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Interacting quantum many-body systems are so challenging to study that
even simplified models, such as the Hubbard model, cannot be solved exactly.
For this reason, it is interesting to engineer controllable quantum systems,
called quantum simulators, that can emulate the behavior of these models.
This makes quantum simulators a promising platform for studying the Hub-
bard model. These can be implemented, for example, using interacting arrays
of quantum dots realized in semiconducting materials.

The capability to tune the bands in bilayer graphene with patterned gate
electrodes provides an innovative platform to study such a model, as it is
the first time to explore the Hubbard model with quantum dots in a two-
dimensional material. Moreover, this platform opens a wide range of possibili-
ties to study the different parameters of the model.

In this work, we study theoretically and numerically realistic models of
electrostatically defined quantum dots in bilayer graphene. We can calculate
the proposed device’s potential and band-gap landscape induced in bilayer
graphene by solving the Poisson equation. The result is then fed to a low-
energy model to calculate the bound states of the quantum dots. This allows
calculating the parameters of the corresponding Hubbard model, including tun-
neling amplitudes and on-site interactions. Our results can be directly used to
design quantum-simulation devices based on quantum dots that are realized
electrostatically in bilayer graphene.

Keywords: Quantum dots, Bilayer graphene, Quantum simulator, Hubbard model, Finite
element method.
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1 Introduction
1.1 Quantum simulators

Quantum simulators (QSs) are controllable highly-interacting quantum many-particle
systems. These devices use many-body interactions and entanglement to provide a new
scientific approach to problems that cannot be solved with classical computation. The flex-
ibility and wide definition of such systems involve applications in areas such as condensed-
matter physics, quantum computing, chemistry, or cosmology [BN09, GAN14, ABC+21].

Quantum simulators are a promising tool for studying many-particle quantum systems
[BN09]. In these systems, the number of parameters describing a quantum state grows
exponentially with the size of the system N , which makes it infeasible to simulate them
with a classical computer. Richard Feynman proposed, almost a half-century ago, using
these real quantum mechanical devices to study quantum phenomena [Fey82].

QSs are usually classified into analog and digital quantum simulators [GAN14]. They
differ in the way we try to reproduce a Hamiltonian Hsys that describes the dynamics of
the quantum system under study. In analog quantum simulation, one directly maps the
target Hamiltonian Hsys onto a quantum system we can easily access and control, and that
is characterized by Hsim. This serves as a “toy model” of the real many-body system, from
which we can extract valuable information, such as how the ground state and the dynamics
of the system change when tuning Hsim. Alternatively, in digital quantum simulation, the
unitary evolution of the state U = e−iHsyst is replicated or approximated by applying
unitary single-qubit or two-qubit operations to the initial state.

Thanks to recent scientific advances, it has been claimed that we are reaching the
“golden era” of quantum simulation [ABC+21]. Yet we are far from reaching a general-
purpose QS, as most of the platforms proposed serve to solve a specific problem. Therefore,
when we talk about a concrete type of QS, whether this is used for analog or digital quantum
simulation depends on the precise purpose of the experiment.

The most developed QS are ultracold atoms trapped in optical lattices [Cho23]. Their
popularity lies in the capability to build and precisely measure large systems (also mea-
suring different spins) and in their tunability, even in situ [BR12, TGU+12, GB17]. They
have been proven to be useful to simulate interesting quantum many-body physics models,
where a remarkable example is the Hubbard model.

Other types of QSs also explore this idea of trapping particles, which include ions,
Rydberg atoms, or polar molecules, in periodic potentials. Other examples include super-
conducting circuits, atoms trapped in cavity arrays, optical tweezers, or different platforms
using photons [GAN14].

Another tunable and versatile type of QSs are the arrays of interacting quantum dots
(QDs) [BV13]. A QD is a nanometric semiconducting particle that has discrete quantum
energy levels. Thus, they are commonly called artificial atoms. A QD can be obtained
by confining charges in the three spatial directions in semiconducting materials, becoming
effectively “zero-dimensional”. This is achieved by creating a spatially variable gap in the
semiconductor. In this way, we construct quantum wells (or similar potentials where the
energies are discretized), confining the charges. In Fig. 1, we have an explanatory scheme
of a gap with a quantum well in a single spatial direction, showing the confined states in
that direction. The effective zero-dimensional system would therefore be obtained when
confining charges in all their free spatial directions. Experimentally, these kinds of gaps
are obtained by implanting dopants in different regions of the semiconductor [SPP+16,
WKF+22]; or by applying gate voltages to a two-dimensional (2D) electron gas, which are
known as gate-defined quantum dots [vD21]. This work is focused on gate-defined quantum
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dots since they provide a tunable platform for our QDs.

Figure 1: Scheme of a valence band and a conduction band of a semiconductor with a spatially variable
gap in one spatial direction. We mark the confined states that could be created.

1.2 Hubbard model
One of the most important condensed matter models studied with QSs is the Hubbard

model. The Hubbard model [Hub63] is a simplified model describing correlated electrons’
behavior in a periodic potential. The Hamiltonian of those interacting electrons that can
hop between a set of sites Λ is written as

Ĥ = −
∑

i,j∈Λ

∑
σ

ti,j
(
ĉ†

i,σ ĉj,σ + ĉ†
j,σ ĉi,σ

)
+ U

∑
i∈Λ

n̂i,↑n̂i,↓, (1)

where σ =↑, ↓ represents the spin, ĉ†
i,σ and ĉi,σ are the creation and annihilation operators

for a fermion with spin σ in site i and n̂i,σ = ĉ†
i,σ ĉi,σ is the spin-density operator for a

spin σ in site i. The two principal variables that define the Hamiltonian are ti,j , which is
the hopping parameter between sites i and j, and U , which is the on-site interaction. The
ground state of the model is determined by the competition between these two parameters,
which is essentially the relationship between the kinetic energy and interaction energy.
Despite being a simplified model, it can not be in general solved numerically due to the
exponential growth of the Hilbert space with the number of sites.

Consequently, the phase diagram of the model is still a field of study. Different phases
appear when changing the parameters t and U . The extreme cases present a transition
from the superfluid phase (t ≫ U), where electrons are totally delocalized, to a Mott
insulating phase (U ≫ t), where electrons are fully localized in the lattice sites (see Fig.
2). The study of these quantum phases case has given a useful physical description to this
still unknown phenomena in different fields, such as high-temperature superconductivity,
magnetism, and charge density waves [Aue98].

Figure 2: Scheme of the phase transition between the superfluid and the Mott insulator phase for
ultracold neutral atoms in a 2D optical trap. Figure adapted from [BN09].
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1.3 Gate-defined quantum dots in bilayer graphene using patterned gates
In the current work, we propose an analog quantum simulator to study the physics

of the Hubbard model. The proposed platform consists of gate-defined quantum dots
in bilayer graphene (BLG), where the shape of the electrostatic potential is defined by
patterned gates. In this section, we explain in detail the main ideas under the presented
experimental setup.

In gate-defined QDs, as mentioned above, the confinement of the charges is achieved
by electrostatic gating, which offers more tunability compared to other QD platforms.
Gate-defined QDs have been realized in BLG [MP08, EPP+18, BFE+18]. BLG is a 2D
carbon-based material that consists of two stacked graphene layers. Unlike in monolayer
graphene, one can open a band gap in BLG by applying a strong electric field in the
normal direction to the BLG plane [McC06, OBS+06, OHL+07]. The size of the gap
will depend on the strength of the electric field at each point. Consequently, one can
combine layers of electrostatic split- and finger-gates to induce a spatially variant gap.
Thus, we confine charge carriers in BLG creating electron and hole quantum dots. This
technique enables the formation of single QDs as well as one-dimensional arrays of QDs
[EPP+18, BFE+18, BMH+23].

An alternative approach of electrostatically confining charge carriers in BLG is pattern-
ing the gate electrode, thus inducing a locally varying potential. This approach has been
used to create superlattices in single-layer graphene [PYS+08, HLC+20, BHH+22, KS23]
and recently in BLG [GDA+23, SGW+23]. Extending this approach to BLG gives rise
to single QDs dots as well as one- and two-dimensional arrays of QDs. These QD arrays
create a platform for quantum simulation, whose underlying physical model is the Hubbard
model [YWS11, KCX+21].

1.4 Objectives of the work
The aim of the current work is to completely characterize gate-defined QDs created

using patterned gates in BLG. This will be done by providing a computational platform that
obtains the response of BLG to a given superlattice potential and calculates the parameters
that define the Hubbard Hamiltonian of that system. This will serve as theoretical support
for the experiments, as it will help in the design of the devices and in the latter verification
of the experimental results.

In this work, we approach the problem from two sides. First, in section 2, we obtain
the electrostatic potential inside a device for a single quantum dot. Secondly, in section
3 we get the response of BLG to an arbitrary inhomogeneous radial potential that would
create a single dot. Afterwards, we obtain the interaction parameters between two dots,
from which the Hubbard parameters can be extracted. Then, the band structure of BLG
under a superlattice potential is computed. Finally, we explain how to put together these
two approaches to fully characterize our devices.
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2 Electrostatic simulation of a bilayer graphene device
The goal of the project is to characterize QDs in BLG created by electrostatic gating

using PGs that define the shape of the potential. The first step is to define and analyze
the device that the experimental part of the project proposed, which is a device to create
a single quantum dot that is scalable in order to create arrays of QDs. It is depicted
in Fig. 3. Here, the BLG is encapsulated in insulating hexagonal Boron nitride (hBN).
The contacts of this part of the device are a graphite back gate (BG) and top gate, being
the top gate the PG. These materials are chosen to ensure the good quality of the device
[DYM+10, WMH+13, EPP+18, IBW+22].

Figure 3: Scheme of a proposed device showing the different layers and materials composing it. In the
inset, atomic force microscope scan of a real device. Courtesy of Rebecca Hoffmann.

In the inset of Fig. 3 the shape of a real PG is represented. We see that it has
a circular-shaped hole in the middle, which would create a central potential where the
electrons would be confined. The two “arms” serve to occupy the QD. Lastly, separated
by an alumina (Al2O3) layer1, we put a gold finger-like gate (GG) to change the potential
energy inside the dot, controlling the occupation.

In this device, there are several variables that can influence the shape of the electro-
static potential around the dot and, subsequently, the characteristics of the resultant QD.
Therefore, we seek a platform to characterize these QDs that permits easy tunning of those
different variables, which include the potential applied in the gates, the width of the layers,
or the parameters that fix the shape of the PG. This flexible platform would facilitate the
design of the sought device.

In this section, we describe the first step to characterize the QDs, which is to obtain
the shape of the electrostatic potential inside the device. In order to do that, we obtain the
first approach to the electrostatic potential by solving the Poisson equation without free
charges. Then, we describe how to take into account the response of BLG to this potential
to get a better approximation.

1In this case alumina is chosen for simplicity.
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2.1 Poisson equation
We aim to obtain the electrostatic potential’s value inside the device when we apply

certain voltages on the gates. Thus, we must solve the Poisson equation for the electrostatic
potential ϕ

−∇ · (ϵϵϵ · ∇ϕ) = 4πϱfree, (2)

where ϵϵϵ is the matrix of permittivity of the considered material and ϱfree are the free
charges. The boundary conditions will be determined by the voltages applied to the differ-
ent metallic gates (the BG, PG, and GG). They read

ϕ(x, y, zBG) = VBG

ϕ(x, y, zP G) =
{
VP G If (x, y) ∈ Patterned gate
Not fixed Otherwise

ϕ(x, y, zGG) =
{
VGG If (x, y) ∈ Golden gate
Not fixed Otherwise

(3)

where the different z correspond to the positions of the different gates. In the edges of the
geometry, we choose homogeneous Von Newmann boundary conditions

∂ϕ(x)
∂n = 0 if x ∈ edges, (4)

where n denotes the vector in the normal direction to the surface. This condition will be
appropriate providing that we choose a sufficiently large simulation volume.

We solve the stated problem for the electrostatic potential using the Finite Element
Method (FEM), which is a numerical method for partial derivatives equations. To imple-
ment the method, we divide our space into finite elements, a concrete discretization where
we create a mesh of our object. The FEM then solves what is called the weak form of a
given boundary-value problem. The weak form of Eq. 2 in a spatial domain Ω (which,
considering our problem, we choose to be a volume) reads

−
ˆ

Ω
dV∇ · (ϵϵϵ · ∇ϕ)v =

ˆ
Ω
dV 4πϱfreev, (5)

where v is called test function and dV is the differential element of our domain. We require
Eq. 5 to hold ∀v ∈ V̂ , being V̂ the test space. Therefore, the resulting mathematical
problem determines uniquely ϕ ∈ V , where V is called the trial space. To facilitate the
computation of the problem and as it is normally done in variational formulation, it is
convenient to reduce the order of the derivatives. Thus, we rewrite Eq. 5 using the
integration by parts and using the divergence theorem, which leads to

−
‹

S(Ω)
dS (n̂ · ϵϵϵ · ∇ϕ)v +

ˆ
Ω
dV ∇v · ϵϵϵ · ∇ϕ =

ˆ
Ω
dV 4πϱfreev. (6)

If we consider the boundary conditions explained before, the first term on the left side
of Eq. 6 vanishes [LM]. Moreover, in this first approximation, we will consider there are
no free charges (ϱfree = 0)2. The equation we need to solve then reduces to

ˆ
Ω
dV ∇v · ϵϵϵ · ∇ϕ = 0. (7)

2In section 2.2, we will see why this is only the first approximation; and how the problem must be solved
recursively.
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Therefore, to characterize the electrostatic potential inside the device, we solve Eq. 7
being our domain Ω the volume inside the device. Hence, we must generate the mesh of
the device. This is done using the 3D finite element mesh generator gmesh [GR09], which
is available in Python via a package with the same name. This enables keeping all the
parameters that define the geometry of the device as variables for the user to choose (see
Figs. 4a and 4b). The mesh also contains specific tags so that we can distinguish between
the different parts of the device, which is crucial to specify the dielectric constant of each
material or to identify the gates. The size of the finite elements can also be chosen, which
enables us to choose the time/precision ratio, as the higher the precision the longer the
calculations take. In other words, we create a flexible platform to try different values for
the variables for the created geometry.

(a)

(b)

(c)

Figure 4: Schemes of the (a) lateral view and (b) top view of the patterned gate for the proposed
device. All the indicated distances correspond to the parameters we are able to tune in order to create
the mesh of the device. (c) Example of a mesh for the geometry of the proposed device.

Once having the mesh, we use the Python package diffusive_solver [Tor20, Tora]
to obtain the electrostatic potential ϕ and the displacement field Di (where i = x, y, z is
the direction of the field). Diffusive_solver is a package for solving diffusion problems
that is based in FEniCS [Log12, ABH+15], another Python package for solving partial
differential equations using the FEM. From the resultant ϕ and Dz, we obtain the physical
quantities that are of our interest when calculating the response of BLG to the potential.
These are the potential energy V and the interlayer asymmetry ∆, which is the difference
of energy between the BLG layers. They can be obtained using the relations

V = −eϕ
∆ = etzDz

(8)

where e is the fundamental charge, tz = 3.4Å [Wal47] is the distance between BLG layers
and Dz is the displacement field in the z direction.

We now provide an example of a calculation. The parameters describing the device used
were proposed by the experimental group working on these devices and can be found in the
supplementary material (see section 5). The mesh used to perform these calculations is the
one in Fig. 4c. We solve the boundary condition problem by fixing the voltages arbitrarily
(with values of VBG = 0V, VP G = 2V, and VGG = −3V). Finally, we plot different views of
the potential energy and the interlayer asymmetry in Figs. 5.
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(a)

(b)

(c)

Figure 5: Plots of the different electrostatic parameters in our device for the considered examples. In
the first two figures, we plot the potential energy V in (a) the xz plane, for a value of y that passes
through the center of the hole and in (b) the xy plane in the position of BLG (z = zBLG). In (c), we
plot the interlayer asymmetry in the same way we have done in (b). In (a), the solid and dashed black
lines represent the graphite BG and PG, respectively; the blue line is the BLG; and the green line is the
GG. Alternatively, in (b) and (c) the black lines represent the shape of the PG while the green lines are
again the GG.

2.2 Response of bilayer graphene
In the previous section, we obtained the shape of the electrostatic potential in the

absence of free charges. Nevertheless, applying a field to BLG changes its charge configura-
tion, which results in non-null charge density on the top (ϱ+) and bottom layer (ϱ−). Thus,
the total charge density ϱ = ϱ+ + ϱ− and the polarization density Pz = tz(ϱ+ − ϱ−)/2
of BLG change when a potential is applied. Their values will depend on the chemical
potential µ and in the interlayer asymmetry ∆, which are parameters that are extractable
from the calculations done (note that −eϕ + µ = −eV , where V is the electrochemical
potential). The calculation of these parameters on BLG under a homogeneous potential is
done in the appendix A.

Since applying an electrostatic potential to BLG displaces the charges in the layers, we
can no longer assume that there are no free charges. Thus the initially solved problem
changes, and, in order to get the exact electrostatic potential in the device, the equations
must be solved recursively taking into account the response of BLG in each iteration.
Assuming that the only free charges are the ones appearing in BLG, we can still consider
Eq. 7 in the whole device except for the BLG, and consider the effect of BLG by imposing
some boundary conditions in the top and bottom layers. These boundary conditions must
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fulfill the equations

Dz+ −Dz− = 4πϱ, (9)
Dz+ +Dz−

2 = 4πPz

tz
+ ∆
etz

, (10)

where Dz+ and Dz− are the displacement fields in the positive z direction in the top and
bottom layers, respectively, and we use the definition of the interlayer asymmetry as a
function of ϕ(z) that we present in the next section, in Eq. 13.

As an approximation, we will consider that the relation between the charge density
and the polarization and the potential. is that of BLG in a homogeneous potential. These
relationships are the ones obtained in appendix A, in concrete, expressed in Eqs. 67 and
68.

We now proceed to analyze the response of BLG under an inhomogeneous potential.
This potential would be the one obtained after recursively solving the equation for the
electrostatic problem. Nonetheless, we will just stick to an arbitrary central potential as
we have not obtained the real electrostatic potential yet. This will serve us to characterize
the dots and obtain the interactions between them.
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3 Single particle states of bilayer graphene under an inhomogeneous
potential

In this work, we consider Bilayer graphene in its most energetically stable type of
stacking, which is the AB-stacking, also known as Bernal stacking [YPZ+11]. BLG is a
semimetal, and the conduction and valence bands meet in the high symmetry points K+
and K−, which are the corners of the first Brillouin zone.

Close to the point Kξ (where ξ is the valley index and can take the values of ξ =
±1), the highest valence band and the lowest conduction band can be described with a
low-energy effective Hamiltonian [MK13]

H0ξ(k) = − ℏ2

2m

(
0 (π†)2

π2 0

)
, (11)

where π = ξkx + iky, π† = ξkx − iky, k is the crystal momentum measured from Kξ, and
m is the effective mass of the carriers in BLG and has a value of 0.03me [ZHZ11], where
me is the electron mass.

Since in all the situations studied in our work the valley symmetry is preserved, we will
consider only the ξ = 1 valley and then take into account the presence of the other valley
via a degeneracy factor gv = 2. In the same way, the spin symmetry is also conserved,
giving a degeneracy gs = 2. Our electronic system has therefore a total degeneracy of
g = gsgv = 4.

Applying an electrostatic potential ϕ(z) which is uniform in the in-plane directions
produces a new term in the Hamiltonian

Hpot =
(
V + ∆

2 0

0 V − ∆
2

)
, (12)

where V is the average potential energy and ∆ is the interlayer asymmetry. Calling z+
and z− to the coordinates of the top and bottom layers, respectively, V and ∆ can be
calculated from ϕ(z) as:

V = − e
[ϕ(z+) + ϕ(z−)]

2 ,

∆ = − e[ϕ(z+) − ϕ(z−)].
(13)

The response of BLG under such a uniform potential is described in appendix A.
We can obtain the low-energy effective model that describes the eigenstates of BLG

under an inhomogeneous electrostatic potential by promoting k to an operator via the
substitution k → p̂/ℏ = −i∇ and allowing V and ∆ to depend on the position operator r̂.
This gives the effective Hamiltonian that we will use in the remainder of this chapter

H = −α
(

0 (π̂†)2

π̂2 0

)
+
(∆(r̂)

2 + V (r̂) 0
0 9∆(r̂)

2 + V (r̂)

)
, (14)

where α = ℏ2/(2m) ≈ 1.27 eV · nm2 and π̂ = (p̂x + ip̂y)/ℏ.
In the next section, we will solve the time-independent Schrödinger equation for the

Hamiltonian in Eq. 14 with an arbitrary central potential and focus on its bound eigen-
states. Then, we will calculate the Hubbard model parameters (superposition, tunneling,
and Coulomb interaction) for those states as a function of the distance between the sites.
Finally, obtain the band structure for the Hamiltonian 14 when the applied potential is
periodic.
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3.1 Bilayer graphene under a central potential
In this section, we solve the time-independent Schrödinger equation HΨ(r) = EΨ(r),

where H is given by Eq. 14, with central potentials V (ρ) and ∆(ρ). Thus, it is convenient
to use polar coordinates, such that the operators π̂ and π̂† become

π̂2 = e+2iθ

(
− ∂2

∂ρ2 + 1
ρ2

∂2

∂θ2 + 1
ρ

∂

∂ρ
+ 2i
ρ2

∂

∂θ
− 2i
ρ

∂2

∂ρ∂θ

)
, (15)

(
π̂†
)2

= e−2iθ

(
− ∂2

∂ρ2 + 1
ρ2

∂2

∂θ2 + 1
ρ

∂

∂ρ
− 2i
ρ2

∂

∂θ
+ 2i
ρ

∂2

∂ρ∂θ

)
. (16)

Due to the rotational symmetry, since we can separate the radial and the angular part
of the wavefunction, we introduce the ansatz

Ψ(r) =
∞∑

ℓ=−∞
eiℓθ

(
f+

ℓ (ρ)
f−

ℓ (ρ)

)
, (17)

where ℓ ∈ Z is the angular quantum number. We see in Eqs. 15 and 16 that the operators
π̂2 and

(
π̂†
)2

couple angular quantum numbers that differ by 2. Consequently, we find it
convenient to rewrite Eq. 17 in the form:

Ψ(r) =
∞∑

ℓ=−∞
eiℓθ

(
f+

ℓ−1(ρ) e9iθ

f−
ℓ+1(ρ) eiθ

)
=

∞∑
ℓ=−∞

eiℓθ

(
uℓ,+(ρ) e9iθ

uℓ,−(ρ) eiθ

)
, (18)

where we have defined uℓ,±(ρ) ≡ f±
ℓ∓1(ρ). With these substitutions, the Schrödinger equa-

tion for the radial part of Ψ(r) reduces to the system of equations

α

[
üℓ,−(ρ) + 1 + 2ℓ

ρ
u̇ℓ,−(ρ) + ℓ2 − 1

ρ2 uℓ,−(ρ)
]

+
[
V (ρ) + ∆(ρ)

2

]
uℓ,+(ρ) = Euℓ,+(ρ), (19)

α

[
üℓ,+(ρ) + 1 − 2ℓ

ρ
u̇ℓ,+(ρ) + ℓ2 − 1

ρ2 uℓ,+(ρ)
]

+
[
V (ρ) − ∆(ρ)

2

]
uℓ,−(ρ) = Euℓ,−(ρ), (20)

where the dot stands for the derivative with respect to ρ.
For the solutions to behave well at ρ = 0, the following boundary conditions (BC) must

be imposed (see details in appendix B.1):

if ℓ ̸= ±1 : uℓ,±(ρ = 0) = 0; (21)
if ℓ = +1 : u̇+1,+(ρ = 0) = 0, u+1,−(ρ = 0) = 0; (22)
if ℓ = −1 : u̇−1,−(ρ = 0) = 0, u−1,+(ρ = 0) = 0. (23)

On the other hand, since the uℓ,± must be square integrable in all the space, they must
decay as ρ → ∞.

In general, these equations cannot be solved analytically and numerical approaches
must be done. These numerical solutions are obtained by discretizing the equations using
the finite element method. We describe the discretization in appendix B and implement it
in the Python package cylindrical_wavequations [NT], which obtains the corresponding
eigenstates and eigenenergies for any given V (ρ) and ∆(ρ).

The precision of the numerical solutions depends on two variables that appear when
discretizing our equations: ρmax and N . ρmax is the maximum value considered for the
radial variable. It must be big enough in order to correctly capture the decay of the
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functions as ρ → ∞ (which is done by imposing the BC uℓ,±(ρmax) = 0). On the other
hand, N is the number of parts in which we divide our domain ρ ∈ [0, ρmax]. It will
define the precision of our solution, where the error decays as a power law with N . Also
note that the bigger ρmax is, the greater N we need to reach the same precision. However,
setting high numbers for these variables also increases the computational time and memory
needed.

3.1.1 Confined states in an artificial quantum dot

In this section, we obtain the confined eigenstates and eigenenergies of a potential. A
potential that allows confined states with discrete energy levels will be an artificial quantum
dot. The general form reads

V (ρ) = Vdot(ρ) + Vout, (24)
∆(ρ) = ∆dot(ρ) + ∆out. (25)

In the current example, we consider a radial interlayer asymmetry square well of radius
ρ0 and depth ∆well by taking ∆dot(ρ) = −∆wellθ(ρ0 − ρ). We choose ∆well = 25meV,
∆out = 50meV and ρ0 = 20nm. Regarding the average potential, for simplicity, we will
set Vdot = 0 because it is not as important as the interlayer asymmetry when creating the
artificial dots and we will consider symmetric bands by fixing Vout = 0. Lastly, the chosen
parameters for the discretization are ρmax=500 and N=5000.

We solve the eigenenergy/eigenfunction problem for the described potential and identify
the confined states, which we know correspond to the eigenenergies that lie inside the
well. We observe that the only angular quantum numbers ℓ that allow these states are
ℓ = 0,±1,±2, where there are 2 confined states for ℓ = 0 and a single one for each of the
remaining ℓs. We will refer to the energies lower/upper bands with n = 91/1. Thus, each
state will be determined by the quantum numbers [ℓ, n]. We plot the mentioned bound
energies in Fig. 6 and summarize their energetic values in table 1. Besides, the confined
wavefunctions corresponding to those states are plotted in Figs 7.

Figure 6: Energies of the confined states with quantum numbers [ℓ, n] for the step-like central ∆dot. In
black, we plot V (ρ) ± ∆(ρ)

2 as a function of ρ.
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n ℓ = 92 ℓ = 91 ℓ = 0 ℓ = 1 ℓ = 2
91 -22.324 -16.125 -22.911
1 22.911 16.125 22.324

Table 1: Values of the energies (in meV) for the confined states for the different quantum numbers ℓ
and n.

(a) ℓ = 0 (b) |ℓ| = 1 (c) |ℓ| = 2

Figure 7: Confined states for the different |ℓ| as a function of the radial coordinate ρ for the step-like
central ∆dot. The wavefunctions above correspond to the states in the valence band (n = −1) and
below correspond to the ones in the conduction band (n = 1). For each [ℓ, n], we plot u± ≡ uℓ,±.

3.2 Extraction of Hubbard model parameters
We are interested in using arrays of electrostatically defined quantum dots in BLG as

a quantum simulator of the Hubbard model. In order to obtain the Hubbard Hamiltonian
that describes our system, we need to consider two dots at a relative position fixed by a
vector R. Each dot will be defined by its corresponding eigenfunction ψl,n. The different
interactions between the confined states will fully define the parameters of the Hubbard
model, where the overlap, the crystal field integral, and the tunneling define the tight-
binding part of the model, while the Coulomb interaction defines the on-site interaction.

The tight-binding parameters serve to build the effective tight-binding Hamiltonian of
the system. They are called and defined as [Ash76] overlap integral

αℓ1,n1,ℓ2,n2(R) =
ˆ
d2r ψℓ1,n1(r)†ψℓ2,n2(r − R), (26)

crystal field integral

βℓ1,n1,ℓ2,n2(R) = −
ˆ
d2r ψℓ1,n1(r)Vdot(r − R)ψℓ2,n2(r), (27)

and tunneling integral

γℓ1,n1,ℓ2,n2(R) = −
ˆ
d2r ψℓ1,n1(r)Vdot(r − R)ψℓ2,n2(r − R), (28)
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where

Vdot(r) =
(
Vdot(ρ) + ∆dot(ρ)

2 0
0 Vdot(ρ) − ∆dot(ρ)

2

)
. (29)

The dependence on the angular part of R (θR) of the tight binding parameters can be
simplified by noting the relation

αℓ1,n1,ℓ2,n2(R, θR) = ei(ℓ2−ℓ1)(θR−θR0 )αℓ1,n1,ℓ2,n2(R, θR0), (30)

which also holds for the crystal field integral β and the tunneling γ.
Moving to the Coulomb interaction, we will consider both the interaction between

electrons in the same dot (on-site) and the interaction between neighboring dots (off-site).
The on-site Coulomb interaction energy can be described as

Uℓ1,n1,ℓ2,n2 = 1
2

ˆ
d2r nℓ1,n1(r)Vℓ2,n2(r), (31)

where n(r) is the electron density at r and V (R) is the Coulomb potential created by
the total electron density n(r) at point R. As the potential is radial, these will not have
angular dependence. The electron density reads

nℓ,n(r) = ψ†(r)ℓ,nψ(r)ℓ,n = 1
2π
(
|u+

ℓ,n(ρ)|2 + |u−
ℓ,n(ρ)|2

)
= nℓ,n(ρ) (32)

and the Coulomb potential created by nℓ,n(r) (noting that, due to the symmetry we can
omit the angular part of R, θR)

Vℓ,n(R) = e2
ˆ
dr nℓ,n(r)

|r − R|
= e2

ˆ ∞

0
ρdρ nℓ,n(ρ)

ˆ π

−π
dθ

1√
ρ2 +R2 − 2ρR cos (θ)

= e2
ˆ ∞

0
ρdρ nℓ,n(ρ) 4

ρ+R
K

( 4ρR
(ρ+R)2

)
= Vℓ,n(R),

(33)

where K(m) is the elliptic integral of the first kind, defined as

K(m) =
ˆ π

2

0
[1 −m sin2 θ]9

1
2dθ. (34)

Lastly, the offsite Coulomb interaction energy is

Uℓ1,n1,ℓ2,n2(R) = 1
2

ˆ
d2r nℓ1,n1(r)Vℓ2,n2(r − R). (35)

3.2.1 Hubbard model parameters between states in a step-like central potential

In this section, we obtain the Hubbard model parameters between two QDs with relative
position R, being these QDs the ones studied in section 3.1.1. We start by calculating the
overlap and tunneling between states with ℓ = 0. The crystal integral is ignored because
its effect is negligible. We see in Figs. 8 the non-null and non-repeated interactions as a
function of the distance between sites and for any θR (since the results have no angular
dependence as we note from Eq. 30). Moreover, in tables 2 and 3 we summarize all the
possible overlaps and tunnelings between the QDs, distance with the maximum interaction
values (R = 50nm), and choose θR = 0.
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(a) Overlap between n1 = 1 and n2 = 1 The case
n1 = 91←→ n2 = 91 is equivalent. The rest of the
cases vanish.

(b) Tunneling between the different combinations of
n1 and n2. Case n1 = 91→ n2 = 1 is equivalent to
n1 = 1→ n2 = 91

Figure 8: Interaction parameters for ℓ = 0 as a function of the distance between sites R.

ℓ1

ℓ2 92 91 0 1 2

n1

n2 91 91 91 1 1 1

92 91 -0.140 -0.096 -0.240 0.003 -0.007 0.000
91 91 0.096 -0.002 0.124 -0.002 0.000 -0.007

0 91 -0.240 -0.124 -0.146 0.000 -0.002 -0.003
1 0.003 0.002 0.000 -0.146 -0.124 -0.240

1 1 0.007 0.000 0.002 0.124 -0.002 0.096
2 1 0.000 0.007 -0.003 -0.240 -0.096 -0.140

Table 2: All the possible overlaps (αℓ1,n1,ℓ2,n2) between the confined states for R = 50nm and θR = 0.

ℓ1

ℓ2 92 91 0 1 2

n1

n2 91 91 91 1 1 1

92 91 0.398 0.648 0.482 -0.144 0.407 0.279
91 91 -0.052 0.094 -0.078 -0.066 -0.170 -0.152

0 91 0.623 0.918 0.401 -0.169 0.136 0.010
1 0.010 0.136 -0.169 -0.401 -0.918 -0.623

1 1 -0.152 -0.170 -0.066 0.078 -0.094 0.052
2 1 0.279 0.407 -0.144 -0.482 -0.648 -0.398

Table 3: All the possible tunnelings (γℓ1,n1,ℓ2,n2) in meV between the confined states for R = 50nm and
θR = 0.

Continuing with the Coulomb interaction, we must note that, in the case considered,
the electron density only depends on the absolute value of the angular quantum number,
and, as a consequence, so does the Coulomb potential they create. We plot the different
obtained electron densities and their corresponding Coulomb potentials for the different ℓ
in Figs. 9.
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(a) ℓ = 0 (b) |ℓ| = 1 (c) |ℓ| = 2

Figure 9: Total electron density nℓ (blue) and the corresponding Coulomb potential (purple), as a
function of the radial distance ρ for the confined states. The pink dashed line represents e2/ρ and the
purple dash-dotted represents the coulomb potential for a uniformly charged disk of radius 20nm with
total charge e, which serve as a reference for the potential.

Finally, the near-site Coulomb interaction between two QDs with ℓ = 0 is plotted in
Fig. 10.

Figure 10: Near site coulomb interaction for ℓ = 0 divided by the on-site Coulomb interaction
(U0 = 0.0354 eV) as a function of the distance between sites R.

Summing up, in this section we have calculated some examples of the Hubbard param-
eters. Besides, the routines are flexible and can perform such calculations for any obtained
confined state. For more information, see the explanations in the supplementary material
5.

3.3 Electronic band-structure of bilayer graphene under a periodic potential
We lastly study the response of BLG under a periodic potential, since our goal is to

construct and study an array of quantum dots under a superlattice potential. Therefore,
the average potential and the interlayer asymmetry will satisfy

V (r + R) =V (r), (36)
∆(r + R) =∆(r), (37)

where R = n1a1 + n2a2 is the lattice vector that defines the periodicity of the potential,
given that n1, n2 ∈ Z, and that a1 and a2 are the primitive lattice vectors. We know from
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Bloch’s theorem that the wavefunctions that solve Schödinger’s equation in such a periodic
potential can be written as

ψk,ν(r) = eik·ruk,ν(r), (38)

where base functions u have the same periodicity as the potential (uk,ν(r) = uk),ν(r + R),
ν is the band index and k is the crystal momentum of the superlattice.

Considering BLG, we have to note that our base functions will be spinors. Taking this
into account, we choose an orthonormal base that respects Eq. 38, which reads

ψk,G,λ(r) = ⟨r|k,G, λ⟩ = 1√
S
ei(k+G)·rχλ (39)

where S is the total area, λ = ±1 is the layer number and the χ± are a basis of the layer
subspace

χ+ =
(

1
0

)
, χ− =

(
0
1

)
. (40)

Taking the Hamiltonian for BLG under an arbitrary potential 14 and considering the
case where this potential is periodic, we can construct that Hamiltonian in the described
basis. The components for any k ∈ B.Z 3 are

⟨k,G, λ| H
∣∣k,G′, λ′〉 = −αδGG′χ†

λ

(
0 [kx +Gx − i(ky +Gy)]2

[kx +Gx + i(ky +Gy)]2 0

)
χλ′

+ χ†
λ

(
VG′−G + ∆G′−G

2 0
0 VG′−G − ∆G′−G

2

)
χλ′ ,

(41)

where VG and ∆G are the Fourier components of the average potential and the interlayer
asymmetry in the reciprocal lattice point G, respectively.

Using Python package pybandstructure [Torb, NTK+20] we can implement the peri-
odic Hamiltonian described in Eq. 41 and therefore calculate the band structure of BLG
under any induced superlattice.

3.3.1 Electronic band-structure of a square array of quantum dots in bilayer graphene

We will study a superlattice potential that creates arrays of quantum dots. Thus, we
will have a periodic repetition of the potential generating a single quantum dot described
in Eqs. 24 and 25, i.e.,

V (r) =
∑
R
Vdot(|r − R|) + Vout, (42)

∆(r) =
∑
R

∆dot(|r − R|) + ∆out. (43)

For this concrete example, we choose the same dot potentials (Vdot and ∆dot) used
in section 3.1.1 repeated in the form of a square lattice, with primitive lattice vectors
a1 = a(1, 0) and a2 = a(0, 1), where a is the lattice constant.

We obtain the total Hamiltonian by inserting in Eq. 41 the Fourier components of
the described potential. Remember that the Fourier components are obtained at all the
considered points in the reciprocal lattice of the square superlattice. As Vdot = 0, VG =

31st Brillouin zone
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0 ∀G. Thus, we only need to calculate the Fourier components ∆G. Due to the symmetry
of the system, we perform the correspondent integral of the Fourier transform only in the
unit cell (u.c.), which reads

∆G =
ˆ

u.c.

d2r
Su.c.

∆(r)e−iG·r =∆out δG,0 −
ˆ ∞

0
ρdρ

ˆ +π

−π
dθ

∆well

Su.c.
θ(ρ0 − ρ)e−iGr cos θ

=∆out δG,0 − ∆well

Su.c.

2πρ0
G

J1(Gρ0),
(44)

where Su.c. is the area of the unit cell and the Jα(x) are the Bessel functions of the first
kind.

We calculate the band structure and the Density of States (DoS) for different values of
a. We chose the values of a = 50nm and a = 150nm, expecting strong and null interactions
between sites, respectively. We plot the results in Figs. 11. For more details on the
calculations, see the supplementary material 5.

(a) (b)

(c) (d)

Figure 11: Band structure between high symmetry points Γ,M,X and DoS in different energetic ranges
for a square lattice of ∆dot with lattice constant a = 50nm (a, b) and a=150nm (c, d). The confined
bands are plotted in blue, and the non-confined ones in red. The green lines in the band structure
represent the outer interlayer asymmetry ±∆out/2 and the dashed green line represents the DoS of BLG
with interlayer asymmetry ∆out.

We clearly see that in the more spaced case (a = 150nm), we recover the energy levels
obtained for a single dot, as we can easily ascertain going back to Fig. 6. Thus, we have
no interaction between different dots, as we could predict from the interaction parameters
calculated in section 3.2.1. Alternatively, in the case with a superlattice constant of a =
50nm, as the quantum dots interact, the band structure bends.
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4 Conclusions
In this work, we have made the first main steps to characterize electrostatically-defined

quantum dots in bilayer graphene.
We have started by studying a single quantum dot. In order to do that, two different

parts of the problem have been examined and implemented numerically. On the one
hand, we have obtained the first approach of the electrostatic potential and displacement
field inside the device. As free charges appear in BLG and that provokes a change in
the initially solved problem, the subsequent step is to take into account the response of
charges in BLG by recursively solving the problem. On the other hand, we have solved
the Schrödinger equation in BLG for an arbitrary central electrostatic potential, being
capable of obtaining the eigenenergies and eigenfunctions of the confined states, which are
the quantum dots to be studied. We remark here that we have proposed how to implement
iterative solving of the electrostatic problem considering the response of BLG. Nonetheless,
we have made the approach to the response by considering the calculations done for BLG
under a homogeneous potential. One could also calculate a more realistic response of BLG
(using the programs implemented in section 3) to the potential calculated in section 2, and
obtain the free charge density in each layer from the resultant wavefunctions. Nevertheless,
we consider that too computationally demanding, as we should also solve the Schrödinger
equation for each iteration.

After having studied single dots, we computed the interactions between different dots,
calculating the Hubbard parameters describing an array of dots. Moreover, the band struc-
ture of BLG under a superlattice potential has been obtained. To validate the equivalence
between both approaches, the results can be compared by obtaining the TB Hamiltonian
of the system with the calculated TB parameters and obtaining its band structure.

Summing up, we have provided the numerical and computational tools to characterize
arrays of gate-defined quantum dots induced in BLG. With them, we are capable to obtain
the parameters of the Hubbard model Hamiltonian we are modeling with this analog quan-
tum simulator. In this way, we have built a flexible platform to test possible devices, as we
are able to easily change the parameters that define the dot, such as the separation between
dots in the superlattice or the size of the hole in the patterned gate. This enables us to ob-
tain a device with a desired response more easily. Moreover, these theoretical simulations
serve as theoretical backups to compare with the experimental results. Furthermore, even
if the calculations have been done only for BLG, the calculations are easily implementable
for other similar materials, such as graphene or Transition Metal Dichalcogenides (TMDs).
Last but not least, remark that the central potentials implemented can be used to study
other wave equations in 2D with radial symmetry, such as the equations that arise when
calculating the binding energy of excitons in two-dimensional materials.

5 Supplementary material
All the calculations done have been implemented in Python and put together in the

package cylindrical_wavequations [NT] released under public license GNU gpl3. More-
over, all the examples done in this work, with detailed information for each step, can be
found in some notebooks stored in https://github.com/saru1799/supplementary_mat_
qdblg. All the modules are provided there too, so it is not necessary to directly install the
package.
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A Properties of uniform bilayer graphene
We analyze the properties of bilayer graphene under a homogeneous potential, i.e., con-

stant in the whole BLG plane. This will serve as the first approach to the properties of BLG
under an inhomogeneous potential. We know that the general low-energy Hamiltonian de-
scribing it is H0ξ +Hpot, where these 2 Hamiltonians are the ones expressed in Eqs. 11 and
12. As the potential is constant, it will only change the position of the chemical potential
with respect to the states. Thus, we consider the case where only an interlayer asymmetry
∆ is present, which energetically differentiates between the two layers. This analysis is also
the most relevant to the work done. Therefore, setting V = 0, the Hamiltonian becomes

H(k) = H0(k) + ∆
2 σz =

 ∆
2 9 ℏ2

2m(π†)2

9 ℏ2

2mπ2 9∆
2

 . (45)

The eigenvalues of this Hamiltonian are

ϵν(k) = ν

√
ℏ4k4

4m2 + ∆2

4 , (46)

and the associated eigenvectors are

vν(k) = 1√
2Nν(k)

(
1

−νe2iθk
√

2Nν(k) − 1

)
, (47)

with

Nν(k) = 1 +
∆2

4 − ν∆
2

√
ℏ4k4

4m2 + ∆2

4
ℏ4k4

4m2

. (48)

Here, ν = ±1 (that differentiates between the bands), and θk is the polar angle of the
vector k.

Note that in the case without interlayer asymmetry, Eqs. 46 and 47 reduce to

ϵν(k) = ν
ℏ2k2

2m , (49)

vν(k) = 1√
2

(
1

−νe2iθk

)
. (50)

In this work, it will be useful to compute the basis |ℓ, ν, k⟩ of any state. This is done
from the free particle expansion of the wavefunctions. We know we can express any state
as

Ψ(r) =
∑
kν

Ψkν(r)Cν(k) (51)

where

Ψkν = vν
eik·r
√
S
, (52)

and the coefficients read

Cν(k) =
∞∑

ℓ=−∞
eiℓθkδ(k − k0). (53)
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Inserting the normalization condition ⟨ℓ′ ν ′ k′|ℓ ν k⟩ = δℓℓ′δνν′δ(k− k′) and performing
the needed integrals leads to the expression

⟨r|ℓ ν k⟩ =

√
k

2π
eiℓθ√

2Nν(k)

(
e−iθJℓ−1(kr)

νeiθ
√

2Nν(k) − 1Jℓ+1(kr)

)
(54)

Going back to the electronic properties, the density of states (DOS) is

DOS(ϵ) = gsgv
1
L2

∑
k,ν

δ(ϵ−ϵν(k)) =



2m
πℏ2

ϵ√
ϵ2− ∆2

4

ϵ > |∆|
2

0 − |∆|
2 < ϵ < |∆|

2
− 2m

πℏ2
ϵ√

ϵ2− ∆2
4

ϵ < − |∆|
2

= 2m
πℏ2 Re

 |ϵ|√
ϵ2 − ∆2

4

.
(55)

In the DOS we see that the consideration of the nonzero layer asymmetry has opened
a region of forbidden energies (a gap) of size ∆. The appearance of this gap in BLG when
∆ ̸= 0 will be a crucial point of the current work.

For us, it is more interesting to obtain the DOS projected in each layer, which is the
projected DOS (PDOS) and will be

PDOSl(ϵ) = gsgv

∑
k,ν

δ(ϵ− ϵν(k)) vν(k)†Plvν(k) (56)

where l is the layer number, having l = 1 for the top layer and l = −1 for the bottom layer;
and Pl is the projector in each of the layers and is defined as Pl = 1

2(1 + lσz). This leads
to

PDOSl(ϵ,∆) =



m
πℏ2

√
ϵ+l ∆

2
ϵ−l ∆

2
ϵ > |∆|

2

0 − |∆|
2 < ϵ < |∆|

2
m

πℏ2

√
ϵ+l ∆

2
ϵ−l ∆

2
ϵ < − |∆|

2

= m

πℏ2 Re


√√√√ϵ+ l∆

2
ϵ− l∆

2

. (57)

In Figs. 12, we plot the DOS and the PDOS for a constant ∆ of value ∆ = 0.1 eV.

(a) (b)

Figure 12: (a) DOS and (b) projected DOS (blue for the top layer and in red for the bottom layer) as a
function of energy for BLG with a constant interlayer asymmetry of ∆ = 0.1eV.

The electronic density in each of the layers nl is a function of the chemical potential
µ, the interlayer asymmetry ∆, and the temperature T . By definition, nl = nel − nhl,
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where nel and nhl are the density of electrons and holes in layer l, respectively. Thus, the
electronic density in each layer is

nl(µ,∆, β) =
ˆ ∞

0
dϵ PDOSl(ϵ,∆)fF D(ϵ, µ, β)︸ ︷︷ ︸

nel

−
ˆ 0

−∞
dϵ PDOSl(ϵ,∆)[1 − fF D(ϵ, µ, β)]︸ ︷︷ ︸

nhl

=

= m

πℏ2

ˆ ∞

|∆|
2

dϵ

√√√√ϵ+ l∆
2

ϵ− l∆
2

1
1 + eβ(ϵ−µ) −

ˆ − |∆|
2

−∞
dϵ

√√√√ϵ+ l∆
2

ϵ− l∆
2

1
1 + e−β(ϵ−µ)

 =

= m

πℏ2

ˆ ∞

|∆|
2

dϵ

√√√√ϵ+ l∆
2

ϵ− l∆
2

1
1 + eβ(ϵ−µ) −

ˆ ∞

|∆|
2

dϵ

√√√√ϵ− l∆
2

ϵ+ l∆
2

1
1 + eβ(ϵ+µ)

 =

= m

πℏ2

ˆ ∞

|∆|
2

dϵ
ϵ+ l∆

2√
ϵ2 − ∆2

4

1
1 + eβ(ϵ−µ) −

ˆ ∞

|∆|
2

dϵ
ϵ− l∆

2√
ϵ2 − ∆2

4

1
1 + eβ(ϵ+µ)

 .
(58)

In the last equation, fF D(ϵ, µ, β) = [1 + eβ(ϵ−µ)]−1 is the Fermi-Dirac distribution function
and β = 1

kBT where kB is Boltzmann’s constant. These integrals can be solved analytically
at zero temperature (β → +∞) using the identity [1 + eβx]−1 −−−→

β→∞
θ(−x). Thus Eq. 58

at T = 0 becomes

nl(µ,∆,∞) = m

πℏ2

ˆ ∞

|∆|
2

dϵ
ϵ+ l∆

2√
ϵ2 − ∆2

4

θ(µ− ϵ) −
ˆ ∞

|∆|
2

dϵ
ϵ− l∆

2√
ϵ2 − ∆2

4

θ(−µ− ϵ)

 . (59)

When µ lies inside the gap (|µ| < |∆|
2 ), both integrals in Eq. 59 vanish. When µ > |∆|

2
only the first integral, corresponding to a density of electrons, will have a non-zero value.
This leads to

nl(µ,∆, β = ∞) µ>|∆|/2−−−−−→ m

πℏ2

ˆ µ

|∆|
2

dϵ
ϵ+ l∆

2√
ϵ2 + ∆2

4

=

m

πℏ2

√µ2 − ∆2

4 + l
∆
2 arcosh

( 2µ
|∆|

) ,
(60)

where for ∆ = 0 the second part vanishes. Similarly, for µ < − |∆|
2 , only the second integral

(corresponding to the density of holes) contributes, yielding

nl(µ,∆, β = ∞) −µ>|∆|/2−−−−−−→ − m

πℏ2

ˆ −µ

|∆|
2

dϵ
ϵ− l∆

2√
ϵ2 + ∆2

4

=

m

πℏ2

−

√
µ2 − ∆2

4 + l
∆
2 arcosh

(−2µ
|∆|

) .
(61)

Putting the three cases together, we obtain

nl(µ,∆, β = ∞) = m

πℏ2

sgn(µ)

√
µ2 − ∆2

4 + l
∆
2 arcosh

(2|µ|
|∆|

) θ(2|µ| − |∆|) (62)
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This allows us to calculate the total charge density ϱ = −e(n+ + n−) and the polarization
density Pz = −etz(n+ − n−)/2, where tz is the distance between the layers and e is the
unit charge. This yields to

ϱ(µ,∆, β = ∞) = −e 2m
πℏ2 sgn (µ) Re


√
µ2 − ∆2

4

 (63)

and
Pz(µ,∆, β = ∞) = −etz

m

πℏ2 ∆ Re
{

arcosh
(2|µ|

|∆|

)}
(64)

We plot both ϱ(µ) and Pz for the previous example of ∆ = 0.1 eV in Figs.

(a) (b)

Figure 13: (a) Total charge density and (b) polarization energy as a function of the chemical potential
at T = 0 for BLG with a constant interlayer asymmetry of ∆ = 0.1eV. The limits of the gap ∆

2 are
marked in dashed lines.

We can calculate nl at finite temperature using the following identity, known as Maldague’s
integral [Mal78]:

1
1 + ex

=
ˆ ∞

−∞

θ(y − x)
4 cosh2 y

2
dy, (65)

which allows us to express the finite temperature quantities as a rapidly convergent integral
involving the corresponding quantities at zero temperature. For the electronic density, we
get

nl(µ,∆, β) = m

πℏ2

ˆ ∞

|∆|
2

dϵ
ϵ+ l∆

2√
ϵ2 − ∆2

4

1
1 + eβ(ϵ−µ) −

ˆ ∞

|∆|
2

dϵ
ϵ− l∆

2√
ϵ2 − ∆2

4

1
1 + eβ(ϵ+µ)

 =

m

πℏ2

{ˆ ∞

β
( |∆|

2 −µ
) dy 1

4 cosh2 y
2

√( y
β

+ µ

)2
− ∆2

4 + l
∆
2 arcosh

2
∣∣∣ y

β + µ
∣∣∣

|∆|


−
ˆ ∞

β
( |∆|

2 +µ
) dy 1

4 cosh2 y
2

√( y
β

− µ

)2
− ∆2

4 − l
∆
2 arcosh

2
∣∣∣ y

β − µ
∣∣∣

|∆|

} =

ˆ ∞

−∞
dy

1
4 cosh2(y

2 )
nℓ

(
µ+ y

β
,∆, β = ∞

)
.

(66)

As we did for the DOS and the PDOS, we obtain the numerical calculation for the
electronic densities in each layer for ∆ = 0.1eV, shown in Figs. 14.

29



Figure 14: Electronic density in the top (n+) and bottom (n−) layers as a function of the chemical
potential ν for different temperatures and a fixed interlayer asymmetry of ∆ = 0.1eV. The dashed lines
correspond to µ = ± ∆

2

Thus, the total charge density at finite temperature reads

ϱ(µ,∆, β) = − em

πℏ2

{ˆ ∞

β
( |∆|

2 −µ
) dy 1

2 cosh2 y
2

√(
y

β
+ µ

)2
− ∆2

4

−
ˆ ∞

β
( |∆|

2 +µ
) dy 1

2 cosh2 y
2

√(
y

β
− µ

)2
− ∆2

4

}
=

ˆ ∞

−∞
dy

1
4 cosh2(y

2 )
ϱ

(
µ+ y

β
,∆, β = ∞

)
;

(67)

and for the polarization density, we have

Pz(µ,∆, β) = −etzm

πℏ2

{ˆ ∞

β
( |∆|

2 −µ
) dy ∆

8 cosh2 y
2

Re

arcosh

2
(

y
β + µ

)
|∆|


+
ˆ ∞

β
( |∆|

2 +µ
) dy ∆

8 cosh2 y
2

Re

arcosh

2
(

y
β − µ

)
|∆|


}

=

ˆ ∞

−∞
dy

1
4 cosh2(y

2 )
Pz

(
µ+ y

β
,∆, β = ∞

)
.

(68)

We see that this enables us to get the values for finite temperatures as a function of
the expressions for zero temperature.
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B Discretization of the eigenvalue/eigenvector equations for bilayer
graphene under a radially symmetric potential using the finite ele-
ment method

Here we solve the system of equations obtained for the radial part of the wavefunctions
of BLG under a radial potential, which read

α

[
üℓ,−(ρ) + 1 + 2ℓ

ρ
u̇ℓ,−(ρ) + ℓ2 − 1

ρ2 uℓ,−(ρ)
]

+
[
V (ρ) + ∆(ρ)

2

]
uℓ,+(ρ) = Euℓ,+(ρ), (69)

α

[
üℓ,+(ρ) + 1 − 2ℓ

ρ
u̇ℓ,+(ρ) + ℓ2 − 1

ρ2 uℓ,+(ρ)
]

+
[
V (ρ) − ∆(ρ)

2

]
uℓ,−(ρ) = Euℓ,−(ρ). (70)

We first study the boundary conditions we need to impose and then use the FEM to
get the numerical implementation of the problem.

B.1 Obtaining the boundary conditions
In order to discretize the equations, we need the boundary conditions (BC) at the

boundaries of the considered coordinate ρ, i.e., at ρ = 0 and at ρ = ρmax.
We will start with the case ρ = 0. Multiplying Eqs. 69 and 70 by ρ2 and fixing ρ = 0

would leave us with:

(ℓ2 − 1)uℓ,+(0) = 0, (ℓ2 − 1)uℓ,−(0) = 0. (71)

As ℓ is fixed, this distinguishes two different cases, which we will analyze separately:
ℓ2 ̸= 1 and ℓ = ±1.

ℓ2 ̸= 1

From the Eqs. at ρ = 0 written in 71, we see that in this case we must have uℓ,+(0) = 0
and uℓ,−(0) = 0. Thus, this fixes our boundary conditions.

ℓ = ±1

In this case, we return to Eqs. 69 and 70 and see that the zero order term vanishes.
We analyze the equations by expanding uℓ,± till the second order. This leaves us with
two different cases. For ℓ = 1, we have that:

u̇+1,+(ρ = 0) = 0, u+1,−(ρ = 0) = 0; (72)

while for ℓ = −1:
u̇−1,−(ρ = 0) = 0, u−1,+(ρ = 0) = 0. (73)

We proceed with the boundary condition at ρ = ρmax. As we know the wavefunctions
should decay as ρ → ∞ we just fix uℓ,+(ρmax) = uℓ,−(ρmax) = 0 by assuming that the
chosen ρmax is large enough.
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B.2 Implementing the finite element method
Now we go back again to Eqs. 69 and 70, and rewrite them in a single equation using

the spinor of u, i.e.:

ū(ρ) =
(
u+(ρ)
u−(ρ)

)
(74)

Which leads to (with ϵ = E/α):(
0 1
1 0

)
︸ ︷︷ ︸

M1

¨̄u(ρ) +
(

0 1+2ℓ
ρ

1−2ℓ
ρ 0

)
︸ ︷︷ ︸

M2

˙̄u(ρ) +
(
V +(ρ) ℓ2−1

ρ2

ℓ2−1
ρ2 V −(ρ)

)
︸ ︷︷ ︸

M3

ū = ϵ

(
1 0
0 1

)
ū (75)

where

ϵ = E

α
, V +(ρ) = 1

α

(
V (ρ) + ∆(ρ)

2

)
, V −(ρ) = 1

α

(
V (ρ) − ∆(ρ)

2

)
. (76)

The next step is to find the weak form of eq. 76. If we call v̄(ρ) ∈ W to our test
function (which will be a spinor), this leads to:

ˆ ρmax

0
ρdρv̄†(ρ)

[
M1 ¨̄u(ρ) +M2 ˙̄u(ρ) +M3ū(ρ) − ϵū(ρ)

]
= 0 (77)

To have the same order of derivatives, we use the integration by parts:
ˆ ρmax

0
ρv†(ρ)M1 ¨̄u(ρ) =

[
rv̄†(ρ)M1 ˙̄u(ρ)

] ∣∣∣∣ρmax

0︸ ︷︷ ︸
=0

−
ˆ ρmax

0
dρ
(
v̄†(ρ) + ρ ˙̄v†(ρ)

)
M1 ˙̄u(ρ) (78)

where the first term cancels due to the BC, as we can impose v̄(0) = v̄(ρmax) = 0̄ [LM].
Thus, this transforms eq. 77 into:ˆ ρmax

0
dρ
[
v̄†(ρ)M1 ˙̄u(ρ) + ρ ˙̄v†(ρ)M1 ˙̄u(ρ) + ρv̄†(ρ)M2 ˙̄u(ρ) + ρv̄†(ρ)M3ū(ρ) − ϵū(ρ)

]
= 0

(79)
From this point on, we decide to only consider the case ℓ2 ̸= 1, as the boundary

conditions are simpler and it is valid to understand how to implement the FEM. For
ℓ = ±1, only the solutions will be given after.

We choose the space W to be defined as W ∈ span{φi}. These functions are defined as
a function of our discretization. We have already specified that we are solving the problem
in ρ ∈ [0, ρmax] and this space will be divided into N segments, having h = ρmax

N . Conse-
quently, and taking into account that our BCs are ū(0) = ū(ρmax) = 0̄, we can also choose
ū ∈ W , if all the functions in W fulfill the BCs. So we choose the φi to be:

φi(ρ) =


ρ
h + 1 − i (i− 1)h < ρ < ih

− ρ
h + 1 − i ih < ρ < (i+ 1)h

0 otherwise.
(80)

Hence, and representing the different layers by λ = +,−, and χ+ =
(

1
0

)
, χ− =

(
0
1

)
we can write:

v̄ =
∑
i,λ

φiχλvi,λ ū =
∑
j,λ′

φjχλ′vi,λ′ (81)
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Figure 15: Graphical representation of functions φi.

Note that, seeing how we have built the equations, the unknowns uj,λ′ ≡ u+(ρj), u−(ρj)
are the solutions we are looking for. Inserting the power series into eq. 79, leading to

∑
i,j,λ,λ′

viλujλ′

ˆ ρmax

0
dρ
[
−φiχ

†
λM1φ̇jχλ′ − ρφ̇iχ

†
λM1φ̇jχλ′ + ρφiχ

†
λM2φ̇jχλ′ + ρφiχ

†
λM3φjχλ′

]
=

=ϵ
∑

i,j,λ,λ′

viλujλ′

ˆ ρmax

0
ρdρ φiφjχ

†
λχλ′ (82)

Note that this equation must be fulfilled for ∀viλ and that M1 + ρM2 = 2ℓ
ρ

(
0 1

−1 0

)
:=

M ℓ
2 . So, the equation we have is:

∑
i,j,λ,λ′

ujλ′

ˆ ρmax

0
dρ
[
−ρφ̇iχ

†
λM1φ̇jχλ′ + ρφiχ

†
λM

ℓ
2φ̇jχλ′ + ρφiχ

†
λM3φjχλ′

]
=

=ϵ
∑

i,j,λ,λ′

ujλ′

ˆ ρmax

0
ρdρ φiφjχ

†
λχλ′ (83)

This leads to the eigenvalue/eigenvector equations with the form ¯̄M · ūtot = ϵ ¯̄W ·
ūtot, where ū†

tot := (u1, u2, ..., ui, ..., uN ); ui := u(ρi) and we have defined ρi = hi; i =
0, 1, 2 . . . N + 1; ρ0 = 0; ρN+1 = ρmax. Thus, the matrix M will be defined as

M = α

h2 [M (K1) + 2ℓM (K2) + (ℓ2 − 1)M (K3)] +M (V ). (84)

All these matrices are symmetric and have the following structure :
D1 P1
P T

1 D2 P2
. . . . . . . . .

P T
N−2 DN−1 PN−1

P T
N−1 DN

 (85)

DT
n = Dn (86)

We will now define separately all the components (remember that we are in the case
ℓ2 ̸= 1):
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Matrix M (K1)

Dn =
(

0 −2n
−2n 0

)
Pn =

(
0 n+ 1

2
n+ 1

2 0

)
(87)

Matrix M (K2)

Dn =
(

0 0
0 0

)
Pn =

(
0 +1

2
−1

2 0

)
(88)

Matrix M (K3)

Dn =
(

0 fn

fn 0

)
, Pn =

(
0 gn

gn 0

)
, (89)

where

fn =
{

−2n− (n− 1)2 ln(1 − 1/n) + (n+ 1)2 ln(1 + 1/n) if n > 1
−2 + 4 ln(2) if n = 1

(90)

gn = 1
2 + n− n(n+ 1) ln(1 + 1/n) (91)

Matrix M (V )

We define V (±)
n = V (rn) ± 1

2∆(rn).

Dn =

 (5n−2)V (+)
n−1+30nV

(+)
n +(5n+2)V (+)

n+1
60 0

0 (5n−2)V (−)
n−1+30nV

(−)
n +(5n+2)V (−)

n+1
60

 (92)

Pn =

 (5n+2)V (+)
n +(5n+3)V (+)

n+1
60 0

0 (5n+2)V (−)
n +(5n+3)V (−)

n+1
60

 (93)

Matrix W

Dn =
(

2n
3 0
0 2n

3

)
, Pn =

(
2n+1

12 0
0 2n+1

12

)
. (94)

The case ℓ = ±1 is implemented by adding the matrices for n = 0 multiplying the
term u± that does not vanish at ρ = 0 (i.e., uℓ,+ for ℓ = 1 and uℓ,− for ℓ = −1). The rest
of the components of the matrices are the same as in the case ℓ2 ̸= 1. Thus the matrix M
will now read

M = α

h2 [M (K1) + 2ℓM (K2)] +M (V ) (95)
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being able to write each of the matrices in the way

D0 P0
P T

0 D1 P1
P T

1 D2 P2
. . . . . . . . .

P T
N−2 DN−1 PN−1

P T
N−1 DN


, (96)

where D0 is a 1 × 1 matrix and P0 a 1 × 2 one, that depend on the chosen ℓ.
Starting with ℓ = 1

Matrix M (K1)

D0 =
(
0
)
, P0 =

(
0 1

2

)
. (97)

Matrix M (K2)

D0 =
(
0
)
, P0 =

(
0 1

2

)
(98)

Matrix M (V )

D0 =
(

3V
(+)

0 +2V
(+)

1
60

)
, P0 =

(
2V

(+)
0 +3V

(+)
1

60 0
)

(99)

Matrix W

D0 =
(

1
12

)
, P0 =

(
1
12 0

)
. (100)

Similarly, in case ℓ = −1

Matrix M (K1)

D0 =
(
0
)
, P0 =

(
1
2 0

)
. (101)

Matrix M (K2)

D0 =
(
0
)
, P0 =

(
−1

2 0
)
. (102)

Matrix M (V )

Dn =
(

3V
(−)

0 +2V
(−)

1
60

)
, Pn =

(
0 2V

(−)
0 +3V

(−)
1

60

)
. (103)
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Matrix W

D0 =
(

1
12

)
, P0 =

(
0 1

12

)
. (104)

All these matrices are implemented in the Python package cylindrical_wavequations,
which uses them to solve the eigenvalue/eigenvector problem described in section 3.1.
Thanks to the discretization, the matrices are almost diagonal, which means they can be
easily implementable in sparse matrices. This reduces the computational cost and allows
us to use these 2N × 2N matrices.
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