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Abstract

This work is a study about the spatial point processes. We study the mathema-
tical basis of this object, we expose statistic tools which are used in the analysis of
spatial point patterns and, finally, we apply all the exposed theory in a real case
study with real data.

In the first and second chapter we present the mathematical theory behind
the spatial point processes. In the starting chapter we find the most general and
abstract definitions, and the very definition of a spatial point process. In this
chapter we have used Stoyan et al. 2013 [17]. In the second chapter, using as
a reference Diggle 2013 [10], we explain the mathematical theory of the point
processes in tha plane. We define and study the properties of several types of
processes, and different quantities which are hugely important in the study of this
kind of objects.

In the third chapter, based mainly in Baddeley et al. (2015) [2], we present,
giving examples, the statistic tools used in the analysis of point processes in the
plane. The tools exposed are related with the theory exposed previously and are
used in the last chapter of the project.

Finally, in the last chapter, we put into practice all the knowledge we have ac-
quired in a real case study. Using the database employed in Jorge Mateu, P. Diggle
and I. Tamayo-Uria (2014) [18], shared by Jorge Mateu, we perform a study about
the rat and cockroach sightings in Madrid city. This constitutes an application in
a real public health case of the concepts seen during the work.

Resum

En aquesta memòria s’estudia un tipus de procés estocàstic en concret, es trac-
ta dels processos estocàstics puntals espacials. S’estudien les bases matemàtiques
d’aquest objecte, s’exposen eines estadístiques que es fan servir per tractar proble-
mes amb patrons puntuals espacials, i finalment, es posa tota la teoria exposada
en pràctica amb una aplicació en un problema real, amb dades reals.

En el primer i segon capítol del treball es dona la teoria matemàtica darrere
dels processos puntuals espacials. En el capítol que obre el projecte, hi trobem
les definicions més generals i abstractes, i la mateixa definició de procés puntual.
Hem seguit en aquest capítol Stoyan et al. 2013 [17]. En el segon capítol, usant com
a referència Diggle 2013 [10], hi ha explicada la teoria matemàtica sobre processos
puntuals espacials en el pla. Es defineixen i s’estudien les propietats de diferents
tipus de processos, i de diferents quantitats que resulten clau en l’estudi d’aquest
tipus d’objectes.
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En el tercer capítol, basat principalment en Baddeley et al. (2015) [2], es pre-
senten, tot donant exemples, eines estadístiques que es fan servir per a l’estudi
de patrons puntuals a regions del pla. Les eines exposades lliguen amb la teoria
tractada en el segon capítol i es fan servir en el darrer capítol d’aquest treball.

Finalment, en el darrer capítol del treball, posem en pràctica tots els coneixe-
ments adquirits i exposats durant les seccions anteriors en un cas d’estudi real.
Utilitzant la base de dades emprada a Jorge Mateu, P. Diggle i I. Tamayo-Uria
(2014) [18], dades que m’han estat cedides pel mateix Jorge Mateu, duem a terme
un estudi sobre els avistaments de rates i paneroles a la ciutat de Madrid. Ai-
xò, constitueix una aplicació en un cas real de salut pública dels conceptes vists
durant el treball.

2020 Mathematics Subject Classification. 60G55, 60G10, 62P10, 62M30.
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Chapter 1

Point processes general theory

This chapter will be strongly based in the point process theory given in the
book ’Stochastic Geometry and Its Applications’ (Stoyan et al., 2013 [17]). In this book
one can find an exhaustive study around point processes with a pure mathematical
approach. Then, I use this book in order to be familiar with the mathematics
behind this kind of processes. I add this chapter on the project with the aim of
give some mathematics fundamentals before work in the practical cases.

The objective in this chapter is give a formal mathematical theory about the
so-called point processes. Here we are working in an Euclidean space Rd, in this
space we will have a pattern of points. In this context we denote by φ a sequence
of points in Rd. Sometimes we write φ = {xn}, were xn is a point of Rd, in order
to emphasize the sequential nature of φ.

The first step will be define point process. Prior to define this, we should focus
on some key concepts. In the mathematical literature a point process in Rd is
defined as a random variable taking values in some measurable space. Then, first
of all, we should define this measurable space.

Definition 1.1. We define/denote N to the family of all the sequences φ of points
in Rd satisfying:

(i) The sequence φ is locally finite. That is, each bounded subset of Rd must
contain only a finite number of points of φ.

(ii) The sequence φ is simple. That is, there are not two equal points in φ.

Definition 1.2. We define/denote as N to the smallest σ-algebra on N to make all
mappings φ → φ(B) measurable, for B running through the bounded Borel sets.
Here, φ(B) is the number of points in the set B.

Now we have a well defined measurable space, that is the pair (N,N ). This is
the measurable space that we need to be able to define, formally, a point process.

1



2 Point processes general theory

Definition 1.3. A point process Φ is a measurable mapping of a probability space
(Ω,A, P) into the measurable space (N,N ).

More intuitively a point process is a random choice of one of the sequences φ

in N. It generates a distribution on (N,N ), the distribution P of the point process.

Notation 1.4. Is important to introduce the following notation:

x ∈ Φ asserts that the point x belongs to the random sequence Φ.

Φ(B) = n asserts that the set B contains n points of Φ.

Observation 1.5. The word ’process’ in the term ’point process’ does not imply
a dynamic evolution over time. Because of the classical definition of a stochastic
process, and also the applications of stochastic processes, it is natural to think that
time should be also related with this type of stochastic processes. But this is not the
case. The pure spatial point process are not related with time. Notwithstanding,
there are the spatio-temporal point processes, which include the time variable as a
new dimension. These processes are really related with time, and with a dynamic
evolution. These kind of point processes are out of the scope of this work. Anyway,
interesting references about this topic are: Jorge Mateu et al. 2016 [13], and the
last chapters of Dggile 2013, [10].

Henceforth, the point process Φ is from the probability space (Ω,A, P) to the
measurable space (N,N ).

Our next step is to define the distribution of a point process. We commented
that the definition of points processes generates a distribution.

Definition 1.6. The distribution P of a point process Φ is the distribution deter-
mined by the probabilities

P(Y) = P(Φ ∈ Y) = P({ω ∈ Ω : Φ(ω) ∈ Y}).

Where Y ∈ N .

Observation 1.7. Let Φ be a point process and Y ∈ N . Then the term Φ ∈ Y
means that Φ has some property, for example Φ has no point in the set B. Then
P(Φ ∈ Y) denotes the probability that Φ has this property, in the previous example
it is the probability that Φ has no point in B.

Another important type of distributions are the so-called finite-dimensional dis-
tributions. These distributions are used in regular basis in all type of stochastic
processes, see in the ’Stochastic processes course’, of the Universitat de Barcelona,
notes: Carles Rovira 2021 [16]. Now we see the definition:
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Definition 1.8. Let Φ be a point process, we define the finite-dimensional distribu-
tions as the probabilities of the form

P(Φ(B1) = n1, . . . , Φ(Bk) = nk). (1.1)

Where B1, . . . , Bk are Borel bounded sets and n1, . . . , nk ≥ 0.

Here (1.1) denotes the probability that Φ has n1 points in the set B1, . . . , and
nk points in Bk.

Observation 1.9. The distribution of Φ on (N,N ) is uniquely determined by the
system of all this values for all k = 1, 2, . . . . In fact, the distribution is determined
by the subsystem for which the constituent Bi are pairwise disjoint.

Two important notions related with point processes are stationarity and isotropy.
A point process is said to be stationary if its characteristics are invariant under
translation. On the other hand, a point process is said to be isotropic if its charac-
teristics are invariant under rotation. Now, we see this definitions formally. First,
we should introduce some notation.

Notation 1.10. Let Φ be a point process. Recall that we can write Φ = {xn},
because a point process is a sequence of points on Rd. Then, we denote the trans-
lation of Φ like Φx = {xn + x}, for some x ∈ Rd. Let r be a rotation around the
origin. We denote the rotation of Φ like rΦ.

Definition 1.11. A point process Φ = {xn} is stationary if it has the same distribu-
tion as the process Φx = {xn + x} for all x in Rd. So

P(Φ ∈ Y) = P(Φx ∈ Y).

For all Y ∈ N and for all x ∈ Rd.

Definition 1.12. A point process Φ = {xn} is isotropic if Φ and rΦ have the same
distribution for every rotation around the origin r. So

P(Φ ∈ Y) = P(rΦ ∈ Y).

For all Y ∈ N and for all r.

Observation 1.13. Notice that if a given point process Φ is stationary and isotropic,
then the properties of the process only depends on the distance between points.
Because the properties of the process do not change under translation and rotation.

On the point processes context one have the analogous to the mean of a real-
valued random variable, this is the intensity measure of a point process. Like the
mean of a real-valued random variable, the intensity measure is a very important
quantity.
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Definition 1.14. The intensity measure Λ of a point process Φ is defined as

Λ(B) = E(Φ(B)) =
∫

φ(B)P(dφ).

For Borel sets B. So Λ(B) is the mean number of points in B.

With the previous definition the chapter is closed. Now, our objective is find
powerful tools for study point processes and see different type of point processes.
With this objective in mind in the following sections we will restrict the study to
the plane, where the analysis is easier and where exists a great variety of potent
tools.



Chapter 2

Point processes in the plane

2.1 Introduction

In this part of the project we will study in detail the point processes in the
plane (i.e. in R2). This chapter is based on ’Statistical Analysis of Spatial and Spatio-
Temporal Point Patterns’ by Diggle 2013 [10]. Everyone I have talked about my goals
in this project recommended me this book. Then, Diggle’s book will be the most
important reference in this part of the project.

From now on we will be working in the Euclidean space R2, with the Euclidean
topology. It is also important to mention that until now we use the term ’point
process’ to refer to spatial-point processes. From now on the reader will see the
term ’point pattern’ usually. It is important to understand the difference beetwen
point pattern and point process. A point pattern is a set of observed points, and a
point process is the mathematical object defined in Chapter 1. During all the work
the planar regions with which we will work will be Borel bounded sets.

2.1.1 Software

In this work, we will use the R software. In this project, we will be working
with the Spatstat library, written by Adrian Baddeley and Rolf Turner. This R
library has got a big amount of useful tools for the point patterns analysis. I
am using the book ’Spatial Point Patterns. Methodology and Applications with R’
(Baddeley et al. 2015 [2]) in order to get acquainted with the resolution of point
pattern problems using R. Of course, I am using the manuals of the Spatstat library
to learn how to use the library correctly and be able to do properly the statistical
analysis of point patterns (see this manuals in [3], [5] and [4]).

Furthermore, I will be using several R libraries which are necessary for the
practical part of the work. These packages and each manuals are: ’gstat’ (Pebesma

5



6 Point processes in the plane

Figure 2.1: Regular (left), independent (middle) and clustered (right) point pat-
terns of 121, 100 and 100 points.

2015, [15]), ’rgdal’ (Bivand 2015, [7]), ’splancs’ (Bivand 2017, [8]), ’spdep’ (Bivand
2015, [6]).

2.1.2 Complete spatial randomness

In this section we will introduce the most important hypothesis in the point
processes analysis, it is the hypothesis of complete spatial randomness (CSR). The
hypothesis of complete spatial randomness for a spatial point pattern asserts that

(i) The number of points of the pattern in any planar region A with area m2(A)

follows a Poisson distribution with mean λm2(A).

(ii) Given n points of the pattern xi in a region A, the xi are an independent
random sample from the uniform distribution on A.

Where m2(·) denotes the Lebesgue measure. The constant λ is the so-called
intensity. The hypothesis (i) implies that the intensity of points not vary over
the plane, (ii) implies that there are no interactions amongst the points. In the
Figure 2.1 the reader can see a regular (left), under CSR hypothesis (middle) and
aggregated (right) pattern. In this example one can easily understand the behavior
of a point pattern under the CSR hypothesis.

It is always a starting point, in the practical cases, to verify if our pattern
satisfies (i) and (ii), or not. Because if one point pattern is under CSR hypothesis
then it is a completely random pattern. That is, our pattern has no study interest
because it is absolutely random, and then we can’t draw conclusions about the
underlying process.

In addition, the complete spatial randomness hypothesis have some other ap-
plications: they are used for the simulation of other more complex models, also,
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they are used like a dividing hypothesis to distinguish between different types of
patterns.

2.2 Second-order properties

The summary descriptions are quantities that we can assign to each point pat-
tern. This quantities allows us to understand how is the point pattern in question,
for example, if the point pattern has some clustering, if the points are (or not) uni-
formly distributed throughout the planar region, the intensity of points per unit
area, etc.

In the following sections we will study these summary descriptions. One use-
ful, and usually used, approach for the statistical analysis of point patterns is to
compare the empirical summary descriptions between the theoretical summary
descriptions.

We can now define the first-order and second-order properties of a point process.
First-order properties are described by an intensity function. The intensity function
is an interesting quantity because shows us the average number of points per unit
of area.

Definition 2.1. Let Φ be a point process in R2, we define the intensity function of
Φ as

λ(x) = lim
m2(dx)→0

E(Φ(dx))
m2(dx)

.

Whenever the limit above exists and where x ∈ R2.

Notation 2.2. In the previous definition dx denotes an infinitesimal planar region
that contains the point x ∈ R2. From now on we will be using this notation. The
reader can think in dx as B(x, ϵ), the ball (i.e. disc) centered in x with radius ϵ,
which is arbitrary small.

A variant of the intensity function, which is the first second-order property
that we see, is the so-called second-order intensity function. It is defined in a similar
way than the intensity function:

Definition 2.3. Let Φ be a point process in R2, we define the second-order intensity
function of Φ like (when the limit exists)

λ2(x, y) = lim
m2(dx),m2(dy)→0

E(Φ(dx)Φ(dy))
m2(dx)m2(dy)

.

We will usually be dealing with processes that are stationary (see Definition
1.11) and isotropic (see Definition 1.12). For the study in finite planar regions it is
not an overly restrictive condition.
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Observation 2.4. For a stationary process the intensity function assumes a con-
stant value, it is λ(x) = λ. In addition, for stationary processes we have λ2(x, y) ≡
λ2(x − y). And for a stationary and isotropic process λ2(x − y) reduces further to
λ2(t) where t = ∥x − y∥ (∥ · ∥ denotes the Euclidean distance in R2). It is because
(see Observation 1.13) under isotropy and stationarity the properties of the point
process only depends on the distances between points. The reader can observe
that we are dealing with several abuse of notation. Strictly, it have no sense the
expression λ2(x − y) or λ2(t). Because by definition we have λ2 : R2 × R2 → R

and x − y ∈ R2, t ∈ R. Usually we will use λ2(t), because we will be dealing with
stationary and isotropic processes.

The conditional intensity is another important quantity. Heuristically the condi-
tional intensity corresponds to the intensity in x ∈ R2 conditional on the informa-
tion that there is a point of the process at y ∈ R2, thus y ∈ R2 ∩ Φ.

Definition 2.5. Let Φ be a point process. Assume that y ∈ R2 ∩ Φ, then we define
the conditional intensity at x ∈ R2 as

λc(x|y) = λ2(x, y)
λ(y)

.

An other characterisation of the second-order properties of stationary and
isotropic processes is given for the K-function. This is an important quantity, very
useful in several statistical approaches for analyze case studies.

Definition 2.6. Let Φ be a stationary and isotropic point process in R2 with inten-
sity λ, we define the function K(t) as

K(t) =
E(Φ(B(∗, t)))

λ
.

Where Φ(B(∗, t)) is the number of points within the ball of radius t, centered in
an arbitrary point of the pattern.

In the mathematical literature we can find (as in Stoyan et al. 2013, [17]) the
previous definition with B(o, t) instead of B(∗, t), where o denotes the origin. This
is because we are assuming stationarity and isotropy, and then we can apply a
translation and a rotation and take o as a point of the process.

From the previous definition (Definition 2.6) we can deduce that λK(t) is the
mean number of further points in a ball of radius t and centered at the typical
point.

Now, we want to establish a link between the K-functions and the second order
intensity. From now on we assume stationarity and isotropy. In order to establish
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a link we have to assume that our process is simple (see Definition 1.1). In the
mathematical literature the reader can find this notion called orderly (for example
in Diggle 2013, [10]). The reader can see that this assumption is not very restric-
tive in practice, because, normally, the coincidence of two (or more) points does
not make physic sense. Under these conditions, the expected number of further
points within distance t of an arbitrary point can be computed by integrating the
conditional intensity over the disc with centre the origin and radius t. Thus,

K(t) =
1
λ

∫ 2π

0

∫ t

0
λc(s|o)sdsdθ. (2.1)

Where o ∈ R2 is the origin.
Now, remember that we are assuming statonarity and isotropy, then if we use

what we saw in Observation 2.4 and we use the conditional intensity definition
(see Definition 2.5) we can obtain:

λc(t|o) =
λ2(t, o)

λ(o)
=

λ2(t)
λ

. (2.2)

And then, if we replace (2.2) on (2.1), and we apply the Fubini’s theorem we
finally have:

K(t) =
1
λ

∫ 2π

0

∫ t

0

λ2(s)
λ

sdsdθ =
2π

λ2

∫ t

0
λ2(s)sds. (2.3)

Thus, we obtained a link between K(t) and λ2(t) that may be useful in order to
study stationary, isotropic and orderly processes.

An important and useful property of the K-function is that it is invariant under
random thinning. By random thinning, we mean that the point of a process is
retained or not according to a series of mutually independent Bernoulli trials.
This result follows from the Definition 2.6, where we have that the K-function is

K(t) =
E(Φ(B(∗, t)))

λ
.

The effect of thinning is to multiply p (the parameter of the Bernoulli trials) above
and below. It is:

K(t) =
pE(Φ(B(∗, t)))

pλ
.

Thus, clearly, the K-function remains equal.
There is an interesting, and useful, transformation of the K-function. It is the

L-function:

Definition 2.7. Let Φ be a point process. Let K be the K-function of Φ. We define
the L-function as

L(t) =

√
K(t)

π
. (2.4)
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All that we saw in this section is about univariate point processes. Now, we
will extend the previous notions to multivariate processes, which are an interesting
object of study. This is because in practice, in many cases, we observe different
types of point patterns in the same region. For example, in spatial epidemiology
(see in Section 2.8) we have a set of cases (people who suffer a disease) and a set of
controls (people in risk for suffer the disease, but not currently suffering). These
are two different point patterns. Then, this is an example of a bivariate point
process.

Definition 2.8. Let Φ be a multivariate point process, such that is stationary and
isotropic. Let A ⊂ R2 be a planar bounded region. We define the intensities as the
constants

λj =
E(Φj(A))

m2(A)
.

And the second-order intensities are functions with scalar argument,

λij(t) = lim
m2(dx),m2(dy)→0

E(Φi(dx)Φj(dy))
m2(dx)m2(dy)

.

Where t = ∥x − y∥ and Φj(A) is the number of type j points in the planar region
A.

Of course, it holds from the previous definition that λij(t) = λji(t). Also, we
can generalize the K-function for multivariate processes.

Definition 2.9. Let Φ be a stationary and isotropic multivariate point process.
Then we define the multivariate K-functions like

Kij(t) =
E(Φj(B(∗i, t)))

λj
.

Where E(Φj(B(∗i, t))) denotes the expected number of type j points within dis-
tance t of an arbitrary type i point.

Now, using similar arguments than above, we can extend (2.3) to a multivariate
process obtaining

Kij(t) =
2π

λiλj

∫ t

0
λij(s)sds. (2.5)

From (2.5), Kij(t) = Kji(t) holds.
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2.3 The homogeneous Poisson process

The homogeneous planar Poisson process (from now on we will call it Poisson
process) is the mainstay on which the point processes theory is built. It represents
the simplest possible stochastic mechanism for the generation of spatial point pat-
terns, and in practice it is used as a standard of complete spatial randomness.

Definition 2.10. Let Φ be a stationary and isotropic point process. We say that Φ
is a Poisson process if Φ satisfy:

(i) For some λ > 0, and any finite planar region A, Φ(A) follows a Poisson
distribution with mean λm2(A).

(ii) Given Φ(A) = n, the n points in A form an independent random sample
from the uniform distribution in A.

(iii) For any two disjoint finite planar regions A and B, the random variables
Φ(A) and Φ(B) are independent.

Notice that the hypothesis for the Poisson processes are exactly the hypothesis
for complete spatial randomness. We add in Definition 2.10 the hypothesis (iii),
which ensure the self-consistency of (i) and (ii). Clearly, the parameter λ of the
Poisson process is its intensity.

Proposition 2.11. Let Φ be a Poisson process with rate λ, then the intensity of Φ
is exactly λ.

Proof. Using the intensity definition, and the statement (i) of the Poisson process
definition we have

λ(x) = lim
m2(dx)→0

E(Φ(dx))
m2(dx)

= lim
m2(dx)→0

λm2(dx)
m2(dx)

= λ.

We can do several simulations of a Poisson process in the unit square with, for
example, rates λ = 10, λ = 25 and λ = 50 (see in Appendix A.1) in order to know
how is the behavior of this class of processes. Notice that the resulting patterns
have a similar behavior than the pattern in the middle of Figure 2.1. Now, we see
interesting properties of the Poisson processes.

Proposition 2.12. Let Φ be a Poisson process with parameter λ. Then, the second-
order intensity function of Φ is

λ2(t) = λ2. (2.6)

for t > 0.
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Proof. We apply the second-order intensity definition (see Definition 2.3), let x, y ∈
R2 be arbitrary points of the plane, then:

λ2(x, y) = lim
m2(dx),m2(dy)→0

E(Φ(dx)Φ(dy))
m2(dx)m2(dy)

= lim
m2(dx),m2(dy)→0

E(Φ(dx))E(Φ(dy))
m2(dx)m2(dy)

= lim
m2(dx)→0

E(Φ(dx))
m2(dx)

lim
m2(dy)→0

E(Φ(dy))
m2(dy)

= λ(x)λ(y) = λ2.

Clearly dx and dy are two disjoint planar regions, so for the hypothesis (iii) of
the Poisson processes we have that Φ(dx) and Φ(dy) are independent random
variables. Thus, we can separate the expectation in product of expectations. Once
we did this, we obtain the intensity function (see Definition 2.1) evaluated in x
and y. Finally, using the assumption that the Poisson process is stationary we
know that the intensity function is a constant, as we saw above this constant is the
parameter λ of the Poisson process. Finally, using again that the Poisson process is
stationary and isotropic, and taking into account that we have proven the equation
(2.6) for an arbitraries x, y ∈ R2, we have that the equation holds for an arbitrary
t ∈ R.

Proposition 2.13. Let Φ be a Poisson process with parameter λ. Then, the K-
function of Φ is

K(t) = πt2. (2.7)

For t > 0.

Proof. In this proof we will use the equation (2.3) and the previous result (Propo-
sition 2.12), using these and the Barrow’s rule we obtain the statements easily.

K(t) =
2π

λ2

∫ t

0
λ2(s)sds =

2π

λ2

∫ t

0
λ2sds =

2πλ2

λ2

∫ t

0
sds = πt2.

Notice that in the last result we take an interesting result: in a Poisson process
the K-function does not depend on λ, it only depends on t, which is a distance
between points.

Corollary 2.14. Let Φ be a Poisson process with parameter λ. Then, the L-function
of Φ is

L(t) = t.

Proof. Using the definition of the L-function (Definition 2.7) and the previous re-
sult we have

L(t) =

√
K(t)

π
=

√
πt2

π
= t.

Then, the result has been proven.
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2.4 Bivariate point processes

Now we focus in bivariate processes. This kind of processes will be important
in this work. In order to asses the spatial association between two types of points
in a bivariate process, we can consider two hypothesis:

(i) Independence: The two types of points are generated by a pair of independent
univariate processes.

(ii) Random labelling: The two types of points are generated by labelling the
points of a univariate process in a series of mutually independent Bernoulli
trials.

Both hypothesis above are essential if one want to analyze the behavior of a bi-
variate point process. In practical cases we usually use these hypothesis as null-
hypothesis, which is a powerful statistical approach that allows us to study how
is our point pattern nature.

Hereinafter, we will see that under this hypothesis we obtain different K-
functions. First we will study the K-function under the hypothesis (i).

Proposition 2.15. Let Φ be a bivariate, stationary and isotropic point process such
that satisfies the hypothesis (i). We denote the two types of processes within Φ
type 1 and type 2, respectively. Then, the multivariate K-function of Φ is

K12(t) = πt2. (2.8)

In particular, also K21(t) = πt2, because as we saw K12(t) = K21(t).

Proof. Under the hypothesis (i) the two component processes are independent,
then a points of type 1 has the same status, with respect to points of type 2, as an
arbitrary point. In addition, we have the independence of the random variables
Φ1(A) and Φ2(A) where A ⊂ R2 is a region of the plane. Then, using the exten-
sion of the second order intensities for multivariate processes (see Definition 2.8)
we have, if t = ∥x − y∥,

λ12(t) = lim
m2(dx),m2(dy)→0

E(Φ1(dx)Φ2(dy))
m2(dx)m2(dy)

= lim
m2(dx)→0

E(Φ1(dx))
m2(dx)

lim
m2(dy)→0

E(Φ2(dy))
m2(dy)

= λ1(x)λ2(y) = λ1λ2.

And now, using the expression (2.5) we obtain what we want

K12(t) =
2π

λ1λ2

∫ t

0
λ12(s)sds =

2πλ1λ2

λ1λ2

∫ t

0
sds = πt2.
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Notice that we have an interesting result in the previous Proposition. Un-
der the hypothesis (i) the multivariate K-function of a bivariate, stationary and
isotropic process is exactly the K-function of a univariate Poisson process.

Now we study the K-function under the hypothesis (ii). We will see that we
obtain different results.

Proposition 2.16. Let Φ be a bivariate, stationary and isotropic point process such
that satisfies the hypothesis (ii). Denoting the two types of processes within Φ
type 1 and type 2, respectively. Then,

K11(t) = K22(t) = K12(t) = K(t). (2.9)

Where K(t) is the K-function for the unlabelled univariate process.

Proof. We have K(t), which is the K-function of the unlabelled, univariate process
consisting of all points, irrespective of type. Under the hypothesis (ii) the uni-
variate processes of type 1 and 2 points are each random thinnings of the bigger
unlabelled process. Then, using that the K-functions are invariant under random
thinning we have

K11(t) = K22(t) = K(t).

Using the same argument we have also

K12(t) = K(t).

Observation 2.17. Note that independent and random labelling have the same
K-functions if and only if the types 1 and 2 processes are both Poisson processes.

2.5 Inhomogeneous Poisson processes

In this section we will see the first example of a non-stationary point pro-
cess. This process is obtained if we replace the constant intensity λ of the Poisson
process by a spatially varying intensity function λ(x). It is, the so-called, inhomo-
geneous Poisson process.

Definition 2.18. Let Φ be a point process. We say that Φ is an inhomogeneous
Poisson process with intensity function λ(x) if

(i) For any finite planar region A, Φ(A) has a Poisson distribution with mean∫
A

λ(s)ds.
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(ii) Given a finite planar region A, such that Φ(A) = n, the n points in A form
an independent random sample from the distribution on A with probability
distribution function proportional to λ(x).

We have defined this process because will be necessary in the following section.

2.6 Cox processes

The Cox processes are an important type of point processes. They appear, in
regular basis, on the mathematical literature related with point processes, and
they are also known as doubly stochastic processes. The reader will understand the
rationale of this last name when we expose the definition of Cox processes.

Definition 2.19. Let Φ be a point process. Then, Φ is said a Cox process driven by
{Λ(x) : x ∈ R2} if it satisfies:

(i) {Λ(x) : x ∈ R2} is a non-negative-valued stochastic process.

(ii) Conditional on {Λ(x) = λ(x) : x ∈ R2}, the point form an inhomogeneous
Poisson process with intensity function λ(x).

Thus, indeed, a Cox process is a doubly stochastic process, due the fact that the
intensity function is also stochastic. A Cox process Φ driven by {Λ(x) : x ∈ R2} is
stationary and isotropic if and only if Λ(x) is stationary and isotropic. Assuming
that the Cox process Φ is stationary and isotropic we can obtain the first-order
and second-order properties by taking expectations with respect to Λ(x). Then
we have the intensity of Φ:

λ = E(Λ(x)). (2.10)

The second-order intensity is given by

λ2(t) = E(Λ(x)Λ(y)). (2.11)

Where t = ∥x − y∥. Clearly, using the theoretical covariance definition we can
rewrite the previous equation as

λ2(t) = λ2 + C(t). (2.12)

Where C(t) = Cov(Λ(x), Λ(y)).
Finally, with the equations exposed above we can deduce the K-function for a

Cox process under the stationarity and isotropy assumptions.
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Proposition 2.20. Let Φ be a Cox process driven by {Λ(x) : x ∈ R2}, assume that
the point process is stationary and isotropic. The K-function of Φ is given by:

K(t) = πt2 +
2π

λ2

∫ t

0
C(s)sds.

Proof. We can, easily, demonstrate this result using (2.12) and (2.3).

K(t) =
2π

λ2

∫ t

0
λ2(s)sds =

2π

λ2

∫ t

0
(λ2 + C(s))sds =

2π

λ2

∫ t

0
λ2sds +

2π

λ2

∫ t

0
C(s)sds

= πt2 +
2π

λ2

∫ t

0
C(s)sds.

Cox processes are often used for modeling biological processes which are ag-
gregated. When the source of this aggregation is the environmental heterogeneity
and this heterogeneity is stochastic in nature, the best path for modelling the bio-
logical processes is using Cox processes or point processed derived from the Cox
one.

2.7 Log-Gaussian Cox processes

An interesting, and commonly used, approach for modelling using Cox pro-
cesses is take the logarithm of the driving stochastic process, and take some extra
assumptions. This path leads to the so-called Log-Gaussian Cox processes. Firstly
we expose the formal definition, and then we discuss the rationale and the advan-
tages of using this approach. Following Moller et al 1998 [14], we have built the
definition:

Definition 2.21. Let Φ be a Cox process driven by {Λ(x) : x ∈ R2}. We say that
Φ is a Log-Gaussian Cox process if the driving process can be written as

Λ(x) = exp (Z(x)) . (2.13)

Where {Z(x) : x ∈ R2} is a real-valued Gaussian process.

Observation 2.22. A real-valued stochastic process {Z(x) : x ∈ R2} is a Gaussian
process if the finite-dimensional distributions (see Definition 1.8) of the process
are Gaussian laws. It is, equivalently, the joint distribution of any finite vector
(Z(x1), . . . , Z(xn)), where x1, . . . , xn ∈ R2, is Gaussian.
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Assuming stationarity and isotropy, the distribution of Z is determined by the
mean and the variance:

µ = E(Z(x)), σ2 = Var(Z(x)). (2.14)

And also for the covariance function, which for some x, y ∈ R2 is given by

C(t) = Cov(Z(x), Z(y)) = E (Z(x)Z(y))− µ2. (2.15)

Since we are assuming stationarity and isotropy, the covariance function only de-
pends on the distance between points t = ∥x − y∥, and this is why we write the
dependence of the covariance function only on t.

Now, our goal is to define a model with a specific covariance function. There
are several models in the mathematical literature (see these models in Moller et al
1998 [14]), but probably, one of the simplest models and one of the most commonly
used due to its good results is the so-called exponential model. In this model we
assume that the Gaussian process {Z(x) : x ∈ R2} is centered (i.e. µ = 0) and we
take the covariance function (see Baddeley 2015 [2]):

C(t) = σ2 exp
(
− t

δ

)
. (2.16)

Where δ is a scale parameter depending on the point pattern. Thus, as the
reader can observe, the exponential model only depends on the two parameters
σ2 and δ. And then, if we can estimate these parameters we can control the model.

Now, observe that we can deduce the first-order and second-order properties
in this specific case. Firstly, we will see the intensity, but previously we see a
probability lemma.

Lemma 2.23. Let X be a real-valued random variable with normal law with mean
µ and variance σ2 (i.e. N(µ, σ2)) then the expectation of exp(X) is

E(exp(X)) = exp
(

µ +
σ2

2

)
.

Proof. To demonstrate this lemma we will use the theoretical definition of expecta-
tion of a real-valued random variable, the probability density function of a normal
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and we will perform several calculus

E(exp(X)) =
1√

2πσ2

∫
R

exp(x) exp
(
− (x − µ)2

2σ2

)
dx =

=
1√

2πσ2

∫
R

exp
(
− (x − µ)2

2σ2 + x
)

dx =

=
1√

2πσ2

∫
R

exp
(
−−x2 + 2xµ − µ2 + 2xσ2

2σ2

)
dx =

=
1√

2πσ2

∫
R

exp
(
−−x2 + 2x(µ + σ2)− (µ + σ2)2 + (σ2)2 + 2µσ2

2σ2

)
dx =

=
1√

2πσ2

∫
R

exp
(
− (x − (µ + σ2))2

2σ2

)
exp

(
(σ2)2 + 2µσ2

2σ2

)
dx =

=

(
exp

(
(σ2)2 + 2µσ2

2σ2

))
1√

2πσ2

∫
R

exp
(
− (x − (µ + σ2))2

2σ2

)
dx =

= exp
(

µ +
σ2

2

)
.

In the last equality we have used that the term in the right is the integral of the
probability density function of a real-valued random variable with law N(µ +

σ2, σ2) throughout R, then it is exactly 1. Also, in the last equality, we have sim-
plified the left term.

Now, with the support of the previous Lemma, we can demonstrate the fol-
lowing result.

Proposition 2.24. Let Φ be a stationary and isotropic Log-Gaussian Cox process
driven by {Λ(x) : x ∈ R2}. Using all the notation introduced above, we have that
the intensity of Φ is

λ = exp
(

µ +
σ2

2

)
.

Proof. As we saw before the intensity of a Cox process is given by (2.10). Thus,
applied to the Log-Gaussian Cox process we have

λ = E(Λ(x)) = E(exp(Z(x))).

Since Φ is a Log-Gaussian Cox process we know that {Z(x) : x ∈ R2} is a Gaussian
process with mean µ and variance σ2, using the previous notation. Then, Z(x) has
normal law with mean µ and variance σ2 for all x ∈ R2. Thus, applying the
Lemma 2.23 we obtain

λ = E(Λ(x)) = E(exp(Z(x))) = exp
(

µ +
σ2

2

)
.

And the result, indeed, holds.
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Observation 2.25. Taking the statements of the previous preposition, and adding
the hypothesis that Φ is under the exponential model, it is easy to see that the
intensity is

λ = exp
(

σ2

2

)
. (2.17)

We only have to take into account that under the exponential model the Gaussian
process {Z(x) : x ∈ R2} is centered.

Finally, we want to determine the shape of the K-function of a Log-Gaussian
Cox process under the exponential model. Using the Proposition 2.20, we only
have to substitute the expression for the intensity under the exponential model
(2.17) and the covariance function taken in this model (2.16). Doing this we obtain:

K(t) = πt2 + 2π exp
(
−σ2) ∫ t

0
sσ2 exp

(
−s
δ

)
ds.

We can develop the expression above by integrate. Doing this we finally obtain

K(t) = πt2 + 2πσ2 exp
(
−σ2) δ

(
δ − exp

(
−t
δ

)
(δ + t)

)
. (2.18)

2.7.1 Parameter estimation: method of minimum contrast

In this section we will be using Diggle et al 2013 [12], Moller 1998 [14] and
Diggle 2013 [12]. Here we will explain how to estimate the parameters (σ2, δ) of
the exponential model. We will expose the so-called minimum contrast method (see
Moller 1998 [14]). Using the approach of that we can describe the point pattern
with the K-function, we have as a objective find the theoretical K-function under
the model. Thus, we just have to estimate the parameters and put them into
(2.18). Let K̂(t) be the empirical K-function from the data, and let K(t; σ2, δ) the K-
function under the exponential model (2.18). The path of this estimation is simple,
we want to make K(t; σ2, δ) as close to K̂(t) as we can. For achieve it, we define
a measure of discrepancy between K(t; σ2, δ) and K̂(t), the area between the two
curves or the integrated squared difference between curves. It is∫ t0

0

(
(K̂(s))q − (K(s; σ2, δ))q)2

ds. (2.19)

And then, we estimate the parameters (σ2, δ) to be the values (σ̂2, δ̂) which
minimizes (2.19). By doing this, as the reader can observe, we obtain K(t; σ̂2, δ̂)

which is near as possible to K̂(t). In the literature we can find that q = 1/2 is
a good choice for regular point patterns, and q = 1/4 for aggregated patterns.
Also t0 is to be chosen, there are no clear reasons for a specific election of t0 in the
literature.
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2.8 Point processes in spatial epidemiology: spatial cluster-
ing

In this section we have followed Diggle 2013 [10], Waller and Gotway 2004 [19]
and Diggle and Chetwynd 1991 [11], Bivand et al. 2008 [9] and Baddeley et al.
2015 [2].

By spatial clustering we mean a tendency for cases to occur more closely to-
gether than would be possible with random sampling of population at risk. For
analyze the spatial clustering we will use a case-control scheme, which is an ap-
proach used on a regular basis in spatial epidemiology. Case-control data involve
locations for each cases reported (cases) and a collection of noncases (controls).
Sometimes, in practice, controls are chosen following an specific criteria with the
aim of match the characteristics of the set of cases. However, in this work, we
assume that controls are an independent random sample.

In order to asses spatial clustering one can take the null hypothesis:

H0 : There are no clusters of cases. (2.20)

Let Φ1 be the process of cases, and Φ2 be the process of controls. Thus, if we
superpose these processes we obtain a bivariate point process Φ = Φ1 +Φ2. Under
the null hypothesis of no clustering, cases form a spatially random sample from
the underlying population. Thus, controls necessarily form a spatially random
sample from the same population. Hence, no spatial clustering is equivalent to
random labelling of the bivariate process of cases and controls. Then, (2.20) is
equivalent to

H0 : Φ = Φ1 + Φ2 is a bivariate point process under random labelling. (2.21)

In a case-control study the null hypothesis of completely random labelling implies
constant disease risk. This means, the probability of contracting the disease does
not depend on spatial location. Observe that, under (2.21)

D(t) = K11(t)− K22(t), (2.22)

where K11 and K22 denotes the K-functions of cases and controls respectively, is
identically zero (it is followed from Proposition 2.16). Positive values of D(t)
represents spatial aggregation of type 1 points (cases). An interesting approach is
establish a statistic to test the null hypothesis. The natural path is base this statistic
in the corresponding empirical function

D̂(t) = K̂11(t)− K̂22(t). (2.23)

In following sections (see Section 3.4) we will develop a statistic test for asses
spatial clustering.



Chapter 3

Statistics in spatial point patterns

In this chapter we will study several useful statistic tools, related with the
mathematical concepts exposed in the previous chapters. These statistics will be
used in the case studies at the last chapter of the work. In the following pages, the
reader will find mechanisms for estimate different quantities and some statistical
tests.

For this chapter I have used Baddeley et al. (2015) [2]. Also Diggle (2014) [10]
have been consulted.

3.1 Monte Carlo tests

Monte Carlo methods use random simulation to replace complicated calculations
in algebra and calculus. Furthermore, Monte Carlo methods, in general, involves
a huge number of simulations in order to achieve accuracy. On the other hand,
Monte Carlo test uses a smaller number of simulations from a given null hypothesis,
and appeals to a symmetry principle instead of the law of large numbers. We
study the Monte Carlo tests from Diggle (2013) [10] and Baddeley el al. (2015) [2].
Nevertheless, we will focus in Baddeley et al. (2015) [2], in order to expose here
this topic.

Let Φ be the observed point pattern. And let H0 be the null hypothesis. The
simplest Monte Carlo test follows the scheme:

1. Generate m simulated random point patterns Φ(1), . . . , Φ(m) from the null
hypothesis. These are random point pattern generated by computer, similar
to the observed pattern Φ, but under the assumption that H0 is true. The
random point patterns generated should be independent of each other and
of the observed data Φ (independent in the sense of probability).

21
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2. Reduce the point patterns to a single numerical value using a test statis-
tic T. Thus, Φ is reduced to tobs = T(Φ). And Φ(1), . . . , Φ(m) to t1 =

T(Φ(1)), . . . , tm = T(Φ(m)).

3. Assuming that larger values of T are more favourable to the alternative hy-
pothesis, the test rule is to reject H0 at significance level 1/(m + 1) if the
observed value tobs is larger than all of the simulated values t1, . . . , tm.

The basis for Monte Carlo tests is symmetry. Assuming that H0 is true, we have
that the original data and the m simulated patterns must be statistically equiva-
lent. Thus, in addition, tobs and t1, . . . , tm must be statistically equivalent. Using
a symmetry argument, there is a 1 in (m + 1) chance that the statistic tobs is the
largest of these m + 1 values. If this happens, the result is statistically significant
at level α = 1/(m + 1).

There are several variants from the basic Monte Carlo test. One interesting
alternative is a two-sided test. Instead of a one-sided test, which rejects the null
hypothesis if tobs is large, we could have a two-sided test which rejects the null
hypothesis if tobs is either largest or smallest of the m + 1 values. This will have
significance level α = 2/(m + 1). Another important variant, that we will use
during the work, is perform the Monte Carlo test with a test statistic which is
a function, not a number. This type of Monte Carlo tests works exactly like the
explained above.

3.2 K-function estimation

The goal of this section is show how the K-function (see in Definition 2.6) is
estimated in a given point pattern. Let ∥xi − xj∥ be the distance between two
different points in the point pattern, let A be the region where the point pattern
is and n the number of points of the pattern. We can define the number of t-
neighbours for the point xi as

ni(t) = ∑
j ̸=i

1{∥xi − xj∥ ≤ t}. (3.1)

Where we used the indicator notation. It is, 1{statement} is 1 if the statement
is true and 0 else. Notice that the number of t-neighbours counts the number of
points with distance less than or equal to t with respect the point of the pattern xi.
Equivalently, ni(t) is the number of data points which fall inside a circle of radius
t centred at xi, not counting xi itself.

The empirical cumulative distribution function of the pairwise distances is

Ĥ(t) =
1

n(n − 1)

n

∑
i=1

ni(t). (3.2)
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The denominator n(n − 1) is the total number of pairs of distinct points. So, Ĥ(t)
is the fraction of pairs for which the distance is less than or equal to t. Thus, using
the measure of the region where the patterns is, we have the function m2(A)Ĥ(t)
which is the standardised average number of t-neighbours of a typical data point.
With the aim to be fully able to compare different datasets observed in different
regions, we also need to take account of edge effects (see in Diggle 2013 [10]).
Thus, we obtain the so called empirical K-function

K̂(t) =
m2(A)

n(n − 1)

n

∑
i=1

ni(t)eij(t). (3.3)

Where eij is an edge correction weight. The explanation of this kind of edge
correction is out of the scope of the work. For more information about this see
Baddeley et al. 2015 [2].

The estimation of the K-function given by (3.3) is used in the spatstat library in
order to estimate the K-function in a given spatial point pattern.

3.2.1 Example

In this example we will estimate the K-functions of the point patterns exposed
in the Figure 2.1. We use the spatstat library for achieve it. We plot (see in Figure
3.1) the estimations and also the theoretical K-function for a random independent
pattern, which is K(t) = πt2 as we proved in Proposition 2.13. The reader can
observe that the K-function is a good benchmark that help us to understand the
behavior of the point pattern. And, if we compare the empirical K-function with
the theoretical one, it provides a thought about how random is the pattern.

Looking in Figure 3.1 we can, easily, see the discrepancies between the empiri-
cal K-function and the theoretical in the regular and clustered cases. This indicates
that these are not random patterns. On the other hand, in the independent pattern
simulation we obtain an empirical K-function which is very similar to the theoret-
ical one. This suggest that this is a random pattern. Anyway, in the next section
we will expose a statistic method to determine if a point pattern is under the CSR
hypothesis or not.

3.3 Complete spatial randomness test

As we studied in the beginning of this memory (see Section 2.1.2) the hypoth-
esis of Complete Spatial Randomness (CSR) is an important initial benchmark in
a point process analysis. One can find several CSR tests in the mathematical lit-
erature. Here we describe a method based in the K-function. Specifically in the
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Figure 3.1: K-function estimation of the point patterns in Figure 2.1. K-function
of the regular pattern (left), the independent pattern (middle) and the clustered
pattern (right). In dashed red lines, the theoretical K-function.

empirical and theoretical K-function. This method is the so-called global envelopes
(Baddeley et al. 2015 [2]).

Let Φ be a point pattern. We want to test if Φ verify the CSR hypothesis. As we
mentioned in Section 2.3, in practice, the Poisson processes are used as a standard
CSR. Thus, under the hypothesis of CSR, we are dealing with a Poisson process.
We take the null hypothesis

H0 : Φ is a Poisson process. (3.4)

We know that the K-function for any Poisson process is Kpois(t) = πt2 (see the
Proposition 2.13). From now on, Kpois will denote the theoretical K-function. Ev-
idently, if Φ satisfies the CSR hypothesis, the observed K-function (denoted as K̂)
must be near to Kpois.

The global envelopes method is an example of a Monte Carlo test (see in Sec-
tion 3.1) and shows us if the discrepancy between K̂ and Kpois is statistically signif-
icant. Global envelopes delimit a zone of constant width. The width is determined
as follows: assume that we do m simulations, for each simulated dataset, we com-
pute the maximum vertical deviation di between graphs of K̂ and Kpois, over some
range of distances. The maximum dmax = max(d1, . . . , dm) is taken. And then, the
global envelopes are

Env−(t) = Kpois(t)− dmax

Env+(t) = Kpois(t) + dmax.
(3.5)

If the graph of the empirical K-function lies outside these limits, at any value of t,
we reject the null hypothesis H0 with an exact significance level of α = 1/(m + 1).
Thus, with m = 19 we have a test with significance level 0.05.
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Figure 3.2: Global envelopes with m = 19 simulations, for the L-function, relating
to the point patterns in Figure 2.1. The regular (left), the independent (middle) and
the clustered (right) point pattern. In dashed red lines, the theoretical L-function.

Another interesting alternative, is use the L-function instead of the K-function.
Because, as we saw in Corollary 2.14, Lpois(t) = t. Clearly, it is easier compare the
observed function L̂ with the theoretical one, because of the simplicity of the last
of the two. Thus, this alternative gives us a more powerful test.

3.3.1 Example

Returning to the example given in Section 2.1.2 with a regular, independent
and clustered pattern (see Figure 2.1). We can perform an example using global
envelopes in order to determine if these patterns are under the CSR hypothesis,
or not.

We will compute global envelopes for the corresponding L-functions of point
patterns in Figure 2.1. We use spatstat and we obtain (see in Figure 3.2) that the
simulation of an independent pattern is under CSR hypothesis with a significance
level 0.05. Also, with the same significance level, we reject the null hypothesis for
the clustered and the regular pattern. Thus, both point patterns, are not under the
CSR hypothesis.

3.4 Test of random labelling

In this section we present a test for accept, or reject, the null hypothesis:

H0 : Φ = Φ1 + Φ2 is a bivariate point process under random labelling. (3.6)

Remember the definition saw in Section 2.4, a bivariate point process Φ = Φ1 +Φ2

is random labelled if the two type of points are generated by labelling the points of



26 Statistics in spatial point patterns

a univariate process in a series of mutually independent Bernoulli trials. Our aim
in this section is to expose a statistical test of random labelling. We have consulted
for this section: Baddeley 2010 [1], Baddeley et al. 2015 [2], Bivand et al 2008 [9].

A permutation test is a good path for asses random labelling. A permutation
test is a Monte Carlo test based on randomly relabelled versions of the original
data. In this test, the observed data spatial locations are kept constant but the
marks (type labels) associated with those locations are randomly permuted with
an equal probability for each variation. These randomly relabelled datasets are
statistically equal to the original data if (3.6) is valid, in which case the rationale
of the Monte Carlo test holds.

Using the permutation test approach, we will develop a envelope-based test,
similar (but not identical) than the explained in the previous section. In this case
we will choose the statistic

D(t) = K11(t)− K22(t). (3.7)

Where K11, K22 are the respective K-functions for the type 1 and 2 points from the
bivariate process Φ = Φ1 + Φ2. Using the Preposition 2.16, it is easy to deduce
that under (3.6), necessarily, D(t) = 0. Thus, D(t) different to 0, clearly suggests
that random labelling is not satisfied.

In this test we will simulate m point patterns, using random relabelling, and
we will compute the D(t) functions. Then, we will plot the minimum and the
maximum values of the D(t) functions of the simulated patterns (the so-called
upper and lower envelopes), and we will shade the region between these upper
and lower envelopes. By doing this we have made a two-sided Monte Carlo test,
with a significance level α = 2/(m + 1), that rejects (3.6) if the observed D(t)
function lies outside the shaded region.

3.4.1 Example

We have done two simulations in R in order to expose an example of a test
of random labelling. Firstly we simulate a random labelled point pattern. We
simulate a Poisson process of rate λ1 = 75 in the unit square, and we put the
labels "Type 1" and "Type 2" randomly in the points generated. Then, we perform
the test with m1 = 39 simulations. In the Figure 3.3 the reader can see the result
obtained. In the right graphic, we can observe that the observed D(t) function
remains inside the shaded zone. Thus, indeed, we can accept the null hypothesis
(3.6) with a significance level α1 = 2/(m1 + 1) = 2/(39 + 1) = 0.05. Also, the
reader can observe that the mean of the D(t) functions of the m1 = 39 simulations
(in dashed red lines in the right graphic) is near to 0, as we expected following the
statements of the Preposition 2.16.
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Figure 3.3: In the left: simulation of a random labelled point process with labels
"Type 1" and "Type 2". In the right: random labelling test with m1 = 39 simula-
tions. In solid black line the observed D(t) function. The dashed red line is the
mean of the D(t) functions of the simulations.

On the other hand, we simulate a bivariate point process which is clearly not
random labelled. We superpose a Poisson process of rate λ2 = 70, and a clustered
point process (left panel of Figure 3.4). As we can observe in the right graphic of
the Figure 3.4, the D(t) function observed is outside the shaded region. Then, we
can reject the null hypothesis (3.6) with a significance level of α2 = 2/(m2 + 1) =
2/(39 + 1) = 0.05.

Figure 3.4: In the left: simulation of a bivariate point process with labels "Type 1"
and "Type 2". In the right: random labelling test with m2 = 39 simulations. In
solid black line the observed D(t) function. The dashed red line is the mean of
the D(t) functions of the simulations.
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Chapter 4

Case studies

This is the last chapter of the work. In this chapter our main goal is apply
all concepts learned and see several case studies that use all the mathematical
concepts exposed until now.

Jorge Mateu Mahiques, who is one of the best researchers in this area, decided
to help me in my work and also passed me and allowed me to use one of his
databases. Thus, this part of the work would not be possible without the support
of Jorge. The dataset shared by Jorge is used in the paper Ibon Tamayo-Uria, Jorge
Mateu and Peter J. Diggle 2014 [18]. This paper will be very important in this
chapter, because will be a great benchmark.

4.1 Introduction

An important problem of public health are the rodent population in urban en-
vironments. The brown rat (Rattus norvegicus) shares habitat with humans in all
the cities in the world. The bigger metropolis trough the sphere provide shelter to
a huge number of these rodents. Several sources states that in New York there are
at least 8 million of rats, in Paris there are approximate 3 million and also other
cities like Barcelona has a public health problem with rats populations. Similar
public health issues are caused for the cockroaches (Blattodea). It has been proved
in several studies that cockroaches can cause different diseases to the human pop-
ulation.

In this part of the work we will analyze the spatial distribution of rat and
cockroach sightings in Madrid (Spain). We have access to the location of rat and
cockroach sightings in Madrid between the years 2010 and 2013, these sightings
are reported week to week. The plan in this study cases will be study two point
patterns, one of rats and one of cockroaches, in different time windows. The
procedure in each point pattern will be the same one. This chapter finishes with a
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conclusion of the study cases done.

4.2 Dataset description

In this section we describe, briefly, the dataset used. For more details about
the dataset see Jorge Mateu et al. (2014) [18]. Our study takes place in Madrid
city (coordinates 4030′N3°40′O, average altitude 657m, surface 604km2). Madrid
has more than 3 million population (source Instituto Nacional de Estadística, 2018).
In this data we have, in total, 4 years of observations, 14495 cases which 6702 are
rats sightings and 7793 are cockroaches sightings. The reader can see in Table 4.1 a
summary of the different sightings per year and classified by rats and cockroaches.

Year Rats Cockroaches Total

2010 1361 2145 3506

2011 2051 2067 4118

2012 1612 2123 3745

2013 1659 1458 3117

Table 4.1: Sightings observations per year.

All these observations were reported for citizens by telephone, fax, email or in
person at the front desk. Direct sightings or signs of their presence (e.g. droppings,
burrows, gnaw marks, etc) can be reported by the citizens.

4.3 Procedures

In order to follow the same procedure and to carry out rigorous studies, it is
important to determine a standard procedure. Thus, in this section we will outline
the procedure to be followed in the case studies. The case studies will have two
main parts. The first one is descriptive. In this part we will develop the steps:

- Plot the observed pattern of sightings.

- Estimate the K-function.

- Develop a CSR test.

- Perform a spatial clustering assessment.
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Figure 4.1: Rat sightings during the first half of 2010 (left) and the sub-region of
Madrid city where all the rat sightings observed lies (right).

And the second one is about modeling. In this part we will follow the steps:

- Fit a model to the observed pattern.

- Perform simulations with the fitted model.

4.4 Case study 1: rat sightings in the first half of 2010

In this first Case study we will analyze rat sightings from the first half of the
year 2010. We have selected a total amount of 600 cases from the dataset. Firstly
we plot the observed cases (see left panel of Figure 4.1). The reader can see in the
left panel of Figure 4.1 that there is a lot of surface without observations. Then,
we will select the sub-region of Madrid where are the observations (see in right
panel of Figure 4.1). From now on, we will perform the point pattern analysis
with this sub-region. Before start doing the study described on the Section 4.3 we
include a summary of the Euclidean distances of the observed point pattern (see
Table 4.2). This summary may help the reader to understand how the sightings
are distributed through the surface of Madrid city. It is important to mention
that all the calculus and estimations are made taking tmax = 0.2dmax = 0.2 ×
20627 = 4125.4 (i.e. the 20% of the maximum distance between points), because it
is recommended in the literature in order to obtain stable results. That is why the
x-axis in the following graphics arrives approximately to tmax = 4125.4.

Our first two steps will be estimate the K-function (using Section 3.2) and
develop a CSR test (using Section 3.3). We use spatstat library in R and we obtain
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Euclidean distance (in meters)

Minimum 8

First quartile 4351

Median 6911

Mean 7122

Third quartile 9686

Maximum 20627

Table 4.2: Summary of Euclidean distances (in meters) between points.

the graphics exposed in Figure 4.2. As we can see in left graphic, the empirical
K-function is far from the theoretical one. Notice that the values in the axis are
in the order of thousands meters, this is because the region in what the pattern
lives is Madrid city (604km2 of surface, as we mentioned before). In addition,
in the right graphic, we can see that the empirical L-function is clearly outside
the shaded area. Thus, we can reject the CSR hypothesis for this pattern with a
significance level of 1/(19 + 1) = 0.05. Notice that, for perform the CSR test, we
have used the L-function instead of the K-function. As we commented in Section
3.3 the L-function gives a powerful test. And, as we saw in Definition 2.7, from
K-function to L-function there is only a simply transformation. Moreover, the 19
simulations were performed with the same number of points, 600.

Now, we develop a spatial clustering assessment. We prepare a case-control
scheme. It is, we simulate a independent random sample of 600 points within the
sub-region of Madrid city and we superpose this simulation of points with the
observed pattern (see in the left panel of Figure 4.3). Then, we have a bivariate
point pattern with points of class Cases and points of class Controls. Using the
statistical tools exposed in the previous sections we are able to perform a formal
test. Here we use the theory provided in Section 2.8 and the random labelling
test explained in Section 3.4. Thus, we take the null hypothesis (2.20) which, as
we studied before, is equivalent to (3.6). And we develop a random labelling test
with 39 simulations using the function

D(t) = K11(t)− K22(t).

As the reader can see in Figure 4.3 (in the right part), the observed D(t) function
is far to the 0 for almost all t values. In addition, the D(t) function is outside the
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Figure 4.2: In the left: K-function estimation (solid black line) compared with the
theoretical function Kpois (dashed red line). In the right: global envelopes with 19
simulations performed with fixed number of point, 600 like the observed point
pattern. The empirical L-function is the solid black line, and the theoretical L-
function is the dashed red line.

shaded zone in almost all t values, then, we can reject the null hypothesis of no
spatial clustering (2.20) with a significance level of 2/(39+ 1) = 0.5. Moreover, we
can see that the observed D(t) seems to be an increasing function. And that, the
greater the distance, the farther away the function is from the shaded area. Thus,
the degree of clustering increases with the distance between points. The values
of D(t) are positive for all t, clearly it means that K11(t) > K22(t) for all t values.
This fact shows us that the Type 1 (i.e. type Cases) points are the aggregated ones.

Now, is the moment to fit a model to the observed pattern, perform simulations
and see the results of this model. We will be following what we exposed in Section
2.7, and we will use the exponential model. In addition, we will estimate the
parameters of the model using the minimum contrast method exposed in Section
2.7.1. We take (2.19) using the parameters t0 = tmax and q = 1/4, it is∫ tmax

0

(
(K̂(s))1/4 − (K(s; σ2, δ))1/4

)2
ds. (4.1)

Using a function implemented in spatstat we obtain, using as a initial parameters
(σ2, δ) = (1, 1), the parameter estimation

σ̂2 = 1.471686, δ̂ = 2150.178436.

We have assessed the robustness of the parameter estimation changing the param-
eter t0 for others nearby. We take t0 = 0.2dmax + ϵdmax where ϵ ∈ [−0.02, 0.02].
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Figure 4.3: In the left: Case-control map. In the right: test of random labelling
with 39 simulations. There is the observed D(t) function (solid black line) and the
theoretical D(t) (dashed red line).

We will select several values of ϵ in the previous interval, all the values with a
distance of 0.0025 with the nearest one. The reader can see the results obtained in
Appendix A.2. Indeed, according to the results obtained, the parameter estimation
is robust.

Now we have the parameters of the exponential model, and then we can con-
trol the model. We can see the results obtained with the fitted model. Firstly, we
can show the fitted K-function (see in left panel of Figure 4.4) it is, the K-function
under the exponential model (2.18) with parameters (σ̂2, δ̂). As the reader can
observe we have obtained a K-function similar to the empirical one. Moreover, we
can develop several simulations of a Log-Gaussian Cox process under the expo-
nential model with the estimated parameters, in the right panel of Figure 4.4 we
can see four simulations (see more simulations in Appendix A.3).

4.5 The Case study 1 in the unit square

In this section we will perform the analysis of the Case study 1, but with the
point pattern translated to the unit square. In all the work we have dealt with
stationary and isotropic point processes. This is, we can apply translations and
rotations without change the process properties. Now, we expose the results for
the rat sightings in the first half of the year 2010, but translating the point pattern
observed to the unit square. Work in the unit square implies lower computational
cost. As we will see, we obtain equivalent results than the obtained in Section 4.4.
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Figure 4.4: In the left: empirical K-function (red dashed line), fitted K-function
(solid black line) and theoretical K-function (green dashed line). In the right: four
simulations of a Log-Gaussian Cox process under the exponential model with
parameters σ̂2 = 1.471686, δ̂ = 2150.178436.

Thus, it is a little empirical demonstration of the stationarity and isotropy.
Let {(x1, y1), . . . , (x600, y600)} be the 600 points of the observed rat sightings.

We want to translate this points to the unit square. Let xmax, ymax, xmin, ymin be the
maximums and the minimums of the first and second coordinate respectively (i.e.
xmax = max (x1, . . . , x600) and the analogous for the rest of the quantities). Then,
we define the sequence of points:{(

x1 − xmin

xmax − xmin
,

y1 − ymin

ymax − ymin

)
, . . . ,

(
x600 − xmin

xmax − xmin
,

y600 − ymin

ymax − ymin

)}
. (4.2)

This sequence of points is the corresponding to the observed pattern, but in the
square unit instead in the sub-window of Madrid city. See the obtained pattern in
Figure 4.5. As the reader can see, with the support of the axes added, we have the
same point pattern but translated to the unit square. Now, we will perform the
same analysis than the developed in Section 4.4. In the unit square the maximum
distance between points is dmax = 1.0660120. The maximum distance between
points in the unit square pattern appears as greater than one, this is because there
are points in the boundary of the unit square and R computes the distances as
greater than one, but that does not affect to our study. We will be working with
tmax = 0.2dmax = 0.2132024.

Therefore, we show the results obtained. In Figure 4.6 the reader can ob-
serve the empirical K-function (left panel) and the CSR test performed with the
L-function (right panel). In this case we also can reject the hypothesis of CSR with
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Figure 4.5: In the left: point pattern generated from rat sightings locations in the
first half of 2010, data plotted in the sub-region of Madrid city where the sightings
are located. In the right: observed point pattern of rat sightings translated to the
unit square.

a significance level of 1/(1 + 19) = 0.5. Moreover, we can see that the graphics
obtained are fairly similar than the exposed in Figure 4.2. We also develop a spa-
tial clustering assessment, following the same procedure used in Section 4.4. In
Figure 4.7 we can see the Cases VS Control map (in the left) and the test of ran-
dom labelling using the D(t) function (in the right). Again, we obtain a similar
D(t) function to the one in Section 4.4. Thus, we reject the no clustering of cases
hypothesis (2.20) with a significance level 2/(1 + 39) = 0.5.

Finally we fit the Log-Gaussian Cox process with exponential covariance model
to the pattern in the unit square. Now we take t0 = tmax = 0.2dmax = 0.2132024,
and q = 1/4: ∫ tmax

0

(
(K̂(s))1/4 − (K(s; σ2, δ))1/4

)2
ds.

And via minimum contrast method we have obtained the parameters estimation:

σ̂2 = 1.46731248, δ̂ = 0.09049584.

As we was expecting, we obtain a variance close to the obtained in Section 4.4.
On the other hand, of course, the scale parameter δ has changed with respect to
the Section 4.4, because the distances between the observations are different than
the distances in the point pattern in the sub-region of Madrid. The robustness
of the parameter estimation is followed from the previous case. In Figure 4.8
the reader can see the fitted K-function obtained, and four simulations of a Log-
Gaussian Cox process under the exponential model with the estimated parameters
(see more simulations in Appendix A.3).
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Figure 4.6: In the left: K-function estimation (solid black line) compared with the
theoretical function Kpois (dashed red line). In the right: global envelopes with 19
simulations performed with fixed number of point, 600 like the observed point
pattern. The empirical L-function is the solid black line, and the theoretical L-
function is the dashed red line.

Figure 4.7: In the left: Case-control map. In the right: test of random labelling
with 39 simulations. There is the observed D(t) function (solid black line) and the
theoretical D(t) (dashed red line).
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Figure 4.8: In the left: empirical K-function (red dashed line), fitted K-function
(solid black line) and theoretical K-function (green dashed line). In the right: four
simulations of a Log-Gaussian Cox process under the exponential model with
parameters σ̂2 = 1.46731248, δ̂ = 0.09049584.

4.6 Case study 2: cockroaches sightings in the second half
of 2013

Now, we will perform a second practical study. In this case, we will analyze the
sightings of cockroaches during the second half of 2013 in the Madrid city. This
time, we will be more ambitious taking observations from the dataset, and we will
select a total amount of 1022 points. With this quantity of points we deal with a
too high computational cost. Perform the same calculus and the tests done in the
previous case requires a lot of computation time, and sometimes R is not able to
perform the calculations. Thus, we will analyze the point pattern translated to the
unit square, where the distances between points are lower and the computational
cost is acceptable.

Let {(x1, y1), . . . , (x1022, y1022)} be the 1022 points of the observed cockroaches
sightings. We want to translate this points to the unit square. Let xmax, ymax, xmin, ymin

be the maximums and the minimums of the first and second coordinate respec-
tively (i.e. xmax = max (x1, . . . , x1022) and the analogous for the rest of the quanti-
ties). Then, we define the sequence of points:{(

x1 − xmin

xmax − xmin
,

y1 − ymin

ymax − ymin

)
, . . . ,

(
x1022 − xmin

xmax − xmin
,

y1022 − ymin

ymax − ymin

)}
. (4.3)

Again, we have obtained the sequence of the observed points translated to the unit
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Figure 4.9: In the left: point pattern formed for the rat sightings during the second
half of the 2013, plotted in Madrid city region. In the right: point pattern formed
for the rat sightings during the second half of the 2013, plotted in the unit square.

square (see in Figure 4.9).
From now on, we will be working with the point process in the unit square.

With this pattern we will be able to do computations faster, and we will obtain
equivalent results than the analysis done with the entire region (see in Section 4.5
the Case study 1 performed in the unit square, and check that we obtain equivalent
results to those of Section 4.4). First, we include a summary about the distances
between points in the patterns (see in Table 4.3). We will combine distances of both
patterns in Figure 4.9 in the summary, so that the reader can compare distances in
each pattern.

As we did in Section 4.4, we will perform the computation with the 20% of
the maximum distance between points, it is tmax = 0.2dmax = 0.2 × 1.0770672 =

0.2154134. We first develop the descriptive part of the analysis. The estimation
of the K-function results are in the left graphic in Figure 4.10. Again, like in
the previous Case Study, we obtain a K-function above the theoretical one, which
is a sign of aggregation. We perform a CSR test, using the L-function, with 19
simulations and a fixed number of 1022 points. In the right panel of Figure 4.10
we have the results of this test. Clearly, the L-function lies outside the shaded
area, thus we can reject the null hypothesis of complete spatial randomness with
a significance level of 1/(19 + 1) = 0.5.

Now, we want to asses the spatial clustering. We assemble a Cases VS Con-
trols scheme by simulating a random point pattern through the unit square and
superimposing with the observed point pattern (see in the left part of Figure 4.11).
And, using the random labelling test we see in the right part of Figure 4.11 that
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Madrid city Unit square

Minimum 2 0.0000937

First quartile 4376 0.2007808

Median 6898 0.3164438

Mean 7200 0.3308691

Third quartile 9706 0.4462139

Maximum 23331 1.0770672

Table 4.3: Summary of Euclidean distances (in meters) between points in both
patterns (Madrid city and Unit square).

the function D(t) = K11(t) − K22(t) lies outside the shaded area. Thus, we can
reject the null hypothesis of no spatial clustering of cases with a significance level
of 2/(39+ 1) = 0.5, and conclude that there is a spatial clustering of cases. Again,
the reader can observe that the theoretical D(t)-function is near zero, which is
what we expected. Wrapping this theoretical D(t)-function (dashed red line) we
have the shaded area which is the area between the maximum and minimum
D(t)-function of the 39 simulations under random labelling.

Finally, our goal is to fit a model to the observed pattern. Again we will fit a
Log-Gaussian Cox process under the exponential model as we did in the previous
study case. We will use the minimum contrast method with the aim of estimate
the parameters of the model. We take t0 = tmax and q = 1/4. Then, we are
working with (4.1), where σ2, δ are the parameters to estimate. Using R, and
taking (σ2, δ) = (1, 1) as a initial parameters, we obtain the parameters estimation

σ̂2 = 1.3307893, δ̂ = 0.1765721.

We have assessed again the robustness of the parameters estimation, we have
followed the same scheme explained before, the reader can see the results in Ap-
pendix A.2. With this parameters the fitted K-function is quite similar to the ob-
served one as we can see in the left of Figure 4.12. Finally, we do a simulation of
four Log-Gaussian Cox processes under the exponential model with the estimated
parameters (see in the right of Figure 4.12). We have added more simulations in
Appendix A.3.
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Figure 4.10: In the left: K-function estimation (solid black line) compared with the
theoretical function Kpois (dashed red line). In the right: global envelopes with 19
simulations performed with fixed number of point, 1022 like the observed point
pattern. The empirical L-function is the solid black line, and the theoretical L-
function is the dashed red line.

Figure 4.11: In the left: Case-control map. In the right: test of random labelling
with 39 simulations. There is the observed D(t) function (solid black line) and the
theoretical D(t) (dashed red line).
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Figure 4.12: In the left: empirical K-function (red dashed line), fitted K-function
(solid black line) and theoretical K-function (green dashed line). In the right: four
simulations of a Log-Gaussian Cox process under the exponential model with
parameters σ̂2 = 1.3307893, δ̂ = 0.1765721.

4.7 Conclusions of the case studies

After developing the spatial point analysis in the previous sections, we can
draw conclusions about how rat and cockroach population is distributed through
the surface of Madrid city. In both case studies, the observed sightings were in a
similar sub-region of Madrid (see in Figure 4.1 and Figure 4.9). If we compare the
obtained patterns with a Madrid city map, we can see that the observations are
located in the districts of Madrid city with more population. Thus, we can deduce
that in the core of the city, where there is the most human activity, is where we
find most sightings.

With respect to the study performed, we can conclude that the distribution of
rats and cockroaches in Madrid city is not random. It is a clustered distribution. It
is important to mention that in these kind of studies there are covariates included
(see Jorge Mateu et al 2014 [18]). This covariates are information about the en-
vironment in where we are performing the study, this information allows us to
draw conclusions and explain the results obtained. We have not include covari-
ates in this work because it was out of the scope of the project. Notwithstanding,
the analysis developed enables us to conclude that the sightings are not randomly
distributed. That the observations are spatially clustered. In addition, the fitted
model and the simulations performed (see in previous sections and Appendix A.3)
shows us the possible evolution of the distribution of sightings in Madrid city.



Chapter 5

Conclusions and future research

In this final chapter of the work, I would like to reflect on the objectives I had
before I started and whether they have been met. I will also discuss the difficulties
I have encountered, and possible future work related to this one.

The most important objectives were writing in a mathematical way the theory
of spatial point processes found in different references. Spatial point processes and
spatial statistics are not very popular topics. The references that I have consulted
are not totally rigorous (in a mathematical way), because there are directed to sci-
entific from different backgrounds. Thus, my aim in the work was understanding
the theory set forth in these references and expose it mathematically, adding def-
initions, propositions and proofs. On the other hand, my other main goal of the
work was develop an application of the theory exposed, and apply all my new
knowledge in a real case. I believe that these objectives have been successfully met
in this work. Finally, a wish I had was developing an application related with the
health world. This is also done in this work.

It is important to mention the difficulties that I have found during the develop-
ment of this work. The first difficulty was the "unpopularity" of the spatial point
processes. The kind of stochastic processes studied in this project are not very
widespread, and there are no professors in my faculty who deal with this topic
or who have published on it. However I was lucky with this. After several at-
tempts to contact mathematicians who have published on the subject, I contacted
Jorge Mateu, who has helped and supported me throughout the work, and who
is a great expert on the subject. The other huge difficulty I have found, has been
achieving my goal of developing an application. For running an application like
the performed in this work is necessary to have a dataset, and have it in the right
shape. Having a database at your disposal is a very difficult thing to do because
of the privacy involved with the data. Moreover, having it in the right format to
be able to analyze it with R software is even more complicated. Here, I was really
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lucky again, because Jorge Mateu gave me a database from one of his papers, a
very complete database and in the right format. In addition, I had to learn how to
use R, a software of which I did not have a very extensive knowledge. And I had
to learn to use the R libraries necessary to develop the work presented here.

Finally, I would like to reflect on future work related to what we have seen
in this project. I believe that spatial statistics and spatial point processes are a
branch of mathematics with great potential, especially considering the evolution
of information systems and the rise of data capture and analysis. I would like to
continue deepening in this subject and try to exploit all the possibilities it has. It
would be very interesting to be able to make a more complete case study than
the one seen here, adding covariates and using other methods. I have also left
pending to study the case of spatio-temporal point processes, which I think is a
topic of great interest and that can allow very powerful studies.

I have invested a lot of time in this project, but every hour of work has been
truly enjoyable. This work has been an opportunity to test myself in the world of
research, trying to do a work on my own on a topic of interest to me. And the
experience has been amazing. I hope that everyone who reads this work can enjoy
it as much as I have enjoyed doing it.
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Appendix

A.1 Poisson process simulations

  
Simulation 1

  
Simulation 2

  
Simulation 3

  
Simulation 4

  
Simulation 5

  
Simulation 6

  
Simulation 7

  
Simulation 8

  
Simulation 9

  
Simulation 10

  
Simulation 11

  
Simulation 12

Figure A.1: Twelve simulations of a Poisson process with rate λ = 10 in the unit
square.
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Simulation 1

  
Simulation 2

  
Simulation 3

  
Simulation 4

  
Simulation 5

  
Simulation 6

  
Simulation 7

  
Simulation 8

  
Simulation 9

  
Simulation 10

  
Simulation 11

  
Simulation 12

Figure A.2: Twelve simulations of a Poisson process with rate λ = 25 in the unit
square.
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Simulation 1

  
Simulation 2

  
Simulation 3

  
Simulation 4

  
Simulation 5

  
Simulation 6

  
Simulation 7

  
Simulation 8

  
Simulation 9

  
Simulation 10

  
Simulation 11

  
Simulation 12

Figure A.3: Twelve simulations of a Poisson process with rate λ = 50 in the unit
square.
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A.2 Robustness of parameters estimation

In this appendix we develop again the parameter estimation of the study cases
via the minimum contrast method. Now, we change some parameters for others
nearby and we expose the obtained results. We want to see that for similar initial
parameters we obtain similar estimations.

A.2.1 Case study 1: rat sightings in the first half of 2010

ϵ t0 σ̂2 δ̂

0.02 0.22dmax = 4537.94 1.400636 2424.622856

0.0175 0.2175dmax = 4486.373 1.409867 2386.004497

0.015 0.215dmax = 4434.805 1.4182 2352.7137

0.0125 0.2125dmax = 4383.238 1.426321 2319.969030

0.01 0.21dmax = 4331.67 1.434968 2286.528965

0.0075 0.2075dmax = 4280.102 1.444729 2248.549761

0.005 0.205dmax = 4228.535 1.453518 2215.806206

0.0025 0.2025dmax = 4176.968 1.462888 2182.082609

−0.0025 0.1975dmax = 4073.832 1.481286 2117.171700

−0.005 0.195dmax = 4022.265 1.493424 2076.410536

−0.0075 0.1925dmax = 3970.698 1.502898 2044.012228

−0.01 0.19dmax = 3919.13 1.513065 2011.067088

−0.0125 0.1875dmax = 3867.562 1.523925 1977.003723

−0.015 0.185dmax = 3815.995 1.537047 1936.250265

−0.0175 0.1825dmax = 3764.427 1.548069 1903.767867

−0.02 0.18dmax = 3712.86 1.559861 1870.964053

Table A.1: Results of parameter estimation via minimum contrast method chang-
ing t0 for t0 = 0.2dmax + ϵdmax where ϵ ∈ [−0.02, 0.02]. With ϵ such that all the
values are with a distance of 0.0025 with the nearest one.
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σ̂2 δ̂

Minimum 1.401 1871

First quartile 1.433 2003

Median 1.472 2150

Mean 1.476 2147

Third quartile 1.516 2295

Maximum 1.560 2425

Table A.2: Summary of the results exposed in Table A.1.

A.2.2 Case study 2: cockroaches sightings in the second half of 2013

σ̂2 δ̂

Minimum 1.301 0.1616

First quartile 1.315 0.1688

Median 1.331 0.1764

Mean 1.332 0.1762

Third quartile 1.349 0.1839

Maximum 1.367 0.1900

Table A.3: Summary of the results exposed in Table A.4.
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ϵ t0 σ̂2 δ̂

0.02 0.22dmax = 0.2369548 1.301448 0.189966

0.0175 0.2175dmax = 0.2342621 1.3051449 0.1882284

0.015 0.215dmax = 0.2315694 1.3082686 0.1867694

0.0125 0.2125dmax = 0.2288768 1.3121088 0.1849865

0.01 0.21dmax = 0.2261841 1.3153254 0.1834947

0.0075 0.2075dmax = 0.2234914 1.3193977 0.1816354

0.005 0.205dmax = 0.2207988 1.3229068 0.1800804

0.0025 0.2025dmax = 0.2181061 1.3270974 0.1781949

−0.0025 0.1975dmax = 0.2127208 1.3352989 0.1746057

−0.005 0.195dmax = 0.2100281 1.3391478 0.1729594

−0.0075 0.1925dmax = 0.2073354 1.3438271 0.1709753

−0.01 0.19dmax = 0.2046428 1.3477056 0.1693336

−0.0125 0.1875dmax = 0.2019501 1.3526342 0.1672842

−0.015 0.185dmax = 0.1992574 1.3568711 0.1655671

−0.0175 0.1825dmax = 0.1965648 1.3620911 0.1634383

−0.02 0.18dmax = 0.1938721 1.3667297 0.1616046

Table A.4: Results of parameter estimation via minimum contrast method chang-
ing t0 for t0 = 0.2dmax + ϵdmax where ϵ ∈ [−0.02, 0.02]. With ϵ such that all the
values are with a distance of 0.0025 with the nearest one.
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A.3 More simulations of the fitted models

In this appendix we include more simulations of the fitted models in the case
studies. Thus, our goal in this appendix is simulate a Log-Gaussian Cox process
under the exponential model with the corresponding parameters estimated for
each case study.

The Figures A.4, A.5, A.6 are more simulations of the fitted model saw in
Section 4.4. Figures A.7, A.8, A.9 of the model in Section 4.5. Figures A.10, A.11,
A.12 of the model in Section 4.6.

Figure A.4: Eight simulations of a Log-Gaussian Cox process under the exponen-
tial model and with parameters σ̂2 = 1.471686, δ̂ = 2150.178436 in a sub-region of
Madrid city.

Figure A.5: Eight simulations of a Log-Gaussian Cox process under the exponen-
tial model and with parameters σ̂2 = 1.471686, δ̂ = 2150.178436 in a sub-region of
Madrid city.
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Figure A.6: Eight simulations of a Log-Gaussian Cox process under the exponen-
tial model and with parameters σ̂2 = 1.471686, δ̂ = 2150.178436 in a sub-region of
Madrid city.

Figure A.7: Eight simulations of a Log-Gaussian Cox process under the expo-
nential model and with parameters σ̂2 = 1.46731248, δ̂ = 0.09049584 in the unit
square.
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Figure A.8: Eight simulations of a Log-Gaussian Cox process under the expo-
nential model and with parameters σ̂2 = 1.46731248, δ̂ = 0.09049584 in the unit
square.

Figure A.9: Eight simulations of a Log-Gaussian Cox process under the expo-
nential model and with parameters σ̂2 = 1.46731248, δ̂ = 0.09049584 in the unit
square.
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Figure A.10: Eight simulations of a Log-Gaussian Cox process under the exponen-
tial model and with parameters σ̂2 = 1.3306416, δ̂ = 0.1766353 in the unit square.

Figure A.11: Eight simulations of a Log-Gaussian Cox process under the exponen-
tial model and with parameters σ̂2 = 1.3306416, δ̂ = 0.1766353 in the unit square.
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Figure A.12: Eight simulations of a Log-Gaussian Cox process under the exponen-
tial model and with parameters σ̂2 = 1.3306416, δ̂ = 0.1766353 in the unit square.
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Appendix B

R code

In this appendix we will include all the R code used in the work. In order to let
the reader track the relation between the memory and this code, we will explain
on where was the coded used during the work.

During all programming we will use the spatstat package, thus it is mandatory
to execute the command:

> l i b r a r y ( s p a t s t a t )

To plot the point patterns in Figure 2.1, estimate the K-function of these pat-
terns (see in Figure 3.1) and perform a CSR test (see in Figure 3.2) we have used:

> y <− seq ( from =0 , to =1 , by = 0 . 1 )
> i <−0
> X0 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> plot ( X0 )
> i <− 0 . 1
> X1 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 2
> X2 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 3
> X3 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 4
> X4 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 5
> X5 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 6
> X6 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 7
> X7 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
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> i <− 0 . 8
> X8 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <− 0 . 9
> X9 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> i <−1
> X10 <− ppp ( c ( i , i , i , i , i , i , i , i , i , i , i ) , y )
> S<−superimpose ( X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8 , X9 , X10 , X0 )
> plot ( S , main=" " )
> k1<−Kest ( S , c o r r e c t i o n =" i s o t r o p i c " )
> plot ( k1 , main=" " , x lab=" t " , ylab="K( t ) " , legend=FALSE)
> LE1<−envelope ( S , Lest , nsim =19 , nrank =1 , g loba l=TRUE, f i x . n=TRUE)
> plot ( LE1 , main=" " , x lab=" t " , ylab="L ( t ) " , legend=FALSE)
> indep<−rpoispp ( lambda =50 , win=square ( 1 ) )
> plot ( indep , main=" " )
> k2<−Kest ( indep , c o r r e c t i o n =" i s o t r o p i c " )
> plot ( k2 , main=" " , x lab=" t " , ylab="K( t ) " , legend=FALSE)
> LE2<−envelope ( indep , Lest , nsim =19 , nrank =1 , g loba l=TRUE, f i x . n=TRUE)
> plot ( LE2 , main=" " , x lab=" t " , ylab="L ( t ) " , legend=FALSE)
> c l u s t <− rMatClust ( 1 2 , 0 . 0 7 , 5 )
> plot ( c l u s t , main=" " )
> k3<−Kest ( c l u s t , c o r r e c t i o n =" i s o t r o p i c " )
> plot ( k3 , main=" " , x lab=" t " , ylab="K( t ) " , legend=FALSE)
> LE3<−envelope ( c l u s t , Lest , nsim =19 , nrank =1 , g loba l=TRUE, f i x . n=TRUE)
> plot ( LE3 , main=" " , x lab=" t " , ylab="L ( t ) " , legend=FALSE)

In the Section 3.4 we exposed a test of random labelling. In this section we
presented an example of this test (see Figure 3.3 and Figure 3.4). For this we had
to use the code:

> alpha<−rpoispp ( 7 5 , win=owin ( c ( 0 : 1 ) , c ( 0 : 1 ) ) )
> X<− r l a b e l ( alpha , l ab el s= f a c t o r ( c ( " Type1 " , " Type2 " ) ) , permute=FALSE)
> plot (X , c o l s =c ( 4 , 2 ) , main=" " )
> beta1<−rMatClust ( 1 0 , 0 . 0 5 , 4 , win=square ( 1 ) )
> beta2<−rpoispp ( 7 0 , win=owin ( c ( 0 : 1 ) , c ( 0 : 1 ) ) )
> S<−superimpose ( Type1=beta1 , Type2=beta2 )
> plot ( S , c o l s =c ( 4 , 2 ) , main=" " )
> Kdif<− function (X , . . . , i , j , k , l ) {

Kicross <− Kcross (X , . . . , i =i , j = j )
K j c r os s <− Kcross (X , . . . , k=k , l = l )
d i f <− eval . fv ( Kicross − K j c r os s )
return ( d i f )
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}
> E1 <− envelope ( S , Kdif , nsim =39 , i =" Type1 " , j =" Type1 " , k=" Type2 " ,

l =" Type2 " , s imulate = expression ( r l a b e l ( S ) ) )
> E2 <− envelope (X , Kdif , nsim =39 , i =" Type1 " , j =" Type1 " , k=" Type2 " ,

l =" Type2 " , s imulate = expression ( r l a b e l (X ) ) )
> plot ( E1 , main=" " , legend=FALSE , xlab=" t " , ylab="D( t ) " )
> plot ( E2 , main=" " , legend=FALSE , xlab=" t " , ylab="D( t ) " )

In the case studies we have used the dataset shared by Jorge Mateu, thus, in
order to develop this part of the work it is necessary to load the .RData file. Then,
we will have charged in our workspace in R the data. It is also important mention
that for this part of the work another R libraries have to be used:

> l i b r a r y ( g s t a t )
> l i b r a r y ( sp )
> l i b r a r y ( rgdal )
> l i b r a r y ( maptools )
> l i b r a r y ( spdep )
> l i b r a r y ( splancs )
> l i b r a r y ( stpp )

Once the data is prepared, to perform the analysis exposed in the Case 1 (see
Section 4.4) we have used the following code:

> dibujo<−as ( rg , " Spat ia lPolygons " )
> madrid<−as ( dibujo , " owin " )
> A<− r a t s [ c ( 1 : 6 0 0 ) , ]
> Ax<−A[ , 2 ]
> Ay<−A[ , 3 ]
> W <− owin ( c (430000 , 453500) , c (4465000 , 4485200) )
> phi<−ppp (Ax , Ay, madrid [W] )
> phi<−unique ( phi )
> plot ( phi , main=" " , c o l s =1)
> summary ( as . vector ( d i s t ( cbind ( phi $x , phi $y ) ) ) )
> dt<− 0 . 2 * 20627
> Kphi<−Kest ( phi , c o r r e c t i o n =" i s o t r o p i c " , rmax=dt )
> plot ( Kphi , main=" " , x lab=" t " , ylab="K( t ) " , legend=FALSE)
> LEphi<−envelope ( phi , Lest , nsim =19 , nrank =1 , g loba l=TRUE,
f i x . n=TRUE, funargs=c ( rmax=dt ) )
> plot ( LEphi , main=" " , x lab=" t " , ylab="L ( t ) " , legend=FALSE)
> Cphi<− rpo int ( 6 0 0 , win=madrid [W] )
> Sphi<−superimpose ( Cases=phi , Controls=Cphi )
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> plot ( Sphi , main=" " , c o l s =c ( 2 , 1 ) )
> Kdif<− function (X , . . . , i , j , k , l ) {

Kicross <− Kcross (X , . . . , i =i , j = j )
K j c ro s s <− Kest (X , . . . , k=k , l = l )
d i f <− eval . fv ( Kicross − K j c ro s s )
return ( d i f )

}
> EK <− envelope ( Sphi , Kdif , nsim =39 , i =" Cases " , j =" Cases " ,
k=" Controls " , l =" Controls " , s imulate = expression ( r l a b e l ( Sphi ) ) ,
funargs=c ( rmax=dt ) )
> plot (EK, main=" " , x lab=" t " , ylab="D( t ) " , legend=FALSE)
> modelphi<− lgcp . estK ( phi , s t a r t p a r =c ( var =1 , s c a l e =1) ,
covmodel= l i s t ( model=" exponent ia l " ) , rmax=dt )
> plot ( modelphi , main=" " , x lab=" t " , ylab="K( t ) " , legend=FALSE)
> varphi<−1 .471686
> s c a l e p h i <−2150 .178436
> muphi<−log ( npoints ( phi ) / area ( madrid [W] ) ) − varphi / 2
> Xphi<−rLGCP( model=" exp " , mu=muphi , var=varphi , s c a l e =sca lephi ,
win=madrid [W] )
> plot ( Xphi , main=" " )

Similarly, we use the following code for develop the Case 2 (see Section 4.6),
now taking into account that we translate the point pattern observed to the unit
square:

> dibujo<−as ( rg , " Spat ia lPolygons " )
> madrid<−as ( dibujo , " owin " )
> B<−cocks [ c ( 6 6 5 0 : 7 7 9 3 ) , ]
> Bx<−B [ , 2 ]
> By<−B [ , 3 ]
> phi<−ppp ( Bx , By , madrid )
> phi<−unique ( phi )
> plot ( phi , main=" " , c o l s =1)
> D<−density ( phi )
> summary ( as . vector ( d i s t ( cbind ( phi $x , phi $y ) ) ) )
> minx<−min ( Bx )
> maxx<−max ( Bx )
> miny<−min ( By )
> maxy<−max ( By )
> u<−Bx
> v<−By
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> u2<− ( u−minx ) / ( maxx−minx )
> v2<− ( v−miny ) / (maxy−miny )
> uni t<−ppp ( u2 , v2 , win=square ( 1 ) )
> uni t<−unique ( uni t )
> plot ( unit , main=" " , c o l s =1)
> summary ( as . vector ( d i s t ( cbind ( uni t $x , uni t $y ) ) ) )
> d i s t <− 0 . 2 * 1 .0770672
> kunit<−Kest ( unit , c o r r e c t i o n =" i s o t r o p i c " , rmax= d i s t )
> plot ( kunit , main=" " , legend=FALSE , xlab=" t " , ylab="K( t ) " )
> LEunit<−envelope ( unit , Lest , nsim =19 , nrank =1 , g loba l=TRUE,
f i x . n=TRUE, funargs=c ( rmax= d i s t ) )
> plot ( LEunit , main=" " , legend=FALSE , xlab=" t " , ylab="L ( t ) " )
> C2<− rpo int ( 1 0 2 2 , win=square ( 1 ) )
> S2<−superimpose ( Cases=unit , Controls=C2 )
> plot ( S2 , main=" " , c o l s =c ( 2 , 1 ) )
> Kdif<− function (X , . . . , i , j , k , l ) {

Kicross <− Kcross (X , . . . , i =i , j = j )
K j c r os s <− Kcross (X , . . . , k=k , l = l )
d i f <− eval . fv ( Kicross − K j c r os s )
return ( d i f )

}
> EKunit <− envelope ( S2 , Kdif , nsim =39 , i =" Cases " , j =" Cases " ,
k=" Controls " , l =" Controls " , s imulate = expression ( r l a b e l ( S2 ) ) ,
funargs=c ( rmax= d i s t ) )
> plot ( EKunit , main=" " , legend=FALSE , xlab=" t " , ylab="D( t ) " )
> modelunit<− lgcp . estK ( unit , s t a r t p a r =c ( var =1 , s c a l e =1) ,
covmodel= l i s t ( model=" exponent ia l " ) , rmax= d i s t )
> plot ( modelunit , main=" " , legend=FALSE , xlab=" t " , ylab="K( t ) " )
> varuni t<−1 .3307893
> s c a l e u n i t <−0 .1765721
> muunit<−log ( npoints ( uni t ) ) − varuni t / 2
> Xunit<−rLGCP( model=" exp " , mu=muunit , var=varunit ,
s c a l e = s c a l e u n i t , win=square ( 1 ) )
> plot ( Xunit , main=" " , c o l s =1)

In Section 4.5 we develop the Case study 1 in the unit square. Thus, we have
used a similar R code but translating the point pattern to the unit square:

> dibujo<−as ( rg , " Spat ia lPolygons " )
> madrid<−as ( dibujo , " owin " )
> A<− r a t s [ c ( 1 : 6 0 0 ) , ]
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> Ax<−A[ , 2 ]
> Ay<−A[ , 3 ]
> W <− owin ( c (430000 , 453500) , c (4465000 , 4485200) )
> phi<−ppp (Ax , Ay, madrid [W] )
> phi<−unique ( phi )
> D<−density ( phi )
> summary ( as . vector ( d i s t ( cbind ( phi $x , phi $y ) ) ) )
> minx<−min (Ax)
> maxx<−max (Ax)
> miny<−min (Ay)
> maxy<−max (Ay)
> u<−Ax
> v<−Ay
> u2<− ( u−minx ) / ( maxx−minx )
> v2<− ( v−miny ) / (maxy−miny )
> uni t<−ppp ( u2 , v2 , win=square ( 1 ) )
> uni t<−unique ( uni t )
> plot ( unit , main=" " , c o l s =1)
> summary ( as . vector ( d i s t ( cbind ( uni t $x , uni t $y ) ) ) )
> d i s t <− 0 . 2 * 1 .0660120
> kunit<−Kest ( unit , c o r r e c t i o n =" i s o t r o p i c " , rmax= d i s t )
> plot ( kunit , main=" " , legend=FALSE , xlab=" t " , ylab="K( t ) " )
> LEunit<−envelope ( unit , Lest , nsim =19 , nrank =1 , g loba l=TRUE,
f i x . n=TRUE, funargs=c ( rmax= d i s t ) )
> plot ( LEunit , main=" " , legend=FALSE , xlab=" t " , ylab="L ( t ) " )
> C2<− rpo int ( 6 0 0 , win=square ( 1 ) )
> S2<−superimpose ( Cases=unit , Controls=C2 )
> plot ( S2 , main=" " , c o l s =c ( 2 , 1 ) )
> Kdif<− function (X , . . . , i , j , k , l ) {

Kicross <− Kcross (X , . . . , i =i , j = j )
K j c ro s s <− Kcross (X , . . . , k=k , l = l )
d i f <− eval . fv ( Kicross − K j c ro s s )
return ( d i f )

}
> EKunit <− envelope ( S2 , Kdif , nsim =39 , i =" Cases " , j =" Cases " ,
k=" Controls " , l =" Controls " , s imulate = expression ( r l a b e l ( S2 ) ) ,
funargs=c ( rmax= d i s t ) )
> plot ( EKunit , main=" " , legend=FALSE , xlab=" t " , ylab="D( t ) " )
> modelunit<− lgcp . estK ( unit , s t a r t p a r =c ( var =1 , s c a l e =1) ,
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covmodel= l i s t ( model=" exponent ia l " ) , rmax= d i s t )
> plot ( modelunit , main=" " , legend=FALSE , xlab=" t " , ylab="K( t ) " )
> varuni t<−1 .46731248
> s c a l e u n i t <−0 .09049584
> muunit<−log ( npoints ( uni t ) ) − varuni t / 2
> Xunit<−rLGCP( model=" exp " , mu=muunit , var=varunit ,
s c a l e = s c a l e u n i t , win=square ( 1 ) )
> plot ( Xunit , main=" " , c o l s =1)

In order to do the eight simulations of a Poisson process with rate λ = 10,
λ = 25 and λ = 50 (see Appendix A.1), we have used:

> PP1 <− rpoispp ( 1 0 , win=square ( 1 ) , nsim =12)
> plot ( PP1 , main=" " )
> PP2 <− rpoispp ( 2 5 , win=square ( 1 ) , nsim =12)
> plot ( PP2 , main=" " )
> PP3 <− rpoispp ( 5 0 , win=square ( 1 ) , nsim =12)
> plot ( PP3 , main=" " )

Finally, in Appendix A.3 we only use several times the command:

> X<−rLGCP( model=" exp " , mu=muunit , var=varunit ,
s c a l e = s c a l e u n i t , win=window , nsim=r )
> plot (X , main=" " )

Where window, depending on the point pattern analyzed, is the sub-region of
Madrid city or the unit square. And r is the number of simulations pf the Log-
Gaussian Cox process under the exponential model. Also the parameters mu, var,
scale, changes depending on the pattern in question.
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