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Abstract

This work is a study about the spatial point processes. We study the mathema-
tical basis of this object, we expose statistic tools which are used in the analysis of
spatial point patterns and, finally, we apply all the exposed theory in a real case
study with real data.

In the first and second chapter we present the mathematical theory behind
the spatial point processes. In the starting chapter we find the most general and
abstract definitions, and the very definition of a spatial point process. In this
chapter we have used Stoyan et al. 2013 [17]. In the second chapter, using as
a reference Diggle 2013 [10], we explain the mathematical theory of the point
processes in tha plane. We define and study the properties of several types of
processes, and different quantities which are hugely important in the study of this
kind of objects.

In the third chapter, based mainly in Baddeley et al. (2015) [2], we present,
giving examples, the statistic tools used in the analysis of point processes in the
plane. The tools exposed are related with the theory exposed previously and are
used in the last chapter of the project.

Finally, in the last chapter, we put into practice all the knowledge we have ac-
quired in a real case study. Using the database employed in Jorge Mateu, P. Diggle
and I. Tamayo-Uria (2014) [18], shared by Jorge Mateu, we perform a study about
the rat and cockroach sightings in Madrid city. This constitutes an application in
a real public health case of the concepts seen during the work.

Resum

En aquesta memoria s’estudia un tipus de procés estocastic en concret, es trac-
ta dels processos estocastics puntals espacials. S’estudien les bases matematiques
d’aquest objecte, s’exposen eines estadistiques que es fan servir per tractar proble-
mes amb patrons puntuals espacials, i finalment, es posa tota la teoria exposada
en practica amb una aplicacié en un problema real, amb dades reals.

En el primer i segon capitol del treball es dona la teoria matematica darrere
dels processos puntuals espacials. En el capitol que obre el projecte, hi trobem
les definicions més generals i abstractes, i la mateixa definicié de procés puntual.
Hem seguit en aquest capitol Stoyan et al. 2013 [17]. En el segon capitol, usant com
a referéncia Diggle 2013 [10], hi ha explicada la teoria matematica sobre processos
puntuals espacials en el pla. Es defineixen i s’estudien les propietats de diferents
tipus de processos, i de diferents quantitats que resulten clau en l'estudi d’aquest
tipus d’objectes.



Introduction 3

En el tercer capitol, basat principalment en Baddeley et al. (2015) [2], es pre-
senten, tot donant exemples, eines estadistiques que es fan servir per a l'estudi
de patrons puntuals a regions del pla. Les eines exposades lliguen amb la teoria
tractada en el segon capitol i es fan servir en el darrer capitol d’aquest treball.

Finalment, en el darrer capitol del treball, posem en practica tots els coneixe-
ments adquirits i exposats durant les seccions anteriors en un cas d’estudi real.
Utilitzant la base de dades emprada a Jorge Mateu, P. Diggle i I. Tamayo-Uria
(2014) [18], dades que m’han estat cedides pel mateix Jorge Mateu, duem a terme
un estudi sobre els avistaments de rates i paneroles a la ciutat de Madrid. Ai-
x0, constitueix una aplicacié en un cas real de salut ptblica dels conceptes vists
durant el treball.

0
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Chapter 1

Point processes general theory

This chapter will be strongly based in the point process theory given in the
book ’Stochastic Geometry and Its Applications” (Stoyan et al., 2013 [17])). In this book
one can find an exhaustive study around point processes with a pure mathematical
approach. Then, I use this book in order to be familiar with the mathematics
behind this kind of processes. I add this chapter on the project with the aim of
give some mathematics fundamentals before work in the practical cases.

The objective in this chapter is give a formal mathematical theory about the
so-called point processes. Here we are working in an Euclidean space RY, in this
space we will have a pattern of points. In this context we denote by ¢ a sequence
of points in R?. Sometimes we write ¢ = {x,}, were x, is a point of R?, in order
to emphasize the sequential nature of ¢.

The first step will be define point process. Prior to define this, we should focus
on some key concepts. In the mathematical literature a point process in R? is
defined as a random variable taking values in some measurable space. Then, first
of all, we should define this measurable space.

Definition 1.1. We define/denote IN to the family of all the sequences ¢ of points
in R? satisfying:

(i) The sequence ¢ is locally finite. That is, each bounded subset of R? must
contain only a finite number of points of ¢.

(ii) The sequence ¢ is simple. That is, there are not two equal points in ¢.

Definition 1.2. We define/denote as AV to the smallest c-algebra on IN to make all
mappings ¢ — ¢(B) measurable, for B running through the bounded Borel sets.
Here, ¢(B) is the number of points in the set B.

Now we have a well defined measurable space, that is the pair (N, \). This is
the measurable space that we need to be able to define, formally, a point process.

1



2 Point processes general theory

Definition 1.3. A point process ® is a measurable mapping of a probability space
(Q), A, P) into the measurable space (N, N).

More intuitively a point process is a random choice of one of the sequences ¢
in IN. It generates a distribution on (N, ), the distribution P of the point process.

Notation 1.4. Is important to introduce the following notation:
x € ® asserts that the point x belongs to the random sequence ®.
®(B) = n asserts that the set B contains n points of ®.

Observation 1.5. The word "process’ in the term "point process” does not imply
a dynamic evolution over time. Because of the classical definition of a stochastic
process, and also the applications of stochastic processes, it is natural to think that
time should be also related with this type of stochastic processes. But this is not the
case. The pure spatial point process are not related with time. Notwithstanding,
there are the spatio-temporal point processes, which include the time variable as a
new dimension. These processes are really related with time, and with a dynamic
evolution. These kind of point processes are out of the scope of this work. Anyway,
interesting references about this topic are: Jorge Mateu et al. 2016 [13], and the
last chapters of Dggile 2013, [10].

Henceforth, the point process @ is from the probability space (), A, P) to the
measurable space (N, ).

Our next step is to define the distribution of a point process. We commented
that the definition of points processes generates a distribution.

Definition 1.6. The distribution P of a point process ® is the distribution deter-
mined by the probabilities

PY)=P(@cY)=P{weQ:d(w) €Y}).
Where Y € N.

Observation 1.7. Let ® be a point process and Y € N. Then the term ® € Y
means that ® has some property, for example ® has no point in the set B. Then
P(® € Y) denotes the probability that ® has this property, in the previous example
it is the probability that ® has no point in B.

Another important type of distributions are the so-called finite-dimensional dis-
tributions. These distributions are used in regular basis in all type of stochastic
processes, see in the ’Stochastic processes course’, of the Universitat de Barcelona,
notes: Carles Rovira 2021 [16]. Now we see the definition:



Definition 1.8. Let ® be a point process, we define the finite-dimensional distribu-
tions as the probabilities of the form

P(@(Bl) =Mn1,... ,CI)(Bk) = le). (11)
Where Bj, ..., By are Borel bounded sets and n4,...,n; > 0.

Here (1.1) denotes the probability that ® has n; points in the set By, ..., and
ny points in By.

Observation 1.9. The distribution of ® on (N, ) is uniquely determined by the
system of all this values for all k = 1,2, .... In fact, the distribution is determined
by the subsystem for which the constituent B; are pairwise disjoint.

Two important notions related with point processes are stationarity and isotropy.
A point process is said to be stationary if its characteristics are invariant under
translation. On the other hand, a point process is said to be isotropic if its charac-
teristics are invariant under rotation. Now, we see this definitions formally. First,
we should introduce some notation.

Notation 1.10. Let ® be a point process. Recall that we can write ® = {x,},
because a point process is a sequence of points on R?. Then, we denote the trans-
lation of ® like ®, = {x, + x}, for some x € RY. Let r be a rotation around the
origin. We denote the rotation of ® like r®.

Definition 1.11. A point process ® = {x,} is stationary if it has the same distribu-
tion as the process ®, = {x, + x} for all x in R?. So

P(@cY)=P(D,€Y).
For all Y € A and for all x € R?.

Definition 1.12. A point process ® = {x,} is isotropic if ® and r® have the same
distribution for every rotation around the origin r. So

P@ecY)=PrdcY).
For all Y € N and for all r.

Observation 1.13. Notice that if a given point process P is stationary and isotropic,
then the properties of the process only depends on the distance between points.
Because the properties of the process do not change under translation and rotation.

On the point processes context one have the analogous to the mean of a real-
valued random variable, this is the intensity measure of a point process. Like the
mean of a real-valued random variable, the intensity measure is a very important
quantity.
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Definition 1.14. The intensity measure A of a point process ® is defined as

A(B) = E(®@(B)) = [ ¢(B)P(dg).
For Borel sets B. So A(B) is the mean number of points in B.

With the previous definition the chapter is closed. Now, our objective is find
powerful tools for study point processes and see different type of point processes.
With this objective in mind in the following sections we will restrict the study to
the plane, where the analysis is easier and where exists a great variety of potent
tools.



Chapter 2

Point processes in the plane

2.1 Introduction

In this part of the project we will study in detail the point processes in the
plane (i.e. in IR?). This chapter is based on ’Statistical Analysis of Spatial and Spatio-
Temporal Point Patterns’ by Diggle 2013 [10]. Everyone I have talked about my goals
in this project recommended me this book. Then, Diggle’s book will be the most
important reference in this part of the project.

From now on we will be working in the Euclidean space R?, with the Euclidean
topology. It is also important to mention that until now we use the term "point
process’ to refer to spatial-point processes. From now on the reader will see the
term “point pattern’ usually. It is important to understand the difference beetwen
point pattern and point process. A point pattern is a set of observed points, and a
point process is the mathematical object defined in Chapter|l| During all the work
the planar regions with which we will work will be Borel bounded sets.

2.1.1 Software

In this work, we will use the R software. In this project, we will be working
with the Spatstat library, written by Adrian Baddeley and Rolf Turner. This R
library has got a big amount of useful tools for the point patterns analysis. I
am using the book ’Spatial Point Patterns. Methodology and Applications with R’
(Baddeley et al. 2015 [2]) in order to get acquainted with the resolution of point
pattern problems using R. Of course, I am using the manuals of the Spatstat library
to learn how to use the library correctly and be able to do properly the statistical
analysis of point patterns (see this manuals in [3], [5] and [4]).

Furthermore, I will be using several R libraries which are necessary for the
practical part of the work. These packages and each manuals are: “gstat’ (Pebesma
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6 Point processes in the plane
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Figure 2.1: Regular (left), independent (middle) and clustered (right) point pat-
terns of 121, 100 and 100 points.

2015, [15]]), "rgdal” (Bivand 2015, [7]), 'splancs’ (Bivand 2017, [8]]), 'spdep’” (Bivand
2015, [6]]).

2.1.2 Complete spatial randomness

In this section we will introduce the most important hypothesis in the point
processes analysis, it is the hypothesis of complete spatial randomness (CSR). The
hypothesis of complete spatial randomness for a spatial point pattern asserts that

(i) The number of points of the pattern in any planar region A with area m,(A)
follows a Poisson distribution with mean Am,(A).

(ii) Given n points of the pattern x; in a region A, the x; are an independent
random sample from the uniform distribution on A.

Where m;(-) denotes the Lebesgue measure. The constant A is the so-called
intensity. The hypothesis (i) implies that the intensity of points not vary over
the plane, (ii) implies that there are no interactions amongst the points. In the
Figure 2.1| the reader can see a regular (left), under CSR hypothesis (middle) and
aggregated (right) pattern. In this example one can easily understand the behavior
of a point pattern under the CSR hypothesis.

It is always a starting point, in the practical cases, to verify if our pattern
satisfies (i) and (ii), or not. Because if one point pattern is under CSR hypothesis
then it is a completely random pattern. That is, our pattern has no study interest
because it is absolutely random, and then we can’t draw conclusions about the
underlying process.

In addition, the complete spatial randomness hypothesis have some other ap-
plications: they are used for the simulation of other more complex models, also,



2.2 Second-order properties 7

they are used like a dividing hypothesis to distinguish between different types of
patterns.

2.2 Second-order properties

The summary descriptions are quantities that we can assign to each point pat-
tern. This quantities allows us to understand how is the point pattern in question,
for example, if the point pattern has some clustering, if the points are (or not) uni-
formly distributed throughout the planar region, the intensity of points per unit
area, etc.

In the following sections we will study these summary descriptions. One use-
ful, and usually used, approach for the statistical analysis of point patterns is to
compare the empirical summary descriptions between the theoretical summary
descriptions.

We can now define the first-order and second-order properties of a point process.
First-order properties are described by an intensity function. The intensity function
is an interesting quantity because shows us the average number of points per unit
of area.

Definition 2.1. Let ® be a point process in R?, we define the intensity function of

e E(®(d))
X
— i _— 7
A(x) mz(tgcl;—)O mz(dx)

Whenever the limit above exists and where x € RZ.

Notation 2.2. In the previous definition dx denotes an infinitesimal planar region
that contains the point x € R2. From now on we will be using this notation. The
reader can think in dx as B(x,€), the ball (i.e. disc) centered in x with radius e,
which is arbitrary small.

A variant of the intensity function, which is the first second-order property
that we see, is the so-called second-order intensity function. It is defined in a similar
way than the intensity function:

Definition 2.3. Let ® be a point process in IR?, we define the second-order intensity
function of ® like (when the limit exists)

: E(®(dx)®(dy))
Aa(x,y) = 1 :
2 (x y) mz(dx),:nrzr}dy)ao my (dx)mz (dy)

We will usually be dealing with processes that are stationary (see Definition
1.11) and isotropic (see Definition |1.12). For the study in finite planar regions it is
not an overly restrictive condition.
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Observation 2.4. For a stationary process the intensity function assumes a con-
stant value, it is A(x) = A. In addition, for stationary processes we have A, (x,y) =
A2(x —y). And for a stationary and isotropic process Az (x — y) reduces further to
Ay(t) where t = ||x — y|| (|| - || denotes the Euclidean distance in IR?). It is because
(see Observation under isotropy and stationarity the properties of the point
process only depends on the distances between points. The reader can observe
that we are dealing with several abuse of notation. Strictly, it have no sense the
expression A (x —y) or Ay(t). Because by definition we have A; : R?> x R? —+ R
and x —y € R?, t € R. Usually we will use A»(t), because we will be dealing with
stationary and isotropic processes.

The conditional intensity is another important quantity. Heuristically the condi-
tional intensity corresponds to the intensity in x € R? conditional on the informa-
tion that there is a point of the process at y € R?, thus y € R2N ®.

Definition 2.5. Let ® be a point process. Assume that y € R?> N ®, then we define
the conditional intensity at x € R? as

Aa(x,y)
Ae(xly) = 2200,
Ay)
An other characterisation of the second-order properties of stationary and
isotropic processes is given for the K-function. This is an important quantity, very

useful in several statistical approaches for analyze case studies.

Definition 2.6. Let ® be a stationary and isotropic point process in R? with inten-
sity A, we define the function K(t) as

E(®(B(+,1)))

K(t) = .

Where ®(B(x,t)) is the number of points within the ball of radius ¢, centered in
an arbitrary point of the pattern.

In the mathematical literature we can find (as in Stoyan et al. 2013, [17]) the
previous definition with B(o, t) instead of B(x,t), where o denotes the origin. This
is because we are assuming stationarity and isotropy, and then we can apply a
translation and a rotation and take o as a point of the process.

From the previous definition (Definition we can deduce that AK(t) is the
mean number of further points in a ball of radius t and centered at the typical
point.

Now, we want to establish a link between the K-functions and the second order
intensity. From now on we assume stationarity and isotropy. In order to establish
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a link we have to assume that our process is simple (see Definition [I.I). In the
mathematical literature the reader can find this notion called orderly (for example
in Diggle 2013, [10]). The reader can see that this assumption is not very restric-
tive in practice, because, normally, the coincidence of two (or more) points does
not make physic sense. Under these conditions, the expected number of further
points within distance t of an arbitrary point can be computed by integrating the
conditional intensity over the disc with centre the origin and radius t. Thus,

1 2 ot
K(t):X/O /OAC(s\o)sdsdG. 2.1)

Where o € R? is the origin.

Now, remember that we are assuming statonarity and isotropy, then if we use
what we saw in Observation and we use the conditional intensity definition
(see Definition [2.5) we can obtain:

Aa(t,0) A (t)
Ac(tlo) = = . 2.2
¢ ( ‘ 0) A ( 0) A ( )

And then, if we replace (2.2) on (2.1), and we apply the Fubini’s theorem we
finally have:

A
Thus, we obtained a link between K(t) and A,(t) that may be useful in order to
study stationary, isotropic and orderly processes.

An important and useful property of the K-function is that it is invariant under
random thinning. By random thinning, we mean that the point of a process is
retained or not according to a series of mutually independent Bernoulli trials.
This result follows from the Definition where we have that the K-function is

E(®(B(x1)))
3 .
The effect of thinning is to multiply p (the parameter of the Bernoulli trials) above

1 127 1t Ay(s 2 [t
K(t) = X/o ; 2( )sdsdQ = F/o Az (s)sds. (2.3)

K(t) =

and below. It is:

Thus, clearly, the K-function remains equal.
There is an interesting, and useful, transformation of the K-function. It is the
L-function:

Definition 2.7. Let ® be a point process. Let K be the K-function of ®. We define
the L-function as

L(t) = /X8, (2.4)
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All that we saw in this section is about univariate point processes. Now, we
will extend the previous notions to multivariate processes, which are an interesting
object of study. This is because in practice, in many cases, we observe different
types of point patterns in the same region. For example, in spatial epidemiology
(see in Section [2.8) we have a set of cases (people who suffer a disease) and a set of
controls (people in risk for suffer the disease, but not currently suffering). These
are two different point patterns. Then, this is an example of a bivariate point
process.

Definition 2.8. Let ® be a multivariate point process, such that is stationary and
isotropic. Let A C IR? be a planar bounded region. We define the intensities as the
constants

E(®;(A))

A=)
I ma(A)

And the second-order intensities are functions with scalar argument,

K my(dx),my(dy)—0 mz(dx)mz(dy) '

Where t = ||x —y|| and ®;(A) is the number of type j points in the planar region
A.

Of course, it holds from the previous definition that A;;(t) = Aj;(t). Also, we
can generalize the K-function for multivariate processes.

Definition 2.9. Let ® be a stationary and isotropic multivariate point process.
Then we define the multivariate K-functions like

E(®;(B(+i,1))

Aj

Kij(t) =

Where E(®;(B(*;,t))) denotes the expected number of type j points within dis-
tance t of an arbitrary type i point.

Now, using similar arguments than above, we can extend (2.3)) to a multivariate
process obtaining

2 [t
Kl']‘<t> = )LI)L]/O Aij(s)sds. (25)

From , K;i(t) = K;i(t) holds.
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2.3 The homogeneous Poisson process

The homogeneous planar Poisson process (from now on we will call it Poisson
process) is the mainstay on which the point processes theory is built. It represents
the simplest possible stochastic mechanism for the generation of spatial point pat-
terns, and in practice it is used as a standard of complete spatial randomness.

Definition 2.10. Let ® be a stationary and isotropic point process. We say that ®
is a Poisson process if @ satisfy:

(i) For some A > 0, and any finite planar region A, ®(A) follows a Poisson
distribution with mean Amjy(A).

(ii) Given ®(A) = n, the n points in A form an independent random sample
from the uniform distribution in A.

(iii) For any two disjoint finite planar regions A and B, the random variables
®(A) and P(B) are independent.

Notice that the hypothesis for the Poisson processes are exactly the hypothesis
for complete spatial randomness. We add in Definition the hypothesis (iii),
which ensure the self-consistency of (i) and (ii). Clearly, the parameter A of the
Poisson process is its intensity.

Proposition 2.11. Let @ be a Poisson process with rate A, then the intensity of ®
is exactly A.

Proof. Using the intensity definition, and the statement (i) of the Poisson process
definition we have

A(x) = lim E(@(dx)) _ pp Ama(dx)

=\
12 (dx) =0 mz(dx) my(dx)—0 m2(dx)

O

We can do several simulations of a Poisson process in the unit square with, for
example, rates A = 10, A = 25 and A = 50 (see in Appendix in order to know
how is the behavior of this class of processes. Notice that the resulting patterns
have a similar behavior than the pattern in the middle of Figure Now, we see
interesting properties of the Poisson processes.

Proposition 2.12. Let ® be a Poisson process with parameter A. Then, the second-
order intensity function of ® is

Ay (t) = A2 (2.6)

for t > 0.
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Proof. We apply the second-order intensity definition (see Definition[2.3), let x,y €
IR? be arbitrary points of the plane, then:

A (x,y) = lim E(®(dx)®(dy)) — lim E(®(dx))E(P(dy))
’ my(dx),ma(dy)—0 mZ(dx)WZ(dy) my(dx),mp(dy)—0 mz(dx)mz(dy)
_ lim E@UM) 0 E@Wy) Ax)A(y) = A%

o (dx)—0 mz(dx) my(dy)—0 mZ(dy)

Clearly dx and dy are two disjoint planar regions, so for the hypothesis (iii) of
the Poisson processes we have that ®(dx) and ®(dy) are independent random
variables. Thus, we can separate the expectation in product of expectations. Once
we did this, we obtain the intensity function (see Definition evaluated in x
and y. Finally, using the assumption that the Poisson process is stationary we
know that the intensity function is a constant, as we saw above this constant is the
parameter A of the Poisson process. Finally, using again that the Poisson process is
stationary and isotropic, and taking into account that we have proven the equation
for an arbitraries x,y € IR?>, we have that the equation holds for an arbitrary
t e R. O

Proposition 2.13. Let ® be a Poisson process with parameter A. Then, the K-
function of ® is
K(t) = mt?. (2.7)

Fort > 0.

Proof. In this proof we will use the equation (2.3) and the previous result (Propo-
sition [2.12)), using these and the Barrow’s rule we obtain the statements easily.

2 [t 27 [t 27A2 [t
K(t) = }TZ/O Az(s)sds = )TZ/O A2sds = %/0 sds = 7t
d

Notice that in the last result we take an interesting result: in a Poisson process
the K-function does not depend on A, it only depends on t, which is a distance
between points.

Corollary 2.14. Let @ be a Poisson process with parameter A. Then, the L-function
of ®is
L(t) =t

Proof. Using the definition of the L-function (Definition and the previous re-

sult we have
/ [ 42
L(t) — @ — 1 =t
T 7T

Then, the result has been proven. O
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2.4 Bivariate point processes

Now we focus in bivariate processes. This kind of processes will be important
in this work. In order to asses the spatial association between two types of points
in a bivariate process, we can consider two hypothesis:

(i) Independence: The two types of points are generated by a pair of independent
univariate processes.

(ii) Random labelling: The two types of points are generated by labelling the
points of a univariate process in a series of mutually independent Bernoulli
trials.

Both hypothesis above are essential if one want to analyze the behavior of a bi-
variate point process. In practical cases we usually use these hypothesis as null-
hypothesis, which is a powerful statistical approach that allows us to study how
is our point pattern nature.

Hereinafter, we will see that under this hypothesis we obtain different K-
functions. First we will study the K-function under the hypothesis (i).

Proposition 2.15. Let ® be a bivariate, stationary and isotropic point process such
that satisfies the hypothesis (i). We denote the two types of processes within ®
type 1 and type 2, respectively. Then, the multivariate K-function of ® is

Kip(t) = mt?. (2.8)
In particular, also Ky; (t) = 7t2, because as we saw Kip(t) = Ky (#).

Proof. Under the hypothesis (i) the two component processes are independent,
then a points of type 1 has the same status, with respect to points of type 2, as an
arbitrary point. In addition, we have the independence of the random variables
®;(A) and P(A) where A C R? is a region of the plane. Then, using the exten-
sion of the second order intensities for multivariate processes (see Definition
we have, if t = [[x — y||,

. E(®1(dx) D2 (dy)) . E(®y(dx)) .. E(®y(dy))
Ap(t) = 1 = SO i 2
12( ) mz(dx),:nrﬁdy)ﬁo mz(dx)mz(dy) mz(;};ﬁo mz(dx) m2(¢§ryl;%0 mz(dy)
= )\1 x))tg(y) = /\1)\2.

And now, using the expression (2.5) we obtain what we want

27'[/\1)\2 2
Ko (¢ = 7\2/ Ao (s)sds = / sds = mt°.
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Notice that we have an interesting result in the previous Proposition. Un-
der the hypothesis (i) the multivariate K-function of a bivariate, stationary and
isotropic process is exactly the K-function of a univariate Poisson process.

Now we study the K-function under the hypothesis (ii). We will see that we
obtain different results.

Proposition 2.16. Let ® be a bivariate, stationary and isotropic point process such
that satisfies the hypothesis (ii). Denoting the two types of processes within &
type 1 and type 2, respectively. Then,

Ki1(t) = Ka2(t) = Kna(t) = K(#). (29)
Where K(t) is the K-function for the unlabelled univariate process.

Proof. We have K(t), which is the K-function of the unlabelled, univariate process
consisting of all points, irrespective of type. Under the hypothesis (ii) the uni-
variate processes of type 1 and 2 points are each random thinnings of the bigger
unlabelled process. Then, using that the K-functions are invariant under random
thinning we have

Kll(t) = Kzz(t) = K(i’).

Using the same argument we have also
Kyp(t) = K(#).
O

Observation 2.17. Note that independent and random labelling have the same
K-functions if and only if the types 1 and 2 processes are both Poisson processes.

2.5 Inhomogeneous Poisson processes

In this section we will see the first example of a non-stationary point pro-
cess. This process is obtained if we replace the constant intensity A of the Poisson
process by a spatially varying intensity function A(x). It is, the so-called, inhomo-
geneous Poisson process.

Definition 2.18. Let ® be a point process. We say that ® is an inhomogeneous
Poisson process with intensity function A(x) if

(i) For any finite planar region A, ®(A) has a Poisson distribution with mean

/A A(s)ds.
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(ii) Given a finite planar region A, such that ®(A) = n, the n points in A form
an independent random sample from the distribution on A with probability
distribution function proportional to A(x).

We have defined this process because will be necessary in the following section.

2.6 Cox processes

The Cox processes are an important type of point processes. They appear, in
regular basis, on the mathematical literature related with point processes, and
they are also known as doubly stochastic processes. The reader will understand the
rationale of this last name when we expose the definition of Cox processes.

Definition 2.19. Let ® be a point process. Then, ® is said a Cox process driven by
{A(x) : x € R?} if it satisfies:

(i) {A(x): x € R?} is a non-negative-valued stochastic process.

(ii) Conditional on {A(x) = A(x) : x € R?}, the point form an inhomogeneous
Poisson process with intensity function A(x).

Thus, indeed, a Cox process is a doubly stochastic process, due the fact that the
intensity function is also stochastic. A Cox process @ driven by {A(x) : x € R?} is
stationary and isotropic if and only if A(x) is stationary and isotropic. Assuming
that the Cox process ® is stationary and isotropic we can obtain the first-order
and second-order properties by taking expectations with respect to A(x). Then
we have the intensity of ®:

A = E(A(x)). (2.10)

The second-order intensity is given by

M(t) = E(A(x)A(Y)). 1)

Where t = ||x — y||. Clearly, using the theoretical covariance definition we can
rewrite the previous equation as

Aa(t) = A2+ C(¢). (2.12)

Where C(t) = Cov(A(x), Ay)).
Finally, with the equations exposed above we can deduce the K-function for a
Cox process under the stationarity and isotropy assumptions.
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Proposition 2.20. Let ® be a Cox process driven by {A(x) : x € R?}, assume that
the point process is stationary and isotropic. The K-function of ® is given by:

t
K(t) = t* + 3\2/ C(s)sds.

Proof. We can, easily, demonstrate this result using (2.12) and (2.3).

K(t) /)\2 )sds = AZ/(AZ—FC( ))sds = AZ/ A?sds —I—Az/tC(s)sds
=’ + 1z /t (s)sds.
0

Cox processes are often used for modeling biological processes which are ag-
gregated. When the source of this aggregation is the environmental heterogeneity
and this heterogeneity is stochastic in nature, the best path for modelling the bio-
logical processes is using Cox processes or point processed derived from the Cox
one.

2.7 Log-Gaussian Cox processes

An interesting, and commonly used, approach for modelling using Cox pro-
cesses is take the logarithm of the driving stochastic process, and take some extra
assumptions. This path leads to the so-called Log-Gaussian Cox processes. Firstly
we expose the formal definition, and then we discuss the rationale and the advan-
tages of using this approach. Following Moller et al 1998 [14], we have built the
definition:

Definition 2.21. Let ® be a Cox process driven by {A(x) : x € R?>}. We say that
® is a Log-Gaussian Cox process if the driving process can be written as

A(x) =exp (Z(x)). (2.13)
Where {Z(x) : x € R?} is a real-valued Gaussian process.

Observation 2.22. A real-valued stochastic process {Z(x) : x € R?} is a Gaussian
process if the finite-dimensional distributions (see Definition of the process
are Gaussian laws. It is, equivalently, the joint distribution of any finite vector
(Z(x1),...,Z(x,)), where x1,...,x, € R?, is Gaussian.
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Assuming stationarity and isotropy, the distribution of Z is determined by the
mean and the variance:

u=EZ(x)), o*=Var(Z(x)). (2.14)
And also for the covariance function, which for some x,y € R? is given by
C(t) = Cov(Z(x), Z(y)) = E(Z(x)Z(y)) — p* (2.15)

Since we are assuming stationarity and isotropy, the covariance function only de-
pends on the distance between points t = ||x — y||, and this is why we write the
dependence of the covariance function only on t.

Now, our goal is to define a model with a specific covariance function. There
are several models in the mathematical literature (see these models in Moller et al
1998 [14]), but probably, one of the simplest models and one of the most commonly
used due to its good results is the so-called exponential model. In this model we
assume that the Gaussian process {Z(x) : x € R?} is centered (i.e. u = 0) and we
take the covariance function (see Baddeley 2015 [2]):

C(t) = c?exp (—2) : (2.16)

Where 6 is a scale parameter depending on the point pattern. Thus, as the
reader can observe, the exponential model only depends on the two parameters
02 and . And then, if we can estimate these parameters we can control the model.

Now, observe that we can deduce the first-order and second-order properties
in this specific case. Firstly, we will see the intensity, but previously we see a
probability lemma.

Lemma 2.23. Let X be a real-valued random variable with normal law with mean
u and variance o2 (i.e. N(p,0?)) then the expectation of exp(X) is

E(exp(X)) = exp <y + 022) .

Proof. To demonstrate this lemma we will use the theoretical definition of expecta-
tion of a real-valued random variable, the probability density function of a normal
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and we will perform several calculus

1 (x—p)?
E(exp(X)) = Nt ]Rexp(x) exp <—M> dx =

= ! ( > dx =
V2mo? R

1 ( —x? —|—2xy u? + 2xo? >dx:
V2re? Jr 202

_ 1 / ( —x2 +2x(p+0?) — (y+02)2+((72)2+2y(72)dx_
V2mro? Jr 202

I S A A e (760 S W A i S T WP
W@;)f;gw 21721 ) p<(x2((7:,+023)2x B
= (o0 (55)) T e (P50 oo

o2
= exp (;u—l—2> .

In the last equality we have used that the term in the right is the integral of the
probability density function of a real-valued random variable with law N(u +
0?,0?) throughout R, then it is exactly 1. Also, in the last equality, we have sim-

plified the left term. O

Now, with the support of the previous Lemma, we can demonstrate the fol-
lowing result.

Proposition 2.24. Let ® be a stationary and isotropic Log-Gaussian Cox process
driven by {A(x) : x € R?}. Using all the notation introduced above, we have that

the intensity of ® is
o2
A = exp (pt + 2> .

Proof. As we saw before the intensity of a Cox process is given by (2.10). Thus,
applied to the Log-Gaussian Cox process we have

A = E(A(x)) = E(exp(Z(x))).

Since ® is a Log-Gaussian Cox process we know that {Z(x) : x € R?} is a Gaussian
process with mean p and variance ¢, using the previous notation. Then, Z(x) has
normal law with mean u and variance o2 for all x € R?>. Thus, applying the
Lemma we obtain

o2
A =E(A(x)) = E(exp(Z(x))) = exp <y + 2) .
And the result, indeed, holds. O
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Observation 2.25. Taking the statements of the previous preposition, and adding
the hypothesis that ® is under the exponential model, it is easy to see that the

intensity is
2

A = exp (‘;) : (2.17)

We only have to take into account that under the exponential model the Gaussian
process {Z(x) : x € R?} is centered.

Finally, we want to determine the shape of the K-function of a Log-Gaussian
Cox process under the exponential model. Using the Proposition we only
have to substitute the expression for the intensity under the exponential model
and the covariance function taken in this model (2.16). Doing this we obtain:

—S

t
K(t) = nit* + 2mexp (—0?) / s0? exp <5> ds.
0
We can develop the expression above by integrate. Doing this we finally obtain

K(t) = nt* + 2o exp (—0?) 6 <(5 —exp <_5t> (6+ t)) : (2.18)

2.7.1 Parameter estimation: method of minimum contrast

In this section we will be using Diggle et al 2013 [12], Moller 1998 [14] and
Diggle 2013 [12]. Here we will explain how to estimate the parameters (¢2,6) of
the exponential model. We will expose the so-called minimum contrast method (see
Moller 1998 [14]). Using the approach of that we can describe the point pattern
with the K-function, we have as a objective find the theoretical K-function under
the model. Thus, we just have to estimate the parameters and put them into
([2.18). Let K(t) be the empirical K-function from the data, and let K(t; 02, 5) the K-
function under the exponential model (2.18). The path of this estimation is simple,
we want to make K(t;02,5) as close to K(t) as we can. For achieve it, we define
a measure of discrepancy between K(t;02,6) and K(t), the area between the two
curves or the integrated squared difference between curves. It is

/O 0 ((R(s))7 — (K(s; 0%, 8))7)" ds. (2.19)

And then, we estimate the parameters (¢2,6) to be the values (¢2,8) which

minimizes (2.19). By doing this, as the reader can observe, we obtain K(t; 02, 5)

which is near as possible to K(t). In the literature we can find that g = 1/2 is

a good choice for regular point patterns, and g = 1/4 for aggregated patterns.

Also ty is to be chosen, there are no clear reasons for a specific election of ty in the
literature.
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2.8 Point processes in spatial epidemiology: spatial cluster-
ing

In this section we have followed Diggle 2013 [10], Waller and Gotway 2004 [19]
and Diggle and Chetwynd 1991 [11], Bivand et al. 2008 [9] and Baddeley et al.
2015 [2].

By spatial clustering we mean a tendency for cases to occur more closely to-
gether than would be possible with random sampling of population at risk. For
analyze the spatial clustering we will use a case-control scheme, which is an ap-
proach used on a regular basis in spatial epidemiology. Case-control data involve
locations for each cases reported (cases) and a collection of noncases (controls).
Sometimes, in practice, controls are chosen following an specific criteria with the
aim of match the characteristics of the set of cases. However, in this work, we
assume that controls are an independent random sample.

In order to asses spatial clustering one can take the null hypothesis:

Hj : There are no clusters of cases. (2.20)

Let ®; be the process of cases, and ®, be the process of controls. Thus, if we
superpose these processes we obtain a bivariate point process ® = ®; + $,. Under
the null hypothesis of no clustering, cases form a spatially random sample from
the underlying population. Thus, controls necessarily form a spatially random
sample from the same population. Hence, no spatial clustering is equivalent to
random labelling of the bivariate process of cases and controls. Then, is
equivalent to

Hy: ® = ®; + P, is a bivariate point process under random labelling. (2.21)

In a case-control study the null hypothesis of completely random labelling implies
constant di