.e. the state with all spins pointing
up, down and with the same number up and down). Now assume that we choose a state
that lives in the subspace generated by |N⟩ , |−N⟩ , |0⟩. Then Hp can be reduced to this
subspace without loss of generality in the QFI.

Therefore, we can define an effective Hamiltonian H ′ = N
2 |N⟩⟨N | + −N

2 |−N⟩⟨−N | +
Nλ (|N⟩⟨0| + |0⟩⟨N | + |−N⟩⟨0| + |0⟩⟨−N |). The eigenstates of this H ′ are

|E1⟩ = −λ√
g2 + 2λ2 |N⟩ + g√

g2 + 2λ2 |0⟩ + λ√
g2 + 2λ2 |−N⟩ ,

|E2⟩ = 1√
a2

+ + λ2b2
+ + λ4

(
a+ |N⟩ + λb+ |0⟩ + λ2 |−N⟩

)
,

|E3⟩ = 1√
a2

− + λ2b2
− + λ4

(
a− |N⟩ + λb− |0⟩ + λ2 |−N⟩

)
,

(39)

with a± = g2 + λ2 ± g
√
g2 + 2λ2, b± = g ±

√
g2 + 2λ2. Because this space is now not

degenerate, one can compute the expected values of the three eigenvectors with respect to
Sz and obtain

⟨E1|Sz|E1⟩ =0 ,

⟨E2|Sz|E2⟩ =N

2
a2

+ − 4λ2

a2
+ + λ2b2

+ + λ4 ,

⟨E3|Sz|E3⟩ =N

2
a2

− − 4λ2

a2
− + λ2b2

− + λ4 .

(40)

Finally, by choosing as your initial state |0⟩, one finds that

F = 4t2N2 g2λ2

(g2 + 2λ2)2 , (41)

with a maximum in λ = g√
2 , that achieves F = 1

2 t
2N2.

Notice how if g → 0 it might seem that the protocol will fail, however, one can always
define a g′ = g + c where c is a constant that can be introduced by adding a term cJz in
H.
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C Proof: Quantum Advantage with two body interactions
Let us have an state |ρg⟩ = e−itH(g) |ρ0⟩, where H = gSz +

∑
s λj + hj ({λj} are control

parameters and {hj} are the associated operators). Let H = λS2
x + gSz, then let {|sx,m⟩}

be the eigenvectors of Sx (thus also S2
x), where m represents the eigenvalue of Sx. Then

at first order
|sx,m⟩(1) = |sx,m⟩ + g

λ

∑
k,s

⟨sx, l|Sz |sx,m⟩
m2 − l2

|sx, l⟩ . (42)

Then, for any number of particles N = 2sx, except for the subspace of m2 = 1/4 (when
we have an odd number of particles N), we can never find a basis that behaves like

⟨sx,m|Sz |sx,±m⟩ ∝ δm,±m , (43)

in any degenerate subspace. Thus any

PkSzPk = O
(
g

λ

)
, (44)

that is because if we take the first correction of the eigenvectors |sx,m⟩(1)

⟨sx,m|(1) Sz |sx,±m⟩(1) =
����������:0, (a)
⟨sx,m|Sz |sx,±m⟩+

+ g

λ

∑
l,l′|l′=±m

⟨sx, l|Sz |sx, l
′⟩

m2 − l2
〈
sx,∓l′

∣∣Sz |sx, l⟩ + O
(
g2

λ2

)
,

(45)

where in (a) we are using Eq. (43).
Now let us see what happens for the case of m2 = 1

4 . First notice that the state that
behaves like Eq. (43) is |sx,±⟩ = 1√

2

(∣∣∣sx,m = 1
2

〉
±
∣∣∣sx,m = −1

2

〉)
. Now let us see that

this state breaks the degeneracy in energy in this space

E
(1)
± = E + ⟨sx,±|Sz|sx,±⟩ = E ± g

2λ

√
s(s+ 1) − 1

4 , (46)

thus

HP =
∑
k=±

PkSzPk =1
2

√
s(s+ 1) − 1

4 (|sx,+⟩⟨sx,+| − |sx,−⟩⟨sx,−|) + O( g
λ

) =

=1
2

√
s(s+ 1) − 1

4

(∣∣∣∣sx,
+1
2

〉〈
sx,

−1
2

∣∣∣∣+ ∣∣∣∣sx,
−1
2

〉〈
sx,

+1
2

∣∣∣∣)+ O
(
g

λ

)
.

(47)

Then using the following state as our initial state26, one sees that for η = − tan
(

θ
2

)
e−iϕ

|η⟩ = |θx, ϕx⟩⊗N = 1
(1 + |η|2)s

s∑
m=−s

(
2s

s+m

)1/2

ηs+m |sx,m⟩ . (48)

And to compute F = 4t2(∆HP )2
η at 0-th order in g

λ , let us first

⟨η|H2
P |η⟩ = 1

4

(
s(s+ 1) − 1

4

)
⟨η|
(∣∣∣∣+1

2

〉〈+1
2

∣∣∣∣+ ∣∣∣∣−1
2

〉〈−1
2

∣∣∣∣) |η⟩ =

= 1
4

(
s(s+ 1) − 1

4

) |η|2k

(1 + |η|2)2k

(
2k + 1
k

)
,

(49)

26This is a product state made of N Block Vectors pointing in the same direction[MWSN11].

25



where s = 2k+1
2 because

∣∣∣∣〈η∣∣∣∣12
〉∣∣∣∣2 = 1

(1 + |η|2)2s
|η|2s+1

(
2s

s+ 1
2

)
=

(A)= |η|2k+2

(1 + |η|2)2k+1

(
2k + 1
k + 1

)
=

= |η|2k+2

(1 + |η|2)2k+1

(
2k + 1
k

)
������������:1(2k + 1 − k − 1 + 1

k + 1

)
,

(50)

where in (A) it has been used that s = 2k+1
2 . Also

∣∣∣∣〈η∣∣∣∣−1
2

〉∣∣∣∣2 = |η|2k

(1 + |η|2)2k+1

(
2k + 1
k

)
. (51)

Now we also need

⟨η|HP |η⟩ = −
√
s(s+ 1) − 1

4
|η|2k

(1 + |η|2)2k+1 tan θx

2 cosϕx . (52)

That is because 〈
η

∣∣∣∣12
〉〈−1

2

∣∣∣∣η〉 = |η|2kη∗

(1 + |η|2)2k+1

(
2k + 1
k

)
. (53)

Then if ϕx = π
2 , (∆HP ) = 1

4

(
s(s+ 1) − 1

4

)
|η|2k

(1+|η|2)2k

(2k+1
k

)
, that is

F = t2
(

(2k + 1)(2k + 3) − 1
4

) 1
22k

(
2k + 1
k

)
+ O

(
g

λ

)
, (54)

now, for |η|2 = 1 this expression is maximal, thus

max
θ,ϕ

F = t2
(
k(k + 2) + 1

2

) 1
22k

(
2k + 1
k

)
+ O

(
g

λ

)
, (55)

and this for large k, i.e. large but odd s,

F = t2
2k3/2
√
π

+ O
(
g

λ

)
⇒ F = t2

N3/2
√

2π
+ O

(
g

λ

)
. (56)
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D Proof: Quantum Advantage with local observables
Let us have an state |ρg⟩ = e−itH(g) |ρ0⟩, where H = gSz +

∑
j λj + hj ({λj} are control

parameters and {hj} are the associated operators). Let H = λJ2
x + gJz. Let the mea-

surement performed be M = Jx. Recall now the definition of the eigenstates of Hp (the
Pinched Hamiltonian)27

|jx,±⟩ = 1√
2

(∣∣∣∣jx,m = 1
2

〉
±
∣∣∣∣jx,m = −1

2

〉)
. (57)

Also, it is important to point out that the states∣∣∣∣jx,m = 1
2

〉
,

∣∣∣∣jx,m = −1
2

〉
, (58)

are non-degenerate states of Jx.
Finally, this two states are the ones that span the space of Hp. Therefore, recalling Eq.

(10), this subspace will be enough to compute the classical FI. That is, if∣∣∣∣jx,±1
2

〉
= 1√

2
(|jx,+⟩ ± i |jx,−⟩) . (59)

Then the FI will be

F =
t2 Tr

{
i
[∣∣∣jx, 1

2

〉〈
jx,

1
2

∣∣∣ , Hp

]
ρ
}2

Tr
{∣∣∣jx, 1

2

〉〈
jx,

1
2

∣∣∣ ρ} +
t2 Tr

{
i
[∣∣∣jx, −1

2

〉〈
jx,

−1
2

∣∣∣ , Hp

]
ρ
}2

Tr
{∣∣∣jx, −1

2

〉〈
jx,

−1
2

∣∣∣ ρ} + O
(
g

λ

)
, (60)

where ρ = |ρg⟩⟨ρg| and [A,B] = AB −BA. Now its easy to see that∣∣∣∣jx, 1
2

〉〈
jx,

1
2

∣∣∣∣ (|jx,+⟩⟨jx,+| − |jx,−⟩⟨jx,−|) =
∣∣∣∣jx, 1

2

〉〈
jx,

−1
2

∣∣∣∣ ,
(|jx,+⟩⟨jx,+| − |jx,−⟩⟨jx,−|)

∣∣∣∣jx, 1
2

〉〈
jx,

1
2

∣∣∣∣ =
∣∣∣∣jx, −1

2

〉〈
jx,

+1
2

∣∣∣∣ . (61)

Thus subtracting this terms, one can rewrite it as∣∣∣∣jx, 1
2

〉〈
jx,

−1
2

∣∣∣∣− ∣∣∣∣jx, −1
2

〉〈
jx,

+1
2

∣∣∣∣ = (|jx,−⟩⟨jx,+| − |jx,+⟩⟨jx,−|) . (62)

Similarly, the same result is obtained from |y,−⟩⟨y,−|, up to a sign. Therefore if
c =

√
jx(jx + 1) − 1

4

F = t2c2 Tr{i (|jx,+⟩⟨jx,−| − |jx,−⟩⟨jx,+|) ρ}2

Tr
{∣∣∣jx, 1

2

〉〈
jx,

1
2

∣∣∣ ρ}
+ t2c2 Tr{i (|jx,+⟩⟨jx,−| − |jx,−⟩⟨jx,+|) ρ}2

Tr
{∣∣∣jx, −1

2

〉〈
jx,

−1
2

∣∣∣ ρ} + O
(
g

λ

)
.

(63)

Recalling that the state being used is |y⟩⊗N , i.e. a product of Bloch Sphere states
pointing in the y direction, and using that this can be written as in Eq. (48) this proof
can continue.

27See Annex C for the proof.
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Tr{i (|jx,+⟩⟨jx,−| − |jx,−⟩⟨jx,+|) ρ} =ieit g
λ

c ⟨jx,+| ρ0 |jx,−⟩ − ie−it g
λ

c ⟨jx,−| ρ0 |jx,+⟩ .

(64)

And using the notation of the previous proof

⟨jx,+|ρ0⟩ = 1√
22j

ik(i+ 1)

√√√√(2k + 1
k

)
,

⟨jx,+|ρ0⟩ = 1√
22j

ik(i− 1)

√√√√(2k + 1
k

)
.

(65)

Therefore

⟨jx,+| ρ0 |jx,−⟩ = −i
22j

(
2k + 1
k

)
,

⟨jx,−| ρ0 |jx,+⟩ = +i
22j

(
2k + 1
k

)
.

(66)

To finally obtain

Tr{i (|jx,+⟩⟨jx,−| − |jx,−⟩⟨jx,+|) ρ} = 1
22j

(
2k + 1
k

)
2 cos

(
t
g

λ
c

)
. (67)

Now, there is only part left is to compute

Tr
{∣∣∣∣jx,±1

2

〉〈
jx,±

1
2

∣∣∣∣ ρ} . (68)

By rewriting∣∣∣∣jx,±1
2

〉〈
jx,±

1
2

∣∣∣∣ = |jx,+⟩⟨jx,+| + |jx,−⟩⟨jx,−| ± (|jx,+⟩⟨jx,−| + |jx,−⟩⟨jx,+|) , (69)

it is easy to see that

Tr{(|jx,+⟩⟨jx,+| + |jx,−⟩⟨jx,−|) ρ} = 2
22j

(
2k + 1
k

)
, (70)

and

± Tr{(|jx,−⟩⟨jx,+| − |jx,+⟩⟨jx,−|) ρ} = ± 1
22j

(
2k + 1
k

)
2 sin

(
t
g

λ
c

)
. (71)

Substituting everything in the FI

F =2t2c2

22j

(
2k + 1
k

)
cos2

(
t
g

λ
c

)( 1
1 − sin

(
t g

λc
) + 1

1 + sin
(
t g

λc
))+ O

(
g

λ

)
=

=t2c2 1
22k

(
2k + 1
k

)
+ O

(
g

λ

)
= F .

(72)
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E Code: Optimization of the Quantum Fisher Information using general-
ized angular momentum matrices.

1 ########################## Import the necessary packages
2 #### Math
3 import numpy as np
4 from scipy import linalg
5 from scipy import special
6 from IPython.display import clear_output
7 from scipy.linalg import expm, sinm, cosm
8

9 #### Plots
10 import matplotlib.pyplot as plt
11

12 #### Machine Learning
13 import torch
14 import torch.nn as nn
15 import torch.optim as optim
16

17 ########################## Define the vector
18 def state(theta,phi,N):
19 A = N*torch.ones(N+1)-(torch.arange(N+1))
20 eta=-torch.tan(theta/2)*torch.exp(-1j*phi)
21 return eta**A/(1+eta*eta.conj())**(N/2)*vec_binom
22

23 ########################## Define the matrices
24 def H(N):
25 Jz=torch.zeros((N+1,N+1),dtype = torch.complex128)
26 Jp=torch.zeros((N+1,N+1),dtype = torch.complex128)
27 Jm=torch.zeros((N+1,N+1),dtype = torch.complex128)
28 for i in range(int(N/2)+1):
29 Jz[i,i]=(N-2*i)/2
30 Jz[N-i,N-i]=-(N-2*i)/2
31

32

33 Jp[i,i+1]=np.sqrt(N/2*(N/2+1)-(N-2*i)/2*((N-2*i)/2-1))
34 Jp[N-i-1,N-i]=np.sqrt(N/2*(N/2+1)-(N-2*i)/2*((N-2*i)/2-1))
35

36 Jm[i+1,i]=np.sqrt(N/2*(N/2+1)-(N-2*i)/2*((N-2*i)/2-1))
37 Jm[N-i,N-i-1]=np.sqrt(N/2*(N/2+1)-(N-2*i)/2*((N-2*i)/2-1))
38

39 Jx=0.5*(Jp+Jm)
40 Jy=-1j*0.5*(Jp-Jm)
41

42 return Jx,Jy,Jz
43

44 ########################## Define the Loss Function (class object)
45 class LossFunction(nn.Module):
46 def __init__(self, Jxx,Jyy,Jz,dim, t,g,N):
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47 super().__init__()
48

49 #parameter to be estimated
50 self.g = g
51

52 #parameters that will be used to compute the derivative of the
fisher↪→

53 self.g1 = torch.tensor(g, requires_grad=True)
54 self.g2 = torch.tensor(g, requires_grad=True)
55

56 #actual parameters to optimize over
57 self.theta_vec = nn.Parameter(torch.rand(4), requires_grad=True)
58

59 #various definitions for the class
60 self.Jxx = Jxx
61 self.Jyy = Jyy
62 self.Jz = Jz
63 self.N = N
64 self.dim = dim
65 self.t = t
66

67 #Forward is a function that must be implemented, and determines what
is returned when this object is called (value of the loss
function).

↪→

↪→

68 def forward(self):
69

70 vec=state(self.theta_vec[0],self.theta_vec[1],self.N)
71 H1=self.Jz * self.g1
72 H2=self.Jz * self.g2
73 H=self.Jz * self.g
74 Hh =

self.Jxx*self.theta_vec[2]+self.Jyy*self.theta_vec[3]/np.sqrt(self.N)↪→

75

76 #define the Hamiltonian
77 H = H + Hh
78 H1 = H1 + Hh
79 H2 = H2 + Hh
80

81 #define the unitary evolution
82 U = torch.matrix_exp(-1j*t*H)@vec
83 U1 = torch.matrix_exp(-1j*t*H1)@vec
84 U2 = torch.matrix_exp(-1j*t*H2)@vec
85

86 #- quantum fisher
87 loss = - 4*100 *

torch.real(U1.conj()@U2-(U.conj()@U1)*(U2.conj()@U))/(t*t*N**(2))↪→

88

89 #make the derivatives using pythorch, more precise
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90 dg1_loss = torch.autograd.grad(loss, self.g1,
create_graph=True)[0]↪→

91 dg2_loss = torch.autograd.grad(dg1_loss, self.g2,
create_graph=True)[0]↪→

92

93 #return the loss
94 return dg2_loss
95

96 ########################## Implement the protocol
97 steps=0 #recomend to set it at 100
98 t=0.0
99 g=0.0

100 min_val_list =[]
101 min_val_parameters = []
102

103 nmin = 0
104 nmax = 0 #recomend to set it at (2,45) if you want to try the code
105

106 for N in range(nmin,nmax):
107 #constants required for the vector
108 B = np.flip(np.arange(N+1))
109 vec_binom = torch.sqrt(torch.tensor(special.binom(N,B),dtype =

torch.cfloat))↪→

110

111 #definition of the matrices
112 Jx,Jy,Jz=H(N)
113 Jxx=Jx@Jx
114 Jyy=Jy@Jy
115

116 #dimension of the system
117 dim=N+1
118

119 #machine learning implemented
120 my_loss = LossFunction(Jxx,Jyy,Jz,dim,t,g,N)
121 my_optimizer = optim.Adam(my_loss.parameters(), lr=0.001)
122

123 #lists
124 loss_list = []
125 theta_vals_list = []
126

127 #define figure to check how the protocol is doing
128 fig = plt.figure()
129

130 for i in range(steps):
131 #loss function working
132 for j in range(1000):
133

134 #this is necessary to "reset" the gradients
135 my_optimizer.zero_grad()
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136

137 #Compute the value of the loss function in the current value
of the theta parameters↪→

138 loss = my_loss()
139

140 #Compute the gradients
141 loss.backward()
142

143 #perform one optimization step
144 my_optimizer.step()
145

146 #save the value of the loss function and of the theta
parameters↪→

147 loss_list.append([1000*i+j,loss.detach().numpy()])
148

theta_vals_list.append(torch.clone(my_loss.theta_vec).detach().numpy())↪→

149

150 arloss_list = np.array(loss_list)
151

152 #plot the quantum fisher info to see what is going on
153 fig.clear()
154 plt.plot(arloss_list[:,0],arloss_list[:,1])
155 plt.ylim(-101,1)
156

157 plt.show()
158 min_val = np.min(arloss_list[:,1])
159 print(min_val)
160 print("spin number",N)
161 clear_output(wait=True)
162 if min_val == min_val_pre:
163 break
164 min_val_pre = min_val
165

166 min_val_list.append(min_val)
167 theta_vals_list = np.array(theta_vals_list)
168 old=theta_vals_list[-1]
169

min_val_parameters.append((theta_vals_list[np.argmin(arloss_list[:,1])]).tolist())↪→

170

171

172

173

174
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